1
|
Zhang Y, Tang C, He Y, Zhang Y, Li Q, Zhang T, Zhao B, Tong A, Zhong Q, Zhong Z. Semaglutide ameliorates Alzheimer's disease and restores oxytocin in APP/PS1 mice and human brain organoid models. Biomed Pharmacother 2024; 180:117540. [PMID: 39405916 DOI: 10.1016/j.biopha.2024.117540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
AIMS To investigate the therapeutic effects and mechanisms of Semaglutide in Alzheimer's disease (AD), and identify its potential targets. METHODS We systematically evaluated the effect of Semaglutide on Alzheimer's disease (AD), using both mice and human organoid models. RESULTS Behavioral analyses on APP/PS1 mice demonstrated that Semaglutide improved the cognitive capabilities, particularly in the learning and memory domains. Biochemical investigations further highlighted its role in reducing amyloid plaque deposition and down-regulating the expression of glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) expression in the mouse brain tissues. Meanwhile, oxytocin (OXT) was up-regulated after Semaglutide treatment. Subsequent studies using human AD-brain organoids (BOs) models revealed that, upon Semaglutide treatment, these AD-BO models also exhibited reduced levels of amyloid-beta (Aβ), phosphorylated Tau (p-Tau) and GFAP expression as well as increased OXT level. CONCLUSIONS Semaglutide can ameliorate Alzheimer's disease in pre-clinical models, suggesting the promising therapeutic potential in AD patients.
Collapse
Affiliation(s)
- Yinbing Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Tang
- Sichuan Junhui Biotechnology Co. Ltd., No. 10 Furong Avenue 2, Wenjiang District, Chengdu 611100, China
| | - Yao He
- Laboratory of Neurological Disease Modeling and Translational Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingqian Zhang
- Laboratory of Neurological Disease Modeling and Translational Research, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Qinxi Li
- Sichuan Junhui Biotechnology Co. Ltd., No. 10 Furong Avenue 2, Wenjiang District, Chengdu 611100, China
| | - Ting Zhang
- Laboratory of Neurological Disease Modeling and Translational Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bangcheng Zhao
- Laboratory of Neurological Disease Modeling and Translational Research, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qixing Zhong
- Laboratory of Neurological Disease Modeling and Translational Research, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China.
| | - Zhihui Zhong
- Laboratory of Neurological Disease Modeling and Translational Research, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China.
| |
Collapse
|
2
|
Labib MM, Alqahtani AM, Abo Nahas HH, Aldossari RM, Almiman BF, Ayman Alnumaani S, El-Nablaway M, Al-Olayan E, Alsunbul M, Saied EM. Novel Insights into the Antimicrobial and Antibiofilm Activity of Pyrroloquinoline Quinone (PQQ); In Vitro, In Silico, and Shotgun Proteomic Studies. Biomolecules 2024; 14:1018. [PMID: 39199405 PMCID: PMC11352295 DOI: 10.3390/biom14081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Microbial infections pose a significant global health threat, affecting millions of individuals and leading to substantial mortality rates. The increasing resistance of microorganisms to conventional treatments requires the development of novel antimicrobial agents. Pyrroloquinoline quinone (PQQ), a natural medicinal drug involved in various cellular processes, holds promise as a potential antimicrobial agent. In the present study, our aim was, for the first time, to explore the antimicrobial activity of PQQ against 29 pathogenic microbes, including 13 fungal strains, 8 Gram-positive bacteria, and 8 Gram-negative bacteria. Our findings revealed potent antifungal properties of PQQ, particularly against Syncephalastrum racemosum, Talaromyces marneffei, Candida lipolytica, and Trichophyton rubrum. The MIC values varied between fungal strains, and T. marneffei exhibited a lower MIC, indicating a greater susceptibility to PQQ. In addition, PQQ exhibited notable antibacterial activity against Gram-positive and -negative bacteria, with a prominent inhibition observed against Staphylococcus epidermidis, Proteus vulgaris, and MRSA strains. Remarkably, PQQ demonstrated considerable biofilm inhibition against the MRSA, S. epidermidis, and P. vulgaris strains. Transmission electron microscopy (TEM) studies revealed that PQQ caused structural damage and disrupted cell metabolism in bacterial cells, leading to aberrant morphology, compromised cell membrane integrity, and leakage of cytoplasmic contents. These findings were further affirmed by shotgun proteomic analysis, which revealed that PQQ targets several important cellular processes in bacteria, including membrane proteins, ATP metabolic processes, DNA repair processes, metal-binding proteins, and stress response. Finally, detailed molecular modeling investigations indicated that PQQ exhibits a substantial binding affinity score for key microbial targets, including the mannoprotein Mp1P, the transcriptional regulator TcaR, and the endonuclease PvuRTs1I. Taken together, our study underscores the effectiveness of PQQ as a broad-spectrum antimicrobial agent capable of combating pathogenic fungi and bacteria, while also inhibiting biofilm formation and targeting several critical biological processes, making it a promising therapeutic option for biofilm-related infections.
