1
|
Yang S, Lei X. Reciprocal causation relationship between rumination thinking and sleep quality: a resting-state fMRI study. Cogn Neurodyn 2025; 19:41. [PMID: 39991016 PMCID: PMC11842644 DOI: 10.1007/s11571-025-10223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Rumination thinking is a type of negative repetitive thinking, a tendency to constantly focus on the causes, consequences and other aspects of negative events, which has implications for a variety of psychiatric disorders. Previous studies have confirmed a strong association between rumination thinking and poor sleep or insomnia, but the direction of causality between the two is not entirely clear. This study examined the relationship between rumination thinking and sleep quality using a longitudinal approach and resting-state functional MRI data. Participants were 373 university students (males: n = 84, 18.67 ± 0.76 years old) who completed questionnaires at two time points (T1 and T2) and had resting-state MRI data collected. The results of the cross-lagged model analysis revealed a bidirectional causal relationship between rumination thinking and sleep quality. Additionally, the functional connectivity (FC) of the precuneus and lingual gyrus was found to be negatively correlated with rumination thinking and sleep quality. Furthermore, mediation analysis showed that rumination thinking at T1 fully mediated the relationship between FC of the precuneus-lingual and sleep quality at T2. These findings suggest that rumination thinking and sleep quality are causally related in a bidirectional manner and that the FC of the precuneus and lingual gyrus may serve as the neural basis for rumination thinking to predict sleep quality. Overall, this study provides new insights for enhancing sleep quality and promoting overall health. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-025-10223-3.
Collapse
Affiliation(s)
- Shiyan Yang
- Faculty of Psychology, Sleep and NeuroImaging Center, Southwest University, Chongqing, 400715 China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715 China
| | - Xu Lei
- Faculty of Psychology, Sleep and NeuroImaging Center, Southwest University, Chongqing, 400715 China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715 China
| |
Collapse
|
2
|
Zhou K, Duan G, Liu Y, Peng B, Zhou X, Qin L, Liang L, Wei Y, Zhang Q, Li X, Qin H, Lai Y, Lu Y, Zhang Y, Huang J, Huang J, Ouyang Y, Bin B, Zhao M, Liu J, Yang J, Deng D. Persistent alterations in gray matter in COVID-19 patients experiencing sleep disturbances: a 3-month longitudinal study. Neural Regen Res 2025; 20:3013-3024. [PMID: 38934390 PMCID: PMC11826451 DOI: 10.4103/nrr.nrr-d-23-01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00030/figure1/v/2024-11-26T163120Z/r/image-tiff Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections. Previous studies have demonstrated abnormal brain structures in patients with sleep disturbances who have recovered from coronavirus disease 2019 (COVID-19). However, neuroimaging studies on sleep disturbances caused by COVID-19 are scarce, and existing studies have primarily focused on the long-term effects of the virus, with minimal acute phase data. As a result, little is known about the pathophysiology of sleep disturbances in the acute phase of COVID-19. To address this issue, we designed a longitudinal study to investigate whether alterations in brain structure occur during the acute phase of infection, and verified the results using 3-month follow-up data. A total of 26 COVID-19 patients with sleep disturbances (aged 51.5 ± 13.57 years, 8 women and 18 men), 27 COVID-19 patients without sleep disturbances (aged 47.33 ± 15.98 years, 9 women and 18 men), and 31 age- and gender-matched healthy controls (aged 49.19 ± 17.51 years, 9 women and 22 men) were included in this study. Eleven COVID-19 patients with sleep disturbances were included in a longitudinal analysis. We found that COVID-19 patients with sleep disturbances exhibited brain structural changes in almost all brain lobes. The cortical thicknesses of the left pars opercularis and left precuneus were significantly negatively correlated with Pittsburgh Sleep Quality Index scores. Additionally, we observed changes in the volume of the hippocampus and its subfield regions in COVID-19 patients compared with the healthy controls. The 3-month follow-up data revealed indices of altered cerebral structure (cortical thickness, cortical grey matter volume, and cortical surface area) in the frontal-parietal cortex compared with the baseline in COVID-19 patients with sleep disturbances. Our findings indicate that the sleep disturbances patients had altered morphology in the cortical and hippocampal structures during the acute phase of infection and persistent changes in cortical regions at 3 months post-infection. These data improve our understanding of the pathophysiology of sleep disturbances caused by COVID-19.
Collapse
Affiliation(s)
- Kaixuan Zhou
- Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Gaoxiong Duan
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ying Liu
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Bei Peng
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaoyan Zhou
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lixia Qin
- Department of Sleep Medicine, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lingyan Liang
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yichen Wei
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qingping Zhang
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaocheng Li
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haixia Qin
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yinqi Lai
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yian Lu
- Department of Sleep Medicine, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yan Zhang
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiazhu Huang
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jinli Huang
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yinfei Ouyang
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Bolin Bin
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Mingming Zhao
- Department of Sleep Medicine, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jianrong Yang
- Guangxi Clinical Research Center for Sleep Medicine, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Demao Deng
- Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Li Q, Qi L, Zhang G, Hao J, Ren Q, Guan J, Zhan Y, Yu Y, Yang J, Wang K, Bai T. Disrupted interhemispheric functional and structural connectivity in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111374. [PMID: 40262672 DOI: 10.1016/j.pnpbp.2025.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with disrupted interhemispheric cooperation. However, the relationship between structural and functional alterations in interhemispheric cooperation in patients with MDD remains unclear. We investigated the associations between voxel-mirrored homotopic connectivity (VMHC) and radial diffusivity (RD) within the corpus callosum (CC) and their links to depressive symptoms in patients with MDD. METHODS Sixty patients with MDD and 38 healthy controls (HCs) were assessed using resting-state functional MRI (rs-fMRI) and diffusion MRI (dMRI) to evaluate interhemispheric functional connectivity (VMHC) and structural integrity (RD) in the CC subregions. Group comparisons, correlation analyses, and mediation analyses were conducted to identify the significant differences, relationships, and indirect effects. RESULTS Patients with MDD showed significantly reduced VMHC in the bilateral postcentral gyrus and lingual gyrus and increased RD in the CC subregions CC3, CC4, and CC5, indicating impaired functional and structural connectivity. Lower VMHC in the lingual gyrus was negatively correlated with depressive severity, whereas increased RD in the CC4 and CC5 was positively correlated with depressive symptoms. Mediation analysis revealed that the VMHC in the lingual gyrus fully mediated the relationship between RD in CC5 and depressive symptoms, suggesting a pathway through which structural impairments may affect mood through abnormal functional connectivity. LIMITATIONS The cross-sectional design limits the assessment of changes over time, and focusing solely on interhemispheric connectivity may overlook other networks involved in MDD. CONCLUSION These findings provide preliminary evidence for disrupted interhemispheric coordination in MDD, with both functional and structural connectivity impairments linked to depressive symptoms. The mediating effect of the VMHC in the lingual gyrus highlights the potential role of interhemispheric connectivity in the pathophysiology of MDD. Our results provide an integrative perspective on the functional and microstructural organization of the brain in patients with MDD.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Li Qi
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Gu Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jiajia Hao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qiufang Ren
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jian Guan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yuqian Zhan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yue Yu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jinying Yang
- Laboratory Center for Information Science, University of Science and Technology of China, Hefei 230026, China; Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China.
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
4
|
Ye F, Hu P, Yang A, Du L, Xu X, Liu J, Luan J, Xu M, Lv K, Liu B, Wang K, Wang Y, Shu N, Ouyang G, Yu H, Wang Y, Yuan Z, Shmuel A, Xu P, Zhang Q, Ma G. Reduced local functional connectivity correlates with atypical performances in children with autism spectrum disorder. Brain Imaging Behav 2025; 19:508-518. [PMID: 40047998 PMCID: PMC11978534 DOI: 10.1007/s11682-025-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 04/09/2025]
Abstract
To characterize local functional connectivity (FC) differences in children with autism spectrum disorder (ASD) compared to typically developed (TD) children, and to analyze the correlation between local FC and the atypical behavior in autistic children. Thirty children with ASD and 25 TD children were recruited. Participants underwent rs-fMRI scans, and regional homogeneity (ReHo) of specific brain regions was measured. Performance was assessed using the Autism Behavior Checklist (ABC) and the Gesell Development Diagnosis Scale (GDDS). Children with ASD demonstrated reduced ReHo in the right occipital lobe lingual, left postcentral, and left precuneus compared with TD children. Within the ASD group, the ABC total score was negatively related to ReHo values in both the left postcentral and left precuneus. The ReHo value in the left postcentral was negatively correlated with ABC scores related to sensory and body/object use, while the ReHo value in the left precuneus was negatively correlated with scores related to social skills and self-help. The mean Developmental Quotient (DQ) of GDDS was positively correlated with the ReHo value in the right occipital lobe lingual. Besides, the ReHo value in this region was positively correlated with the DQ of adaptive behavior. The ReHo value in the left postcentral was positively correlated with the DQ of fine motor skills (p < 0.05 for all). Children with ASD exhibit reduced local FC in specific brain regions, which are associated with specific performances in autism. These findings may provide a novel insight into the pathophysiological mechanisms of ASD.
Collapse
Affiliation(s)
- Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaojing Xu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jing Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Manxi Xu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kundi Wang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yunfeng Wang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Gaoxiang Ouyang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuli Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhen Yuan
- Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Mcgill University, Montreal, QC, H3A 24B, Canada
- Departments of Neurology and Neurosurgery, Physiology, and Biomedical Engineering, Mcgill University, Montreal, QC, H3A 2B4, Canada
| | - Pengfei Xu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
5
|
Zhao J, Guo Y, Tan Y, Zhang Y, Liu S, Liu Y, Li J, Ruan J, Liu L, Ren Z. Neural evidence of implicit emotion regulation deficits: An explorative study of comparing PTSD with and without alcohol dependence. J Affect Disord 2025; 372:548-563. [PMID: 39701470 DOI: 10.1016/j.jad.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Previous studies have identified psychiatric comorbidity, including alcohol dependence (AD), as a significant factor in treating posttraumatic stress disorder (PTSD), there is a lack of evidence on how best to treat comorbid PTSD and AD. Poor emotion regulation may be a key potential mechanism of PTSD and AD comorbidity. METHODS Seventy-four participants (48 women and 26 men) include three groups: a healthy control group (HC group, N = 20), a PTSD without alcohol dependence group (PTSD without AD group, N = 36), and a PTSD with alcohol dependence group (PTSD with AD group, N = 18). They completed the Shifted Attention Emotion Evaluation Task (SEAT) paradigm while undergoing fMRI. RESULTS Gender and hyperarousal symptoms were found to predict the risk of AD. In the whole-brain fMRI data, compared to PTSD without AD, the PTSD with AD group showed significant deactivations in the left middle Occipital Gyri (BA19_L), the right Rolandic Operculum (BA48_R), and the right Lingual Gyri (BA37_R). Furthermore, AD showed a significant correlation with the right Lingual Gyri (BA37_R) in individuals with PTSD. CONCLUSION These findings reveal possible neural mechanisms underlying the difference between PTSD patients with and without AD. These regions are involved in visual pathways, memory processing, and spatial cognition within the context of implicit emotion regulation. The observed alterations in these areas may serve as neural diagnostic markers for PTSD comorbid with AD and could be potential targets for developing novel treatments.
