1
|
Li S, Huang Y, Yu L, Ji X, Wu J. Impact of the Cannabinoid System in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:715-726. [PMID: 35105293 PMCID: PMC10207907 DOI: 10.2174/1570159x20666220201091006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Cannabinoids are compounds isolated from cannabis and are also widely present in both nervous and immune systems of animals. In recent years, with in-depth research on cannabinoids, their clinical medicinal value has been evaluated, and many exciting achievements have been continuously accumulating, especially in the field of neurodegenerative disease. Alzheimer's disease is the most common type of neurodegenerative disease that causes dementia and has become a global health problem that seriously impacts human health today. In this review, we discuss the therapeutic potential of cannabinoids for the treatment of Alzheimer's disease. How cannabinoids act on different endocannabinoid receptor subtypes to regulate Alzheimer's disease and the roles of the endocannabinoid system in Alzheimer's disease are outlined, and the underlying mechanisms are discussed. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to Alzheimer's disease and discuss the potential usefulness of cannabinoids in the clinical treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Shuangtao Li
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Yuanbing Huang
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Lijun Yu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Xiaoyu Ji
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Jie Wu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| |
Collapse
|
2
|
Haytural H, Jordà-Siquier T, Winblad B, Mulle C, Tjernberg LO, Granholm AC, Frykman S, Barthet G. Distinctive alteration of presynaptic proteins in the outer molecular layer of the dentate gyrus in Alzheimer's disease. Brain Commun 2021; 3:fcab079. [PMID: 34013204 PMCID: PMC8117432 DOI: 10.1093/braincomms/fcab079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Synaptic degeneration has been reported as one of the best pathological correlates of cognitive deficits in Alzheimer's disease. However, the location of these synaptic alterations within hippocampal sub-regions, the vulnerability of the presynaptic versus postsynaptic compartments, and the biological mechanisms for these impairments remain unknown. Here, we performed immunofluorescence labelling of different synaptic proteins in fixed and paraffin-embedded human hippocampal sections and report reduced levels of several presynaptic proteins of the neurotransmitter release machinery (complexin-1, syntaxin-1A, synaptotagmin-1 and synaptogyrin-1) in Alzheimer's disease cases. The deficit was restricted to the outer molecular layer of the dentate gyrus, whereas other hippocampal sub-fields were preserved. Interestingly, standard markers of postsynaptic densities (SH3 and multiple ankyrin repeat domains protein 2) and dendrites (microtubule-associated protein 2) were unaltered, as well as the relative number of granule cells in the dentate gyrus, indicating that the deficit is preferentially presynaptic. Notably, staining for the axonal components, myelin basic protein, SMI-312 and Tau, was unaffected, suggesting that the local presynaptic impairment does not result from axonal loss or alterations of structural proteins of axons. There was no correlation between the reduction in presynaptic proteins in the outer molecular layer and the extent of the amyloid load or of the dystrophic neurites expressing phosphorylated forms of Tau. Altogether, this study highlights the distinctive vulnerability of the outer molecular layer of the dentate gyrus and supports the notion of presynaptic failure in Alzheimer's disease.
Collapse
Affiliation(s)
- Hazal Haytural
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 64 Solna, Sweden
| | - Tomàs Jordà-Siquier
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 64 Solna, Sweden
- Karolinska University Hospital, Theme Aging, 141 86 Huddinge, Sweden
| | - Christophe Mulle
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 64 Solna, Sweden
| | - Ann-Charlotte Granholm
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 64 Solna, Sweden
- Knoebel Institute for Healthy Aging, University of Denver, Denver 80208, CO, USA
| | - Susanne Frykman
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 64 Solna, Sweden
| | - Gaël Barthet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| |
Collapse
|
3
|
Bao W, Xie F, Zuo C, Guan Y, Huang YH. PET Neuroimaging of Alzheimer's Disease: Radiotracers and Their Utility in Clinical Research. Front Aging Neurosci 2021; 13:624330. [PMID: 34025386 PMCID: PMC8134674 DOI: 10.3389/fnagi.2021.624330] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's Disease (AD), the leading cause of senile dementia, is a progressive neurodegenerative disorder affecting millions of people worldwide and exerting tremendous socioeconomic burden on all societies. Although definitive diagnosis of AD is often made in the presence of clinical manifestations in late stages, it is now universally believed that AD is a continuum of disease commencing from the preclinical stage with typical neuropathological alterations appearing decades prior to its first symptom, to the prodromal stage with slight symptoms of amnesia (amnestic mild cognitive impairment, aMCI), and then to the terminal stage with extensive loss of basic cognitive functions, i.e., AD-dementia. Positron emission tomography (PET) radiotracers have been developed in a search to meet the increasing clinical need of early detection and treatment monitoring for AD, with reference to the pathophysiological targets in Alzheimer's brain. These include the pathological aggregations of misfolded proteins such as β-amyloid (Aβ) plagues and neurofibrillary tangles (NFTs), impaired neurotransmitter system, neuroinflammation, as well as deficient synaptic vesicles and glucose utilization. In this article we survey the various PET radiotracers available for AD imaging and discuss their clinical applications especially in terms of early detection and cognitive relevance.
