1
|
Tao X, He J, Zhang Y, Yin Y, Yang C, Shang Y, Wu S. Fluid biomarkers of vascular cognitive Impairment: From vascular pathophysiology to potential clinical applications. Neuroscience 2025; 579:267-283. [PMID: 40499808 DOI: 10.1016/j.neuroscience.2025.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/26/2025] [Accepted: 06/08/2025] [Indexed: 06/16/2025]
Abstract
Vascular cognitive impairment (VCI) refers to cognitive decline resulting from cerebrovascular pathology, affecting one or more cognitive domains. Chronic vascular risk factors and acute cerebrovascular events contribute significantly to this condition. Identifying fluid biomarkers indicative of vascular injury is crucial for early prevention, accurate diagnosis, and assessing treatment efficacy in VCI. Chronic vascular injury leads to arterial lesions, blood-brain barrier disruption, venous tortuosity and obstructed drainage, enlarged perivascular spaces, and impaired glymphatic drainage. This review explores biomarkers involved in VCI pathogenesis, including neurodegenerative proteins, inflammatory mediators, oxidative stress markers, metabolic byproducts, acute phase reactants, vasoactive neuropeptides, the cerebrospinal fluid/plasma albumin quotient, neurofilament light chain, circulating CD34 + cells, and miRNAs. Most biomarkers are derived from blood and cerebrospinal fluid, with the exception of 8-hydroxydeoxyguanosine, excreted in urine. Combining biomarkers from various fluid sources can enhance diagnostic accuracy for VCI. Given the interplay between blood buffering and renal excretion in biomarker production, we advocate for further research into urine-derived biomarkers. These may offer valuable insights for early detection of vascular changes and ultra-early prediction of VCI.
Collapse
Affiliation(s)
- Xi Tao
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, Hunan Normal University, Changsha 410016 Hunan, PR China; Clinical Research Center for Cerebrovascular Disease Rehabilitation in Hunan Province, Changsha 410016 Hunan, PR China; Hunan Provincial Key Laboratory of Neurorestoratology, Changsha 410016 Hunan, PR China.
| | - Juan He
- Department of Neurosurgery, Hunan Provincial People's Hospital, Hunan Normal University, Changsha 410016 Hunan, PR China
| | - Yi Zhang
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, Hunan Normal University, Changsha 410016 Hunan, PR China
| | - Yuqi Yin
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, Hunan Normal University, Changsha 410016 Hunan, PR China
| | - Chen Yang
- Department of Emergency and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou 215001, PR China
| | - Yunfeng Shang
- Department of Rehabilitation, Yueyang Central Hospital, Yueyang 414000 Hunan, PR China
| | - Siyuan Wu
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, Hunan Normal University, Changsha 410016 Hunan, PR China; Clinical Research Center for Cerebrovascular Disease Rehabilitation in Hunan Province, Changsha 410016 Hunan, PR China
| |
Collapse
|
2
|
Feng W, Ju M, Wang T, Cui S, Yang K, Guo Z, Liu M, Tao J, Yu H, Xiao R. Linking oxysterols and different stages of mild cognitive impairment: insights from gut metabolites and N6-methyladenosine. Alzheimers Res Ther 2025; 17:102. [PMID: 40361183 PMCID: PMC12070570 DOI: 10.1186/s13195-025-01743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Oxysterols, gut metabolites, and N6-methyladenosine (m6A) are extensively implicated in the pathogenesis of cognitive dysfunction, while their alterations in different stages of mild cognitive impairment (MCI) have not been elucidated. Therefore, this study was conducted to explore the associations of oxysterols, gut metabolites, and m6A methylation profiles in early MCI (EMCI) and late MCI (LMCI) individuals. METHODS Liquid chromatography-mass spectrometry, untargeted metabolomic analysis, and m6A mRNA Epitranscriptomic Microarray were used to detect the characteristics of serum oxysterols (n = 35/group), fecal gut metabolites (n = 30/group), and m6A in whole blood (n = 4/group) respectively. The concentration of serum β-amyloid (Aβ) was