1
|
Vanderlip CR, Jutras ML, Asch PA, Zhu SY, Lerma MN, Buffalo EA, Glavis-Bloom C. Parallel patterns of age-related working memory impairment in marmosets and macaques. Aging (Albany NY) 2025; 17:778-797. [PMID: 40131878 PMCID: PMC11984434 DOI: 10.18632/aging.206225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
As humans age, some experience cognitive impairment while others do not. When impairment does occur, it is not expressed uniformly across cognitive domains and varies in severity across individuals. Translationally relevant model systems are critical for understanding the neurobiological drivers of this variability, which is essential to uncovering the mechanisms underlying the brain's susceptibility to the effects of aging. As such, non-human primates (NHPs) are particularly important due to shared behavioral, neuroanatomical, and age-related neuropathological features with humans. For many decades, macaque monkeys have served as the primary NHP model for studying the neurobiology of cognitive aging. More recently, the common marmoset has emerged as an advantageous model for this work due to its short lifespan that facilitates longitudinal studies. Despite their growing popularity as a model, whether marmosets exhibit patterns of age-related cognitive impairment comparable to those observed in macaques and humans remains unexplored. To address this major limitation for the development and evaluation of the marmoset as a model of cognitive aging, we directly compared working memory ability as a function of age in macaques and marmosets on the identical task. We also implemented varying delays to further tax working memory capacity. Our findings demonstrate that marmosets and macaques exhibit remarkably similar age-related working memory deficits, with macaques performing better than marmosets on longer delays. These results highlight the similarities and differences between the two most commonly used NHP models and support the value of the marmoset as a model for cognitive aging research within the neuroscience community.
Collapse
Affiliation(s)
- Casey R. Vanderlip
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Megan L. Jutras
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Payton A. Asch
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Stephanie Y. Zhu
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Monica N. Lerma
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth A. Buffalo
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Courtney Glavis-Bloom
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Chen Y, Menegas W, Zhang Q, Feng G. Common marmoset: An emerging non-human primate model for translational applications in brain disorders. Curr Opin Neurobiol 2025; 92:102998. [PMID: 40090137 DOI: 10.1016/j.conb.2025.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
One of the fundamental challenges for modern neuroscience has been to translate discoveries from model organisms into effective therapeutics for human brain disorders. This challenge partly arises from the structural and functional differences between rodent and human brains [1]. To bridge this gap, non-human primates (NHPs) can be used as an intermediate step because of their genetic, physiological, and behavioral similarities to humans. Among NHPs, the common marmoset has become a valuable animal model in neuroscience research due to its fast generation time and unique biological and behavioral characteristics [2]. In this review, we first summarize the progress toward developing models for brain disorders. We then discuss emerging technologies and resources that will help advance our understanding of the neurobiological mechanisms underlying different brain disorders using marmoset genetic models. Finally, we describe using marmoset models to test novel therapeutic approaches such as gene therapy and neural circuit manipulation.
Collapse
Affiliation(s)
- Yefei Chen
- Yang Tan Collective, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - William Menegas
- Yang Tan Collective, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Qiangge Zhang
- Yang Tan Collective, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Guoping Feng
- Yang Tan Collective, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
3
|
Scott JT, Mendivez Vasquez BL, Stewart BJ, Panacheril DD, Rajit DKJ, Fan AY, Bourne JA. CalliCog: an open-source cognitive neuroscience toolkit for freely behaving nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625450. [PMID: 39651268 PMCID: PMC11623578 DOI: 10.1101/2024.11.26.625450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Nonhuman primates (NHPs) are pivotal for unlocking the complexities of human cognition, yet traditional cognitive studies remain constrained to specialized laboratories. To revolutionize this paradigm, we present CalliCog : an open-source, scalable in-cage platform tailored for freely behaving experiments in small primate species such as the common marmoset ( Callithrix jacchus ). CalliCog includes modular operant chambers that operate autonomously and integrate seamlessly with home cages, eliminating human intervention. Our results showcase the power of CalliCog to train experimentally naïve marmosets in touchscreen-based cognitive tasks. Remarkably, across two independent facilities, marmosets achieved touchscreen proficiency within two weeks and successfully completed tasks probing behavioral flexibility and working memory. Moreover, CalliCog enabled precise synchronization of behavioral data with electrocorticography (ECoG) recordings from freely moving animals, opening new frontiers for neurobehavioral research. By making CalliCog openly accessible, we aim to democratize cognitive experimentation with small NHPs, narrowing the translational gap between preclinical models and human cognition. Motivation Cognitive neuroscience research involving nonhuman primates (NHPs) has traditionally been confined to a few highly specialized laboratories equipped with advanced infrastructure, expert knowledge, and specialized resources for housing and testing these animals. The common marmoset ( Callithrix jacchus ), a small NHP species, has gained popularity in cognitive research due to its ability to address some of these challenges. However, behavioral studies in marmosets remain labor-intensive and restricted mainly to experts in the field, making them less accessible to the broader scientific community. To address these barriers, we introduce an open and accessible platform designed for automated cognitive experiments in home cage settings with marmosets. This system supports the integration of cognitive behavioral analysis with wireless neural recordings, is cost-effective, and requires minimal technical expertise to build and operate.
Collapse
|
4
|
Homanics GE. Exploratory studies of ethanol drinking in the white-tufted marmoset (Callithrix jacchus). Alcohol 2024; 120:99-107. [PMID: 38971210 DOI: 10.1016/j.alcohol.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The white-tufted marmoset is a small, nonhuman primate that is rapidly gaining popularity as a model organism, especially for neuroscience research. To date, little work in the alcohol research field has utilized the marmoset. As a step toward establishing the marmoset as a research model for alcohol experimentation, a series of exploratory studies were undertaken to characterize ethanol drinking behavior. A voluntary drinking paradigm was established whereby the common marmoset would consume pharmacologically relevant amounts of ethanol. To facilitate ethanol consumption, ethanol was mixed with a marshmallow flavored solution (hereafter called marshmallow juice) to mask the presumed adverse taste of ethanol. Using marshmallow juice flavored solutions, marmosets readily consumed ethanol up to 1 g/kg during 10 min binge-like drinking sessions or up to 5 g/kg during ∼4 h drinking sessions. Consumption of 1.0-1.5 g/kg during a 30 min session resulted in blood ethanol concentrations of 49-73 mg/dl, which are predicted to be pharmacologically relevant. In animals that were stably consuming ethanol in marshmallow juice, gradually reducing the concentration of the marshmallow juice flavoring resulted in markedly reduced ethanol consumption. Lastly, when offered a choice between ethanol in marshmallow juice and marshmallow juice alone, marmosets displayed a very strong preference for the marshmallow juice solution without ethanol. From these studies, it is concluded that marmosets will voluntarily consume ethanol if the taste is masked with a sweet solution such as marshmallow juice. These studies represent the first report of alcohol consumption and preference in the white-tufted marmoset.