Collapse
Affiliation(s)
- Weiqi Bao
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Yiyun Henry Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Clinical Utility of the Pathogenesis-Related Proteins in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21228661. [PMID: 33212853 PMCID: PMC7698353 DOI: 10.3390/ijms21228661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Research on the Aβ cascade and alternations of biomarkers in neuro-inflammation, synaptic dysfunction, and neuronal injury followed by Aβ have progressed. But the question is how to use the biomarkers. Here, we examine the evidence and pathogenic implications of protein interactions and the time order of alternation. After the deposition of Aβ, the change of tau, neurofilament light chain (NFL), and neurogranin (Ng) is the main alternation and connection to others. Neuro-inflammation, synaptic dysfunction, and neuronal injury function is exhibited prior to the structural and metabolic changes in the brain following Aβ deposition. The time order of such biomarkers compared to the tau protein is not clear. Despite the close relationship between biomarkers and plaque Aβ deposition, several factors favor one or the other. There is an interaction between some proteins that can predict the brain amyloid burden. The Aβ cascade hypothesis could be the pathway, but not all subjects suffer from Alzheimer's disease (AD) within a long follow-up, even with very elevated Aβ. The interaction of biomarkers and the time order of change require further research to identify the right subjects and right molecular target for precision medicine therapies.
Collapse
|
5
|
Honer WG, Ramos-Miguel A, Alamri J, Sawada K, Barr AM, Schneider JA, Bennett DA. The synaptic pathology of cognitive life
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 21:271-279. [PMID: 31749651 PMCID: PMC6829169 DOI: 10.31887/dcns.2019.21.3/whoner] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prospective, community-based studies allow evaluation of associations between
cognitive functioning and synaptic measures, controlled for age-related pathologies.
Findings from >400 community-based participants are reviewed. Levels of two
presynaptic proteins, complexin-I (inhibitory terminals), and complexin-II (excitatory
terminals) contributed to cognitive variation from normal to dementia. Adding the amount
of protein-protein interaction between two others, synaptosome-associated protein-25 and
syntaxin, explained 6% of overall variance. The presynaptic protein Munc18-1 long
variant was localized to inhibitory terminals, and like complexin-I, was positively
associated with cognition. Associations depended on Braak stage, with the level of
complexin-I contributing nearly 15% to cognitive variation in stages 0-II, while
complexin-II contributed 7% in stages V-VI. Non-denaturing gels identified multiple
soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein-protein
(SNARE) complexes in frontal and in temporal lobes, making specific contributions to
cognitive functions. Multiple mechanisms of presynaptic plasticity contribute to
cognitive function during aging.