detected with ELISA (n = 25/group). The gene expression of amyloid precursor protein (APP) and its key enzyme β-secretase (BACE1) in whole blood were measured by quantitative real-time PCR (n = 25/group). RESULTS EMCIs and LMCIs, especially LMCIs, exhibited poorer performance in almost all global and multidimensional cognitive tests. Serum 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC) were elevated in EMCI and LMCI groups. Changes in gut metabolites occurred mainly in the EMCI group, in which several gut metabolites, including Procyanidin dimer B7 and Phorbol myristate, were significantly decreased. The m6A methylation landscape of EMCIs and LMCIs obviously differed from Controls. Hypomethylated mRNAs accounted for the majority and were mainly accompanied by downregulated mRNAs, which was consistent with the downregulated expression of the m6A writer methyltransferase-like 4 (METTL4). 27-OHC and 24S-OHC combined with various gut metabolites significantly distinguished between MCI subgroups from healthy controls (EMCI/Control: AUC = 0.877; LMCI/Control: AUC = 0.952). Heatmap revealed the correlation between Phorbol myristate and differentially m6A-methylated mRNAs. Differentially expressed gut metabolites and methylated mRNAs were commonly enriched in 34 KEGG metabolic pathways, including cholesterol metabolism and neurodegenerative disease-related pathways. CONCLUSIONS Our study explored the altered oxysterols, gut metabolites, and m6A methylation and their associations in different stages of MCI. The potential function of aberrant gut metabolites in oxysterols and m6A methylation driving MCI progression warrants further mechanistic investigation.
Collapse
Affiliation(s)
- Wenjing Feng
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Mengwei Ju
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Tao Wang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Shanshan Cui
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Kexin Yang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Zhiting Guo
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Miao Liu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Jiaxuan Tao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Huiyan Yu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Rong Xiao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China.
| |
Collapse
|
3
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Ben Khedher MR, Haddad M, Fulop T, Laurin D, Ramassamy C. Implication of Circulating Extracellular Vesicles-Bound Amyloid-β42 Oligomers in the Progression of Alzheimer's Disease. J Alzheimers Dis 2023; 96:813-825. [PMID: 37840502 DOI: 10.3233/jad-230823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND The perplex interrelation between circulating extracellular vesicles (cEVs) and amyloid-β (Aβ) deposits in the context of Alzheimer's disease (AD) is poorly understood. OBJECTIVE This study aims to 1) analyze the possible cross-linkage of the neurotoxic amyloid-β oligomers (oAβ) to the human cEVs, 2) identify cEVs corona proteins associated with oAβ binding, and 3) analyze the distribution and expression of targeted cEVs proteins in preclinical participants converted to AD 5 years later (Pre-AD). METHODS cEVs were isolated from 15 Pre-AD participants and 15 healthy controls selected from the Canadian Study of Health and Aging. Biochemical, clinical, lipid, and inflammatory profiles were measured. oAβ and cEVs interaction was determined by nanoparticle tracking analysis and proteinase K digestion. cEVs bound proteins were determined by ELISA. RESULTS oAβ were trapped by cEVs and were topologically bound to their external surface. We identified surface-exposed proteins functionally able to conjugate oAβ including apolipoprotein J (apoJ), apoE and RAGE, with apoJ being 30- to 130-fold higher than RAGE and apoE, respectively. The expression of cEVs apoJ was significantly lower in Pre-AD up to 5 years before AD onset. CONCLUSION Our findings suggest that cEVs might participate in oAβ clearance and that early dysregulation of cEVs could increase the risk of conversion to AD.