Collapse
Affiliation(s)
- Mai M. Labib
- Department of Bioinformatics, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), Cairo 12619, Egypt;
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | | | - Rana M. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Bandar Fahad Almiman
- Biology Department, College of Science, Al-Baha University, Al Bahah 65779, Saudi Arabia;
| | - Sarah Ayman Alnumaani
- Department of Medical Microbiology, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia;
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
3
|
Manchia M, Paribello P, Pinna M, Steardo L, Carpiniello B, Pinna F, Pisanu C, Squassina A, Hajek T. Lithium and its effects: does dose matter? Int J Bipolar Disord 2024; 12:23. [PMID: 38914810 PMCID: PMC11196441 DOI: 10.1186/s40345-024-00345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Decades of clinical research have demonstrated the efficacy of lithium in treating acute episodes (both manic and depressive), as well as in preventing recurrences of bipolar disorder (BD). Specific to lithium is its antisuicidal effect, which appears to extend beyond its mood-stabilizing properties. Lithium's clinical effectiveness is, to some extent, counterbalanced by its safety and tolerability profile. Indeed, monitoring of lithium levels is required by its narrow therapeutic index. There is consensus that adequate serum levels should be above 0.6 mEq/L to achieve clinical effectiveness. However, few data support the choice of this threshold, and increasing evidence suggests that lithium might have clinical and molecular effects at much lower concentrations. CONTENT This narrative review is aimed at: (1) reviewing and critically interpreting the clinical evidence supporting the use of the 0.6 mEq/L threshold, (2) reporting a narrative synthesis of the evidence supporting the notion that lithium might be effective in much lower doses. Among these are epidemiological studies of lithium in water, evidence on the antisuicidal, anti-aggressive, and neuroprotective effects, including efficacy in preventing cognitive impairment progression, Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS), of lithium; and (3) revieweing biological data supporting clinically viable uses of lithium at low levels with the delineation of a mechanistic hypothesis surrounding its purported mechanism of action. The study selection was based on the authors' preference, reflecting the varied and extensive expertise on the review subject, further enriched with an extensive pearl-growing strategy for relevant reviews and book sections. CONCLUSIONS Clinical and molecular effects of lithium are numerous, and its effects also appear to have a certain degree of specificity related to the dose administered. In sum, the clinical effects of lithium are maximal for mood stabilisation at concentrations higher than 0.6 mEq/l. However, lower levels may be sufficient for preventing depressive recurrences in older populations of patients, and microdoses could be effective in decreasing suicide risk, especially in patients with BD. Conversely, lithium's ability to counteract cognitive decline appears to be exerted at subtherapeutic doses, possibly corresponding to its molecular neuroprotective effects. Indeed, lithium may reduce inflammation and induce neuroprotection even at doses several folds lower than those commonly used in clinical settings. Nevertheless, findings surrounding its purported mechanism of action are missing, and more research is needed to investigate the molecular targets of low-dose lithium adequately.
Collapse
Affiliation(s)
- Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy.
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada, Italy.
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Martina Pinna
- Unit of Forensic Psychiatry, Health Agency of Cagliari, Cagliari, Italy
| | - Luca Steardo
- Psychiatry Unit, Department of Health Sciences, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessio Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Singulani MP, Ferreira AFF, Figueroa PS, Cuyul-Vásquez I, Talib LL, Britto LR, Forlenza OV. Lithium and disease modification: A systematic review and meta-analysis in Alzheimer's and Parkinson's disease. Ageing Res Rev 2024; 95:102231. [PMID: 38364914 DOI: 10.1016/j.arr.2024.102231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The role of lithium as a possible therapeutic strategy for neurodegenerative diseases has generated scientific interest. We systematically reviewed and meta-analyzed pre-clinical and clinical studies that evidenced the neuroprotective effects of lithium in Alzheimer's (AD) and Parkinson's disease (PD). We followed the PRISMA guidelines and performed the systematic literature search using PubMed, EMBASE, Web of Science, and Cochrane Library. A total of 32 articles were identified. Twenty-nine studies were performed in animal models and 3 studies were performed on human samples of AD. A total of 17 preclinical studies were included in the meta-analysis. Our analysis showed that lithium treatment has neuroprotective effects in diseases. Lithium treatment reduced amyloid-β and tau levels and significantly improved cognitive behavior in animal models of AD. Lithium increased the tyrosine hydroxylase levels and improved motor behavior in the PD model. Despite fewer clinical studies on these aspects, we evidenced the positive effects of lithium in AD patients. This study lends further support to the idea of lithium's therapeutic potential in neurodegenerative diseases.
Collapse
Affiliation(s)
- Monique Patricio Singulani
- Laboratory of Neuroscience LIM27, Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil; Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Ana Flávia Fernandes Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Instituto de Ciências Biomédicas da Universidade de São Paulo (USP), São Paulo, Brazil
| | | | - Iván Cuyul-Vásquez
- Departamento de Procesos Terapéuticos, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Leda Leme Talib
- Laboratory of Neuroscience LIM27, Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil; Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Luiz Roberto Britto
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Instituto de Ciências Biomédicas da Universidade de São Paulo (USP), São Paulo, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience LIM27, Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil; Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
5
|
Zhang X, Gu T, Liu Y, Liu C, Lin Y, Li H, Zhang T, Wang Q, Mu D. Pyrroloquinoline Quinone (PQQ) Improves Long-term Survival of Fat Grafts by Alleviating Oxidative Stress and Promoting Angiogenesis During the Early Phase After Transplantation. Aesthet Surg J 2023; 44:NP104-NP118. [PMID: 37616573 DOI: 10.1093/asj/sjad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Reducing absorption after autologous fat grafting is a current challenge. Pyrroloquinoline quinone (PQQ) is the strongest known catalyst of redox reactions, which can scavenge reactive oxygen species (ROS) and alleviate oxidative stress. OBJECTIVES The aim of this study was to establish an in vivo model of PQQ-assisted lipotransfer and clarify the role of PQQ in reducing oxidative stress, alleviating apoptosis, and promoting angiogenesis during the acute hypoxic phase after grafting. In addition the study was performed to assess whether this intervention would have a positive effect on the improvement of long-term volume retention. METHODS Different concentrations of PQQ (low: 10 μM, medium: 100 μM, and high: 1000 μM) were mixed with human adipose tissue and transplanted subcutaneously into nude mice. Meanwhile, a control group of phosphate-buffered saline in an equal volume to PQQ was set up. On the third day after grafting, whole mount fluorescence staining was applied to detect ROS, mitochondrial membrane potential (MMP), apoptosis, adipocyte activity, and angiogenesis. Graft volume retention rate and electron microscopic morphology were evaluated at the third month. Immunohistochemistry and polymerase chain reaction (PCR) were further employed to elucidate the mechanism of action of PQQ. RESULTS PQQ-assisted fat grafting improved the long-term volume retention, promoted the quality and viability of the adipose tissue, and reduced the level of fibrosis. The underlying mechanism of PQQ assisted in scavenging the accumulated ROS, restoring MMP, enhancing adipocyte viability, alleviating tissue apoptosis, and promoting timely angiogenesis during the hypoxia stress phase. The most effective concentration of PQQ was 100 μM. Immunohistochemistry and PCR experiments confirmed that PQQ reduced the expression of Bax and cytochrome c in the mitochondrial apoptotic pathway and increased the level of the antiapoptotic molecule Bcl-2. CONCLUSIONS PQQ could improve the long-term survival of adipocytes by alleviating hypoxic stress and promoting timely angiogenesis in the early phase following lipotransfer. LEVEL OF EVIDENCE: 4
Collapse
|
6
|
Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener 2022; 11:4. [PMID: 35090576 PMCID: PMC8796548 DOI: 10.1186/s40035-022-00279-0] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic abnormalities are a cardinal feature of Alzheimer's disease (AD) that are known to arise as the disease progresses. A growing body of evidence suggests that pathological alterations to neuronal circuits and synapses may provide a mechanistic link between amyloid β (Aβ) and tau pathology and thus may serve as an obligatory relay of the cognitive impairment in AD. Brain-derived neurotrophic factors (BDNFs) play an important role in maintaining synaptic plasticity in learning and memory. Considering AD as a synaptic disorder, BDNF has attracted increasing attention as a potential diagnostic biomarker and a therapeutical molecule for AD. Although depletion of BDNF has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation and neuronal apoptosis, the exact mechanisms underlying the effect of impaired BDNF signaling on AD are still unknown. Here, we present an overview of how BDNF genomic structure is connected to factors that regulate BDNF signaling. We then discuss the role of BDNF in AD and the potential of BDNF-targeting therapeutics for AD.
