1
|
Bruno F, Laganà V, Di Lorenzo R, Bruni AC, Maletta R. Calabria as a Genetic Isolate: A Model for the Study of Neurodegenerative Diseases. Biomedicines 2022; 10:biomedicines10092288. [PMID: 36140389 PMCID: PMC9496333 DOI: 10.3390/biomedicines10092288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Although originally multi-ethnic in its structure, nowadays the Calabria region of southern Italy represents an area with low genetic heterogeneity and a high level of consanguinity that allows rare mutations to be maintained due to the founder effect. A complex research methodology—ranging from clinical activity to the genealogical reconstruction of families/populations across the centuries, the creation of databases, and molecular/genetic research—was modelled on the characteristics of the Calabrian population for more than three decades. This methodology allowed the identification of several novel genetic mutations or variants associated with neurodegenerative diseases. In addition, a higher prevalence of several hereditary neurodegenerative diseases has been reported in this population, such as Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, Niemann–Pick type C disease, spinocerebellar ataxia, Creutzfeldt–Jakob disease, and Gerstmann–Straussler–Scheinker disease. Here, we summarize and discuss the results of research data supporting the view that Calabria could be considered as a genetic isolate and could represent a model, a sort of outdoor laboratory—similar to very few places in the world—useful for the advancement of knowledge on neurodegenerative diseases.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence: (F.B.); (A.C.B.)
| | - Valentina Laganà
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| | | | - Amalia C. Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence: (F.B.); (A.C.B.)
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| |
Collapse
|
2
|
Kaur I, Behl T, Sehgal A, Singh S, Sharma N, Aleya L, Bungau S. Connecting the dots between mitochondrial dysfunction and Parkinson's disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37060-37081. [PMID: 34053042 DOI: 10.1007/s11356-021-14619-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Mitochondria are unique cell organelles, which exhibit multifactorial roles in numerous cell physiological processes, significantly preserving the integrity of neural synaptic interconnections, mediating ATP production, and regulating apoptotic signaling pathways and calcium homeostasis. Multiple neurological disorders occur as a consequence of impaired mitochondrial functioning, with greater sensitivity of dopaminergic (DA) neurons to mitochondrial dysfunction, due to oxidative nature and low mitochondrial mass, thus supporting the contribution of mitochondrial impairment in Parkinson's disorder (neuronal damage due to curbed dopamine levels). The pathophysiology of the second most common disorder, PD, is potentiated by various mitochondrial homeostasis regulating genes, as discussed in the review. The PD symptoms are known to be aggravated by multiple mitochondria-linked alterations, like reactive oxygen species (ROS) production, Ca2+ buffering, imbalanced mitochondrial dynamics (fission, fusion, mitophagy), biogenetic dysfunctions, disrupted mitochondrial membrane potential (MMP), protein aggregation, neurotoxins, and genetic mutations, which manifest the central involvement of unhealthy mitochondria in neurodegeneration, resulting in retarded DA neurons in region of substantia nigra pars compacta (SNpc), causing PD. Furthermore, the review tends to target altered mitochondrial components, like oxidative stress, inflammation, biogenetic alterations, impaired dynamics, uncontrolled homeostasis, and genetic mutations, to provide a sustainable and reliable alternative in PD therapeutics and to overcome the pitfalls of conventional therapeutic agents. Therefore, the authors elaborate the relationship between PD pathogenesis and mitochondrial dysfunctions, followed by a suitable mitochondria-targeting therapeutic portfolio, as well as future considerations, aiding the researchers to investigate novel strategies to mitigate the severity of the disease.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
3
|
Kee TR, Espinoza Gonzalez P, Wehinger JL, Bukhari MZ, Ermekbaeva A, Sista A, Kotsiviras P, Liu T, Kang DE, Woo JAA. Mitochondrial CHCHD2: Disease-Associated Mutations, Physiological Functions, and Current Animal Models. Front Aging Neurosci 2021; 13:660843. [PMID: 33967741 PMCID: PMC8100248 DOI: 10.3389/fnagi.2021.660843] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Rare mutations in the mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are associated with Parkinson's disease (PD) and other Lewy body disorders. CHCHD2 is a bi-organellar mediator of oxidative phosphorylation, playing crucial roles in regulating electron flow in the mitochondrial electron transport chain and acting as a nuclear transcription factor for a cytochrome c oxidase subunit (COX4I2) and itself in response to hypoxic stress. CHCHD2 also regulates cell migration and differentiation, mitochondrial cristae structure, and apoptosis. In this review, we summarize the known disease-associated mutations of CHCHD2 in Asian and Caucasian populations, the physiological functions of CHCHD2, how CHCHD2 mutations contribute to α-synuclein pathology, and current animal models of CHCHD2. Further, we discuss the necessity of continued investigation into the divergent functions of CHCHD2 and CHCHD10 to determine how mutations in these similar mitochondrial proteins contribute to different neurodegenerative diseases.