Collapse
Affiliation(s)
- Junrong Zhao
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Yunxiao Guo
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Yafei Tan
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Yuyi Zhang
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Sijun Liu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Yinong Liu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Jiayi Li
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Jun Ruan
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Lianzhong Liu
- WuhanWudongHospital (Wuhan Second Mental Hospital), Wuhan 430084, China
| | - Zhihong Ren
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| |
Collapse
|
6
|
Liu X, Niu P, He J, Du G, Xu Y, Liu T, Yang Z, Liu S, Chen Y, Chen J. Altered brain activity and functional connectivity in psychogenic erectile dysfunction: Combining findings from LOOCV-SVM-RFE and rs-fMRI. Neuroscience 2025; 567:219-226. [PMID: 39798834 DOI: 10.1016/j.neuroscience.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Psychogenic erectile dysfunction (pED) is often accompanied by abnormal brain activities. This study aimed to develop an automaticclassifier to distinguish pED from healthy controls (HCs) by identified brain-basedcharacteristics. Resting-state functional magnetic resonance imaging data were acquired from 45 pED patients and 43 HCs. Regional homogeneity (ReHo) and functional connectivity (FC) values were calculated and compared between groups. Moreover, based on altered ReHo and FC values, support vector machine (SVM) classifier, incorporating recursive feature elimination (RFE), an SVM-RFE diagnostic model was established using leave-one-out cross-validation. Patients demonstrated reduced ReHo values in the left middle temporal gyrus (had decreased FC values with the left medial superior frontal gyrus and cuneus), orbital part of inferior frontal gyrus (had decreased FC values within the same region), triangular part of inferior frontal gyrus, anterior cingulate gyrus (had decreased FC values with the left inferior temporal gyrus, anterior cingulate gyrus, cuneus and right supplementary motor area) and middle frontal gyrus. The right calcarine fissure displayed increased ReHo values. The diagnostic model demonstrated excellent performance, achieving an accuracy rate of 90.80%. This study identified altered regional activity and FC in specific brain regions of pED patients, which might be related to the development of pED. The application of machine learning confirmed the distinctive characteristics of these functional changes in the brain. The high accuracy of our diagnostic model suggested a promising direction for developing objective diagnostic tools for psychological disorders.
Collapse
Affiliation(s)
- Xue Liu
- Department of Andrology Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China; Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Peining Niu
- Department of Andrology Siyang Traditional Chinese Medicine Hospital Suqian China
| | - Jinchen He
- Department of Andrology Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Guowei Du
- Department of Andrology Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Yan Xu
- Department of Andrology Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Tao Liu
- Department of Andrology Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Zhaoxu Yang
- Department of Andrology Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Shaowei Liu
- Department of Radiology Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Yun Chen
- Department of Andrology Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China.
| | - Jianhuai Chen
- Department of Andrology Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China.
| |
Collapse
|
7
|
Mekbib DB, McDonough IM. Reactivation and consolidation of memory traces during post-encoding rest across the adult lifespan. Ann Clin Transl Neurol 2025; 12:246-254. [PMID: 39778088 PMCID: PMC11822800 DOI: 10.1002/acn3.52290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Episodic memory is a critical cognitive function that enables the encoding, storage, and retrieval of new information. Memory consolidation, a key stage of episodic memory, stabilizes this newly encoded information into long-lasting brain "storage." Studies using fMRI to investigate post-encoding awake rest holds promise to shed light on early, immediate consolidation mechanisms. Here, we review fMRI studies during episodic memory to document common methods to investigate post-encoding consolidation, such as multivoxel pattern analysis (MVPA) and functional connectivity, and the current state of the science in both healthy younger and older adults. In young adults, post-encoding reactivation of stimuli-specific neural patterns in the hippocampus and its connectivity with cortical and subcortical areas (e.g., visual-temporal cortex, medial prefrontal, and medial parietal cortex) correlate with subsequent memory performance. Conversely, studies in older adults highlight the importance of large-scale brain networks during post-encoding rest, particularly the default mode network (DMN). Alterations in connectivity between the DMN and task-positive networks may help older adults maintain episodic memory. Furthermore, non-invasive brain stimulation techniques can enhance these post-encoding consolidation processes and improve memory performance in both younger and older adults. Notably, a lack of studies has investigated post-encoding memory consolidation in neurodegenerative disorders. This review underscores the importance of understanding how post-encoding neural reactivation and connectivity evolve with age to partially explain age-related declines in episodic memory performance and how such declines can be restored.
Collapse
Affiliation(s)
- Destaw B. Mekbib
- Department of PsychologyBinghamton UniversityBinghamtonNew York13902USA
| | - Ian M. McDonough
- Department of PsychologyBinghamton UniversityBinghamtonNew York13902USA
- Center for Cognitive ApplicationsBinghamton UniversityBinghamtonNew York13902USA
| |
Collapse
|
8
|
Taran N, Gatenyo R, Hadjadj E, Farah R, Horowitz-Kraus T. Distinct connectivity patterns between perception and attention-related brain networks characterize dyslexia: Machine learning applied to resting-state fMRI. Cortex 2024; 181:216-232. [PMID: 39566125 PMCID: PMC11614717 DOI: 10.1016/j.cortex.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 11/22/2024]
Abstract
Diagnosis of dyslexia often occurs in late schooling years, leading to academic and psychological challenges. Furthermore, diagnosis is time-consuming, costly, and reliant on arbitrary cutoffs. On the other hand, automated algorithms hold great potential in medical and psychological diagnostics. The aim of the present study was to develop a machine learning tool for the detection of dyslexia in children based on the intrinsic connectivity patterns of different brain networks underlying perception and attention. Here, 117 children (8-12 years old; 58 females; 52 typical readers; TR and 65 children with dyslexia) completed cognitive and reading assessments and underwent 10 min of resting-state fMRI. Functional connectivity coefficients between 264 brain regions were used as features for machine learning. Different supervised algorithms were employed for classification of children with and without dyslexia. A classifier trained on dorsal attention network features exhibited the highest performance (accuracy .79, sensitivity .92, specificity .64). Auditory, visual, and fronto-parietal network-based classification showed intermediate accuracy levels (70-75%). These results highlight significant neurobiological differences in brain networks associated with visual attention between TR and children with dyslexia. Distinct neural integration patterns can differentiate dyslexia from typical development, which may be utilized in the future as a biomarker for the presence and/or severity of dyslexia.
Collapse
Affiliation(s)
- Nikolay Taran
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Rotem Gatenyo
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Emmanuelle Hadjadj
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Rola Farah
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Kennedy Krieger Institute, Baltimore, MD 21205, USA; Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
9
|
Niu X, Zhang M, Gao X, Dang J, Sun J, Tao Q, Lang Y, Wang W, Wei Y, Han S, Xu H, Guo Y, Cheng J, Zhang Y. Abnormal Granger causal connectivity based on altered gray matter volume and associated neurotransmitters of adolescents with internet gaming disorder revealed by a multimodal neuroimaging study. Dev Cogn Neurosci 2024; 70:101472. [PMID: 39486388 PMCID: PMC11566705 DOI: 10.1016/j.dcn.2024.101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Although prior studies have revealed alterations in gray matter volume (GMV) among individuals with internet gaming disorder (IGD). The brain's multifaceted functions hinge crucially on the intricate connections and communication among distinct regions. However, the intricate interaction of information between brain regions with altered GMV and other regions, and how they synchronize with various neurotransmitter systems, remains enigmatic. Therefore, we aimed to integrate structural, functional and molecular data to explore the GMV-based Granger causal connectivity abnormalities and their correlated neurotransmitter systems in IGD adolescents. Voxel-based morphometry (VBM) analysis was firstly performed to investigate GMV differences between 37 IGD adolescents and 35 matched controls. Brain regions with altered GMV were selected as seeds for further Granger causality analysis (GCA). Two-sample t tests were performed using the SPM12 toolkit to compare the GMV and Granger causal connectivity between IGD and control groups (GRF corrected, Pvoxel<0.005, Pcluster<0.05). Then, GMV-based Granger causal connectivity was spatially correlated with PET- and SPECT-derived maps covering multifarious neurotransmitter systems. Multiple comparison correction was performed using false discovery rate (FDR). Compared with controls, IGD adolescents showed higher GMV in the caudate nucleus and lingual gyrus. For the GCA, IGD adolescents showed higher Granger causal connectivity from insula, putamen, supplementary motor area (SMA) and middle cingulum cortex (MCC) to the caudate nucleus, and lower Granger causal connectivity from superior/inferior parietal gyrus (SPG/IPG) and middle occipital gyrus (MOG) to the lingual gyrus. Besides, GMV-based Granger causal connectivity of IGD adolescents were associated with the dopaminergic, serotonergic, GABAergic and noradrenaline systems. This study revealed that the caudate nucleus and lingual gyrus may be the key sites of neuroanatomical changes in IGD adolescents, and whole-brain Granger causal connectivity abnormalities based on altered GMV involved large brain networks including reward, cognitive control, and visual attention networks, and these abnormalities are associated with a variety of neurotransmitter systems, which may be associated with higher reward sensitivity, cognitive control, and attention control dysfunction.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, China; Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Yan Lang
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China.
| |
Collapse
|
10
|
Yang X, Wang Z, Li H, Qin W, Liu N, Liu Z, Wang S, Xu J, Wang J, for the Alzheimer's Disease Neuroimaging Initiative. Polygenic Score for Conscientiousness Is a Protective Factor for Reversion from Mild Cognitive Impairment to Normal Cognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309889. [PMID: 38838096 PMCID: PMC11304237 DOI: 10.1002/advs.202309889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Spontaneous reversion from mild cognitive impairment (MCI) to normal cognition (NC) is little known. Based on the data of the Genetics of Personality Consortium and MCI participants from Alzheimer's Disease Neuroimaging Initiative, the authors investigate the effect of polygenic scores (PGS) for personality traits on the reversion of MCI to NC and its underlying neurobiology. PGS analysis reveals that PGS for conscientiousness (PGS-C) is a protective factor that supports the reversion from MCI to NC. Gene ontology enrichment analysis and tissue-specific enrichment analysis indicate that the protective effect of PGS-C may be attributed to affecting the glutamatergic synapses of subcortical structures, such as hippocampus, amygdala, nucleus accumbens, and caudate nucleus. The structural covariance network (SCN) analysis suggests that the left whole hippocampus and its subfields, and the left whole amygdala and its subnuclei show significantly stronger covariance with several high-cognition relevant brain regions in the MCI reverters compared to the stable MCI participants, which may help illustrate the underlying neural mechanism of the protective effect of PGS-C.