Collapse
Affiliation(s)
- Lina Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
7
|
Ogbodo JO, Agbo CP, Njoku UO, Ogugofor MO, Egba SI, Ihim SA, Echezona AC, Brendan KC, Upaganlawar AB, Upasani CD. Alzheimer's Disease: Pathogenesis and Therapeutic Interventions. Curr Aging Sci 2022; 15:2-25. [PMID: 33653258 DOI: 10.2174/1874609814666210302085232] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common cause of dementia. Genetics, excessive exposure to environmental pollutants, as well as unhealthy lifestyle practices are often linked to the development of AD. No therapeutic approach has achieved complete success in treating AD; however, early detection and management with appropriate drugs are key to improving prognosis. INTERVENTIONS The pathogenesis of AD was extensively discussed in order to understand the reasons for the interventions suggested. The interventions reviewed include the use of different therapeutic agents and approaches, gene therapy, adherence to healthy dietary plans (Mediterranean diet, Okinawan diet and MIND diet), as well as the use of medicinal plants. The potential of nanotechnology as a multidisciplinary and interdisciplinary approach in the design of nano-formulations of AD drugs and the use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as theranostic tools for early detection of Alzheimer's disease were also discussed.
Collapse
Affiliation(s)
- John O Ogbodo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | - Chinazom P Agbo
- Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria
| | - Ugochi O Njoku
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | | | - Simeon I Egba
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Stella A Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | | | | | - Aman B Upaganlawar
- Department of Pharmacology, Sureshdada Shriman\'s College of Pharmacy, New Dehli, India
| | | |
Collapse
|
8
|
Xiang J, Ran LY, Zeng XX, He WW, Xu Y, Cao K, Dong YT, Qi XL, Yu WF, Xiao Y, Guan ZZ. LiCl attenuates impaired learning and memory of APP/PS1 mice, which in mechanism involves α7 nAChRs and Wnt/β-catenin pathway. J Cell Mol Med 2021; 25:10698-10710. [PMID: 34708522 PMCID: PMC8581309 DOI: 10.1111/jcmm.17006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
We examined the mechanism by which lithium chloride (LiCl) attenuates the impaired learning capability and memory function of dual-transgenic APP/PS1 mice. Six- or 12-month-old APP/PS1 and wild-type (WT) mice were randomized into four groups, namely WT, WT+Li (100 mg LiCl/kg body weight, gavage once daily), APP/PS1 and APP/PS1+Li. Primary rat hippocampal neurons were exposed to β-amyloid peptide oligomers (AβOs), LiCl and/or XAV939 (inhibitor of Wnt/β-catenin) or transfected with small interfering RNA against the β-catenin gene. In the cerebral zone of APP/PS1 mice, the level of Aβ was increased and those of α7 nicotinic acetylcholine receptors (nAChR), phosphor-GSK3β (ser9), β-catenin and cyclin D1 (protein and/or mRNA levels) reduced. Two-month treatment with LiCl at ages of 4 or 10 months weakened all of these effects. Similar expression variations were observed for these proteins in primary neurons exposed to AβOs, and these effects were attenuated by LiCl and aggravated by XAV939. Inhibition of β-catenin expression lowered the level of α7 nAChR protein in these cells. LiCl attenuates the impaired learning capability and memory function of APP/PS1 mice via a mechanism that might involve elevation of the level of α7 nAChR as a result of altered Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Long-Yan Ran
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Xiao-Xiao Zeng
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Wen-Wen He
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Yi Xu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Kun Cao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| | - Zhi-Zhong Guan
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| |
Collapse
|
9
|
Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules 2021; 11:biom11101441. [PMID: 34680074 PMCID: PMC8533503 DOI: 10.3390/biom11101441] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin-related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ's role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ's actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ's modulation of lactate acid and perhaps other dehydrogenases enhance NAD+-dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.