Collapse
Affiliation(s)
- Mohamed Raâfet Ben Khedher
- INRS-Centre Armand-Frappier Santé-Biotechnologie, Laval, QC, Canada
- Institute of Nutrition and Functional Foods, Québec, QC, Canada
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Mohamed Haddad
- INRS-Centre Armand-Frappier Santé-Biotechnologie, Laval, QC, Canada
- Institute of Nutrition and Functional Foods, Québec, QC, Canada
| | - Tamas Fulop
- Department of Medicine, Geriatric Division, Research Center on Aging, Sherbrooke University, Sherbrooke, QC, Canada
| | - Danielle Laurin
- Institute of Nutrition and Functional Foods, Québec, QC, Canada
- Centre d'Excellence Sur le Vieillissement de Québec, CHU de Québec-Université Laval Research Centre, VI-TAM-Centre de Recherche en Santé Durable, Québec, QC, Canada
- Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé-Biotechnologie, Laval, QC, Canada
- Institute of Nutrition and Functional Foods, Québec, QC, Canada
| |
Collapse
|
5
|
Dou Y, Liu S, Li Y, Wu H, Chen H, Ji Y. Plasma Cholesterol Levels as Potential Nutritional Biomarkers for Lewy Body Dementia. J Alzheimers Dis 2022; 86:779-786. [PMID: 35124646 DOI: 10.3233/jad-215295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The relationship between cholesterol level and the risk of developing Alzheimer's disease has been well established, but the relationship between cholesterol level and Lewy body dementia (LBD) is still not well known. OBJECTIVE The aim of this case-control study was to explore the association between blood cholesterol levels and LBD in Chinese older adults. METHODS A total of 65 patients with LBD and 110 older adult controls were enrolled during the study period. The levels of triglyceride, total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and fasting glucose were measured separately. The associations between LBD, blood cholesterol levels, and fasting glucose levels were assessed using multiple binary logistic regression analyses adjusted for multiple covariates. RESULTS Increased plasma LDL-C levels and lower HDL-C levels were independently associated with the risk of LBD in models adjusted for age, sex, education, alcohol use status, smoking status, and vascular disorders. Higher fasting glucose levels may be associated with the risk of LBD. CONCLUSION The results of this study suggest that elevated levels of LDL-C and reduced levels of HDL-C were associated with LBD development and therefore are potential nutritional risk factors for LBD. Adjusting diet and individualized and effective cholesterol-lowering therapy in high-risk adults may aid in the prevention or management of LBD.
Collapse
Affiliation(s)
- Yuchao Dou
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Shuai Liu
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuqing Li
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Wu
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Hui Chen
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Yong Ji
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
6
|
Itabe H, Kato R, Sawada N, Obama T, Yamamoto M. The Significance of Oxidized Low-Density Lipoprotein in Body Fluids as a Marker Related to Diseased Conditions. Curr Med Chem 2019. [PMID: 29521196 DOI: 10.2174/0929867325666180307114855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidatively modified low-density lipoprotein (oxLDL) is known to be involved in various diseases, including cardiovascular diseases. The presence of oxLDL in the human circulatory system and in atherosclerotic lesions has been demonstrated using monoclonal antibodies. Studies have shown the significance of circulating oxLDL in various systemic diseases, including acute myocardial infarction and diabetic mellitus. Several different enzyme-linked immunosorbent assay (ELISA) procedures to measure oxLDL were utilized. Evidence has been accumulating that reveals changes in oxLDL levels under certain pathological conditions. Since oxLDL concentration tends to correlate with low-density lipoprotein (LDL)-cholesterol, the ratio of ox-LDL and LDL rather than oxLDL concentration alone has also been focused. In addition to circulating plasma, LDL and oxLDL are found in gingival crevicular fluid (GCF), where the ratio of oxLDL to LDL in GCF is much higher than in plasma. LDL and oxLDL levels in GCF show an increase in diabetic patients and periodontal patients, suggesting that GCF might be useful in examining systemic conditions. GCF oxLDL increased when the teeth were affected by periodontitis. It is likely that oxLDL levels in plasma and GCF could reflect oxidative stress and transfer efficacy in the circulatory system.