Collapse
Affiliation(s)
- William G Honer
- Departments of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Jehan Alamri
- Departments of Anaesthesia, Pharmacology & Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Alasdair M Barr
- Departments of Anaesthesia, Pharmacology & Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, US
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, US
| |
Collapse
|
6
|
Haytural H, Mermelekas G, Emre C, Nigam SM, Carroll SL, Winblad B, Bogdanovic N, Barthet G, Granholm AC, Orre LM, Tjernberg LO, Frykman S. The Proteome of the Dentate Terminal Zone of the Perforant Path Indicates Presynaptic Impairment in Alzheimer Disease. Mol Cell Proteomics 2020; 19:128-141. [PMID: 31699905 PMCID: PMC6944231 DOI: 10.1074/mcp.ra119.001737] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/05/2019] [Indexed: 01/13/2023] Open
Abstract
Synaptic dysfunction is an early pathogenic event in Alzheimer disease (AD) that contributes to network disturbances and cognitive decline. Some synapses are more vulnerable than others, including the synapses of the perforant path, which provides the main excitatory input to the hippocampus. To elucidate the molecular mechanisms underlying the dysfunction of these synapses, we performed an explorative proteomic study of the dentate terminal zone of the perforant path. The outer two-thirds of the molecular layer of the dentate gyrus, where the perforant path synapses are located, was microdissected from five subjects with AD and five controls. The microdissected tissues were dissolved and digested by trypsin. Peptides from each sample were labeled with different isobaric tags, pooled together and pre-fractionated into 72 fractions by high-resolution isoelectric focusing. Each fraction was then analyzed by liquid chromatography-mass spectrometry. We quantified the relative expression levels of 7322 proteins, whereof 724 showed significantly altered levels in AD. Our comprehensive data analysis using enrichment and pathway analyses strongly indicated that presynaptic signaling, such as exocytosis and synaptic vesicle cycle processes, is severely disturbed in this area in AD, whereas postsynaptic proteins remained unchanged. Among the significantly altered proteins, we selected three of the most downregulated synaptic proteins; complexin-1, complexin-2 and synaptogyrin-1, for further validation, using a new cohort consisting of six AD and eight control cases. Semi-quantitative analysis of immunohistochemical staining confirmed decreased levels of complexin-1, complexin-2 and synaptogyrin-1 in the outer two-thirds of the molecular layer of the dentate gyrus in AD. Our in-depth proteomic analysis provides extensive knowledge on the potential molecular mechanism underlying synaptic dysfunction related to AD and supports that presynaptic alterations are more important than postsynaptic changes in early stages of the disease. The specific synaptic proteins identified could potentially be targeted to halt synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Hazal Haytural
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.
| | - Georgios Mermelekas
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ceren Emre
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Bengt Winblad
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden; Karolinska University Hospital, Theme Aging, Stockholm, Sweden
| | - Nenad Bogdanovic
- Karolinska University Hospital, Theme Aging, Stockholm, Sweden; Division of Clinical geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Gaël Barthet
- Interdisciplinary Institute for Neuroscience, CNRS UMR, Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - Ann-Charlotte Granholm
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden; Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado
| | - Lukas M Orre
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Susanne Frykman
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
7
|
Moderate decline in select synaptic markers in the prefrontal cortex (BA9) of patients with Alzheimer's disease at various cognitive stages. Sci Rep 2018; 8:938. [PMID: 29343737 PMCID: PMC5772053 DOI: 10.1038/s41598-018-19154-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/22/2017] [Indexed: 01/28/2023] Open
Abstract
Synaptic loss, plaques and neurofibrillary tangles are viewed as hallmarks of Alzheimer's disease (AD). This study investigated synaptic markers in neocortical Brodmann area 9 (BA9) samples from 171 subjects with and without AD at different levels of cognitive impairment. The expression levels of vesicular glutamate transporters (VGLUT1&2), glutamate uptake site (EAAT2), post-synaptic density protein of 95 kD (PSD95), vesicular GABA/glycine transporter (VIAAT), somatostatin (som), synaptophysin and choline acetyl transferase (ChAT) were evaluated. VGLUT2 and EAAT2 were unaffected by dementia. The VGLUT1, PSD95, VIAAT, som, ChAT and synaptophysin expression levels significantly decreased as dementia progressed. The maximal decrease varied between 12% (synaptophysin) and 42% (som). VGLUT1 was more strongly correlated with dementia than all of the other markers (polyserial correlation = -0.41). Principal component analysis using these markers was unable to differentiate the CDR groups from one another. Therefore, the status of the major synaptic markers in BA9 does not seem to be linked to the cognitive status of AD patients. The findings of this study suggest that the loss of synaptic markers in BA9 is a late event that is only weakly related to AD dementia.