Collapse
Affiliation(s)
- Gregg E Homanics
- Departments of Anesthesiology & Perioperative Medicine, Neurobiology, and Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave, Pittsburgh, PA 15261, USA.
| |
Collapse
|
5
|
Zhang C, Jia Q, Zhu L, Hou J, Wang X, Li D, Zhang J, Zhang Y, Yang S, Tu Z, Yan X, Yang W, Li S, Li X, Yin P. Suppressing UBE2N ameliorates Alzheimer's disease pathology through the clearance of amyloid beta. Alzheimers Dement 2024; 20:6287-6304. [PMID: 39015037 PMCID: PMC11497675 DOI: 10.1002/alz.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Aging is one of the risk factors for the early onset of Alzheimer's disease (AD). We previously discovered that the age-dependent increase in Ubiquitin Conjugating Enzyme E2 N (UBE2N) plays a role in the accumulation of misfolded proteins through K63 ubiquitination, which has been linked to AD pathogenesis. However, the impact of UBE2N on amyloid pathology and clearance has remained unknown. RESULTS We observed the elevated UBE2N during the amyloid beta (Aβ) generation in the brains of 5×FAD, APP/PS1 mice, and patients with AD, in comparison to healthy individuals. UBE2N overexpression exacerbated amyloid deposition in 5×FAD mice and senescent monkeys, whereas knocking down UBE2N via CRISPR/Cas9 reduced Aβ generation and cognitive deficiency. Moreover, pharmacological inhibition of UBE2N ameliorated Aβ pathology and subsequent transcript defects in 5×FAD mice. DISCUSSION We have discovered that age-dependent expression of UBE2N is a critical regulator of AD pathology. Our findings suggest that UBE2N could serve as a potential pharmacological target for the advancement of AD therapeutics. HIGHLIGHTS Ubiquitin Conjugating Enzyme E2 N (UBE2N) level was elevated during amyloid beta (Aβ) deposition in AD mouse and patients' brains. UBE2N exacerbated Aβ generation in the AD mouse and senescent monkey. Drug inhibition of UBE2N ameliorated Aβ pathology and cognitive deficiency.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Longhong Zhu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Junqi Hou
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Dandan Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Jiawei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Yiran Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Su Yang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Zhuchi Tu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiao‐Xin Yan
- Department of Anatomy and NeurobiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Weili Yang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiao‐Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| |
Collapse
|
6
|
Vanderlip CR, Asch PA, Glavis-Bloom C. The Common Marmoset as a Translational Model for Longitudinal Studies of Cognitive Aging and Individual Vulnerability to Decline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609213. [PMID: 39229239 PMCID: PMC11370559 DOI: 10.1101/2024.08.22.609213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
In humans, cognitive aging is highly variable, with some individuals experiencing decline while others remain stable, and different cognitive domains exhibiting uneven vulnerability to aging. The neural mechanisms driving this intra- and inter-individual variability are not fully understood, making longitudinal studies in translational models essential for elucidating the timelines and processes involved. The common marmoset (Callithrix jacchus), a short-lived nonhuman primate, offers an unprecedented opportunity to conduct longitudinal investigations of aging and age-related disease over a condensed time frame, in a highly translatable animal model. The potential of the marmoset as a model for cognitive aging is indisputable, but a comprehensive cognitive battery tailored for longitudinal aging studies has not yet been developed, applied, or validated. This represents a critical missing piece for evaluating the marmoset as a model and understanding the extent to which marmoset cognitive aging mirrors the patterns found in humans, including whether marmosets have individual variability in their vulnerability to age-related cognitive decline. To address this, we developed a comprehensive touchscreen-based neuropsychological test battery for marmosets (MarmoCog), targeting five cognitive domains: working memory, stimulus-reward association learning, cognitive flexibility, motor speed, and motivation. We tested a large cohort of marmosets, ranging from young adults to geriatrics, over several years. We found significant variability in cognitive aging, with the greatest decline occurring in domains dependent on the prefrontal cortex and hippocampus. Additionally, we observed significant inter-individual variability in vulnerability to age-related cognitive decline: some marmosets declined across multiple domains, others in just one, and some showed no decline at all. This pattern mirrors human cognitive aging, solidifies the marmoset as an advantageous model for age-related cognitive decline, and provides a strong foundation for identifying the neural mechanisms involved.
Collapse
Affiliation(s)
- Casey R. Vanderlip
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Payton A. Asch
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Courtney Glavis-Bloom
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
7
|
Vanderlip CR, Jutras ML, Asch PA, Zhu SY, Lerma MN, Buffalo EA, Glavis-Bloom C. Parallel patterns of cognitive aging in marmosets and macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604411. [PMID: 39091859 PMCID: PMC11291085 DOI: 10.1101/2024.07.22.604411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
As humans age, some experience cognitive impairment while others do not. When impairment does occur, it is not expressed uniformly across cognitive domains and varies in severity across individuals. Translationally relevant model systems are critical for understanding the neurobiological drivers of this variability, which is essential to uncovering the mechanisms underlying the brain's susceptibility to the effects of aging. As such, non-human primates are particularly important due to shared behavioral, neuroanatomical, and age-related neuropathological features with humans. For many decades, macaque monkeys have served as the primary non-human primate model for studying the neurobiology of cognitive aging. More recently, the common marmoset has emerged as an advantageous model for this work due to its short lifespan that facilitates longitudinal studies. Despite their growing popularity as a model, whether marmosets exhibit patterns of age-related cognitive impairment comparable to those observed in macaques and humans remains unexplored. To address this major limitation for the development and evaluation of the marmoset as a model of cognitive aging, we directly compared working memory ability as a function of age in macaques and marmosets on the identical working memory task. Our results demonstrate that marmosets and macaques exhibit remarkably similar age-related working memory deficits, highlighting the value of the marmoset as a model for cognitive aging research within the neuroscience community.