Collapse
Affiliation(s)
- Xuan Yang
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
- Department of RadiologyJining No.1 People's HospitalJiningShandong272000P. R. China
| | - Zirui Wang
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Haonan Li
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Wen Qin
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Nana Liu
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Zhixuan Liu
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Siqi Wang
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Jiayuan Xu
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Junping Wang
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | | |
Collapse
|
11
|
Pindus DM, Ai M, Chaddock-Heyman L, Burzynska AZ, Gothe NP, Salerno EA, Fanning J, Arnold Anteraper SRA, Castanon AN, Whitfield-Gabrieli S, Hillman CH, McAuley E, Kramer AF. Physical activity-related individual differences in functional human connectome are linked to fluid intelligence in older adults. Neurobiol Aging 2024; 137:94-104. [PMID: 38460470 DOI: 10.1016/j.neurobiolaging.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 03/11/2024]
Abstract
The study examined resting state functional connectivity (rs-FC) associated with moderate-to-vigorous physical activity (MV-PA), sedentary time (ST), TV viewing, computer use, and their relationship to cognitive performance in older adults. We used pre-intervention data from 119 participants from the Fit & Active Seniors trial. Multivariate pattern analysis revealed two seeds associated with MV-PA: right superior frontal gyrus (SFG; spanning frontoparietal [FPN] and ventral attention networks [VAN]) and right precentral (PrG) and postcentral gyri (PoG) of the somatosensory network (SN). A positive correlation between the right SFG seed and a cluster spanning default mode (DMN), dorsal attention (DAN), FPN, and visual networks (VIS) was linked to higher fluid intelligence, as was FC between the right PrG/PoG seed and a cluster in VIS. No significant rs-FC patterns associated with ST, TV viewing, or computer use were found. Our findings suggest that greater functional integration within networks implementing top-down control and within those supporting visuospatial abilities, paired with segregation between networks critical and those not critical to top-down control, may help promote cognitive reserve in more physically active seniors.
Collapse
Affiliation(s)
- Dominika M Pindus
- Department of Kinesiology and Community Health, the University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Meishan Ai
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | - Agnieszka Z Burzynska
- College of Health and Human Sciences, Colorado State University, Fort Collins, CO, USA
| | - Neha P Gothe
- Department of Kinesiology and Community Health, the University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | | | - Jason Fanning
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA
| | | | | | | | - Charles H Hillman
- Department of Psychology, Northeastern University, Boston, MA, USA; Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | - Edward McAuley
- Department of Kinesiology and Community Health, the University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Psychology, Northeastern University, Boston, MA, USA
| |
Collapse
|
12
|
Huang L, Shu Y, Liu X, Li L, Long T, Zeng L, Liu Y, Deng Y, Li H, Peng D. Abnormal dynamic functional connectivity in the hippocampal subregions of patients with untreated moderate-to-severe obstructive sleep apnea. Sleep Med 2023; 112:273-281. [PMID: 37939546 DOI: 10.1016/j.sleep.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE To investigate the dynamic change characteristics of dynamic functional connectivity (dFC) between the hippocampal subregions (anterior and posterior) and other brain regions in obstructive sleep apnoea (OSA) and its relationship with cognitive function, and to explore whether these characteristics can be used to distinguish OSA from healthy controls (HCs). METHODS Eighty-five patients with newly diagnosed moderate-to-severe OSA and 85 HCs were enrolled. All participants underwent resting-state functional magnetic resonance imaging (fMRI). The difference between dFC values between the hippocampal subregions and other brain regions in OSA patients and HCs was compared using the two-sample t tests. Correlation analyses were used to assess the relationship between dFC, clinical data, and cognitive functions in OSA patients. dFC values from different brain regions were used as classification features to distinguish between the two groups using a support vector machine. RESULTS Compared with HCs, the dFC values between the left anterior hippocampus and right culmen of the cerebellum anterior lobe, right anterior hippocampus and left lingual gyrus, and left posterior hippocampus and left precentral gyrus were significantly lower, and the dFC values between the left posterior hippocampus and precuneus were significantly higher in OSA patients. The dFC values between the left posterior hippocampus and the precuneus of OSA patients were associated with sleep-related indicators and Montreal Cognitive Assessment scores. Support vector machine analysis results showed that dFC values in different brain regions could distinguish OSA patients from HCs. CONCLUSION dFC patterns between the hippocampal subregions and other brain regions were altered in patients with OSA, including the cerebellum, default mode networks, sensorimotor networks, and visual function networks, which is possibly associated with cognitive decline. In addition, the dFC values of different brain regions could effectively distinguish OSA patients from HCs. These findings provide new perspectives on neurocognition in these patients.
Collapse
Affiliation(s)
- Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lifeng Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yumeng Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yingke Deng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China; PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China; PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
13
|
Yuan X, Zhu Y, Xiao L, Chuan Liu Z, Zou J, Hu Z, Wu Y, Li P, Hu M, Zhou F. Regional homogeneity in patients with obsessive-compulsive disorder and depression: A resting state functional magnetic resonance imaging study. Neurosci Lett 2023; 817:137528. [PMID: 37865188 DOI: 10.1016/j.neulet.2023.137528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE To explore the brain functional impairment of patients with obsessive-compulsive disorder (OCD) with and without depressive symptoms and analyze the correlation between the degree of impairment and the severity of symptoms. METHOD Fourteen patients with OCD who met the ICD-10 diagnostic criteria for OCD were included. The group having OCD with depression (OCDd) consisted of 15 patients, and 17 healthy controls (HC) matched for age and education were also included. The Yale-Brown OCD Scale (Y-BOCS) and the 24-item Hamilton Assessment of Depression Scale (HAMD) were administered to the OCD and OCDd groups. Resting-state functional brain magnetic resonance imaging was performed in the three groups of participants. RESULT The OCDd group had lower scores on the HAMD, Y-BOCS, and obsessive-compulsive thinking subscales compared with the OCD group (P < 0.05). The scores on the OCDd subscale were negatively correlated with the HAMD scores (R = - 0.568, P = 0.027). The OCDd group had higher regional homogeneity (ReHo) values in the lingual gyrus than the OCD group. The OCDd group had higher ReHo values in the lingual gyrus than the HC group, and the OCDd group had higher ReHo values than the HC group. These differences were statistically significant (P < 0.05). After correction for multiple comparisons, significant difference was observed between the OCDd and HC groups (P<0.05). In the OCD group, the ReHo value of the lingual gyrus was negatively correlated with the Y-BOCS total score and the compulsive behavior subscale score (R = - 0.609, -0.552; P = 0.016, 0.033). CONCLUSION Abnormal ReHo values in the lingual gyrus and right medial superior frontal gyrus were found in the patients with OCDd. In the OCDd group, the ReHo values of the lingual gyrus were negatively correlated with the scores on the Y-BOCS total and obsessive-compulsive subscales, suggesting that abnormal local coherence of the lingual gyrus may be related to the severity of OCD.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province 330006, China
| | - Li Xiao
- Department of Infection, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Zi Chuan Liu
- Gao 'an People's Hospital, Yichun, Jiangxi Province, 330800, China
| | - Jingzhi Zou
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Zhizhong Hu
- Mental Health Education Center, Nanchang University, Nanchang, Jiangxi Province 330036, China
| | - Yunhong Wu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Pan Li
- School of Public Policy and Administration, Nanchang University, Nanchang, Jiangxi Province, 330036, China
| | - Maorong Hu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China.
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
14
|
Cui J, Li G, Zhang M, Xu J, Qi H, Ji W, Wu F, Zhang Y, Jiang F, Hu Y, Zhang W, Wei X, Manza P, Volkow ND, Gao X, Wang GJ, Zhang Y. Associations between body mass index, sleep-disordered breathing, brain structure, and behavior in healthy children. Cereb Cortex 2023; 33:10087-10097. [PMID: 37522299 PMCID: PMC10656948 DOI: 10.1093/cercor/bhad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/01/2023] Open
Abstract
Pediatric overweight/obesity can lead to sleep-disordered breathing (SDB), abnormal neurological and cognitive development, and psychiatric problems, but the associations and interactions between these factors have not been fully explored. Therefore, we investigated the associations between body mass index (BMI), SDB, psychiatric and cognitive measures, and brain morphometry in 8484 children 9-11 years old using the Adolescent Brain Cognitive Development dataset. BMI was positively associated with SDB, and both were negatively correlated with cortical thickness in lingual gyrus and lateral orbitofrontal cortex, and cortical volumes in postcentral gyrus, precentral gyrus, precuneus, superior parietal lobule, and insula. Mediation analysis showed that SDB partially mediated the effect of overweight/obesity on these brain regions. Dimensional psychopathology (including aggressive behavior and externalizing problem) and cognitive function were correlated with BMI and SDB. SDB and cortical volumes in precentral gyrus and insula mediated the correlations between BMI and externalizing problem and matrix reasoning ability. Comparisons by sex showed that obesity and SDB had a greater impact on brain measures, cognitive function, and mental health in girls than in boys. These findings suggest that preventing childhood obesity will help decrease SDB symptom burden, abnormal neurological and cognitive development, and psychiatric problems.
Collapse
Affiliation(s)
- Jianqi Cui
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Minmin Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Jiayu Xu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Haowen Qi
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xiaorong Wei
- Kindergarten, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Xinbo Gao
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Chongqing Institute for Brain, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
15
|
Liu H, Lin J, Shang H. Voxel-based meta-analysis of gray matter and white matter changes in patients with spinocerebellar ataxia type 3. Front Neurol 2023; 14:1197822. [PMID: 37576018 PMCID: PMC10413272 DOI: 10.3389/fneur.2023.1197822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Increasing neuroimaging studies have revealed gray matter (GM) and white matter (WM) anomalies of several brain regions by voxel-based morphometry (VBM) studies on patients with spinocerebellar ataxia type 3 (SCA3); however, the findings of previous studies on SCA3 patients by VBM studies remain inconsistent. The study aimed to identify consistent findings of gray matter (GM) and white matter (WM) changes in SCA3 patients by voxel-wise meta-analysis of whole-brain VBM studies. Methods VBM studies comparing GM or WM changes in SCA3 patients and healthy controls (HCs) were retrieved from PubMed, Embase, Web of Science, and Medline databases from January 1990 to February 2023. Manual searches were also conducted, and authors of studies were contacted for additional data. The coordinates with significant differences in GM and WM between SCA3 patients and HCs were extracted from each cluster. A meta-analysis was performed using anisotropic effect size-based signed differential mapping (AES-SDM) software. Results A total of seven studies comprising 160 SCA3 patients and 165 HCs were included in the GM volume meta-analysis. Three studies comprising 57 SCA3 patients and 63 HCs were included for WM volume meta-analysis. Compared with HC subjects, the reduced GM volume in SCA3 patients was found in the bilateral cerebellar hemispheres, cerebellar vermis, pons, right lingual gyrus, and right fusiform gyrus. The decreased WM volume was mainly concentrated in the bilateral cerebellar hemispheres, right corticospinal tract, middle cerebellar peduncles, cerebellar vermis, and left lingual gyrus. No increased density or volume of any brain structures was found. In the jackknife sensitivity analysis, the results remained largely robust. Conclusion Our meta-analysis clearly found the shrinkage of GM and WM volume in patients with SCA3. These lesions are involved in ataxia symptoms, abnormal eye movements, visual impairment, cognitive impairment, and affective disorders. The findings can explain the clinical manifestations and provide a morphological basis for SCA3.
