1
|
Kohama SG, Urbanski HF. The aged female rhesus macaque as a translational model for human menopause and hormone therapy. Horm Behav 2024; 166:105658. [PMID: 39531811 PMCID: PMC11602343 DOI: 10.1016/j.yhbeh.2024.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Progress in understanding the causes of physiological and behavioral changes in post-menopausal women is hampered by the paucity of animal models that accurately recapitulate these age-associated changes. Here we evaluate the translational potential of female rhesus macaques (Macaca mulatta). Like women, these long-lived diurnal primates show marked neuroendocrine changes during aging, as well as perturbed sleep-wake cycles and cognitive decline. Furthermore, the brains of old rhesus macaques show some of the same pathological hallmarks of Alzheimer's disease as do humans, including amyloidosis and tauopathology. Importantly, unlike humans, rhesus macaques can be maintained under tightly controlled environmental conditions, such as photoperiod, temperature and diet, and tissues can be collected with zero postmortem interval; this makes them especially suitable for studies aimed at elucidating underlying molecular mechanisms. Recent findings from female macaques are helping to elucidate how sex-steroids influence gene expression within the brain and contribute to the maintenance of cognitive function and amelioration of age-associated pathologies. Taken together, these findings emphasize the translational value of female rhesus macaques as a model for elucidating causal mechanisms that underlie normative and pathological changes in post-menopausal women. They also provide a pragmatic platform upon which to develop safe and effective therapies.
Collapse
Affiliation(s)
- Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| |
Collapse
|
2
|
Lomniczi A, Luna SL, Cervera-Juanes R, Appleman ML, Kohama SG, Urbanski HF. Age-related increase in the expression of 11β-hydroxysteroid dehydrogenase type 1 in the hippocampus of male rhesus macaques. Front Aging Neurosci 2024; 16:1328543. [PMID: 38560025 PMCID: PMC10978655 DOI: 10.3389/fnagi.2024.1328543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction The hippocampus is especially susceptible to age-associated neuronal pathologies, and there is concern that the age-associated rise in cortisol secretion from the adrenal gland may contribute to their etiology. Furthermore, because 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1) catalyzes the reduction of cortisone to the active hormone cortisol, it is plausible that an increase in the expression of this enzyme enhances the deleterious impact of cortisol in the hippocampus and contributes to the neuronal pathologies that underlie cognitive decline in the elderly. Methods Rhesus macaques were used as a translational animal model of human aging, to examine age-related changes in gene and protein expressions of (HSD11B1/HSD11B1) in the hippocampus, a region of the brain that plays a crucial role in learning and memory. Results Older animals showed significantly (p < 0.01) higher base-line cortisol levels in the circulation. In addition, they showed significantly (p < 0.05) higher hippocampal expression of HSD11B1 but not NR3C1 and NR3C2 (i.e., two receptor-encoding genes through which cortisol exerts its physiological actions). A similar age-related significant (p < 0.05) increase in the expression of the HSD11B1 was revealed at the protein level by western blot analysis. Discussion The data suggest that an age-related increase in the expression of hippocampal HSD11B1 is likely to raise cortisol concentrations in this cognitive brain area, and thereby contribute to the etiology of neuropathologies that ultimately lead to neuronal loss and dementia. Targeting this enzyme pharmacologically may help to reduce the negative impact of elevated cortisol concentrations within glucocorticoid-sensitive brain areas and thereby afford neuronal protection.
Collapse
Affiliation(s)
- Alejandro Lomniczi
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Selva L. Luna
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Rita Cervera-Juanes
- Department of Physiology and Pharmacology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Maria-Luisa Appleman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
3
|
Appleman ML, Thomas JL, Weiss AR, Nilaver BI, Cervera-Juanes R, Kohama SG, Urbanski HF. Effect of hormone replacement therapy on amyloid beta (Aβ) plaque density in the rhesus macaque amygdala. Front Aging Neurosci 2024; 15:1326747. [PMID: 38274989 PMCID: PMC10808750 DOI: 10.3389/fnagi.2023.1326747] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Background Amyloid beta (Aβ) plaque density was examined in the amygdala of rhesus macaques, to elucidate the influence of age, diet and hormonal environment. Methods Luminex technology was used to measure cerebrospinal fluid (CSF) concentrations of Aβ40 and Aβ42 across three decades, while immunohistochemistry was used to examine Aβ plaque density in the amygdala. Results Aβ40 was found to be the predominant isoform of Aβ in the CSF, but neither Aβ40 or Aβ42 concentrations showed an age-related change, and the ratio of Aβ42 to Aβ40 showed only a marginal increase. Significantly fewer Aβ plaques were detected in the amygdala of old ovariectomized animals if they received estradiol HRT (p < 0.001); similar results were obtained regardless of whether they had been maintained on a regular monkey chow for ∼48 months or on a high-fat, high-sugar, Western-style diet for ∼30 months. Conclusion The results demonstrate that HRT involving estrogen can reduce Aβ plaque load in a cognitive brain region of aged non-human primates. The results from this translational animal model may therefore have clinical relevance to the treatment of AD in post-menopausal women, whether used alone, or as a supplement to current pharmacological and monoclonal antibody-based interventions.