Collapse
|
10
|
Govindarajulu M, Ramesh S, Neel L, Fabbrini M, Buabeid M, Fujihashi A, Dwyer D, Lynd T, Shah K, Mohanakumar KP, Smith F, Moore T, Dhanasekaran M. Nutraceutical based SIRT3 activators as therapeutic targets in Alzheimer's disease. Neurochem Int 2021; 144:104958. [PMID: 33444675 DOI: 10.1016/j.neuint.2021.104958] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and its incidence is increasing worldwide with increased lifespan. Currently, there is no effective treatment to cure or prevent the progression of AD, which indicates the need to develop novel therapeutic targets and agents. Sirtuins, especially SIRT3, a mitochondrial deacetylase, are NAD-dependent histone deacetylases involved in aging and longevity. Accumulating evidence indicates that SIRT3 dysfunction is strongly associated with pathologies of AD, hence, therapeutic modulation of SIRT3 activity may be a novel application to ameliorate the pathologies of AD. Natural products commonly used in traditional medicine have wide utility and appear to have therapeutic benefits for the treatment of neurodegenerative diseases such as AD. The present review summarizes the currently available natural SIRT3 activators and their potentially neuroprotective molecular mechanisms of action that make them a promising agent in the treatment and management of neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Logan Neel
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Mary Fabbrini
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Manal Buabeid
- Clinical Pharmacy Department, College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Darby Dwyer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Tyler Lynd
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Karishma Shah
- Department of Ophthalmology, D.Y. Patil Medical College and Research Hospital, Mumbai, India
| | | | - Forrest Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA.
| |
Collapse
|
11
|
Is There Justification to Treat Neurodegenerative Disorders by Repurposing Drugs? The Case of Alzheimer's Disease, Lithium, and Autophagy. Int J Mol Sci 2020; 22:ijms22010189. [PMID: 33375448 PMCID: PMC7795249 DOI: 10.3390/ijms22010189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Lithium is the prototype mood-stabilizer used for acute and long-term treatment of bipolar disorder. Cumulated translational research of lithium indicated the drug's neuroprotective characteristics and, thereby, has raised the option of repurposing it as a drug for neurodegenerative diseases. Lithium's neuroprotective properties rely on its modulation of homeostatic mechanisms such as inflammation, mitochondrial function, oxidative stress, autophagy, and apoptosis. This myriad of intracellular responses are, possibly, consequences of the drug's inhibition of the enzymes inositol-monophosphatase (IMPase) and glycogen-synthase-kinase (GSK)-3. Here we review lithium's neurobiological properties as evidenced by its neurotrophic and neuroprotective properties, as well as translational studies in cells in culture, in animal models of Alzheimer's disease (AD) and in patients, discussing the rationale for the drug's use in the treatment of AD.
Collapse
|
12
|
Beneficial effects of low-dose lithium on cognitive ability and pathological alteration of Alzheimer's disease transgenic mice model. Neuroreport 2020; 31:943-951. [PMID: 32639272 DOI: 10.1097/wnr.0000000000001499] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lithium has been shown to delay the progression of Alzheimer's disease to reduce the prevalence of dementia. However, its narrow therapeutic index and numerous toxic effects at conventional dosage limited its long-term use to older subjects. Here, we tested the effect of low-dose lithium on cognitive impairment and pathology alterations in a mouse model of Alzheimer's disease, the amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mouse. We found that both chronic and acute administration of lithium dose-dependently increased in blood and brain tissues. Long-term administration of low-dose lithium does not affect the body weight of APP/PS1 mice, but can significantly improve spatial memory of APP/PS1 mice. Pathologically, it also reduced β-amyloid plague and p-tau levels. Therefore, our results show that long-term low-dose lithium can ameliorate cognitive dysfunction and pathological alterations of Alzheimer's disease transgenic mice, and provide a theoretical basis for the further application of low-dose lithium in Alzheimer's disease clinical treatment.
Collapse
|
13
|
Xiang J, Cao K, Dong YT, Xu Y, Li Y, Song H, Zeng XX, Ran LY, Hong W, Guan ZZ. Lithium chloride reduced the level of oxidative stress in brains and serums of APP/PS1 double transgenic mice via the regulation of GSK3β/Nrf2/HO-1 pathway. Int J Neurosci 2019; 130:564-573. [DOI: 10.1080/00207454.2019.1688808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jie Xiang
- Department of Pathology at Guizhou Medical University and Pathological Department at the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Kun Cao
- Department of Pathology at Guizhou Medical University and Pathological Department at the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, People’s Republic of China
| | - Yi Xu
- Department of Pathology at Guizhou Medical University and Pathological Department at the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Yi Li
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, People’s Republic of China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, People’s Republic of China
| | - Xiao-Xiao Zeng
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, People’s Republic of China
| | - Long-Yan Ran
- Department of Pathology at Guizhou Medical University and Pathological Department at the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, People’s Republic of China
| | - Zhi-Zhong Guan
- Department of Pathology at Guizhou Medical University and Pathological Department at the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, People’s Republic of China
| |
Collapse
|
14
|
Vaseghi S, Babapour V, Nasehi M, Zarrindast MR. Synergistic but not additive effect between ACPA and lithium in the dorsal hippocampal region on spatial learning and memory in rats: Isobolographic analyses. Chem Biol Interact 2019; 315:108895. [PMID: 31715133 DOI: 10.1016/j.cbi.2019.108895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Lithium and cannabinoids can disrupt learning and memory performance. The goal of the present study is to investigate the additive or synergistic effect of lithium and cannabinoid combination doses on spatial learning and memory in rats by isobolographic analyses. Although several studies have suggested synergistic effects of cannabinoids or lithium in response to other compounds, in most of them isobolographic analyses were not used; Thus, there is a need for more detailed studies using isobolographic analyses. In this study, spatial memory was evaluated in the Morris Water Maze (MWM) apparatus by eight trials in the training day and one trial in the test day. Lithium was injected intraperitoneal and ACPA (cannabinoid type 1 receptor agonist) was injected into the dorsal hippocampal region (intra-CA1). For the isobolographic analyses, the ED50 of lithium (2.5 mg/kg) and ACPA (0.5 μg/rat) was measured by linear regression analysis, considering the doses were tested in our previous research. The results showed that, combinations of low, medium and high doses of lithium (0.312 mg/kg, 0.625 mg/kg and 1.25 mg/kg, respectively) and ACPA (0.0625 μg/rat, 0.125 μg/rat and 0.25 μg/rat, respectively) had synergistic but not additive effect on spatial learning and spatial memory. In conclusion, we suggest that combination doses of lithium and ACPA have synergistic but not additive effect on spatial learning and memory in the rat's dorsal hippocampal region.