Collapse
Affiliation(s)
- Hai Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurology, Xuanhan County People's Hospital, Dazhou, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Yang C, Gao X, Liu N, Sun H, Gong Q, Yao L, Lui S. Convergent and distinct neural structural and functional patterns of mild cognitive impairment: a multimodal meta-analysis. Cereb Cortex 2023:7169132. [PMID: 37197764 DOI: 10.1093/cercor/bhad167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
Mild cognitive impairment (MCI) is regarded as a transitional stage between normal aging and Alzheimer's disease. Numerous voxel-based morphometry (VBM) and resting-state fMRI (rs-fMRI) studies have provided strong evidence of abnormalities in the structure and intrinsic function of brain regions in MCI. Studies have recently begun to explore their association but have not employed systematic information in this pursuit. Herein, a multimodal meta-analysis was performed, which included 43 VBM datasets (1,247 patients and 1,352 controls) of gray matter volume (GMV) and 42 rs-fMRI datasets (1,468 patients and 1,605 controls) that combined 3 metrics: amplitude of low-frequency fluctuation, the fractional amplitude of low-frequency fluctuation, and regional homogeneity. Compared to controls, patients with MCI displayed convergent reduced regional GMV and altered intrinsic activity, mainly in the default mode network and salience network. Decreased GMV alone in ventral medial prefrontal cortex and altered intrinsic function alone in bilateral dorsal anterior cingulate/paracingulate gyri, right lingual gyrus, and cerebellum were identified, respectively. This meta-analysis investigated complex patterns of convergent and distinct brain alterations impacting different neural networks in MCI patients, which contributes to a further understanding of the pathophysiology of MCI.
Collapse
Affiliation(s)
- Chengmin Yang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Xin Gao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Naici Liu
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Hui Sun
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Li Yao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| |
Collapse
|
17
|
van der Velden AM, Scholl J, Elmholdt EM, Fjorback LO, Harmer CJ, Lazar SW, O'Toole MS, Smallwood J, Roepstorff A, Kuyken W. Mindfulness Training Changes Brain Dynamics During Depressive Rumination: A Randomized Controlled Trial. Biol Psychiatry 2023; 93:233-242. [PMID: 36328822 DOI: 10.1016/j.biopsych.2022.06.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Depression is a leading cause of disability worldwide and its prevalence is on the rise. One of the most debilitating aspects of depression is the dominance and persistence of depressive rumination, a state of mind that is linked to onset and recurrence of depression. Mindfulness meditation trains adaptive attention regulation and present-moment embodied awareness, skills that may be particularly useful during depressive mind states characterized by negative ruminative thoughts. METHODS In a randomized controlled functional magnetic resonance imaging study (N = 80), we looked at the neurocognitive mechanisms behind mindfulness-based cognitive therapy (n = 50) for recurrent depression compared with treatment as usual (n = 30) across experimentally induced states of rest, mindfulness practice and rumination, and the relationship with dispositional psychological processes. RESULTS Mindfulness-based cognitive therapy compared with treatment as usual led to decreased salience network connectivity to the lingual gyrus during a ruminative state, and this change in salience network connectivity mediated improvements in the ability to sustain and control attention to body sensations. CONCLUSIONS These findings showed that a clinically effective mindfulness intervention modulates neurocognitive functioning during depressive rumination and the ability to sustain attention to the body.
Collapse
Affiliation(s)
- Anne Maj van der Velden
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Psychiatry, Oxford University and Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom.
| | - Jacqueline Scholl
- Department of Psychiatry, Oxford University and Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom; Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, PSYR2 Team, University of Lyon, Lyon, France; Centre Hospitalier Le Vinatier, Bron, France
| | - Else-Marie Elmholdt
- School of Business and Social Sciences, Aarhus University, Aarhus, Denmark; NIDO, Regional Hospital West Jutland, Herning, Denmark
| | - Lone O Fjorback
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Catherine J Harmer
- Department of Psychiatry, Oxford University and Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Sara W Lazar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mia S O'Toole
- School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | | | - Andreas Roepstorff
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; School of Culture and Society, Aarhus University, Aarhus, Denmark
| | - Willem Kuyken
- Department of Psychiatry, Oxford University and Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| |
Collapse
|
18
|
Wiglesworth A, Fiecas MB, Xu M, Neher AT, Padilla L, Carosella KA, Roediger DJ, Mueller BA, Luciana M, Klimes-Dougan B, Cullen KR. Sex and age variations in the impact of puberty on cortical thickness and associations with internalizing symptoms and suicidal ideation in early adolescence. Dev Cogn Neurosci 2023; 59:101195. [PMID: 36621021 PMCID: PMC9849871 DOI: 10.1016/j.dcn.2022.101195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/23/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The childhood-to-adolescence transition is a notable period of change including pubertal development, neurodevelopment, and psychopathology onset, that occurs in divergent patterns between sexes. This study examined the effects of sex and puberty on cortical thickness (CT) in children and explored whether CT changes over time related to emergence of psychopathology in early adolescence. METHODS We used longitudinal data (baseline ages 9-10 and Year 2 [Y2] ages 11-12) from the ABCD Study (n = 9985). Linear and penalized function-on-function regressions modeled the impact of puberty, as it interacts with sex, on CT. Focusing on regions that showed sex differences, linear and logistic regressions modeled associations between change in CT and internalizing problems and suicide ideation. RESULTS We identified significant sex differences in the inverse relation between puberty and CT in fifteen primarily posterior brain regions. Nonlinear pubertal effects across age were identified in the fusiform, isthmus cingulate, paracentral, and precuneus. All effects were stronger for females relative to males during this developmental window. We did not identify associations between CT change and early adolescent clinical outcomes. CONCLUSION During this age range, puberty is most strongly associated with regional changes in CT in females, which may have implications for the later emergence of psychopathology.
Collapse
Affiliation(s)
| | - Mark B Fiecas
- Division of Biostatistics, University of Minnesota-Twin Cities, USA
| | - Meng Xu
- Division of Biostatistics, University of Minnesota-Twin Cities, USA
| | - Aidan T Neher
- Division of Biostatistics, University of Minnesota-Twin Cities, USA
| | - Laura Padilla
- Department of Neuroscience, University of Minnesota-Twin Cities, USA
| | | | - Donovan J Roediger
- Department of Psychiatry and Behavioral Sciences, University of Minnesota-Twin Cities, USA
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota-Twin Cities, USA
| | - Monica Luciana
- Department of Psychology, University of Minnesota-Twin Cities, USA
| | | | - Kathryn R Cullen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota-Twin Cities, USA
| |
Collapse
|
19
|
Folvik L, Sneve MH, Ness HT, Vidal-Piñeiro D, Raud L, Geier OM, Walhovd KB, Fjell AM. Sustained upregulation of widespread hippocampal-neocortical coupling following memory encoding. Cereb Cortex 2022; 33:4844-4858. [PMID: 36190442 PMCID: PMC10110434 DOI: 10.1093/cercor/bhac384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/14/2022] Open
Abstract
Systems consolidation of new experiences into lasting episodic memories involves hippocampal-neocortical interactions. Evidence of this process is already observed during early post-encoding rest periods, both as increased hippocampal coupling with task-relevant perceptual regions and reactivation of stimulus-specific patterns following intensive encoding tasks. We investigate the spatial and temporal characteristics of these hippocampally anchored post-encoding neocortical modulations. Eighty-nine adults participated in an experiment consisting of interleaved memory task- and resting-state periods. We observed increased post-encoding functional connectivity between hippocampus and individually localized neocortical regions responsive to stimuli encountered during memory encoding. Post-encoding modulations were manifested as a nearly system-wide upregulation in hippocampal coupling with all major functional networks. The configuration of these extensive modulations resembled hippocampal-neocortical interaction patterns estimated from active encoding operations, suggesting hippocampal post-encoding involvement exceeds perceptual aspects. Reinstatement of encoding patterns was not observed in resting-state scans collected 12 h later, nor when using other candidate seed regions. The similarity in hippocampal functional coupling between online memory encoding and offline post-encoding rest suggests reactivation in humans involves a spectrum of cognitive processes engaged during the experience of an event. There were no age effects, suggesting that upregulation of hippocampal-neocortical connectivity represents a general phenomenon seen across the adult lifespan.
Collapse
Affiliation(s)
- Line Folvik
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| | - Markus H Sneve
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| | - Hedda T Ness
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| | - Didac Vidal-Piñeiro
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| | - Liisa Raud
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| | - Oliver M Geier
- Department of Diagnostic Physics, Oslo University Hospital, Postbox 4950 Nydalen, OUS, Rikshospitalet, 0424 Oslo, Norway
| | - Kristine B Walhovd
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postbox 4950 Nydalen, OUS, Rikshospitalet, 0424 Oslo, Norway
| | - Anders M Fjell
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postbox 4950 Nydalen, OUS, Rikshospitalet, 0424 Oslo, Norway
| |
Collapse
|
20
|
Zhang Z, Li G, Song Z, Han Y, Tang X. Relationship among number of close friends, subclinical geriatric depression, and subjective cognitive decline based on regional homogeneity of functional magnetic resonance imaging data. Front Aging Neurosci 2022; 14:978611. [PMID: 36212042 PMCID: PMC9541299 DOI: 10.3389/fnagi.2022.978611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/26/2022] [Indexed: 01/10/2023] Open
Abstract
The relationship between geriatric depression and dementia has been widely debated, and the neurological mechanisms underlying subjective cognitive decline (SCD) associated with social relationships remain elusive. Subclinical geriatric depression (SGD) is common in patients with SCD, and close friends (CFs) have a great influence on a person's social life. Studies have proven that communication or leisure activities with CFs can improve the cognitive performance of elderly. However, it remains unclear whether the engagement of specific brain regions mediates having CFs, SGD, and SCD. In this study, we aimed to assess the association between social relationships (that is, CFs), SGD, and SCD from the perspective of brain function. We examined the data of 66 patients with SCD and 63 normal controls (NC). Compared with NC, SGD was significantly inversely correlated with the number of CFs in the SCD group. We calculated regional homogeneity (ReHo) of functional magnetic resonance imaging (MRI) data of each subject. At a corrected threshold, the right occipital gyrus (SOG.R) and right fusiform gyrus (FFG.R) exhibited positive correlation with SGD in patients with SCD. Mediation analyses to query the inter-relationships between the neural markers and clinical variables exhibited a best fit of the model with CFs → FFG.R → SGD → SOG.R → SCD. These findings suggested a pathway whereby social relationships alter the function of specific brain regions, and SGD may be an early symptom of SCD. We observed that the FFG.R mediate social relationships and SGD, and the abnormality of the SOG.R may be a key factor in the SCD caused by depression. Moreover, a greater number of CFs may reduce the risk of developing SGD.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Guangfei Li
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Zeyu Song
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China,*Correspondence: Xiaoying Tang,
| |
Collapse
|
21
|
Perquin M, Viswanathan S, Vaillant M, Risius O, Huiart L, Schmit JC, Diederich NJ, Fink GR, Kukolja J. An individualized functional magnetic resonance imaging protocol to assess semantic congruency effects on episodic memory in an aging multilingual population. Front Aging Neurosci 2022; 14:873376. [PMID: 35936775 PMCID: PMC9354990 DOI: 10.3389/fnagi.2022.873376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The cognitive stimulation induced by multilingualism may slow down age-related memory impairment. However, a suitable neuroscientific framework to assess the influence of multilingualism on age-related memory processes is missing. We propose an experimental paradigm that assesses the effects of semantic congruency on episodic memory using functional magnetic resonance imaging (fMRI). To this end, we modified the picture-word interference (PWI) task to be suitable for the assessment of older multilingual subjects undergoing fMRI. In particular, stimulus materials were prepared in multiple languages (French, German, Luxembourgish, English) and closely matched in semantic properties, thus enabling participants to perform the experiment in a language of their choice. This paradigm was validated in a group (n = 62) of healthy, older participants (over 64 years) who were multilingual, all practicing three or more languages. Consistent with the engagement of semantic congruency processes, we found that the encoding and recognition of semantically related vs. unrelated picture-word pairs evoked robust differences in behavior and the neural activity of parietal-temporal networks. These effects were negligibly modulated by the language used to perform the task. Based on this validation in a multilingual population, we conclude that the proposed paradigm will allow future studies to evaluate whether multilingualism aptitude engages neural systems in a manner that protects long-term memory from aging-related decline.