Collapse
Affiliation(s)
- Casey R. Vanderlip
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Megan L. Jutras
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Payton A. Asch
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Stephanie Y. Zhu
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Monica N. Lerma
- Washington National Primate Research Center, Seattle, WA, USA
- Department of Brain Science, Allen Institute for Brain Science, Seattle, WA, USA
| | - Elizabeth A. Buffalo
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Courtney Glavis-Bloom
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
8
|
Murai T, Bailey L, Schultz L, Mongeau L, DeSana A, Silva AC, Roberts AC, Sukoff Rizzo SJ. Improving preclinical to clinical translation of cognitive function for aging-related disorders: the utility of comprehensive touchscreen testing batteries in common marmosets. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:325-348. [PMID: 38200282 PMCID: PMC11039501 DOI: 10.3758/s13415-023-01144-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Concerns about poor animal to human translation have come increasingly to the fore, in particular with regards to cognitive improvements in rodent models, which have failed to translate to meaningful clinical benefit in humans. This problem has been widely acknowledged, most recently in the field of Alzheimer's disease, although this issue pervades the spectrum of central nervous system (CNS) disorders, including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Consequently, recent efforts have focused on improving preclinical to clinical translation by incorporating more clinically analogous outcome measures of cognition, such as touchscreen-based assays, which can be employed across species, and have great potential to minimize the translational gap. For aging-related research, it also is important to incorporate model systems that facilitate the study of the long prodromal phase in which cognitive decline begins to emerge and which is a major limitation of short-lived species, such as laboratory rodents. We posit that to improve translation of cognitive function and dysfunction, nonhuman primate models, which have conserved anatomical and functional organization of the primate brain, are necessary to move the field of translational research forward and to bridge the translational gaps. The present studies describe the establishment of a comprehensive battery of touchscreen-based tasks that capture a spectrum of domains sensitive to detecting aging-related cognitive decline, which will provide the greatest benefit through longitudinal evaluation throughout the prolonged lifespan of the marmoset.
Collapse
Affiliation(s)
- Takeshi Murai
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Bailey
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura Schultz
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Mongeau
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrew DeSana
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh School of Medicine, 514A Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Stacey J Sukoff Rizzo
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh School of Medicine, 514A Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
9
|
Mougin C, Chataigner M, Lucas C, Leyrolle Q, Pallet V, Layé S, Bouvret E, Dinel AL, Joffre C. Dietary Marine Hydrolysate Improves Memory Performance and Social Behavior through Gut Microbiota Remodeling during Aging. Foods 2023; 12:4199. [PMID: 38231613 DOI: 10.3390/foods12234199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 01/19/2024] Open
Abstract
Aging is characterized by a decline in social behavior and cognitive functions leading to a decrease in life quality. In a previous study, we show that a fish hydrolysate supplementation prevents age-related decline in spatial short-term memory and long-term memory and anxiety-like behavior and improves the stress response in aged mice. The aim of this study was to determine the effects of a fish hydrolysate enriched with EPA/DHA or not on the cognitive ability and social interaction during aging and the biological mechanisms involved. We showed for the first time that a fish hydrolysate enriched with EPA/DHA or not improved memory performance and preference for social novelty that were diminished by aging. These changes were associated with the modulation of the gut microbiota, normalization of corticosterone, and modulation of the expression of genes involved in the mitochondrial respiratory chain, circadian clock, neuroprotection, and antioxidant activity. Thus, these changes may contribute to the observed improvements in social behavior and memory and reinforced the innovative character of fish hydrolysate in the prevention of age-related impairments.
Collapse
Affiliation(s)
- Camille Mougin
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
- Abyss Ingredients, 56850 Caudan, France
| | - Mathilde Chataigner
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
- Abyss Ingredients, 56850 Caudan, France
| | - Céline Lucas
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
- NutriBrain Research and Technology Transfer, NutriNeuro, 33076 Bordeaux, France
| | - Quentin Leyrolle
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
| | - Véronique Pallet
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
| | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
| | | | - Anne-Laure Dinel
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
- NutriBrain Research and Technology Transfer, NutriNeuro, 33076 Bordeaux, France
| | - Corinne Joffre
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
| |
Collapse
|
10
|
Rothwell ES, Carp SB, Bliss-Moreau E. The importance of social behavior in nonhuman primate studies of aging: A mini-review. Neurosci Biobehav Rev 2023; 154:105422. [PMID: 37806369 PMCID: PMC10716830 DOI: 10.1016/j.neubiorev.2023.105422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Social behavior plays an important role in supporting both psychological and physical health across the lifespan. People's social lives change as they age, and the nature of these changes differ based on whether people are on healthy aging trajectories or are experiencing neurodegenerative diseases that cause dementia, such as Alzheimer's disease and Parkinson's disease. Nonhuman primate models of aging have provided a base of knowledge comparing aging trajectories in health and disease, but these studies rarely emphasize social behavior changes as a consequence of the aging process. What data exist hold particular value, as negative effects of disease and aging on social behavior are likely to have disproportionate impacts on quality of life. In this mini review, we examine the literature on nonhuman primate models of aging with a focus on social behavior, in the context of both health and disease. We propose that adopting a greater focus on social behavior outcomes in nonhuman primates will improve our understanding of the intersection of health, aging and sociality in humans.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Neurobiology, School of Medicine University of Pittsburgh, 3501 Fifth Avenue, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA.
| | - Sarah B Carp
- Neuroscience & Behavior Unit, California National Primate Research Center, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA
| | - Eliza Bliss-Moreau
- Neuroscience & Behavior Unit, California National Primate Research Center, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA; Department of Psychology, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA
| |
Collapse
|
11
|
Vanderlip CR, Asch PA, Reynolds JH, Glavis-Bloom C. Domain-Specific Cognitive Impairment Reflects Prefrontal Dysfunction in Aged Common Marmosets. eNeuro 2023; 10:ENEURO.0187-23.2023. [PMID: 37553239 PMCID: PMC10444537 DOI: 10.1523/eneuro.0187-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Age-related cognitive impairment is not expressed uniformly across cognitive domains. Cognitive functions that rely on brain areas that undergo substantial neuroanatomical changes with age often show age-related impairment, whereas those that rely on brain areas with minimal age-related change typically do not. The common marmoset has grown in popularity as a model for neuroscience research, but robust cognitive phenotyping, particularly as a function of age and across multiple cognitive domains, is lacking. This presents a major limitation for the development and evaluation of the marmoset as a model of cognitive aging and leaves open the question of whether they exhibit age-related cognitive impairment that is restricted to some cognitive domains, as in humans. In this study, we characterized stimulus-reward association learning and cognitive flexibility in young adults to geriatric marmosets using a Simple Discrimination task and a Serial Reversal task, respectively. We found that aged marmosets show transient impairment in learning-to-learn but have conserved ability to form stimulus-reward associations. Furthermore, aged marmosets have impaired cognitive flexibility driven by susceptibility to proactive interference. As these impairments are in domains critically dependent on the prefrontal cortex, our findings support prefrontal cortical dysfunction as a prominent feature of neurocognitive aging. This work positions the marmoset as a key model for understanding the neural underpinnings of cognitive aging.