Collapse
Affiliation(s)
- Maria-Luisa Appleman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jeremy L. Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Alison R. Weiss
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Benjamin I. Nilaver
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Rita Cervera-Juanes
- Department of Physiology and Pharmacology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
4
|
Weiss AR, Urbanski HF. Effect of short-term androgen supplementation on cognitive performance in older male rhesus macaques. Neurobiol Aging 2023; 132:246-249. [PMID: 37866084 PMCID: PMC10842314 DOI: 10.1016/j.neurobiolaging.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Old male rhesus macaques often show cognitive impairment, and also have attenuated circulating levels of testosterone and dehydroepiandrosterone sulfate (DHEAS). However, it is unclear if these age-associated decreases in circulating androgen levels are casually related to mechanisms that support cognition. To test this possibility, old male rhesus macaques were given daily supplements of testosterone and DHEA for ∼7 months, using a paradigm designed to mimic the 24-hour circulating hormone patterns of young adults. Animals completed the Delayed Match-to-Sample (DMS) task to assess recognition, and the Delayed Response (DR) task to assess working memory. The animals all showed significant delay-dependent performance, with longer delays resulting in lower accuracy; and timepoint-dependent performance, showing improvement with the repeated opportunities for practice. However, there were no differences between the androgen supplemented animals and age-matched controls. These data indicate that the specific short-term supplementation paradigm employed here offers no obvious benefits for DMS or DR task performance.
Collapse
Affiliation(s)
- Alison Ruth Weiss
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA.
| | - Henryk Francis Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
5
|
Eghlidi DH, Luna SL, Brown DI, Garyfallou VT, Kohama SG, Urbanski HF. Gene expression profiling of the SCN in young and old rhesus macaques. J Mol Endocrinol 2018; 61:57-67. [PMID: 29743294 PMCID: PMC6054827 DOI: 10.1530/jme-18-0062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/11/2022]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) is the location of a master circadian pacemaker. It receives photic signals from the environment via the retinal hypothalamic tract, which play a key role in synchronizing the body's endogenously generated circadian rhythms with the 24-h rhythm of the environment. Therefore, it is plausible that age-related changes within the SCN contribute to the etiology of perturbed activity-rest cycles that become prevalent in humans during aging. To test this hypothesis, we used gene arrays and quantitative RT-PCR to profile age-related gene expression changes within the SCN of male rhesus macaques - a pragmatic translational animal model of human aging, which similarly displays an age-related attenuation of daytime activity levels. As expected, the SCN showed high expression of arginine vasopressin, vasoactive intestinal polypeptide, calbindin and nuclear receptor subfamily 1, group D, member 1 (NR1D1) (also known as reverse strand of ERBA (REV-ERBα), both at the mRNA and protein level. However, no obvious difference was detected between the SCNs of young (7-12 years) and old animals (21-26 years), in terms of the expression of core clock genes or genes associated with SCN signaling and neurotransmission. These data demonstrate the resilience of the primate SCN to normal aging, at least at the transcriptional level and, at least in males, suggest that age-related disruption of activity-rest cycles in humans may instead stem from changes within other components of the circadian system, such as desynchronization of subordinate oscillators in other parts of the body.
Collapse
Affiliation(s)
- Dominique H Eghlidi
- Department of Neurology and Division of Sleep MedicineHarvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Selva L Luna
- Escuela de Química y FarmaciaFacultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Donald I Brown
- Instituto de BiologíaFacultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Vasilios T Garyfallou
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
| | - Steven G Kohama
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
| | - Henryk F Urbanski
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
- Department of Behavioral NeuroscienceOregon Health & Science University, Portland, Oregon, USA
- Department of Physiology & PharmacologyOregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Eghlidi DH, Garyfallou VT, Kohama SG, Urbanski HF. Age-associated gene expression changes in the arcuate nucleus of male rhesus macaques. J Mol Endocrinol 2017; 59:141-149. [PMID: 28615280 PMCID: PMC5553588 DOI: 10.1530/jme-17-0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/14/2017] [Indexed: 11/08/2022]
Abstract
The hypothalamic arcuate nucleus (ARC) represents a major component of the neuroendocrine reproductive axis and plays an important role in controlling the onset of puberty as well as age-associated reproductive senescence. Although significant gene expression changes have been observed in the ARC during sexual maturation, it is unclear what changes occur during aging, especially in males. Therefore, in the present study, we profiled the expression of reproduction-related genes in the ARC of young and old male rhesus macaques, as well as old males that had received 6 months of hormone supplementation (HS) in the form of daily testosterone and dehydroepiandrosterone; we also compared morning vs night ARC gene expression in the old males. Using Affymetrix gene microarrays, we found little evidence for age-associated expression changes for genes associated with the neuroendocrine reproductive axis, whereas using qRT-PCR, we detected a similar age-associated decrease in PGR (progesterone receptor) that we previously observed in postmenopausal females. We also detected a sex-steroid-dependent and age-associated decrease in androgen receptor (AR) expression, with highest AR levels being expressed at night (i.e., coinciding with the natural peak in daily testosterone secretion). Finally, unlike previous observations made in females, we did not find a significant age-associated increase in KISS1 (Kisspeptin) or TAC3 (Neurokinin B) expression in the ARC of males, most likely because the attenuation of circulating sex-steroid levels in the males was much less than that in postmenopausal females. Taken together, the data highlight some similarities and differences in ARC gene expression between aged male and female nonhuman primates.
Collapse
Affiliation(s)
- Dominique H Eghlidi
- Department of Neurology and Division of Sleep MedicineHarvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Vasilios T Garyfallou
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
| | - Steven G Kohama
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
| | - Henryk F Urbanski
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
- Division of Reproductive & Developmental SciencesOregon National Primate Research Center, Beaverton, Oregon, USA
- Department of Behavioral NeuroscienceOregon Health & Science University, Portland, Oregon, USA
- Department of Physiology & PharmacologyOregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|