Collapse
|
8
|
Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 2018; 64:S161-S189. [PMID: 29865057 PMCID: PMC6380522 DOI: 10.3233/jad-179939] [Citation(s) in RCA: 801] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Religious Orders Study and Rush Memory and Aging Project are both ongoing longitudinal clinical-pathologic cohort studies of aging and Alzheimer's disease (AD). OBJECTIVES To summarize progress over the past five years and its implications for understanding neurodegenerative diseases. METHODS Participants in both studies are older adults who enroll without dementia and agree to detailed longitudinal clinical evaluations and organ donation. The last review summarized findings through the end of 2011. Here we summarize progress and study findings over the past five years and discuss new directions for how these studies can inform on aging and AD in the future. RESULTS We summarize 1) findings on the relation of neurobiology to clinical AD; 2) neurobiologic pathways linking risk factors to clinical AD; 3) non-cognitive AD phenotypes including motor function and decision making; 4) the development of a novel drug discovery platform. CONCLUSION Complexity at multiple levels needs to be understood and overcome to develop effective treatments and preventions for cognitive decline and AD dementia.
Collapse
Affiliation(s)
- David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL., USA
| |
Collapse
|
9
|
Tremblay C, François A, Delay C, Freland L, Vandal M, Bennett DA, Calon F. Association of Neuropathological Markers in the Parietal Cortex With Antemortem Cognitive Function in Persons With Mild Cognitive Impairment and Alzheimer Disease. J Neuropathol Exp Neurol 2017; 76:70-88. [PMID: 28158844 PMCID: PMC7526851 DOI: 10.1093/jnen/nlw109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The associations between cognitive function and neuropathological markers in patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) remain only partly defined. We investigated relationships between antemortem global cognitive scores and β-amyloid (Aβ), tau, TDP-43, synaptic proteins and other key AD neuropathological markers assessed by biochemical approaches in postmortem anterior parietal cortex samples from 36 subjects (12 MCI, 12 AD and 12 not cognitively impaired) from the Religious Orders Study. Overall, the strongest negative correlation coefficients associated with global cognitive scores were obtained for insoluble phosphorylated tau (r2 = -0.484), insoluble Aβ42 (r2 = -0.389) and neurofibrillary tangle counts (r2 = -0.494) (all p < 0.001). Robust inverse associations with cognition scores were also established for TDP-43-positive cytoplasmic inclusions (r2 = -0.476), total insoluble tau (r2 = -0.385) and Aβ plaque counts (r2 = -0.426). Sarkosyl (SK)- or formic acid (FA)-extracted tau showed similar interrelations. On the other hand, synaptophysin (r2 = +0.335), pS403/404 TDP-43 (r2 = +0.265) and septin-3 (r2 = +0.257) proteins positively correlated with cognitive scores. This study suggests that tau and Aβ42 in their insoluble aggregated forms, synaptic proteins and TDP-43 are the markers in the parietal cortex that are most strongly associated with cognitive function. This further substantiates the relevance of investigating these markers to understand the pathogenesis of AD and develop therapeutic tools.
Collapse
Affiliation(s)
- Cyntia Tremblay
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| | - Arnaud François
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| | - Charlotte Delay
- Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) Research Group, University of Lille, INSERM U1167, Lille University Medical Center, Institut Pasteur de Lille, Lille, France (CD)
| | - Laure Freland
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| | - Milène Vandal
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| |
Collapse
|
10
|
Progressive Neuronal Pathology and Synaptic Loss Induced by Prediabetes and Type 2 Diabetes in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2016; 54:3428-3438. [PMID: 27177549 DOI: 10.1007/s12035-016-9921-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Age remains the main risk factor for developing Alzheimer's disease (AD) although certain metabolic alterations, including prediabetes and type 2 diabetes (T2D), may also increase this risk. In order to understand this relationship, we have studied an AD-prediabetes mouse model (APP/PS1) with severe hyperinsulinemia induced by long-term high fat diet (HFD), and an AD-T2D model, generated by crossing APP/PS1 and db/db mice (APP/PS1xdb/db). In both, prediabetic and diabetic AD mice, we have analyzed underlying neuronal pathology and synaptic loss. At 26 weeks of age, when both pathologies were clearly established, we observed severe brain atrophy in APP/PS1xdb/db animals as well as cortical thinning, accompanied by increased caspase activity. Reduced senile plaque burden and elevated soluble Aβ40 and 42 levels were observed in AD-T2D mice. Further assessment revealed a significant increase of neurite curvature in prediabetic-AD mice, and this effect was worsened in AD-T2D animals. Synaptic density loss, analyzed by array tomography, revealed a synergistic effect between T2D and AD, whereas an intermediate state was observed, once more, in prediabetic-AD mice. Altogether, our data suggest that early prediabetic hyperinsulinemia may exacerbate AD pathology, and that fully established T2D clearly worsens these effects. Therefore, it is feasible that early detection of prediabetic state and strict metabolic control could slow or delay progression of AD-associated neuropathological features.