Collapse
Affiliation(s)
- Casey R Vanderlip
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Payton A Asch
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - John H Reynolds
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Courtney Glavis-Bloom
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
12
|
Glavis-Bloom C, Vanderlip CR, Asch PA, Reynolds JH. Domain-specific cognitive impairment reflects prefrontal dysfunction in aged common marmosets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541766. [PMID: 37292989 PMCID: PMC10245905 DOI: 10.1101/2023.05.22.541766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Age-related cognitive impairment is not expressed uniformly across cognitive domains. Cognitive functions that rely on brain areas that undergo substantial neuroanatomical changes with age often show age-related impairment, while those that rely on brain areas with minimal age-related change typically do not. The common marmoset has grown in popularity as a model for neuroscience research, but robust cognitive phenotyping, particularly as a function of age and across multiple cognitive domains, is lacking. This presents a major limitation for the development and evaluation of the marmoset as a model of cognitive aging, and leaves open the question of whether they exhibit age-related cognitive impairment that is restricted to some cognitive domains, as in humans. In this study, we characterized stimulus-reward association learning and cognitive flexibility in young adults to geriatric marmosets using a Simple Discrimination and a Serial Reversal task, respectively. We found that aged marmosets show transient impairment in "learning-to-learn" but have conserved ability to form stimulus-reward associations. Furthermore, aged marmosets have impaired cognitive flexibility driven by susceptibility to proactive interference. Since these impairments are in domains critically dependent on the prefrontal cortex, our findings support prefrontal cortical dysfunction as a prominent feature of neurocognitive aging. This work positions the marmoset as a key model for understanding the neural underpinnings of cognitive aging. Significance Statement Aging is the greatest risk factor for neurodegenerative disease development, and understanding why is critical for the development of effective therapeutics. The common marmoset, a short-lived non-human primate with neuroanatomical similarity to humans, has gained traction for neuroscientific investigations. However, the lack of robust cognitive phenotyping, particularly as a function of age and across multiple cognitive domains limits their validity as a model for age-related cognitive impairment. We demonstrate that aging marmosets, like humans, have impairment that is specific to cognitive domains reliant on brain areas that undergo substantial neuroanatomical changes with age. This work validates the marmoset as a key model for understanding region-specific vulnerability to the aging process.
Collapse
Affiliation(s)
- Courtney Glavis-Bloom
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Casey R Vanderlip
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Payton A Asch
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - John H Reynolds
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| |
Collapse
|
13
|
Rodríguez-Callejas JD, Fuchs E, Perez-Cruz C. Atrophic astrocytes in aged marmosets present tau hyperphosphorylation, RNA oxidation, and DNA fragmentation. Neurobiol Aging 2023; 129:121-136. [PMID: 37302213 DOI: 10.1016/j.neurobiolaging.2023.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes perform multiple essential functions in the brain showing morphological changes. Hypertrophic astrocytes are commonly observed in cognitively healthy aged animals, implying a functional defense mechanism without losing neuronal support. In neurodegenerative diseases, astrocytes show morphological alterations, such as decreased process length and reduced number of branch points, known as astroglial atrophy, with detrimental effects on neuronal cells. The common marmoset (Callithrix jacchus) is a non-human primate that, with age, develops several features that resemble neurodegeneration. In this study, we characterize the morphological alterations in astrocytes of adolescent (mean 1.75 y), adult (mean 5.33 y), old (mean 11.25 y), and aged (mean 16.83 y) male marmosets. We observed a significantly reduced arborization in astrocytes of aged marmosets compared to younger animals in the hippocampus and entorhinal cortex. These astrocytes also show oxidative damage to RNA and increased nuclear plaques in the cortex and tau hyperphosphorylation (AT100). Astrocytes lacking S100A10 protein show a more severe atrophy and DNA fragmentation. Our results demonstrate the presence of atrophic astrocytes in the brains of aged marmosets.
Collapse
Affiliation(s)
- Juan D Rodríguez-Callejas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Department of Pharmacology, Mexico City, Mexico
| | - Eberhard Fuchs
- German Primate Center, Leibniz-Institute of Primate Research, Göttingen, Germany
| | - Claudia Perez-Cruz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Department of Pharmacology, Mexico City, Mexico.
| |
Collapse
|
14
|
Wong RK, Selvanayagam J, Johnston KD, Everling S. Delay-related activity in marmoset prefrontal cortex. Cereb Cortex 2023; 33:3523-3537. [PMID: 35945687 PMCID: PMC10068290 DOI: 10.1093/cercor/bhac289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent delay-period activity in prefrontal cortex (PFC) has long been regarded as a neural signature of working memory (WM). Electrophysiological investigations in macaque PFC have provided much insight into WM mechanisms; however, a barrier to understanding is the fact that a portion of PFC lies buried within the principal sulcus in this species and is inaccessible for laminar electrophysiology or optical imaging. The relatively lissencephalic cortex of the New World common marmoset (Callithrix jacchus) circumvents such limitations. It remains unknown, however, whether marmoset PFC neurons exhibit persistent activity. Here, we addressed this gap by conducting wireless electrophysiological recordings in PFC of marmosets performing a delayed-match-to-location task on a home cage-based touchscreen system. As in macaques, marmoset PFC neurons exhibited sample-, delay-, and response-related activity that was directionally tuned and linked to correct task performance. Models constructed from population activity consistently and accurately predicted stimulus location throughout the delay period, supporting a framework of delay activity in which mnemonic representations are relatively stable in time. Taken together, our findings support the existence of common neural mechanisms underlying WM performance in PFC of macaques and marmosets and thus validate the marmoset as a suitable model animal for investigating the microcircuitry underlying WM.