Collapse
Affiliation(s)
- Magali Perquin
- Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
- *Correspondence: Magali Perquin,
| | - Shivakumar Viswanathan
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Michel Vaillant
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Okka Risius
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Mental Health, Marienheide, Germany
| | - Laetitia Huiart
- Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
- Santé Publique France, Saint-Maurice, France
| | - Jean-Claude Schmit
- Luxembourg Institute of Health, Strassen, Luxembourg
- Directorate of Health, Ministry of Health, Luxembourg, Luxembourg
| | - Nico J. Diederich
- Department of Neurology, Luxembourg Hospital Center, Luxembourg, Luxembourg
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Juraj Kukolja
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
22
|
Yue X, Zhang G, Li X, Shen Y, Wei W, Bai Y, Luo Y, Wei H, Li Z, Zhang X, Wang M. Brain Functional Alterations in Prepubertal Boys With Autism Spectrum Disorders. Front Hum Neurosci 2022; 16:891965. [PMID: 35664346 PMCID: PMC9160196 DOI: 10.3389/fnhum.2022.891965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives Abnormal brain function in ASD patients changes dynamically across developmental stages. However, no one has studied the brain function of prepubertal children with ASD. Prepuberty is an important stage for children’s socialization. This study aimed to investigate alterations in local spontaneous brain activity in prepubertal boys with ASD. Materials and Methods Measures of the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) acquired from resting-state functional magnetic resonance imaging (RS-fMRI) database, including 34 boys with ASD and 49 typically developing (TD) boys aged 7 to 10 years, were used to detect regional brain activity. Pearson correlation analyses were conducted on the relationship between abnormal ALFF and ReHo values and Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-Revised (ADI-R) scores. Results In the ASD group, we found decreased ALFF in the left inferior parietal lobule (IPL) and decreased ReHo in the left lingual gyrus (LG), left superior temporal gyrus (STG), left middle occipital gyrus (MOG), and right cuneus (p < 0.05, FDR correction). There were negative correlations between ReHo values in the left LG and left STG and the ADOS social affect score and a negative correlation between ReHo values in the left STG and the calibrated severity total ADOS score. Conclusion Brain regions with functional abnormalities, including the left IPL, left LG, left STG, left MOG, and right cuneus may be crucial in the neuropathology of prepubertal boys with ASD. Furthermore, ReHo abnormalities in the left LG and left STG were correlated with sociality. These results will supplement the study of neural mechanisms in ASD at different developmental stages, and be helpful in exploring the neural mechanisms of prepubertal boys with ASD.
Collapse
Affiliation(s)
- Xipeng Yue
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ge Zhang
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiaochen Li
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yu Shen
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yan Bai
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yu Luo
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wei
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ziqiang Li
- Henan Provincial People’s Hospital, Xinxiang Medical University, Xinxiang, China
| | | | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Meiyun Wang,
| |
Collapse
|
23
|
Ge Y, Zheng W, Li Y, Dou W, Ren S, Chen Z, Wang Z. Altered Brain Volume, Microstructure Metrics and Functional Connectivity Features in Multiple System Atrophy. Front Aging Neurosci 2022; 14:799251. [PMID: 35663568 PMCID: PMC9162384 DOI: 10.3389/fnagi.2022.799251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/22/2022] [Indexed: 11/14/2022] Open
Abstract
In order to deeply understand the specific patterns of volume, microstructure, and functional changes in Multiple System Atrophy patients with cerebellar ataxia syndrome (MSA-c), we perform the current study by simultaneously applying structural (T1-weighted imaging), Diffusion tensor imaging (DTI), functional (BOLD fMRI) and extended Network-Based Statistics (extended-NBS) analysis. Twenty-nine MSA-c type patients and twenty-seven healthy controls (HCs) were involved in this study. First, we analyzed the whole brain changes of volume, microstructure, and functional connectivity (FC) in MSA-c patients. Then, we explored the correlations between significant multimodal MRI features and the total Unified Multiple System Atrophy Rating Scale (UMSARS) scores. Finally, we searched for sensitive imaging biomarkers for the diagnosis of MSA-c using support vector machine (SVM) classifier. Results showed significant grey matter atrophy in cerebellum and white matter microstructural abnormalities in cerebellum, left fusiform gyrus, right precentral gyrus and lingual gyrus. Extended-NBS analysis found two significant different connected components, featuring altered functional connectivity related to left and right cerebellar sub-regions, respectively. Moreover, the reduced fiber bundle counts at right Cerebellum_3 (Cbe3) and decreased fractional anisotropy (FA) values at bilateral Cbe9 were negatively associated with total UMSARS scores. Finally, the significant features at left Cbe9, Cbe1, and Cbe7b were found to be useful as sensitive biomarkers to differentiate MSA-c from HCs according to the SVM analysis. These findings advanced our understanding of the neural pathophysiological mechanisms of MSA from the perspective of multimodal neuroimaging.
Collapse
Affiliation(s)
- Yunxiang Ge
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Weimin Zheng
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Yujia Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Weibei Dou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
- *Correspondence: Weibei Dou,
| | - Shan Ren
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Chen
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Zhigang Chen,
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
- Zhiqun Wang,
| |
Collapse
|
24
|
Faßbender RV, Risius OJ, Dronse J, Richter N, Gramespacher H, Befahr Q, Fink GR, Kukolja J, Onur OA. Decreased Efficiency of Between-Network Dynamics During Early Memory Consolidation With Aging. Front Aging Neurosci 2022; 14:780630. [PMID: 35651531 PMCID: PMC9148994 DOI: 10.3389/fnagi.2022.780630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
Aging is associated with memory decline and progressive disabilities in the activities of daily living. These deficits have a significant impact on the quality of life of the aging population and lead to a tremendous burden on societies and health care systems. Understanding the mechanisms underlying aging-related memory decline is likely to inform the development of compensatory strategies promoting independence in old age. Research on aging-related memory decline has mainly focused on encoding and retrieval. However, some findings suggest that memory deficits may at least partly be due to impaired consolidation. To date, it remains elusive whether aging-related memory decline results from defective consolidation. This study examined age effects on consolidation-related neural mechanisms and their susceptibility to interference using functional magnetic resonance imaging data from 13 younger (20–30 years, 8 female) and 16 older (49–75 years, 5 female) healthy participants. fMRI was performed before and during a memory paradigm comprised of encoding, consolidation, and retrieval phases. Consolidation was variously challenged: (1) control (no manipulation), (2) interference (repeated stimulus presentation with interfering information), and (3) reminder condition (repeated presentation without interfering information). We analyzed the fractional amplitude of low-frequency fluctuations (fALFF) to compare brain activity changes from pre- to post-encoding rest. In the control condition, fALFF was decreased in the left supramarginal gyrus, right middle temporal gyrus, and left precuneus but increased in parts of the occipital and inferior temporal cortex. Connectivity analyses between fALFF-derived seeds and network ROIs revealed an aging-related decrease in the efficiency of functional connectivity (FC) within the ventral stream network and between salience, default mode, and central executive networks during consolidation. Moreover, our results indicate increased interference susceptibility in older individuals with dynamics between salience and default mode networks as a neurophysiological correlate. Conclusively, aging-related memory decline is partly caused by inefficient consolidation. Memory consolidation requires a complex interplay between large-scale brain networks, which qualitatively decreases with age.
Collapse
Affiliation(s)
- Ronja V. Faßbender
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Okka J. Risius
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julian Dronse
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannes Gramespacher
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Qumars Befahr
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Juraj Kukolja
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Oezguer A. Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- *Correspondence: Oezguer A. Onur,
| |
Collapse
|
25
|
Subramaniapillai S, Rajagopal S, Ankudowich E, Pasvanis S, Misic B, Rajah MN. Age- and Episodic Memory-related Differences in Task-based Functional Connectivity in Women and Men. J Cogn Neurosci 2022; 34:1500-1520. [PMID: 35579987 DOI: 10.1162/jocn_a_01868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aging is associated with episodic memory decline and changes in functional brain connectivity. Understanding whether and how biological sex influences age- and memory performance-related functional connectivity has important theoretical implications for the cognitive neuroscience of memory and aging. Here, we scanned 161 healthy adults between 19 and 76 years of age in an event-related fMRI study of face-location spatial context memory. Adults were scanned while performing easy and difficult versions of the task at both encoding and retrieval. We used multivariate whole-brain partial least squares connectivity to test the hypothesis that there are sex differences in age- and episodic memory performance-related functional connectivity. We examined how individual differences in age and retrieval accuracy correlated with task-related connectivity. We then repeated this analysis after disaggregating the data by self-reported sex. We found that increased encoding and retrieval-related connectivity within the dorsal attention network (DAN), and between DAN and frontoparietal network and visual networks, were positively correlated to retrieval accuracy and negatively correlated with age in both sexes. We also observed sex differences in age- and performance-related functional connectivity: (a) Greater between-networks integration was apparent at both levels of task difficulty in women only, and (b) increased DAN-default mode network connectivity with age was observed in men and was correlated with poorer memory performance. Therefore, the neural correlates of age-related episodic memory decline differ in women and men and have important theoretical and clinical implications for the cognitive neuroscience of memory, aging, and dementia prevention.