Collapse
|
11
|
Thompson PM, Cruz DA, Fucich EA, Olukotun DY, Takahashi M, Itakura M. SNAP-25a/b Isoform Levels in Human Brain Dorsolateral Prefrontal Cortex and Anterior Cingulate Cortex. MOLECULAR NEUROPSYCHIATRY 2015; 1:220-34. [PMID: 27606314 DOI: 10.1159/000441224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/09/2015] [Indexed: 01/03/2023]
Abstract
SNAP-25 is a neurotransmitter vesicular docking protein which has been associated with brain disorders such as attention deficit hyperactivity disorder, bipolar disorder and schizophrenia. In this project, we were interested if clinical factors are associated with differential SNAP-25 expression. We examined the SNAP-25 isoform mRNA and protein levels in postmortem cortex Brodmann's area 9 (BA9) and BA24 (n = 29). Subjects were divided by psychiatric diagnosis, clinical variables including mood state in the last week of life and lifetime impulsiveness. We found affected subjects with a diagnosis of alcohol use disorder (AUD) had a lower level of SNAP-25b BA24 protein compared to those without AUD. Hispanic subjects had lower levels of SNAP-25a, b and BA9 mRNA than Anglo-American subjects. Subjects who smoked had a total pan (total) SNAP-25 BA9/BA24 ratio. Subjects in the group with a low level of anxious-psychotic symptoms had higher SNAP-25a BA24 mRNA compared to normal controls, and both the high and low symptoms groups had higher pan (total) SNAP-25 BA9/BA24 ratios than normal controls. These data expand our understanding of clinical factors associated with SNAP-25. They suggest that SNAP-25 total and isoform levels may be useful biomarkers beyond limited neurological and psychiatric diagnostic categories.
Collapse
Affiliation(s)
| | - Dianne A Cruz
- Departments of Psychiatry, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Elizabeth A Fucich
- Departments of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Dianna Y Olukotun
- Departments of Psychiatry, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Tokyo, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Chen GH, Tong JJ, Wang F, Hu XQ, Li XW, Tao F, Wei ZJ. Chronic adjunction of 1-deoxynojirimycin protects from age-related behavioral and biochemical changes in the SAMP8 mice. AGE (DORDRECHT, NETHERLANDS) 2015; 37:102. [PMID: 26400487 PMCID: PMC5005858 DOI: 10.1007/s11357-015-9839-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/15/2015] [Indexed: 05/24/2023]
Abstract
Several studies have indicated that a caloric restriction mimetic or treatment for type 2 diabetes may reverse brain aging. Therefore, we investigated the effect of 1-deoxynojirimycin (DNJ), an alkaloid acting as an inhibitor of α-glucosidase, on age-related behavioral and biochemical changes. SAMP8 mice were randomly assigned to a control group labeled "old" or to the 10- or 20-mg/kg/day DNJ groups. The mice in the DNJ groups were administered DNJ orally from 3 to 9 months of age, and then, a "young" control group was added to analyze the age effect. The old controls exhibited significant declines in sensorimotor ability, open-field anxiety, spatial and nonspatial memory abilities, and age-related biochemical changes, including decreased serum insulin level; increased levels of insulin-like growth factor 1 receptor, presynaptic protein synaptotagmin-1, and astrocyte activation; and decreased levels of insulin receptor, brain-derived neurotrophic factor, presynaptic protein syntaxin-1, and acetylation of histones H4 at lysine 8 in the dorsal hippocampus. Significant correlations exist between the age-related behavioral deficits and the serological and histochemical data. Chronic DNJ treatment alleviated these age-related changes, and the 20-mg/kg/day DNJ group showed more significant improvement. Thus, DNJ may have the potential to maintain successful brain aging.
Collapse
Affiliation(s)
- Gui-Hai Chen
- Department of Neurology, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Hefei, 238000, People's Republic of China.
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China.