Collapse
Affiliation(s)
- Raymond K Wong
- Graduate Program in Neuroscience, Western University, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Janahan Selvanayagam
- Graduate Program in Neuroscience, Western University, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Kevin D Johnston
- Graduate Program in Neuroscience, Western University, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, Western University, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
15
|
Perez-Cruz C, Rodriguez-Callejas JDD. The common marmoset as a model of neurodegeneration. Trends Neurosci 2023; 46:394-409. [PMID: 36907677 DOI: 10.1016/j.tins.2023.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/29/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023]
Abstract
Human life expectancy has increased over the past few centuries, and the incidence of dementia in the older population is also projected to continue to rise. Neurodegenerative diseases are complex multifactorial conditions for which no effective treatments are currently available. Animal models are necessary to understand the causes and progression of neurodegeneration. Nonhuman primates (NHPs) offer significant advantages for the study of neurodegenerative disease. Among them, the common marmoset, Callithrix jacchus, stands out due to its easy handling, complex brain architecture, and occurrence of spontaneous beta-amyloid (Aβ) and phosphorylated tau aggregates with aging. Furthermore, marmosets present physiological adaptations and metabolic alterations associated with the increased risk of dementia in humans. In this review, we discuss the current literature on the use of marmosets as a model of aging and neurodegeneration. We highlight aspects of marmoset physiology associated with aging, such as metabolic alterations, which may help understand their vulnerability to developing a neurodegenerative phenotype that goes beyond normal aging.
Collapse
Affiliation(s)
- Claudia Perez-Cruz
- Department of Pharmacology, Center of Research and Advance Studies (Cinvestav-I.P.N.), Av. Politecnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico.
| | - Juan de Dios Rodriguez-Callejas
- Department of Pharmacology, Center of Research and Advance Studies (Cinvestav-I.P.N.), Av. Politecnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| |
Collapse
|
16
|
Freire-Cobo C, Rothwell ES, Varghese M, Edwards M, Janssen WGM, Lacreuse A, Hof PR. Neuronal vulnerability to brain aging and neurodegeneration in cognitively impaired marmoset monkeys (Callithrix jacchus). Neurobiol Aging 2023; 123:49-62. [PMID: 36638681 PMCID: PMC9892246 DOI: 10.1016/j.neurobiolaging.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The investigation of neurobiological and neuropathological changes that affect synaptic integrity and function with aging is key to understanding why the aging brain is vulnerable to Alzheimer's disease. We investigated the cellular characteristics in the cerebral cortex of behaviorally characterized marmosets, based on their trajectories of cognitive learning as they transitioned to old age. We found increased astrogliosis, increased phagocytic activity of microglial cells and differences in resting and reactive microglial cell phenotypes in cognitively impaired compared to nonimpaired marmosets. Differences in amyloid beta deposition were not related to cognitive trajectory. However, we found age-related changes in density and morphology of dendritic spines in pyramidal neurons of layer 3 in the dorsolateral prefrontal cortex and the CA1 field of the hippocampus between cohorts. Overall, our data suggest that an accelerated aging process, accompanied by neurodegeneration, that takes place in cognitively impaired aged marmosets and affects the plasticity of dendritic spines in cortical areas involved in cognition and points to mechanisms of neuronal vulnerability to aging.
Collapse
Affiliation(s)
- Carmen Freire-Cobo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Emily S Rothwell
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mélise Edwards
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - William G M Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Cabrera-Moreno J, Jeanson L, Jeschke M, Calapai A. Group-based, autonomous, individualized training and testing of long-tailed macaques ( Macaca fascicularis) in their home enclosure to a visuo-acoustic discrimination task. Front Psychol 2022; 13:1047242. [PMID: 36524199 PMCID: PMC9745322 DOI: 10.3389/fpsyg.2022.1047242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2023] Open
Abstract
In recent years, the utility and efficiency of automated procedures for cognitive assessment in psychology and neuroscience have been demonstrated in non-human primates (NHP). This approach mimics conventional shaping principles of breaking down a final desired behavior into smaller components that can be trained in a staircase manner. When combined with home-cage-based approaches, this could lead to a reduction in human workload, enhancement in data quality, and improvement in animal welfare. However, to our knowledge, there are no reported attempts to develop automated training and testing protocols for long-tailed macaques (Macaca fascicularis), a ubiquitous NHP model in neuroscience and pharmaceutical research. In the current work, we present the results from 6 long-tailed macaques that were trained using an automated unsupervised training (AUT) protocol for introducing the animals to the basics of a two-alternative choice (2 AC) task where they had to discriminate a conspecific vocalization from a pure tone relying on images presented on a touchscreen to report their response. We found that animals (1) consistently engaged with the device across several months; (2) interacted in bouts of high engagement; (3) alternated peacefully to interact with the device; and (4) smoothly ascended from step to step in the visually guided section of the procedure, in line with previous results from other NHPs. However, we also found (5) that animals' performance remained at chance level as soon as the acoustically guided steps were reached; and (6) that the engagement level decreased significantly with decreasing performance during the transition from visual to acoustic-guided sections. We conclude that with an autonomous approach, it is possible to train long-tailed macaques in their social group using computer vision techniques and without dietary restriction to solve a visually guided discrimination task but not an acoustically guided task. We provide suggestions on what future attempts could take into consideration to instruct acoustically guided discrimination tasks successfully.
Collapse
Affiliation(s)
- Jorge Cabrera-Moreno
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate CenterLeibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Lena Jeanson
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Marcus Jeschke
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate CenterLeibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| | - Antonino Calapai
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate CenterLeibniz-Institute for Primate Research, Göttingen, Germany
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| |
Collapse
|
18
|
The effect of sex, age and boldness on inhibitory control. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Golub EM, Conner B, Edwards M, Gilllis L, Lacreuse A. Potential trade-off between olfactory and visual discrimination learning in common marmosets (Callithrix jacchus): Implications for the assessment of age-related cognitive decline. Am J Primatol 2022; 84:e23427. [PMID: 35942572 PMCID: PMC9444974 DOI: 10.1002/ajp.23427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/17/2022] [Accepted: 07/23/2022] [Indexed: 11/09/2022]
Abstract
Olfactory dysfunction has been identified as an early biomarker for dementia risk but has rarely been assessed in nonhuman primate models of human aging. To better characterize common marmosets as such models, we assessed olfactory discrimination performance in a sample of 10 animals (5 females), aged 2.5-8.9 years old. The monkeys were proficient in the discrimination and reversal of visual stimuli but naïve to odor stimuli. For olfactory discrimination, the monkeys performed a series of six discriminations of increasing difficulty between two odor stimuli. We found no evidence for an age-related decline as both young and older individuals were able to perform the discriminations in roughly the same number of trials. In addition, the older monkeys had faster responses than the younger animals. However, we noted that when adjusted for age, the speed of acquisition of the first discrimination in the olfactory modality was inversely correlated to the speed of acquisition of their first discrimination of two visual stimuli months earlier. These results suggest that marmosets may compensate for sensory deficits in one modality with higher sensory performance in another. These data have broad implications for the assessment of age-related cognitive decline and the categorization of animals as impaired or nonimpaired.