Collapse
Affiliation(s)
- Hiroyuki Itabe
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Rina Kato
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Naoko Sawada
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Takashi Obama
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Matsuo Yamamoto
- Department of Periodontology, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
7
|
Cipollini V, Troili F, Giubilei F. Emerging Biomarkers in Vascular Cognitive Impairment and Dementia: From Pathophysiological Pathways to Clinical Application. Int J Mol Sci 2019; 20:ijms20112812. [PMID: 31181792 PMCID: PMC6600494 DOI: 10.3390/ijms20112812] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Vascular pathology is the second most common neuropathology of dementia after Alzheimer’s disease (AD), with small vessels disease (SVD) being considered the major cause of vascular cognitive impairment and dementia (VCID). This review aims to evaluate pathophysiological pathways underlying a diagnosis of VCID. Firstly, we will discuss the role of endothelial dysfunction, blood-brain barrier disruption and neuroinflammation in its pathogenesis. Then, we will analyse different biomarkers including the ones of inflammatory responses to central nervous system tissue injuries, of coagulation and thrombosis and of circulating microRNA. Evidences on peripheral biomarkers for VCID are still poor and large-scale, prospectively designed studies are needed to translate these findings into clinical practice, in order to set different combinations of biomarkers to use for differential diagnosis among types of dementia.
Collapse
Affiliation(s)
- Virginia Cipollini
- S. Andrea Hospital, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Roma, Italy.
| | - Fernanda Troili
- S. Andrea Hospital, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Roma, Italy.
| | - Franco Giubilei
- S. Andrea Hospital, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Roma, Italy.
| |
Collapse
|
8
|
Chen H, Du Y, Liu S, Ge B, Ji Y, Huang G. Association between serum cholesterol levels and Alzheimer's disease in China: a case-control study. Int J Food Sci Nutr 2019; 70:405-411. [PMID: 30624122 DOI: 10.1080/09637486.2018.1508426] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To examine the association between blood cholesterol concentrations and Alzheimer's disease (AD) in the Chinese elderly. A case-control study was implemented between November 2011 and November 2017. Elderly patients aged ≥ 55 years with (n = 117) and without AD (control participants; n = 117) were recruited from the Neurology Central Hospital of Tianjin, China. The associations between AD and blood parameters were assessed using multiple binary logistic regression analyses adjusted for multiple covariates. Higher serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels and lower serum high-density lipoprotein cholesterol (HDL-C) levels associated with AD risk in the models adjusted for (1) age, sex and education; and (2) further adjusted for body mass index, smoking status, stroke, hypertension, type 2 diabetes mellitus and heart disease. Increased serum TC and LDL-C levels and lower HDL-C levels were independently associated with the risk of AD.