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Jing-Jing Tong
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Fang Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Xue-Qin Hu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China
| | - Xue-Wei Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Fei Tao
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Zhao-Jun Wei
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Robinson JL, Molina-Porcel L, Corrada MM, Raible K, Lee EB, Lee VMY, Kawas CH, Trojanowski JQ. Perforant path synaptic loss correlates with cognitive impairment and Alzheimer's disease in the oldest-old. ACTA ACUST UNITED AC 2014; 137:2578-87. [PMID: 25012223 DOI: 10.1093/brain/awu190] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease, which is defined pathologically by abundant amyloid plaques and neurofibrillary tangles concurrent with synaptic and neuronal loss, is the most common underlying cause of dementia in the elderly. Among the oldest-old, those aged 90 and older, other ageing-related brain pathologies are prevalent in addition to Alzheimer's disease, including cerebrovascular disease and hippocampal sclerosis. Although definite Alzheimer's disease pathology can distinguish dementia from normal individuals, the pathologies underlying cognitive impairment, especially in the oldest-old, remain poorly understood. We therefore conducted studies to determine the relative contributions of Alzheimer's disease pathology, cerebrovascular disease, hippocampal sclerosis and the altered expression of three synaptic proteins to cognitive status and global cognitive function. Relative immunohistochemistry intensity measures were obtained for synaptophysin, Synaptic vesicle transporter Sv2 (now known as SV2A) and Vesicular glutamate transporter 1 in the outer molecular layer of the hippocampal dentate gyrus on the first 157 participants of 'The 90+ Study' who came to autopsy, including participants with dementia (n = 84), those with cognitive impairment but no dementia (n = 37) and those with normal cognition (n = 36). Thal phase, Braak stage, cerebrovascular disease, hippocampal sclerosis and Pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) were also analysed. All measures were obtained blind to cognitive diagnosis. Global cognition was tested by the Mini-Mental State Examinaton. Logistic regression analysis explored the association between the pathological measures and the odds of being in the different cognitive groups whereas multiple regression analyses explored the association between pathological measures and global cognition scores. No measure clearly distinguished the control and cognitive impairment groups. Comparing the cognitive impairment and dementia groups, synaptophysin and SV2 were reduced, whereas Braak stage, TDP-43 and hippocampal sclerosis frequency increased. Thal phase and VGLUT1 did not distinguish the cognitive impairment and dementia groups. All measures distinguished the dementia and control groups and all markers associated with the cognitive test scores. When all markers were analysed simultaneously, a reduction in synaptophysin, a high Braak stage and the presence of TDP-43 and hippocampal sclerosis associated with global cognitive function. These findings suggest that tangle pathology, hippocampal sclerosis, TDP-43 and perforant pathway synaptic loss are the major contributors to dementia in the oldest-old. Although an increase in plaque pathology and glutamatergic synaptic loss may be early events associated with cognitive impairment, we conclude that those with cognitive impairment, but no dementia, are indistinguishable from cognitively normal subjects based on the measures reported here.
Collapse
Affiliation(s)
- John L Robinson
- 1 Centre for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Molina-Porcel
- 1 Centre for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria M Corrada
- 2 Department of Neurology, and Institute for Memory Impairments and Neurological Disorders, University of California at Irvine, Irvine, CA, USA
| | - Kevin Raible
- 1 Centre for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- 1 Centre for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- 1 Centre for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia H Kawas
- 3 Department of Neurology, Department of Neurobiology and Behaviour, and Institute for Memory Impairments and Neurological Disorders, University of California at Irvine, Irvine, CA, USA
| | - John Q Trojanowski
- 1 Centre for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Bennett DA, Arnold SE, Valenzuela MJ, Brayne C, Schneider JA. Cognitive and social lifestyle: links with neuropathology and cognition in late life. Acta Neuropathol 2014; 127:137-50. [PMID: 24356982 PMCID: PMC4054865 DOI: 10.1007/s00401-013-1226-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/17/2013] [Accepted: 11/30/2013] [Indexed: 12/26/2022]
Abstract
Many studies report an association of cognitive and social experiential factors and related traits with dementia risk. Further, many clinical-pathologic studies find a poor correspondence between levels of neuropathology and the presence of dementia and level of cognitive impairment. The poor correspondence suggests that other factors contribute to the maintenance or loss of cognitive function, with factors associated with the maintenance of function referred to as neural or cognitive reserve. This has led investigators to examine the associations of cognitive and social experiential factors with neuropathology as a first step in disentangling the complex associations between these experiential risk factors, neuropathology, and cognitive impairment. Despite the consistent associations of a range of cognitive and social lifestyle factors with cognitive decline and dementia risk, the extant clinical-pathologic data find only a single factor from one cohort, linguistic ability, related to AD pathology. Other factors, including education, harm avoidance, and emotional neglect, are associated with cerebrovascular disease. Overall, the associations are weak. Some factors, such as education, social networks, and purpose in life, modify the relation of neuropathology to cognition. Finally, some factors such as cognitive activity appear to bypass known pathologies altogether suggesting a more direct association with biologic indices that promote person-specific differences in reserve and resilience. Future work will first need to replicate findings across more studies to ensure the veracity of the existing data. Second, effort is needed to identify the molecular substrates of neural reserve as potential mediators of the association of lifestyle factors with cognition.