Collapse
Affiliation(s)
| | - Bryce Conner
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst MA
| | - Mélise Edwards
- Neuroscience and Behavior Program, University of Massachusetts Amherst MA
| | - Lacey Gilllis
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst MA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst MA
- Neuroscience and Behavior Program, University of Massachusetts Amherst MA
| |
Collapse
|
20
|
Correia-Caeiro C, Burrows A, Wilson DA, Abdelrahman A, Miyabe-Nishiwaki T. CalliFACS: The common marmoset Facial Action Coding System. PLoS One 2022; 17:e0266442. [PMID: 35580128 PMCID: PMC9113598 DOI: 10.1371/journal.pone.0266442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
Facial expressions are subtle cues, central for communication and conveying emotions in mammals. Traditionally, facial expressions have been classified as a whole (e.g. happy, angry, bared-teeth), due to automatic face processing in the human brain, i.e., humans categorise emotions globally, but are not aware of subtle or isolated cues such as an eyebrow raise. Moreover, the same facial configuration (e.g. lip corners pulled backwards exposing teeth) can convey widely different information depending on the species (e.g. humans: happiness; chimpanzees: fear). The Facial Action Coding System (FACS) is considered the gold standard for investigating human facial behaviour and avoids subjective interpretations of meaning by objectively measuring independent movements linked to facial muscles, called Action Units (AUs). Following a similar methodology, we developed the CalliFACS for the common marmoset. First, we determined the facial muscular plan of the common marmoset by examining dissections from the literature. Second, we recorded common marmosets in a variety of contexts (e.g. grooming, feeding, play, human interaction, veterinary procedures), and selected clips from online databases (e.g. YouTube) to identify their facial movements. Individual facial movements were classified according to appearance changes produced by the corresponding underlying musculature. A diverse repertoire of 33 facial movements was identified in the common marmoset (15 Action Units, 15 Action Descriptors and 3 Ear Action Descriptors). Although we observed a reduced range of facial movement when compared to the HumanFACS, the common marmoset's range of facial movements was larger than predicted according to their socio-ecology and facial morphology, which indicates their importance for social interactions. CalliFACS is a scientific tool to measure facial movements, and thus, allows us to better understand the common marmoset's expressions and communication. As common marmosets have become increasingly popular laboratory animal models, from neuroscience to cognition, CalliFACS can be used as an important tool to evaluate their welfare, particularly in captivity.
Collapse
Affiliation(s)
| | - Anne Burrows
- Department of Physical Therapy, Duquesne University, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Duncan Andrew Wilson
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Graduate School of Letters, Kyoto University, Kyoto, Japan
| | - Abdelhady Abdelrahman
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | | |
Collapse
|
21
|
Šlipogor V, Graf C, Massen JJM, Bugnyar T. Personality and social environment predict cognitive performance in common marmosets (Callithrix jacchus). Sci Rep 2022; 12:6702. [PMID: 35513400 PMCID: PMC9072541 DOI: 10.1038/s41598-022-10296-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Consistent inter-individual variation in cognition has been increasingly explored in recent years in terms of its patterns, causes and consequences. One of its possible causes are consistent inter-individual differences in behaviour, also referred to as animal personalities, which are shaped by both the physical and the social environment. The latter is particularly relevant for group-living species like common marmosets (Callithrix jacchus), apt learners that display substantial variation in both their personality and cognitive performance, yet no study to date has interlinked these with marmosets' social environment. Here we investigated (i) consistency of learning speed, and (ii) whether the PCA-derived personality traits Exploration-Avoidance and Boldness-Shyness as well as the social environment (i.e., family group membership) are linked with marmosets' speed of learning. We tested 22 individuals in series of personality and learning-focused cognitive tests, including simple motor tasks and discrimination learning tasks. We found that these marmosets showed significant inter-individual consistency in learning across the different tasks, and that females learned faster than males. Further, bolder individuals, and particularly those belonging to certain family groups, learned faster. These findings indicate that both personality and social environment affect learning speed in marmosets and could be important factors driving individual variation in cognition.
Collapse
Affiliation(s)
- Vedrana Šlipogor
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria.
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic.
| | - Christina Graf
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Jorg J M Massen
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Animal Behaviour and Cognition Group, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Thomas Bugnyar
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Calapai A, Cabrera-Moreno J, Moser T, Jeschke M. Flexible auditory training, psychophysics, and enrichment of common marmosets with an automated, touchscreen-based system. Nat Commun 2022; 13:1648. [PMID: 35347139 PMCID: PMC8960775 DOI: 10.1038/s41467-022-29185-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Devising new and more efficient protocols to analyze the phenotypes of non-human primates, as well as their complex nervous systems, is rapidly becoming of paramount importance. This is because with genome-editing techniques, recently adopted to non-human primates, new animal models for fundamental and translational research have been established. One aspect in particular, namely cognitive hearing, has been difficult to assess compared to visual cognition. To address this, we devised autonomous, standardized, and unsupervised training and testing of auditory capabilities of common marmosets with a cage-based standalone, wireless system. All marmosets tested voluntarily operated the device on a daily basis and went from naïve to experienced at their own pace and with ease. Through a series of experiments, here we show, that animals autonomously learn to associate sounds with images; to flexibly discriminate sounds, and to detect sounds of varying loudness. The developed platform and training principles combine in-cage training of common marmosets for cognitive and psychoacoustic assessment with an enriched environment that does not rely on dietary restriction or social separation, in compliance with the 3Rs principle.