Collapse
Affiliation(s)
- Hui Chen
- a School of Nursing , Tianjin Medical University , Tianjin , China
| | - Yue Du
- b Department of Nutrition and Food Science, School of Public Health , Tianjin Medical University , Tianjin , China
| | - Shuai Liu
- c Department of Neurology, and Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases , Tianjin Huanhu Hospital , Tianjin , China
| | - Baojin Ge
- b Department of Nutrition and Food Science, School of Public Health , Tianjin Medical University , Tianjin , China
| | - Yong Ji
- c Department of Neurology, and Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases , Tianjin Huanhu Hospital , Tianjin , China
| | - Guowei Huang
- b Department of Nutrition and Food Science, School of Public Health , Tianjin Medical University , Tianjin , China
| |
Collapse
|
9
|
Weng R, Wei X, Yu B, Zhu S, Yang X, Xie F, Zhang M, Jiang Y, Feng ZP, Sun HS, Xia Y, Jin K, Chan P, Wang Q, Gao X. Combined measurement of plasma cystatin C and low-density lipoprotein cholesterol: A valuable tool for evaluating progressive supranuclear palsy. Parkinsonism Relat Disord 2018; 52:37-42. [PMID: 29574085 DOI: 10.1016/j.parkreldis.2018.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Progressive supranuclear palsy (PSP) was previously thought as a cause of atypical Parkinsonism. Although Cystatin C (Cys C) and low-density cholesterol lipoprotein-C (LDL-C) are known to play critical roles in Parkinsonism, it is unknown whether they can be used as markers to distinguish PSP patients from healthy subjects and to determine disease severity. METHODS We conducted a cross-sectional study to determine plasma Cys C/HDL/LDL-C levels of 40 patients with PSP and 40 healthy age-matched controls. An extended battery of motor and neuropsychological tests, including the PSP-Rating Scale (PSPRS), the Non-Motor Symptoms Scale (NMSS), Geriatric Depression Scale (GDS) and Mini-Mental State Examination (MMSE), was used to evaluate the disease severity. Receiver operating characteristic (ROC) curves were adopted to assess the prognostic accuracy of Cys C/LDL-C levels in distinguishing PSP from healthy subjects. RESULTS Patients with PSP exhibited significantly higher plasma levels of Cys C and lower LDL-C. The levels of plasma Cys C were positively and inversely correlated with the PSPRS/NMSS and MMSE scores, respectively. The LDL-C/HDL-C ratio was positively associated with PSPRS/NMSS and GDS scores. The ROC curve for the combination of Cys C and LDL-C yielded a better accuracy for distinguishing PSP from healthy subjects than the separate curves for each parameter. CONCLUSIONS Plasma Cys C and LDL-C may be valuable screening tools for differentiating PSP from healthy subjects; while they could be useful for the PSP intensifies and severity evaluation. A better understanding of Cys C and LDL-C may yield insights into the pathogenesis of PSP.
Collapse
Affiliation(s)
- Ruihui Weng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohua Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mahui Zhang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, USA
| | - Kunlin Jin
- Department of Neurosurgery, University of Texas Medical School at Houston, Houston, TX, USA
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
High Cholesterol Diet Increases Expression of Cholesterol 24-Hydroxylase and BACE1 in Rat Hippocampi: Implications for the Effect of Diet Cholesterol on Memory. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016. [DOI: 10.5812/ircmj.35677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Houben T, Brandsma E, Walenbergh SMA, Hofker MH, Shiri-Sverdlov R. Oxidized LDL at the crossroads of immunity in non-alcoholic steatohepatitis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:416-429. [PMID: 27472963 DOI: 10.1016/j.bbalip.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/01/2016] [Accepted: 07/21/2016] [Indexed: 02/08/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is viewed as the hepatic manifestation of the metabolic syndrome and is a condition hallmarked by lipid accumulation in the liver (steatosis) along with inflammation (hepatitis). Currently, the etiology and mechanisms leading to obesity-induced hepatic inflammation are not clear and, as a consequence, strategies to diagnose or treat NASH in an accurate manner do not exist. In the current review, we put forward the concept of oxidized lipids as a significant risk factor for NASH. We will focus on the contribution of the different types of oxidized lipids as part of the oxidized low-density lipoprotein (oxLDL) to the hepatic inflammatory response. Furthermore, we will elaborate on the underlying mechanisms linking oxLDL to inflammatory responses in the liver and on how these cascades can be used as therapeutic targets to combat NASH. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- T Houben
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands
| | - E Brandsma
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, the Netherlands
| | - S M A Walenbergh
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands
| | - M H Hofker
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, the Netherlands
| | - R Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands.
| |
Collapse
|
12
|
Su F, Bai F, Zhou H, Zhang Z. Reprint of: Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 55:166-178. [PMID: 27255539 DOI: 10.1016/j.bbi.2016.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
13
|
Su F, Bai F, Zhou H, Zhang Z. Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 52:187-198. [PMID: 26526648 DOI: 10.1016/j.bbi.2015.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 02/08/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|