Collapse
Affiliation(s)
- David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,
| | | | | | | | | |
Collapse
|
15
|
Deconstructing complexin function in activating and clamping Ca2+-triggered exocytosis by comparing knockout and knockdown phenotypes. Proc Natl Acad Sci U S A 2013; 110:20777-82. [PMID: 24297916 DOI: 10.1073/pnas.1321367110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Complexin, a presynaptic protein that avidly binds to assembled SNARE complexes, is widely acknowledged to activate Ca(2+)-triggered exocytosis. In addition, studies of invertebrate complexin mutants and of mouse neurons with a double knockdown (DKD) of complexin-1 and -2 suggested that complexin maintains the readily releasable pool (RRP) of vesicles and clamps spontaneous exocytosis. In contrast, studies of mouse neurons with a double knockout (DKO) of complexin-1 and -2, largely carried out in hippocampal autapses, did not detect changes in the RRP size or in spontaneous exocytosis. To clarify complexin function, we here directly compared in two different preparations, cultured cortical and olfactory bulb neurons, the phenotypes of complexin DKD and DKO neurons. We find that complexin-deficient DKD and DKO neurons invariably exhibit a ~50% decrease in vesicle priming. Moreover, the DKD consistently increased spontaneous exocytosis, but the DKO did so in cortical but not olfactory bulb neurons. Furthermore, the complexin DKD but not the complexin DKO caused a compensatory increase in complexin-3 and -4 mRNA levels; overexpression of complexin-3 but not complexin-1 increased spontaneous exocytosis. Complexin-3 but not complexin-1 contains a C-terminal lipid anchor attaching it to the plasma membrane; addition of a similar lipid anchor to complexin-1 converted complexin-1 from a clamp into an activator of spontaneous exocytosis. Viewed together, our data suggest that complexin generally functions in priming and Ca(2+) triggering of exocytosis, and additionally contributes to the control of spontaneous exocytosis dependent on the developmental history of a neuron and on the subcellular localization of the complexin.
Collapse
|
16
|
Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance. Brain Struct Funct 2013; 219:1149-67. [DOI: 10.1007/s00429-013-0662-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022]
|
17
|
Jellinger KA, Attems J. Neuropathological approaches to cerebral aging and neuroplasticity. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23576887 PMCID: PMC3622466 DOI: 10.31887/dcns.2013.15.1/kjellinger] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerebral aging is a complex and heterogenous process related to a large variety of molecular changes involving multiple neuronal networks, due to alterations of neurons (synapses, axons, dendrites, etc), particularly affecting strategically important regions, such as hippocampus and prefrontal areas. A substantial proportion of nondemented, cognitively unimpaired elderly subjects show at least mild to moderate, and rarely even severe, Alzheimer-related lesions, probably representing asymptomatic preclinical Alzheimer's disease, and/or mixed pathologies. While the substrate of resilience to cognitive decline in the presence of abundant pathologies has been unclear, recent research has strengthened the concept of cognitive or brain reserve, based on neuroplasticity or the ability of the brain to manage or counteract age-related changes or pathologies by reorganizing its structure, connections, and functions via complex molecular pathways and mechanisms that are becoming increasingly better understood. Part of neuroplasticity is adult neurogenesis in specific areas of the brain, in particular the hippocampal formation important for memory function, the decline of which is common even in “healthy” aging. To obtain further insights into the mechanisms of brain plasticity and adult neurogenesis, as the basis for prevention and potential therapeutic options, is a major challenge of modern neurosciences.