Collapse
Affiliation(s)
- A Calapai
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Leibniz ScienceCampus "Primate Cognition", Göttingen, Germany
| | - J Cabrera-Moreno
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, 37075, Göttingen, Germany
| | - T Moser
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, 37075, Göttingen, Germany
- Auditory Neuroscience Group and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany
| | - M Jeschke
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany.
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany.
- Leibniz ScienceCampus "Primate Cognition", Göttingen, Germany.
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
23
|
Frye BM, Craft S, Register TC, Kim J, Whitlow CT, Barcus RA, Lockhart SN, Sai KKS, Shively CA. Early Alzheimer's disease-like reductions in gray matter and cognitive function with aging in nonhuman primates. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12284. [PMID: 35310523 PMCID: PMC8918111 DOI: 10.1002/trc2.12284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 01/13/2023]
Abstract
Introduction Age-related neuropathology associated with sporadic Alzheimer's disease (AD) often develops well before the onset of symptoms. Given AD's long preclinical period, translational models are needed to identify early signatures of pathological decline. Methods Using structural magnetic resonance imaging and cognitive assessments, we examined the relationships among age, cognitive performance, and neuroanatomy in 48 vervet monkeys (Chlorocebus aethiops sabaeus) ranging from young adults to very old. Results We found negative associations of age with cortical gray matter volume (P = .003) and the temporal-parietal cortical thickness meta-region of interest (P = .001). Additionally, cortical gray matter volumes predicted working memory at approximately 1-year follow-up (correct trials at the 20s delay [P = .008]; correct responses after longer delays [P = .004]). Discussion Cortical gray matter diminishes with age in vervets in regions relevant to AD, which may increase risk of cognitive impairment. This study lays the groundwork for future investigations to test therapeutics to delay or slow pathological decline.
Collapse
Affiliation(s)
- Brett M. Frye
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine/GerontologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Thomas C. Register
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Jeongchul Kim
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Christopher T. Whitlow
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Richard A. Barcus
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samuel N. Lockhart
- Department of Internal Medicine/GerontologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Kiran Kumar Solingapuram Sai
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Carol A. Shively
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
24
|
Matrai E, Kwok ST, Boos M, Pogány Á. Testing use of the first multi-partner cognitive enrichment devices by a group of male bottlenose dolphins. Anim Cogn 2022; 25:961-973. [PMID: 35146593 DOI: 10.1007/s10071-022-01605-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
Alliance formation plays a crucial part in male dolphins' lives. These partnerships may last for decades or even for a lifetime; thus, partner choice and the maintenance of these relationships are both considered key components of alliance formation. In our previous investigations, pairs of adult male dolphins showed a high success rate in cooperative manipulation of a cognitive enrichment device. Here, we introduced two novel cognitive enrichment devices to the group of five dolphins, facilitating simultaneous actions for not only pairs, but for three or even four dolphins. The devices were made of PVC tubes, fittings and caps equipped with rope handles, creating a three-way (T-shape) and a four-way (TT-shape) device. The devices were filled with fish and ice and were designed to be opened by simultaneous pull of the handles. Both devices were tested in 12 trials (each lasted for 15 min), separately. Only one of the caps could be opened, the others were affixed with the position of the openable cap counter-balanced over the trials. Although the dolphins received no training regarding the manipulation of the devices, they were successful in cooperatively opening the three-way devices in 10/12 of trials (70% by two and 30% by three dolphins) and the four-way devices also in 10/12 trials (50% by two, 40% by three and 10% by four dolphins). The dolphins interacted with the devices during the entire testing time, and this was mostly spent in cooperative play (77% and 56% of the test duration with the three-way and four-way device, respectively). The majority of the cooperative play was observed between one particular pair of dolphins that was temporarily associated with a third or sometimes even with a fourth dolphin. These findings demonstrate the first successful use of multi-partner cooperative enrichment devices, providing information on the social organization of a male dolphin group.
Collapse
Affiliation(s)
- Eszter Matrai
- Research Department, Ocean Park, Hong Kong, 180 Wong Chuk Hang Road, Aberdeen, Hong Kong.
- Department of Ethology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary.
| | - Shaw Ting Kwok
- Research Department, Ocean Park, Hong Kong, 180 Wong Chuk Hang Road, Aberdeen, Hong Kong
| | - Michael Boos
- Research Department, Ocean Park, Hong Kong, 180 Wong Chuk Hang Road, Aberdeen, Hong Kong
| | - Ákos Pogány
- Department of Ethology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary
| |
Collapse
|
25
|
Hoffman JM, Hernandez CM, Hernandez AR, Bizon JL, Burke SN, Carter CS, Buford TW. Bridging the Gap: A Geroscience Primer for Neuroscientists With Potential Collaborative Applications. J Gerontol A Biol Sci Med Sci 2022; 77:e10-e18. [PMID: 34653247 PMCID: PMC8751800 DOI: 10.1093/gerona/glab314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/13/2022] Open
Abstract
While neurodegenerative diseases can strike at any age, the majority of afflicted individuals are diagnosed at older ages. Due to the important impact of age in disease diagnosis, the field of neuroscience could greatly benefit from the many of the theories and ideas from the biology of aging-now commonly referred as geroscience. As discussed in our complementary perspective on the topic, there is often a "silo-ing" between geroscientists who work on understanding the mechanisms underlying aging and neuroscientists who are studying neurodegenerative diseases. While there have been some strong collaborations between the biology of aging and neuroscientists, there is still great potential for enhanced collaborative effort between the 2 fields. To this end, here, we review the state of the geroscience field, discuss how neuroscience could benefit from thinking from a geroscience perspective, and close with a brief discussion on some of the "missing links" between geroscience and neuroscience and how to remedy them. Notably, we have a corresponding, concurrent review from the neuroscience perspective. Our overall goal is to "bridge the gap" between geroscience and neuroscience such that more efficient, reproducible research with translational potential can be conducted.