Collapse
Affiliation(s)
- Salar Vaseghi
- Department of Physiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Hampel H, Lista S, Mango D, Nisticò R, Perry G, Avila J, Hernandez F, Geerts H, Vergallo A. Lithium as a Treatment for Alzheimer’s Disease: The Systems Pharmacology Perspective. J Alzheimers Dis 2019; 69:615-629. [DOI: 10.3233/jad-190197] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, F-75013, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, F-75013, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Dalila Mango
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy
| | - Robert Nisticò
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - George Perry
- College of Sciences, One UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jesus Avila
- Centro de Biologia Molecular “Severo Ochoa”, Consejo Superior de Investigaciones, Cientificas, Universidad Autonoma de Madrid, C/ Nicolas Cabrera, 1. Campus de Cantoblanco, 28049, Madrid, Spain
- Networking Research Center on Neurodegenerative, Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Felix Hernandez
- Centro de Biologia Molecular “Severo Ochoa”, Consejo Superior de Investigaciones, Cientificas, Universidad Autonoma de Madrid, C/ Nicolas Cabrera, 1. Campus de Cantoblanco, 28049, Madrid, Spain
- Networking Research Center on Neurodegenerative, Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Hugo Geerts
- In silico Biosciences, Computational Neuropharmacology, Berwyn, PA, USA
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, F-75013, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | | |
Collapse
|
16
|
Cuello AC, Hall H, Do Carmo S. Experimental Pharmacology in Transgenic Rodent Models of Alzheimer's Disease. Front Pharmacol 2019; 10:189. [PMID: 30886583 PMCID: PMC6409318 DOI: 10.3389/fphar.2019.00189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
This Mini Review discusses the merits and shortfalls of transgenic (tg) rodents modeling aspects of the human Alzheimer’s disease (AD) pathology and their application to evaluate experimental therapeutics. It addresses some of the differences between mouse and rat tg models for these investigations. It relates, in a condensed fashion, the experience of our research laboratory with the application of anti-inflammatory compounds and S-adenosylmethionine (SAM) at the earliest stages of AD-like amyloid pathology in tg mice. The application of SAM was intended to revert the global brain DNA hypomethylation unleashed by the intraneuronal accumulation of amyloid-β-immunoreactive material, an intervention that restored levels of DNA methylation including of the bace1 gene. This review also summarizes experimental pharmacology observations made in the McGill tg rat model of AD-like pathology by applying “nano-lithium” or a drug with allosteric M1 muscarinic and sigma 1 receptor agonistic properties (AF710B). Extremely low doses of lithium (up to 400 times lower than used in the clinic) had remarkable beneficial effects on lowering pathology and improving cognitive functions in tg rats. Likewise, AF710B treatment, even at advanced stages of the pathology, displayed remarkable beneficial effects. This drug, in experimental conditions, demonstrated possible “disease-modifying” properties as pathology was frankly diminished and cognition improved after a month of “wash-out” period. The Mini-Review ends with a discussion on the predictive value of similar experimental pharmacological interventions in current rodent tg models. It comments on the validity of some of these approaches for early interventions at preclinical stages of AD, interventions which may be envisioned once definitive diagnosis of AD before clinical presentation is made possible.
Collapse
Affiliation(s)
- A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Hélène Hall
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Konenkov VI, Rachkovskaya LN, Letyagin AY, Suslov NI, Shurlygina AV, Robinson MV, Korolev MA, Kotlyarova AA, Popova TV, Rachkovskii EE, Povet'eva TN, Shilova NV, Nesterova YV, Afanas'eva OG, Kul'pin PV. Effect of Lithium Preparations on Cerebral Electrophysiological Activity in Rats. Bull Exp Biol Med 2018; 165:470-473. [PMID: 30121932 DOI: 10.1007/s10517-018-4196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Indexed: 11/26/2022]
Abstract
The study examined the effects of a novel neurotropic medication based on a lithium complex composed of lithium citrate, polymethylsiloxane, and aluminum oxide on electrophysiological parameters of the rat brain. In contrast to lithium carbonate (the reference drug), the novel preparation resulted in a wave-like dynamics of electrical activity in the visual cortex. Rhythmic photic stimulation of the rats treated with lithium carbonate resulted in appearance of the signs attesting to up-regulation of excitability of cerebral cortex in all examined ranges. In contrast, the complex lithium preparation diminished the delta power spectrum, which was the only affected frequency band. It is hypothesized that the complex lithium medication induces milder activation of the cerebral cortex in comparison with lithium carbonate. The novel medication composed of lithium citrate, aluminum oxide, and polymethylsiloxane, is characterized by greater efficacy and safety than the preparation based on inorganic lithium salt (lithium carbonate).