Collapse
Affiliation(s)
- Sivaniya Subramaniapillai
- McGill University, Montréal, Quebéc, Canada.,Douglas Mental Health University Institute, Montréal, Quebéc, Canada
| | | | - Elizabeth Ankudowich
- McGill University, Montréal, Quebéc, Canada.,Douglas Mental Health University Institute, Montréal, Quebéc, Canada
| | | | - Bratislav Misic
- Douglas Mental Health University Institute, Montréal, Quebéc, Canada
| | - M Natasha Rajah
- McGill University, Montréal, Quebéc, Canada.,Douglas Mental Health University Institute, Montréal, Quebéc, Canada
| |
Collapse
|
26
|
Zhang L, Yang T, Chen Y, Zheng D, Sun D, Tu Q, Huang J, Zhang J, Li Z. Cognitive Deficit and Aberrant Intrinsic Brain Functional Network in Early-Stage Drug-Naive Parkinson's Disease. Front Neurosci 2022; 16:725766. [PMID: 35281494 PMCID: PMC8914103 DOI: 10.3389/fnins.2022.725766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Although cognitive deficit is a common non-motor symptom of Parkinson's disease (PD), the mechanism and valid biomarkers of it have not been identified. To our best knowledge, this was the first study to investigate the intrinsic dysconnectivity pattern of whole-brain functional networks in early-stage drug-naive (ESDN) PD patients and its association with cognitive deficit of PD using voxel-wise Degree Centrality (DC) approach. METHODS A total of 53 ESDN PD patients and 53 healthy controls (HC) were recruited. Resting-state fMRI (rs-fMRI) data were acquired, and voxel-wise DC approach was applied. Electrophysiological testing at P300 amplitude was recorded. The Montreal Cognitive Assessment (MoCA) was conducted to evaluate cognitive performance. RESULTS ESDN PD patients had lower MoCA scores and P300 amplitudes, but higher P300 latency, than HC (all p < 0.0001). PD patients displayed higher DC in the right inferior frontal gyrus (IFG), left medial frontal gyrus (MFG) and left precentral gyrus (PreCG); but lower DC in the left inferior parietal lobule (IPL), left inferior temporal gyrus (ITG), right occipital lobe, and right postcentral gyrus (PoCG) (pBonferroni correction < 0.0001). Interestingly, the DC values of left MFG, right PoCG and right occipital lobe were negatively associated with P300 latency but positively associated with P300 amplitudes and MoCA scores (all pBonferroni correction < 0.0001). CONCLUSIONS Our results indicate the cognitive deficit and abnormal intrinsic brain functional network in ESDN PD patients. The damage of Default Mode Network (DMN) may be contributes to the pathogenesis of cognitive dysfunction in ESDN PD.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Neurology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Yang
- Department of Neurology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Yuping Chen
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Denise Zheng
- McGovern Medical School, Houston, TX, United States
| | - Dong Sun
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiang Tu
- Department of Neurology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Jinbai Huang
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
27
|
Bai J, Wen H, Tai J, Peng Y, Li H, Mei L, Ji T, Li X, Li Y, Ni X, Liu Y. Altered Spontaneous Brain Activity Related to Neurologic and Sleep Dysfunction in Children With Obstructive Sleep Apnea Syndrome. Front Neurosci 2021; 15:595412. [PMID: 34867137 PMCID: PMC8634797 DOI: 10.3389/fnins.2021.595412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Childhood obstructive sleep apnea (OSA) is a common chronic sleep-related breathing disorder in children, which leads to growth retardation, neurocognitive impairments, and serious complications. Considering the previous studies about brain structural abnormalities in OSA, in the present study, we aimed to explore the altered spontaneous brain activity among OSA patients, using amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) methods based on resting-state functional magnetic resonance imaging (MRI). Thirty-one untreated OSA children and 33 age-and gender-matched healthy children (HC) were included in this study. Compared with controls, the OSA group showed significant lower ALFF in the right lingual gyrus, decreased fALFF in the left middle frontal gyrus (MFG), but increased fALFF in the left precuneus. Decreased ReHo was found in the left inferior frontal gyrus (orbital part) and left middle frontal gyrus. Notably, the mean fALFF value of left MFG was not only significantly related to multiple sleep parameters but also demonstrated the best performance in ROC curve analysis. These findings revealed OSA children were associated with dysfunctions in the default mode network, the frontal lobe, and the lingual gyrus, which may implicate the underlying neurophysiological mechanisms of intrinsic brain activity. The correlation between the altered spontaneous neuronal activity and the clinical index provides early useful diagnostic biomarkers for OSA children as well.
Collapse
Affiliation(s)
- Jie Bai
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.,School of Psychology, Southwest University, Chongqing, China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Pediatrics, Beijing, China
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hongbin Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lin Mei
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tingting Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaodan Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yanhua Li
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yue Liu
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
28
|
Ji T, Li X, Chen J, Ren X, Mei L, Qiu Y, Zhang J, Wang S, Xu Z, Li H, Zheng L, Peng Y, Liu Y, Ni X, Tai J, Liu J. Brain function in children with obstructive sleep apnea: a resting-state fMRI study. Sleep 2021; 44:6155746. [PMID: 33675225 DOI: 10.1093/sleep/zsab047] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/16/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To explore the neural difference between children with obstructive sleep apnea (OSA) and healthy controls, together with the relation between this difference and cognitive dysfunction of children with OSA. METHODS Twenty children with OSA (7.2 ± 3.1 years, apnea hypopnea index (AHI): 16.5 ± 16.6 events/h) and 29 healthy controls (7.7 ± 2.8 years, AHI: 1.7 ± 1.2 events/h) were recruited and matched with age, gender, and handedness. All children underwent resting-state fMRI (rs-fMRI) and T1-wighted imaging. Some children were sedated for MRI scanning. We compared amplitude of low frequency fluctuation (ALFF) and regional homogeneity (ReHo) of children with OSA with those of healthy controls. During resting-state, the former reflects the intensity of the spontaneous neural activities, whereas the latter reflects temporal similarity of the spontaneous neural activities within a local brain region. Pearson correlation analysis was performed between these features of rs-fMRI and cognitive scores among children with OSA. RESULTS Compared with controls, children with OSA showed decreased ALFF in the left angular gyrus but increased ALFF in the right insula, and decreased ReHo in the left medial superior frontal gyrus, right lingual gyrus, and left precuneus. Additionally, among children with OSA, the ReHo value in the right lingual gyrus was negatively correlated with FIQ and VIQ, whereas that in the left medial superior frontal gyrus was positively correlated with VIQ. CONCLUSIONS Children with OSA presented abnormal neural activities in some brain regions and impaired cognitive functions with the former possibly being the neural mechanism of the latter.
Collapse
Affiliation(s)
- Tingting Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaodan Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jun Chen
- Beijing Engineering Research Center of Pediatric Surgery, Engineering and Translational Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xuemin Ren
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medical Science and Engineering, Beihang University, Beijing, China.,Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the, People's Republic of China, Beijing, China
| | - Lin Mei
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yue Qiu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhifei Xu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Sleep Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hongbin Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Li Zheng
- Department of Sleep Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yun Peng
- Department of Radiology, Imaging Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yue Liu
- Department of Radiology, Imaging Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jun Tai
- Department of Otorhinolaryngology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Jiangang Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medical Science and Engineering, Beihang University, Beijing, China.,Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the, People's Republic of China, Beijing, China
| |
Collapse
|
29
|
Xiong Y, Tian T, Fan Y, Yang S, Xiong X, Zhang Q, Zhu W. Diffusion Tensor Imaging Reveals Altered Topological Efficiency of Structural Networks in Type-2 Diabetes Patients With and Without Mild Cognitive Impairment. J Magn Reson Imaging 2021; 55:917-927. [PMID: 34382716 DOI: 10.1002/jmri.27884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Some patients with type 2 diabetes mellitus (T2DM) progress towards mild cognitive impairment (MCI), while some patients can always maintain normal cognitive function. Network topologic alterations at global and nodal levels between T2DM individuals with and without cognitive impairment may underlie the difference. PURPOSE To investigate the topological alterations of the whole-brain white matter (WM) structural connectome in T2DM patients with and without MCI and characterize its relationship with disease severity. STUDY TYPE Cross-sectional and prospective study. SUBJECTS Forty-four (63.6% females) T2DM patients, 22 with mild cognitive impairment (DM-MCI) and 22 with normal cognition (DM-NC), and 34 (58.8% females) healthy controls (HC). FIELD STRENGTH/SEQUENCE 3 T/diffusion tensor imaging. ASSESSMENT Graph theoretical analysis was used to investigate the topological organization of the structural networks. The global topological properties and nodal efficiency were investigated and compared. Relationship between network metrics and clinical measurements was characterized. STATISTICAL TESTS Student's t-test, chi-square test, ANOVA, partial correlation analyses, and multiple comparisons correction. RESULTS The global topological organization of WM networks was significantly disrupted in T2DM patients with cognitive impairment (reduced global and local efficiency and increased shortest path length) but not in those with normal cognition, compared with controls. The DM-MCI group had significantly decreased network efficiency compared with the DM-NC group. Compared with controls, decreased nodal efficiency was detected in three regions in DM-NC group. More regions with decreased nodal efficiency were found in the DM-MCI group. Altered global network properties and nodal efficiency of some regions were correlated with diabetic duration, HbA1c levels, and cognitive assessment scores. DATA CONCLUSION The more disrupted WM connections and weaker organized network are found in DM-MCI patients relative to DM-NC patients and controls. Network analyses provide information for the neuropathology of cognitive decline in T2DM patients. Altered nodal efficiency may act as potential markers for early detection of T2DM-related MCI. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Fan
- Beijing Intelligent Brain Cloud Inc., Beijing, China
| | - Shaolin Yang
- Department of Bioengineering, Psychiatry and Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiaoxiao Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Cui B, Zheng W, Ren S, Chen Z, Wang Z. Differentiation of Cerebellum-Type and Parkinson-Type of Multiple System Atrophy by Using Multimodal MRI Parameters. Front Aging Neurosci 2021; 13:687649. [PMID: 34413766 PMCID: PMC8369927 DOI: 10.3389/fnagi.2021.687649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have demonstrated the structural and functional changes in patients with multiple system atrophy (MSA). However, little is known about the different parameter changes of the most vulnerable regions in different types of MSA. In this study, we collected resting-state structure, perfusion, and patients with functional magnetic resonance imaging (fMRI) data of cerebellum-type of MSA (MSA-c) and Parkinson-type of MSA (MSA-p). First, by simultaneously using voxel-based morphology (VBM), arterial spin labeling (ASL), and amplitude of low-frequency fluctuation (ALFF), we analyzed the whole brain differences of structure, perfusion, and functional activation between patients with MSA-c and MSA-p. Second, we explored the relationships among structure, perfusion, function, and the clinical variables in patients with MSA. Finally, we extracted the MRI parameters of a specific region to separate the two groups and search for a sensitive imaging biomarker. As a result, compared with patients with MSA-p type, patients with MSA-c type showed decreased structure atrophy in several cerebella and vermis subregions, reduced perfusion in bilateral cerebellum_4_5 and vermis_4_5, and an decreased ALFF values in the right lingual gyrus (LG) and fusiform (FFG). Subsequent analyses revealed the close correlations among structure, perfusion, function, and clinical variables in both MSA-c and MSA-p. Finally, the receiver operating characteristic (ROC) analysis showed that the regional cerebral blood flow (rCBF) of bilateral cerebellum_4_5/vermis_4_5 could differentiate the two groups at a relatively high accuracy, yielding the sensitivity of 100%, specificity of 79.2%, and the area under the curve (AUC) value of 0.936. These findings have important implications for understanding the underlying neurobiology of different types of MSA and added the new evidence for the disrupted rCBF, structure, and function of MSA, which may provide the potential biomarker for accurately detecting different types of patients with MSA and new ideas for the treatment of different types of MSA in the future.