Collapse
|
18
|
Sharma M, Burré J, Südhof TC. Proteasome inhibition alleviates SNARE-dependent neurodegeneration. Sci Transl Med 2013; 4:147ra113. [PMID: 22896677 DOI: 10.1126/scitranslmed.3004028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of the proteasomal degradation of misfolded proteins has been proposed as a therapeutic strategy for treating neurodegenerative diseases, but it is unclear whether proteasome dysfunction contributes to neurodegeneration. We tested the role of proteasome activity in neurodegeneration developed by mice lacking cysteine string protein-α (CSPα). Unexpectedly, we found that proteasome inhibitors alleviated neurodegeneration in CSPα-deficient mice, reversing impairment of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-complex assembly and extending life span. We tested whether dysfunctional SNARE-complex assembly could contribute to neurodegeneration in Alzheimer's and Parkinson's disease by analyzing postmortem brain tissue from these patients; we found reduced SNARE-complex assembly in the brain tissue samples. Our results suggest that proteasomal activation may not always be beneficial for alleviating neurodegeneration and that blocking the proteasome may represent a potential therapeutic avenue for treating some forms of neurodegenerative disease.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5453, USA.
| | | | | |
Collapse
|
19
|
Jellinger KA, Attems J. Neuropathological approaches to cerebral aging and neuroplasticity. DIALOGUES IN CLINICAL NEUROSCIENCE 2013; 15:29-43. [PMID: 23576887 PMCID: PMC3622466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Cerebral aging is a complex and heterogenous process related to a large variety of molecular changes involving multiple neuronal networks, due to alterations of neurons (synapses, axons, dendrites, etc), particularly affecting strategically important regions, such as hippocampus and prefrontal areas. A substantial proportion of nondemented, cognitively unimpaired elderly subjects show at least mild to moderate, and rarely even severe, Alzheimer-related lesions, probably representing asymptomatic preclinical Alzheimer's disease, and/or mixed pathologies. While the substrate of resilience to cognitive decline in the presence of abundant pathologies has been unclear, recent research has strengthened the concept of cognitive or brain reserve, based on neuroplasticity or the ability of the brain to manage or counteract age-related changes or pathologies by reorganizing its structure, connections, and functions via complex molecular pathways and mechanisms that are becoming increasingly better understood. Part of neuroplasticity is adult neurogenesis in specific areas of the brain, in particular the hippocampal formation important for memory function, the decline of which is common even in "healthy" aging. To obtain further insights into the mechanisms of brain plasticity and adult neurogenesis, as the basis for prevention and potential therapeutic options, is a major challenge of modern neurosciences.
Collapse
|
20
|
Abstract
The oldest-old are the fastest growing segment of the Western population. Over half of the oldest-old will have dementia, but the etiology is yet unknown. Age is the only risk factor consistently associated with dementia in the oldest-old. Many of the risk and protective factors for dementia in the young elderly, such as ApoE genotype, physical activity, and healthy lifestyle, are not relevant for the oldest-old. Neuropathology is abundant in the oldest-old brains, but specific pathologies of Alzheimer's disease (AD) or vascular dementia are not necessarily correlated with cognition, as in younger persons. It has been suggested that accumulation of both AD-like and vascular pathologies, loss of synaptic proteins, and neuronal loss contribute to the cognitive decline observed in the oldest-old. Several characteristics of the oldest-old may confound the diagnosis of dementia in this age group. A gradual age-related cognitive decline, particularly in executive function and mental speed, is evident even in non-demented oldest-old. Hearing and vision losses, which are also prevalent in the oldest-old and found in some cases to precede/predict cognitive decline, may mechanically interfere in neuropsychological evaluations. Difficulties in carrying out everyday activities, observed in the majority of the oldest-old, may be the result of motor or physical dysfunction and of neurodegenerative processes. The oldest-old appear to be a select population, who escapes major illnesses or delays their onset and duration toward the end of life. Dementia in the oldest-old may be manifested when a substantial amount of pathology is accumulated, or with a composition of a variety of pathologies. Investigating the clinical and pathological features of dementia in the oldest-old is of great importance in order to develop therapeutic strategies and to provide the most elderly of our population with good quality of life.
Collapse
Affiliation(s)
- Efrat Kravitz
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel; ; Parkinson's Disease and Movement Disorders Clinic, Department of Neurology, Sheba Medical Center, Ramat Gan, Israel; and
| | | | | |
Collapse
|