Collapse
Affiliation(s)
- V I Konenkov
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L N Rachkovskaya
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Yu Letyagin
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N I Suslov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A V Shurlygina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - M V Robinson
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M A Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Kotlyarova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T V Popova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E E Rachkovskii
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T N Povet'eva
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - N V Shilova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Yu V Nesterova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - O G Afanas'eva
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - P V Kul'pin
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
18
|
Santiago A, Soares LM, Schepers M, Milani H, Vanmierlo T, Prickaerts J, Weffort de Oliveira RM. Roflumilast promotes memory recovery and attenuates white matter injury in aged rats subjected to chronic cerebral hypoperfusion. Neuropharmacology 2018; 138:360-370. [DOI: 10.1016/j.neuropharm.2018.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/24/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
|
19
|
Pan Y, Short JL, Newman SA, Choy KHC, Tiwari D, Yap C, Senyschyn D, Banks WA, Nicolazzo JA. Cognitive benefits of lithium chloride in APP/PS1 mice are associated with enhanced brain clearance of β-amyloid. Brain Behav Immun 2018; 70:36-47. [PMID: 29545118 DOI: 10.1016/j.bbi.2018.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/01/2018] [Accepted: 03/11/2018] [Indexed: 12/30/2022] Open
Abstract
Epidemiological evidence suggests that people with bipolar disorder prescribed lithium exhibit a lower risk of Alzheimer's disease (AD) relative to those prescribed other mood-stabilizing medicines. Lithium chloride (LiCl) reduces brain β-amyloid (Aβ) levels, and the brain clearance of Aβ is reduced in AD. Therefore, the purpose of this study was to assess whether the cognitive benefits of LiCl are associated with enhanced brain clearance of exogenously-administered Aβ. The brain clearance of intracerebroventricularly (icv) administered 125I-Aβ42 was assessed in male Swiss outbred mice administered daily oral NaCl or LiCl (300 mg/kg for 21 days). LiCl exhibited a 31% increase in the brain clearance of 125I-Aβ42 over 10 min, which was associated with a 1.6-fold increase in brain microvascular expression of the blood-brain barrier efflux transporter low density lipoprotein receptor-related protein 1 (LRP1) and increased cerebrospinal fluid (CSF) bulk-flow. 8-month-old female wild type (WT) and APP/PS1 mice were also administered daily NaCl or LiCl for 21 days, which was followed by cognitive assessment by novel object recognition and water maze, and measurement of soluble Aβ42, plaque-associated Aβ42, and brain efflux of 125I-Aβ42. LiCl treatment restored the long-term spatial memory deficit observed in APP/PS1 mice as assessed by the water maze (back to similar levels of escape latency as WT mice), but the short-term memory deficit remained unaffected by LiCl treatment. While LiCl did not affect plaque-associated Aβ42, soluble Aβ42 levels were reduced by 49.9% in APP/PS1 mice receiving LiCl. The brain clearance of 125I-Aβ42 decreased by 27.8% in APP/PS1 mice, relative to WT mice, however, LiCl treatment restored brain 125I-Aβ42 clearance in APP/PS1 mice to a rate similar to that observed in WT mice. These findings suggest that the cognitive benefits and brain Aβ42 lowering effects of LiCl are associated with enhanced brain clearance of Aβ42, possibly via brain microvascular LRP1 upregulation and increased CSF bulk-flow, identifying a novel mechanism of protection by LiCl for the treatment of AD.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jennifer L Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Stephanie A Newman
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kwok H C Choy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Durgesh Tiwari
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christopher Yap
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Danielle Senyschyn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
20
|
SLOH, a carbazole-based fluorophore, mitigates neuropathology and behavioral impairment in the triple-transgenic mouse model of Alzheimer's disease. Neuropharmacology 2018; 131:351-363. [PMID: 29309769 DOI: 10.1016/j.neuropharm.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative dysfunction characterized by memory impairment and brings a heavy burden to old people both in developing and developed countries. Amyloid hypothesis reveals that aggregation and deposition of amyloid plaques are the cause of AD neurodegeneration. SLOH, a carbazole-based fluorophore, is reported to inhibit amyloid beta (Aβ) aggregation in vitro. In the current study, we intended to evaluate the protective effect of SLOH in a triple transgenic AD mouse model (3xTg-AD). 3xTg-AD (10-month-old) were treated with SLOH (0.5, 1 and 2 mg kg-1) for one month via intraperitoneal injection. After treatment, cognitive function was assessed by Morris Water Maze (MWM) and Y-maze tasks. In addition, biochemical estimations were used to examine the degree of Aβ deposition, tau hyperphosphorylation and neuroinflammation in the brains of 3xTg-AD mice. An in vitro study was conducted on human neuroblastoma (SH-SY5Y) cells to determine the activity of SLOH on tau and GSK-3β using western blot and immunofluorescence staining. One month treatment with SLOH significantly ameliorated memory impairments in 3xTg-AD mice in MWM and Y-maze tests. Moreover, SLOH treatment mitigated the level of amyloid plaques, tau hyperphosphorylation and neuroinflammation in the mouse brain. SLOH also reduced tau hyperphosphorylation and down-regulated GSK-3β activity in Aβ induced neurotoxic SH-SY5Y cells. The promising results in mitigating amyloid plaques, tau hyperphosphorylation, neuroinflammation and ameliorating cognitive deficits following one-month treatment suggest that SLOH could be a potential multi-target molecule for the AD treatment.
Collapse
|
21
|
Kim AC, Lim S, Kim YK. Metal Ion Effects on Aβ and Tau Aggregation. Int J Mol Sci 2018; 19:E128. [PMID: 29301328 PMCID: PMC5796077 DOI: 10.3390/ijms19010128] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 01/13/2023] Open
Abstract
Amyloid and tau aggregation are implicated in manifold neurodegenerative diseases and serve as two signature pathological hallmarks in Alzheimer's disease (AD). Though aging is considered as a prominent risk factor for AD pathogenesis, substantial evidence suggests that an imbalance of essential biometal ions in the body and exposure to certain metal ions in the environment can potentially induce alterations to AD pathology. Despite their physiological importance in various intracellular processes, biometal ions, when present in excessive or deficient amounts, can serve as a mediating factor for neurotoxicity. Recent studies have also demonstrated the contribution of metal ions found in the environment on mediating AD pathogenesis. In this regard, the neuropathological features associated with biometal ion dyshomeostasis and environmental metal ion exposure have prompted widespread interest by multiple research groups. In this review, we discuss and elaborate on findings from previous studies detailing the possible role of both endogenous and exogenous metal ions specifically on amyloid and tau pathology in AD.
Collapse
Affiliation(s)
- Anne Claire Kim
- Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA.