Collapse
Affiliation(s)
- Bin Cui
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Weimin Zheng
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Shan Ren
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Chen
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
31
|
Nellessen N, Onur OA, Richter N, Jacobs HIL, Dillen KNH, Reutern BV, Langen KJ, Fink GR, Kukolja J. Differential neural structures, intrinsic functional connectivity, and episodic memory in subjective cognitive decline and healthy controls. Neurobiol Aging 2021; 105:159-173. [PMID: 34090179 DOI: 10.1016/j.neurobiolaging.2021.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/05/2021] [Accepted: 04/20/2021] [Indexed: 11/15/2022]
Abstract
The neural correlates of subjective cognitive decline (SCD; i.e., without objectifiable deficit) remain to be elucidated. Possible causes of SCD include early neurodegeneration related to Alzheimer's disease or functional and structural changes related to sub-clinical depression. We investigated the relationship between episodic memory performance or memory complaints and structural or functional magnetic resonance imaging (MRI) measures in participants with SCD (n=18) but without psychiatric disorders and healthy controls (n=31). In SCD, memory complaints were not associated with memory performance but with sub-clinical depression and executive functions. SCD-associated memory complaints correlated with higher amygdala and parahippocampal gyrus (specifically subiculum) gray matter density. In controls, but not in SCD, mesiotemporal gray matter density and superior frontal gyrus functional connectivity predicted memory performance. In contrast, in SCD, only a trend toward a correlation between memory performance and gray matter density in the parietooccipital lobes was observed. In our memory-clinic sample of SCD, we did not observe incipient neurodegeneration (limited to structural and functional MRI) but rather sub-clinical depression underlying subjective cognitive complaints.
Collapse
Affiliation(s)
- Nils Nellessen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, 42283 Wuppertal, Germany; Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Oezguer A Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Nils Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg; Maastricht University, Maastricht, Netherlands; Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kim N H Dillen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Boris von Reutern
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Karl J Langen
- Institute of Neuroscience and Medicine (INM-4), Research Center Jülich, Jülich, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany; Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Juraj Kukolja
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, 42283 Wuppertal, Germany; Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
32
|
Deckert M, Schmoeger M, Geist M, Wertgen S, Willinger U. Electrophysiological correlates of conventional metaphor, irony, and literal language processing - An event-related potentials and eLORETA study. BRAIN AND LANGUAGE 2021; 215:104930. [PMID: 33631658 DOI: 10.1016/j.bandl.2021.104930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Conventional metaphor, irony, and literal language processing were compared. Thirty right-handed participants (21-34 years) performed a sequential-statement ERP-paradigm. A left-frontal Late Anterior Negative Slow Wave (LANSW, 450-1000 ms) was significantly greater for metaphors and by visual tendency greater for irony, compared to literal statements. A centroparietal N400 (300-450 ms) and a centroparietal right-dominant "Late N400" (450-600 ms) were by statistical and visual tendency greater for metaphors. Left PCC and left lingual gyrus activity was significantly higher in metaphors compared to literal statements (eLORETA; 450-1000 ms). A statistical trend indicated higher parahippocampal gyrus activity in metaphors and ironies. N400 results are discussed considering changing processing techniques and a renewed semantic conflict. The Late N400 was associated with the construct of "associativeness". The LANSW was related to metaphorical mapping, frame-shifting processes, integration of meanings, and memory processes. eLORETA results were discussed considering metaphorical mapping, creation of mental images, conventionality, valence, memory processes, and divergent thinking.
Collapse
Affiliation(s)
- Matthias Deckert
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Michaela Schmoeger
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Max Geist
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Sarah Wertgen
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Ulrike Willinger
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
33
|
Sheth C, Rogowska J, Legarreta M, McGlade E, Yurgelun-Todd D. Functional connectivity of the anterior cingulate cortex in Veterans with mild traumatic brain injury. Behav Brain Res 2020; 396:112882. [PMID: 32853657 DOI: 10.1016/j.bbr.2020.112882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the most prevalent injuries in the military with mild traumatic brain injury (mTBI) accounting for approximately 70-80 % of all TBI. TBI has been associated with diffuse and focal brain changes to structures and networks underlying cognitive-emotional processing. Although the anterior cingulate cortex (ACC) plays a critical role in emotion regulation and executive function and is susceptible to mTBI, studies focusing on ACC resting state functional connectivity (rs-fc) in Veterans are limited. METHODS Veterans with mTBI (n = 49) and with no history of TBI (n = 25), ages 20-54 completed clinical assessments and an 8-minute resting state functional magnetic resonance imaging (rs-fMRI) on a 3 T Siemens scanner. Imaging results were analyzed with left and right ACC as seed regions using SPM8. Regression analyses were performed with time since injury. RESULTS Seed-based analysis showed increased connectivity of the left and right ACC with brain regions including middle and posterior cingulate regions, preceneus, and occipital regions in the mTBI compared to the non-TBI group. CONCLUSIONS The rs-fMRI results indicate hyperconnectivity in Veterans with mTBI. These results are consistent with previous studies of recently concussed athletes showing ACC hyperconnectivity. Enhanced top-down control of attention networks necessary to compensate for the microstructural damage following mTBI may explain ACC hyperconnectivity post-mTBI.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA.
| | - Jadwiga Rogowska
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Margaret Legarreta
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| | - Erin McGlade
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| |
Collapse
|
34
|
Zhang J, Hu Y, Wang Z, Wang M, Dong GH. Males are more sensitive to reward and less sensitive to loss than females among people with internet gaming disorder: fMRI evidence from a card-guessing task. BMC Psychiatry 2020; 20:357. [PMID: 32635911 PMCID: PMC7341652 DOI: 10.1186/s12888-020-02771-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/29/2020] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Many studies have found an interesting issue in the Internet gaming disorder (IGD): males are always observed to be the majority. However, there are little research to exploring the differences in the neural mechanisms between males and females in decision-making process among people with IGD. Therefore, explore the reward/loss processing between different gender with IGD could help in understanding the underlying neural mechanism of IGD. METHODS Data from functional magnetic resonance imaging (fMRI) were collected from 111 subjects (IGD: 29 males, 25 females; recreational internet game user (RGU): 36 males, 21 females) while they were performing a card-guessing task. We collected and compared their brain features when facing the win and loss conditions in different groups. RESULTS For winning conditions, IGD group showed hypoactivity in the lingual gyrus than RGU group, male players showed hyperactivity in the left caudate nucleus, bilateral cingulate gyrus, right middle frontal gyrus (MFG), right precuneus and inferior parietal lobule relative to the females. And significant sex-by-group interactions results showed higher brain activities in the thalamus, parahippocampal gyrus and lower brain activities in Inferior frontal gyrus (IFG) were observed in males with IGD than females. For losing conditions, IGD group showed hypoactivity in the left lingual gyrus, parahippocampal gyrus and right anterior cingulate cortex (ACC) compared to the RGU group, male players showed hyperactive left caudate nucleus and hypoactive right middle occipital gyrus relative to females. And significant sex-by-group interactions results showed that compared to females with IGD, males with IGD showed decreased brain activities in the IFG and lingual gyrus. CONCLUSIONS First, there appeared to be no difference in reward processing between the IGD and RGU group, but IGD showed less sensitivity to loss. Secondly, male players showed more sensitivity to rewards and less sensitivity to losses. Last but not least, males and females showed opposite activation patterns in IGD degree and rewards/losses processing. And male IGD subjects are more sensitive to reward and less sensitive to loss than females, which might be the reason for the gender different rates on IGD.
Collapse
Affiliation(s)
- Jialin Zhang
- Center for Cognition and Brain Disorders, Institute of Psychological Research, Hangzhou Normal University, Hangzhou, 311121, Zhejiang Province, China
| | - Yan Hu
- Department of Creative Technologies, Blekinge Institute of Technology, SE-371 79, Karlskrona, Sweden
| | - Ziliang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing, China
| | - Min Wang
- Center for Cognition and Brain Disorders, Institute of Psychological Research, Hangzhou Normal University, Hangzhou, 311121, Zhejiang Province, China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, Institute of Psychological Research, Hangzhou Normal University, Hangzhou, 311121, Zhejiang Province, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
35
|
Cai L, Liang Y, Huang H, Zhou X, Zheng J. Cerebral functional activity and connectivity changes in anti-N-methyl-D-aspartate receptor encephalitis: A resting-state fMRI study. NEUROIMAGE-CLINICAL 2020; 25:102189. [PMID: 32036276 PMCID: PMC7013171 DOI: 10.1016/j.nicl.2020.102189] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 12/13/2022]
Abstract
Patients with anti-NMDAR encephalitis showed decreased ALFF values in the bilateral posterior cingulate gyrus, left precuneus and bilateral cerebellum. The functional connectivities between the bilateral posterior cingulate gyrus and the bilateral lingual gyrus, fusiform gyrus, calcarine, cuneus, and right posterior central gyrus were significantly increased in patients with anti-NMDAR encephalitis. Functional connectivity strength between the bilateral posterior cingulate gyrus and bilateral cuneus were positively correlated with MoCA memory scores. Patients with anti-NMDAR encephalitis exhibited decreased spontaneous neural activities and abnormal functional connectivity, which may participate in the process of cognition and emotion deficits.