Collapse
Affiliation(s)
- Teresa R Kee
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, United States
| | | | - Jessica L Wehinger
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Mohammed Zaheen Bukhari
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Aizara Ermekbaeva
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Apoorva Sista
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Peter Kotsiviras
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Tian Liu
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - David E Kang
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States.,James A. Haley Veterans Administration Hospital, Tampa, FL, United States
| | - Jung-A A Woo
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
4
|
Ikeda A, Nishioka K, Meng H, Takanashi M, Hasegawa I, Inoshita T, Shiba-Fukushima K, Li Y, Yoshino H, Mori A, Okuzumi A, Yamaguchi A, Nonaka R, Izawa N, Ishikawa KI, Saiki H, Morita M, Hasegawa M, Hasegawa K, Elahi M, Funayama M, Okano H, Akamatsu W, Imai Y, Hattori N. Mutations in CHCHD2 cause α-synuclein aggregation. Hum Mol Genet 2019; 28:3895-3911. [DOI: 10.1093/hmg/ddz241] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/02/2023] Open
Abstract
Abstract
Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Hongrui Meng
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Masashi Takanashi
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Iwao Hasegawa
- University Center of Legal Medicine, Kanagawa Dental University, Kanagawa 238-8580, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Akio Mori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Ayami Okuzumi
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Akihiro Yamaguchi
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Risa Nonaka
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nana Izawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kei-ichi Ishikawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hidemoto Saiki
- Department of Neurology, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Osaka 530-8480, Japan
| | - Masayo Morita
- Department of Neurology, Jikei University Katsushika Medical Center, Tokyo 125-8506, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuko Hasegawa
- Department of Neurology, NHO Sagamihara National Hospital, Kanagawa 252-0392, Japan
| | - Montasir Elahi
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
5
|
Mitochondrial Dysfunction in Parkinson's Disease-Cause or Consequence? BIOLOGY 2019; 8:biology8020038. [PMID: 31083583 PMCID: PMC6627981 DOI: 10.3390/biology8020038] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
Abstract
James Parkinson first described the motor symptoms of the disease that took his name over 200 years ago. While our knowledge of many of the changes that occur in this condition has increased, it is still unknown what causes this neurodegeneration and why it only affects some individuals with advancing age. Here we review current literature to discuss whether the mitochondrial dysfunction we have detected in Parkinson’s disease is a pathogenic cause of neuronal loss or whether it is itself a consequence of dysfunction in other pathways. We examine research data from cases of idiopathic Parkinson’s with that from model systems and individuals with familial forms of the disease. Furthermore, we include data from healthy aged individuals to highlight that many of the changes described are also present with advancing age, though not normally in the presence of severe neurodegeneration. While a definitive answer to this question may still be just out of reach, it is clear that mitochondrial dysfunction sits prominently at the centre of the disease pathway that leads to catastrophic neuronal loss in those affected by this disease.
Collapse
|
6
|
A new CHCHD2 mutation identified in a southern italy patient with multiple system atrophy. Parkinsonism Relat Disord 2017; 47:91-93. [PMID: 29248339 DOI: 10.1016/j.parkreldis.2017.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/24/2017] [Accepted: 12/06/2017] [Indexed: 02/03/2023]
|
7
|
Abstract
PURPOSE OF REVIEW This article reviews was to review genes where putative or confirmed pathogenic mutations causing Parkinson's disease or Parkinsonism have been identified since 2012, and summarizes the clinical and pathological picture of the associated disease subtypes. RECENT FINDINGS Newly reported genes for dominant Parkinson's disease are DNAJC13, CHCHD2, and TMEM230. However, the evidence for a disease-causing role is not conclusive, and further genetic and functional studies are warranted. RIC3 mutations have been reported from one family but not yet encountered in other patients. New genes for autosomal recessive disease include SYNJ1, DNAJC6, VPS13C, and PTRHD1. Deletions of a region on chromosome 22 (22q11.2del) are also associated with early-onset PD, but the mode of inheritance and the underlying causative gene remain unclear. PODXL mutations were reported in autosomal recessive PD, but their roles remain to be confirmed. Mutations in RAB39B cause an X-linked Parkinsonian disorder. Mutations in the new dominant PD genes have generally been found in medium- to late-onset Parkinson's disease. Many mutations in the new recessive and X-chromosomal genes cause severe atypical juvenile Parkinsonism, but less devastating mutations in these genes may cause PD.
Collapse
Affiliation(s)
- Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden.
- Department for Neurology, Skåne University Hospital, Getingevägen 4, 224 67, Lund, Sweden.
| |
Collapse
|
8
|
MNRR1, a Biorganellar Regulator of Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6739236. [PMID: 28685009 PMCID: PMC5480048 DOI: 10.1155/2017/6739236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/09/2017] [Indexed: 12/12/2022]
Abstract
The central role of energy metabolism in cellular activities is becoming widely recognized. However, there are many gaps in our knowledge of the mechanisms by which mitochondria evaluate their status and call upon the nucleus to make adjustments. Recently, a protein family consisting of twin CX9C proteins has been shown to play a role in human pathophysiology. We focus here on two family members, the isoforms CHCHD2 (renamed MNRR1) and CHCHD10. The better studied isoform, MNRR1, has the unusual property of functioning in both the mitochondria and the nucleus and of having a different function in each. In the mitochondria, it functions by binding to cytochrome c oxidase (COX), which stimulates respiration. Its binding to COX is promoted by tyrosine-99 phosphorylation, carried out by ABL2 kinase (ARG). In the nucleus, MNRR1 binds to a novel promoter element in COX4I2 and itself, increasing transcription at 4% oxygen. We discuss mutations in both MNRR1 and CHCHD10 found in a number of chronic, mostly neurodegenerative, diseases. Finally, we propose a model of a graded response to hypoxic and oxidative stresses, mediated under different oxygen tensions by CHCHD10, MNRR1, and HIF1, which operate at intermediate and very low oxygen concentrations, respectively.
Collapse
|