- Brain Science Institute, Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Sungsu Lim
- Brain Science Institute, Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Yun Kyung Kim
- Brain Science Institute, Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| |
Collapse
|
22
|
Budni J, Feijó DP, Batista-Silva H, Garcez ML, Mina F, Belletini-Santos T, Krasilchik LR, Luz AP, Schiavo GL, Quevedo J. Lithium and memantine improve spatial memory impairment and neuroinflammation induced by β-amyloid 1-42 oligomers in rats. Neurobiol Learn Mem 2017; 141:84-92. [PMID: 28359852 DOI: 10.1016/j.nlm.2017.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/26/2017] [Accepted: 03/25/2017] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly. The main hallmarks of this disease include progressive cognitive dysfunction and an accumulation of soluble oligomers of β-amyloid (Aβ) 1-42 peptide. In this research, we show the effects of lithium and memantine on spatial memory and neuroinflammation in an Aβ1-42 oligomers-induced animal model of dementia in rats. Aβ 1-42 oligomers were administered intrahippocampally to male wistar rats to induce dementia. Oral treatments with memantine (5mg/kg), lithium (5mg/kg), or both drugs in combination were performed over a period of 17days. 14days after the administration of the Aβ1-42 oligomers, the radial arm-maze task was performed. At the end of the test period, the animals were euthanized, and the frontal cortex and hippocampus were removed for use in our analysis. Our results showed that alone treatments with lithium or memantine ameliorate the spatial memory damage caused by Aβ1-42. The animals that received combined doses of lithium and memantine showed better cognitive performance in their latency time and total errors to find food when compared to the results from alone treatments. Moreover, in our study, lithium and/or memantine were able to reverse the decreases observed in the levels of interleukin (IL)-4 that were induced by Aβ1-42 in the frontal cortex. In the hippocampus, only memantine and the association of memantine and lithium were able to reverse this effect. Alone doses of lithium and memantine or the association of lithium and memantine caused reductions in the levels of IL-1β in the frontal cortex and hippocampus, and decreased the levels of TNF-α in the hippocampus. Taken together, these data suggest that lithium and memantine might be a potential therapy against cognitive impairment and neuroinflammation induced by Aβ1-42, and their association may be a promising alternative to be investigated in the treatment of AD-like dementia.
Collapse
Affiliation(s)
- J Budni
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências a Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
| | - D P Feijó
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências a Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - H Batista-Silva
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências a Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - M L Garcez
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências a Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - F Mina
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências a Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - T Belletini-Santos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências a Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - L R Krasilchik
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências a Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - A P Luz
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências a Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - G L Schiavo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências a Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - J Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA; Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
23
|
Martino Adami PV, Quijano C, Magnani N, Galeano P, Evelson P, Cassina A, Do Carmo S, Leal MC, Castaño EM, Cuello AC, Morelli L. Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer's disease. J Cereb Blood Flow Metab 2017; 37:69-84. [PMID: 26661224 PMCID: PMC5363729 DOI: 10.1177/0271678x15615132] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022]
Abstract
Synaptic bioenergetic deficiencies may be associated with early Alzheimer's disease (AD). To explore this concept, we assessed pre-synaptic mitochondrial function in hemizygous (+/-)TgMcGill-R-Thy1-APP rats. The low burden of Aβ and the wide array of behavioral and cognitive impairments described in 6-month-old hemizygous TgMcGill-R-Thy1-APP rats (Tg(+/-)) support their use to investigate synaptic bioenergetics deficiencies described in subjects with early Alzheimer's disease (AD). In this report, we show that pre-synaptic mitochondria from Tg(+/-) rats evidence a decreased respiratory control ratio and spare respiratory capacity associated with deficits in complex I enzymatic activity. Cognitive impairments were prevented and bioenergetic deficits partially reversed when Tg(+/-) rats were fed a nutritionally complete diet from weaning to 6-month-old supplemented with pyrroloquinoline quinone, a mitochondrial biogenesis stimulator with antioxidant and neuroprotective effects. These results provide evidence that, as described in AD brain and not proven in Tg mice models with AD-like phenotype, the mitochondrial bioenergetic capacity of synaptosomes is not conserved in the Tg(+/-) rats. This animal model may be suitable for understanding the basic biochemical mechanisms involved in early AD.
Collapse
Affiliation(s)
- Pamela V Martino Adami
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina
| | - Celia Quijano
- Department of Biochemistry and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Magnani
- IBIMOL-UBA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Galeano
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina.,ININCA- UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Evelson
- IBIMOL-UBA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Cassina
- Department of Biochemistry and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - María C Leal
- Laboratory of Protective and Regenerative Therapies of the CNS, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina
| | - Eduardo M Castaño
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Laura Morelli
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
24
|
Nehls M. Unified theory of Alzheimer's disease (UTAD): implications for prevention and curative therapy. J Mol Psychiatry 2016; 4:3. [PMID: 27429752 PMCID: PMC4947325 DOI: 10.1186/s40303-016-0018-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to propose a Unified Theory of Alzheimer's disease (UTAD) that integrates all key behavioural, genetic and environmental risk factors in a causal chain of etiological and pathogenetic events. It is based on three concepts that emanate from human's evolutionary history: (1) The grandmother-hypothesis (GMH), which explains human longevity due to an evolutionary advantage in reproduction by trans-generational transfer of acquired knowledge. Consequently it is argued that mental health at old-age must be the default pathway of humans' genetic program and not development of AD. (2) Therefore, mechanism like neuronal rejuvenation (NRJ) and adult hippocampal neurogenesis (AHN) that still function efficiently even at old age provide the required lifelong ability to memorize personal experiences important for survival. Cumulative evidence from a multitude of experimental and epidemiological studies indicate that behavioural and environmental risk factors, which impair productive AHN, result in reduced episodic memory performance and in reduced psychological resilience. This leads to avoidance of novelty, dysregulation of the hypothalamic-pituitary-adrenal (HPA)-axis and cortisol hypersecretion, which drives key pathogenic mechanisms of AD like the accumulation and oligomerization of synaptotoxic amyloid beta, chronic neuroinflammation and neuronal insulin resistance. (3) By applying to AHN the law of the minimum (LOM), which defines the basic requirements of biological growth processes, the UTAD explains why and how different lifestyle deficiencies initiate the AD process by impairing AHN and causing dysregulation of the HPA-axis, and how environmental and genetic risk factors such as toxins or ApoE4, respectively, turn into disease accelerators under these unnatural conditions. Consequently, the UTAD provides a rational strategy for the prevention of mental decline and a system-biological approach for the causal treatment of AD, which might even be curative if the systemic intervention is initiated early enough in the disease process. Hence an individualized system-biological treatment of patients with early AD is proposed as a test for the validity of UTAD and outlined in this review.