Background Anti–N-methyl-D-aspartate receptor (NMDAR) encephalitis showing severe neuropsychiatric symptoms is the most common type of autoimmune encephalitis. However, the corresponding standard clinical magnetic resonance imaging (MRI) presents normal or atypical in the majority of patients with anti-NMDAR encephalitis. Here, this study aimed to investigate the alterations in brain functional activity in patients with anti-NMDAR encephalitis and whether these alterations contributed to cognition and mood disorders. Methods Seventeen patients with anti-NMDAR encephalitis and eighteen gender, age and education-matched healthy controls were recruited. All participants underwent neuropsychological tests (including Montreal Cognitive Assessment (MoCA), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HAMD24)) and resting-state functional MRI. MRI data was firstly analyzed by amplitude of low-frequency fluctuation (ALFF), and brain regions with altered ALFF between groups were selected as regions of interest for the further functional connectivity (FC) analysis. Correlation analyses were performed to investigate the associations between brain dysfunction and neuropsychological performance. Results Relative to the healthy controls, patients with anti-NMDAR encephalitis performed inferiorly in the MoCA score, and showed anxiety and depression disorders with higher HAMA and HAMD24 scores (all p < 0.05). In the brain functional activity analysis, the patients showed decreased ALFF values in the bilateral posterior cingulate gyrus, left precuneus, and bilateral cerebellum (false- discovery- rate corrected, p < 0.05). Furthermore, relative to the control group, the patients showed significantly increased FC between the left posterior cingulate cortex (PCC) and the bilateral lingual gyrus, right calcarine, right cuneus, also between the right PCC and the right fusiform gyrus, bilateral lingual gyrus, left calcarine, left cuneus, and right posterior central gyrus (false- discovery- rate corrected, p < 0.05). FC strength between the left posterior cingulate gyrus and right cuneus, and between the right posterior cingulate gyrus and left cuneus were both positively correlated with MoCA memory scores (r = 0.485, p = 0.048; r = 0.550, p = 0.022). Conclusion The present study highlight that decreased spontaneous neural activities and abnormal FC exhibited in the patients with anti-NMDAR encephalitis, which may participate in the process of cognition and emotion deficits. These results may help to elucidate the clinical radiological contradictions in anti-NMDAR encephalitis and contribute to deeper understanding of the pathophysiological mechanism of the disease.
Collapse
Affiliation(s)
- Luhui Cai
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yanli Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huanjian Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
36
|
Transcranial direct current stimulation applied after encoding facilitates episodic memory consolidation in older adults. Neurobiol Learn Mem 2019; 163:107037. [PMID: 31202902 DOI: 10.1016/j.nlm.2019.107037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 02/04/2023]
Abstract
Episodic memory shows the largest degree of age-related memory decline. There is evidence that consolidation, the process that stabilizes memories after encoding, is reduced in older adults. Previous studies have shown that transcranial direct current stimulation (tDCS) applied during intentional encoding or immediately after a contextual reminder enhanced delayed episodic memory performance, suggesting a potential interaction between tDCS and consolidation or reconsolidation processes. The present randomized, double-blind, sham-controlled study addressed the question whether tDCS applied immediately after verbal encoding enhances episodic memory recall through consolidation in healthy older adults. Twenty-eight participants received tDCS (Active or Sham) over the prefrontal cortex (anode over the left dorsolateral prefrontal cortex and cathode over the contralateral supraorbital region), a brain region contributing to episodic memory function. Verbal recall was tested two days and one month later. The results showed that recall performance at one month was enhanced in the Active tDCS group relative to the Sham group. These findings suggest that tDCS applied off-line immediately after encoding over the prefrontal cortex interacts with the processes promoting consolidation of episodic memories in healthy older adults. Targeting consolidation by means of tDCS might be a novel strategy for reducing episodic memory decline.
Collapse
|
37
|
Xin H, Li H, Yu H, Yu J, Zhang J, Wang W, Peng D. Disrupted resting-state spontaneous neural activity in stable COPD. Int J Chron Obstruct Pulmon Dis 2019; 14:499-508. [PMID: 30880940 PMCID: PMC6398400 DOI: 10.2147/copd.s190671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction and aim Abnormal brain structure and function in COPD has been reported on MRI. However, the deficit in local synchronization of spontaneous activity in patients with stable COPD remains unknown. The main aim of the present study was to explore spontaneous brain activity in patients with COPD compared with normal controls using the regional homogeneity (ReHo) method based on resting-state functional MRI. Methods Nineteen patients with stable COPD and 20 well-matched (including age, sex, and number of years of education) normal controls who were recruited for the present study underwent resting-state functional MRI examinations and a series of neuropsychological and clinical assessments. The ReHo method was used to assess the strength of local brain signal synchrony. The mean ReHo values in brain areas with abnormal ReHo were evaluated with a receiver operating characteristic curve. The relationships between the brain regions with altered ReHo values and the clinical and neuropsychological parameters in COPD patients were assessed using Pearson’s correlation. Results Patients with COPD showed significantly lower ReHo values in the left occipital lobe and the right lingual, bilateral precuneus, and right precentral gyrus. The result of receiver operating characteristic curve analysis showed that the altered average ReHo values have high efficacy for distinguishing function. The mean lower ReHo values in the precuneus gyrus showed a significant positive correlation with FEV1%, FEV1/FVC, and orientation function but a significant negative correlation with arterial partial pressure of carbon dioxide. Conclusion The COPD patients demonstrated abnormal synchrony of regional spontaneous activity, and the regions with abnormal activity were all correlated with visual processing pathways, which might provide us with a new perspective to further understand the underlying pathophysiology of cognitive impairment in patients with COPD.
Collapse
Affiliation(s)
- Huizhen Xin
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China,
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China,
| | - Honghui Yu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China,
| | - Jingjing Yu
- Department of Respiratory, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China
| | - Juan Zhang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China,
| | - Wenjing Wang
- Department of Respiratory, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China,
| |
Collapse
|
38
|
Martini M, Zamarian L, Sachse P, Martini C, Delazer M. Wakeful resting and memory retention: a study with healthy older and younger adults. Cogn Process 2019; 20:125-131. [PMID: 30377871 PMCID: PMC6397711 DOI: 10.1007/s10339-018-0891-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/21/2018] [Indexed: 01/17/2023]
Abstract
Studies indicate that a brief period of wakeful rest after learning supports memory retention, whereas distraction weakens it. It is open for investigation whether advanced age has a significant effect on the impact of post-learning wakeful rest on memory retention for verbal information when compared to a cognitively demanding distraction task. In this study, we examined (1) whether post-learning rest promotes verbal memory retention in younger and older adults and (2) whether the magnitude of the rest benefit changes with increasing age. Younger adults and older adults learned and immediately recalled two consecutive word lists. After one word list, participants rested wakefully for 8 min; after the other list, they solved matrices. Memory performance was again tested in a surprise free recall test at the end of the experimental session. We found that, overall, younger adults outperformed older adults. Also, memory retention was higher following a wakeful rest phase compared to distraction. A detailed analysis revealed that this wakeful rest benefit was significant for the older adults group, whereas the younger adults group retained a similar amount of information in both post-encoding conditions. We assume that older adults can profit more from a wakeful rest phase after learning and are more prone to distraction than younger adults. With increasing age, a short break immediately after information uptake may help better retain the previously learned information, while distraction after learning tends to weaken memory retention.
Collapse
Affiliation(s)
- Markus Martini
- University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria.
| | - Laura Zamarian
- Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Pierre Sachse
- University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | | | - Margarete Delazer
- Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| |
Collapse
|
39
|
Risius OJ, Onur OA, Dronse J, von Reutern B, Richter N, Fink GR, Kukolja J. Neural Network Connectivity During Post-encoding Rest: Linking Episodic Memory Encoding and Retrieval. Front Hum Neurosci 2019; 12:528. [PMID: 30687046 PMCID: PMC6333856 DOI: 10.3389/fnhum.2018.00528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Commonly, a switch between networks mediating memory encoding and those mediating retrieval is observed. This may not only be due to differential involvement of neural resources due to distinct cognitive processes but could also reflect the formation of new memory traces and their dynamic change during consolidation. We used resting state fMRI to measure functional connectivity (FC) changes during post-encoding rest, hypothesizing that during this phase, new functional connections between encoding- and retrieval-related regions are created. Interfering and reminding tasks served as experimental modulators to corroborate that the observed FC differences indeed reflect changes specific to post-encoding rest. The right inferior occipital and fusiform gyri (active during encoding) showed increased FC with the left inferior frontal gyrus and the left middle temporal gyrus (MTG) during post-encoding rest. Importantly, the left MTG subsequently also mediated successful retrieval. This finding might reflect the formation of functional connections between encoding- and retrieval-related regions during undisturbed post-encoding rest. These connections were vulnerable to experimental modulation: Cognitive interference disrupted FC changes during post-encoding rest resulting in poorer memory performance. The presentation of reminders also inhibited FC increases but without affecting memory performance. Our results contribute to a better understanding of the mechanisms by which post-encoding rest bridges the gap between encoding- and retrieval-related networks.
Collapse
Affiliation(s)
- Okka J Risius
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Oezguer A Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Julian Dronse
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Boris von Reutern
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Nils Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Juraj Kukolja
- Department of Neurology and Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
| |
Collapse
|
40
|
Han Q, Yang J, Xiong H, Shang H. Voxel-based meta-analysis of gray and white matter volume abnormalities in spinocerebellar ataxia type 2. Brain Behav 2018; 8:e01099. [PMID: 30125476 PMCID: PMC6160648 DOI: 10.1002/brb3.1099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To identify the consistent findings from the whole-brain voxel-based morphometry (VBM) studies on spinocerebellar ataxia type 2 (SCA2). METHODS The whole-brain VBM studies comparing SCA2 patients and healthy controls (HCs) were systematically searched in PubMed, Embase databases from January 2000 to June 2017. The coordinates with significant differences in gray matter (GM) and white matter (WM) between SCA2 patients and HCs were extracted separately from each cluster. A meta-analysis was performed using anisotropic effect size-based signed differential mapping (AES-SDM) software. RESULTS A total of five studies with 65 SCA2 patients and 124 HCs were included in the GM meta-analysis. Four of the five studies with 50 SCA2 patients and 109 HCs were included in the WM meta-analysis. Significant and consistent GM volume reductions were detected in bilateral cerebellar hemispheres, cerebellar vermis, the right fusiform gyrus, the right parahippocampal gyrus, and the right lingual gyrus. The WM volume reductions were observed in bilateral cerebellar hemispheres, cerebellar vermis, middle cerebellar peduncles, pons, and bilateral cortico-spinal projections. The findings of the study remained largely unchanged in jackknife sensitivity analysis. CONCLUSIONS The consistent findings from our meta-analysis showed that GM volume reductions in SCA2 patients were not limited in cerebellum while significant WM volume reductions widely existed in cerebellum and pyramidal system. The findings provide morphological basis for further studies on SCA2.
Collapse
Affiliation(s)
- Qing Han
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Xiong
- Department of Geriatrics, The Fourth Affiliated Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Liu X, Chen W, Hou H, Chen X, Zhang J, Liu J, Guo Z, Bai G. Decreased functional connectivity between the dorsal anterior cingulate cortex and lingual gyrus in Alzheimer's disease patients with depression. Behav Brain Res 2017; 326:132-138. [DOI: 10.1016/j.bbr.2017.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/31/2022]
|