Collapse
Affiliation(s)
- Michael Nehls
- Independent Researcher, Allmendweg 1, 79279 Vörstetten, Germany
| |
Collapse
|
25
|
Qu Z, Yang H, Zhang J, Huo L, Chen H, Li Y, Liu C, Gao W. Cerebralcare Granule(®), a Chinese Herb Compound Preparation, Attenuates D-Galactose Induced Memory Impairment in Mice. Neurochem Res 2016; 41:2199-214. [PMID: 27161371 DOI: 10.1007/s11064-016-1934-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/16/2016] [Accepted: 04/21/2016] [Indexed: 01/01/2023]
Abstract
Cerebralcare granule(®) (CG) is a preparation of Traditional Chinese Medicine that widely used in China. It was approved by the China State Food and Drug Administration for treatment of headache and dizziness associated with cerebrovascular diseases. In the present study, we aimed to investigate whether CG had protective effect against D-galactose (gal)-induced memory impairment and to explore the mechanism of its action. D-gal was administered (100 mg/kg, subcutaneously) once daily for 8 weeks to induced memory deficit and neurotoxicity in the brain of aging mouse and CG (7.5, 15, and 30 g/kg) were simultaneously administered orally. The present study demonstrates that CG can alleviate aging in the mouse brain induced by D-gal through improving behavioral performance and reducing brain cell damage in the hippocampus. CG prevents aging mainly via suppression of oxidative stress response, such as decreasing NO and MDA levels, renewing activities of SOD, CAT, and GPx, as well as decreasing AChE activity in the brain of D-gal-treated mice. In addition, CG prevents aging through inhibiting NF-κB-mediated inflammatory response and caspase-3-medicated neurodegeneration in the brain of D-gal treated mice. Taken together, these data clearly demonstrates that subcutaneous injection of D-gal produced memory deficit, meanwhile CG can protect neuron from D-gal insults and improve memory ability.
Collapse
Affiliation(s)
- Zhuo Qu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, 300072, China
| | - Honggai Yang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, 300072, China
| | - Jingze Zhang
- Department of Pharmacy, Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162, China
| | - Liqin Huo
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, 300072, China
| | - Hong Chen
- Department of Pharmacy, Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162, China
| | - Yuming Li
- Department of Pharmacy, Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162, China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
26
|
Qu Z, Zhang J, Yang H, Huo L, Gao J, Chen H, Gao W. Protective effect of tetrahydropalmatine against d-galactose induced memory impairment in rat. Physiol Behav 2016; 154:114-25. [DOI: 10.1016/j.physbeh.2015.11.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/23/2015] [Accepted: 11/20/2015] [Indexed: 12/30/2022]
|
27
|
Kim S, Lee D, Song JC, Cho SJ, Yun SM, Koh YH, Song J, Johnson GVW, Jo C. NDP52 associates with phosphorylated tau in brains of an Alzheimer disease mouse model. Biochem Biophys Res Commun 2014; 454:196-201. [PMID: 25450380 DOI: 10.1016/j.bbrc.2014.10.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/14/2014] [Indexed: 01/07/2023]
Abstract
We previously showed that NDP52 (also known as calcoco2) plays a role as an autophagic receptor for phosphorylated tau facilitating its clearance via autophagy. Here, we examined the expression and association of NDP52 with autophagy-regulated gene (ATG) proteins including LC3, as well as phosphorylated tau and amyloid-beta (Aβ) in brains of an AD mouse model. NDP52 was expressed not only in neurons, but also in microglia and astrocytes. NDP52 co-localized with ATGs and phosphorylated tau as expected since it functions as an autophagy receptor for phosphorylated tau in brain. Compared to wild-type mice, the number of autophagic vesicles (AVs) containing NDP52 in both cortex and hippocampal regions was significantly greater in AD model mice. Moreover, the protein levels of NDP52 and phosphorylated tau together with LC3-II were also significantly increased in AD model mice, reflecting autophagy impairment in the AD mouse model. By contrast, a significant change in p62/SQSTM1 level was not observed in this AD mouse model. NDP52 was also associated with intracellular Aβ, but not with the extracellular Aβ of amyloid plaques. We conclude that NDP52 is a key autophagy receptor for phosphorylated tau in brain. Further our data provide clear evidence for autophagy impairment in brains of AD mouse model, and thus strategies that result in enhancement of autophagic flux in AD are likely to be beneficial.
Collapse
Affiliation(s)
- Sunhyo Kim
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Chungju-si, Chungcheongbuk-do 363-951, Republic of Korea
| | - Daehoon Lee
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Chungju-si, Chungcheongbuk-do 363-951, Republic of Korea
| | - Jae Chun Song
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Chungju-si, Chungcheongbuk-do 363-951, Republic of Korea
| | - Sun-Jung Cho
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Chungju-si, Chungcheongbuk-do 363-951, Republic of Korea
| | - Sang-Moon Yun
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Chungju-si, Chungcheongbuk-do 363-951, Republic of Korea
| | - Young Ho Koh
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Chungju-si, Chungcheongbuk-do 363-951, Republic of Korea
| | - Jihyun Song
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Chungju-si, Chungcheongbuk-do 363-951, Republic of Korea
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester Medical Center, University of Rochester, 601 Elmwood Ave., Rochester, NY, USA
| | - Chulman Jo
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Chungju-si, Chungcheongbuk-do 363-951, Republic of Korea.
| |
Collapse
|