Collapse
Affiliation(s)
- Jessica M Hoffman
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Caesar M Hernandez
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abbi R Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Bizon
- Department of Neuroscience and Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Sara N Burke
- Department of Neuroscience and Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Christy S Carter
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Nathan Shock Center for Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas W Buford
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Geriatric Research Education and Clinical Center, Birmingham Veteran's Affairs Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
26
|
Rothwell ES, Workman KP, Wang D, Lacreuse A. Sex differences in cognitive aging: a 4-year longitudinal study in marmosets. Neurobiol Aging 2022; 109:88-99. [PMID: 34700200 PMCID: PMC8841951 DOI: 10.1016/j.neurobiolaging.2021.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023]
Abstract
Longitudinal studies are essential to understand healthy and pathological neurocognitive aging such as Alzheimer's Disease, but longitudinal designs are rare in both humans and non-human primate models of aging because of the difficulty of tracking cognitive change in long-lived primates. Common marmosets (Callithrix jacchus) are uniquely suited for aging studies due to their naturally short lifespan (10-12 years), sophisticated cognitive and social abilities and Alzheimer Disease-like neuropathology. We report the first longitudinal study of cognitive aging in marmosets (N = 28) as they transitioned from middle- (∼5 years) to old age (∼9 years). We characterized aging trajectories using reversal learning with different stimuli each year. Marmosets initially improved on cognitive performance due to practice, but worsened in the final year, suggesting the onset of age-related decline. Cognitive impairment emerged earlier in females than males and was more prominent for discrimination than for reversal learning. Sex differences in cognitive aging could not be explained by differences in motivation or motor abilities, which improved or remained stable across aging. Likewise, males and females did not differ in aging trajectories of overall behavior or reactivity to a social stressor, with the exception of a progressive decline in the initiation of social behavior in females. Patterns of cognitive aging were highly variable across marmosets of both sexes, suggesting the potential for pathological aging for some individuals. Future work will link individual cognitive trajectories to neuropathology in order to better understand the relationships between neuropathologic burden and vulnerability to age-related cognitive decline in each sex.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Kathryn P Workman
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Dongwei Wang
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
27
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
28
|
Frye BM, Valure PM, Craft S, Baxter MG, Scott C, Wise-Walden S, Bissinger DW, Register HM, Copeland C, Jorgensen MJ, Justice JN, Kritchevsky SB, Register TC, Shively CA. Temporal emergence of age-associated changes in cognitive and physical function in vervets (Chlorocebus aethiops sabaeus). GeroScience 2021; 43:1303-1315. [PMID: 33611720 PMCID: PMC8190425 DOI: 10.1007/s11357-021-00338-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Dual declines in gait speed and cognitive performance are associated with increased risk of developing dementia. Characterizing the patterns of such impairments therefore is paramount to distinguishing healthy from pathological aging. Nonhuman primates such as vervet/African green monkeys (Chlorocebus aethiops sabaeus) are important models of human neurocognitive aging, yet the trajectory of dual decline has not been characterized. We therefore (1) assessed whether cognitive and physical performance (i.e., gait speed) are lower in older aged animals; (2) explored the relationship between performance in a novel task of executive function (Wake Forest Maze Task-WFMT) and a well-established assessment of working memory (delayed response task-DR task); and (3) examined the association between baseline gait speed with executive function and working memory at 1-year follow-up. We found (1) physical and cognitive declines with age; (2) strong agreement between performance in the novel WFMT and DR task; and (3) that slow gait is associated with poor cognitive performance in both domains. Our results suggest that older aged vervets exhibit a coordinated suite of traits consistent with human aging and that slow gait may be a biomarker of cognitive decline. This integrative approach provides evidence that gait speed and cognitive function differ across the lifespan in female vervet monkeys, which advances them as a model that could be used to dissect relationships between trajectories of dual decline over time.
Collapse
Affiliation(s)
- Brett M Frye
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, USA
| | - Payton M Valure
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, USA
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, USA
| | - Mark G Baxter
- Nash Family Department of Neuroscience, IW, New York, USA
| | - Christie Scott
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - Shanna Wise-Walden
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - David W Bissinger
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - Hannah M Register
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - Carson Copeland
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - Matthew J Jorgensen
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
| | - Jamie N Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, USA
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, USA
| | - Thomas C Register
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, USA
| | - Carol A Shively
- Wake Forest School of Medicine, Medical Center Blvd Winston-Salem, NC, 27157-1040, USA.
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, USA.
| |
Collapse
|
29
|
Rothwell ES, Freire-Cobo C, Varghese M, Edwards M, Janssen WGM, Hof PR, Lacreuse A. The marmoset as an important primate model for longitudinal studies of neurocognitive aging. Am J Primatol 2021; 83:e23271. [PMID: 34018622 DOI: 10.1002/ajp.23271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022]
Abstract
Age-related cognitive decline has been extensively studied in humans, but the majority of research designs are cross-sectional and compare across younger and older adults. Longitudinal studies are necessary to capture variability in cognitive aging trajectories but are difficult to carry out in humans and long-lived nonhuman primates. Marmosets are an ideal primate model for neurocognitive aging as their naturally short lifespan facilitates longitudinal designs. In a longitudinal study of marmosets tested on reversal learning starting in middle-age, we found that, on average, the group of marmosets declined in cognitive performance around 8 years of age. However, we found highly variable patterns of cognitive aging trajectories across individuals. Preliminary analyses of brain tissues from this cohort also show highly variable degrees of neuropathology. Future work will tie together behavioral trajectories with brain pathology and provide a window into the factors that predict age-related cognitive decline.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Carmen Freire-Cobo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mélise Edwards
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - William G M Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Agnès Lacreuse
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
30
|
De Castro V, Girard P. Location and temporal memory of objects declines in aged marmosets (Callithrix jacchus). Sci Rep 2021; 11:9138. [PMID: 33911122 PMCID: PMC8080792 DOI: 10.1038/s41598-021-88357-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Episodic memory decline is an early marker of cognitive aging in human. Although controversial in animals and called “episodic-like memory”, several models have been successfully developed, however they rarely focused on ageing. While marmoset is an emerging primate model in aging science, episodic-like memory has never been tested in this species and importantly in aged marmosets. Here, we examined if the recall of the what-when and what-where building blocks of episodic-like memory declines in ageing marmosets. We developed a naturalistic approach using spontaneous exploration of real objects by young and old marmosets in the home cage. We implemented a three-trial task with 1 week inter-trial interval. Two different sets of identical objects were presented in sample trials 1 and 2, respectively. For the test trial, two objects from each set were presented in a former position and two in a new one. We quantified the exploratory behaviour and calculated discrimination indices in a cohort of 20 marmosets. Young animals presented a preserved memory for combined what-where, and what-when components of the experiment, which declined with aging. These findings lead one to expect episodic-like memory deficits in aged marmosets.
Collapse
Affiliation(s)
- Vanessa De Castro
- Centre de Recherche Cerveau et Cognition (CerCo), Toulouse, France. .,Centre National de la Recherche Scientifique (CNRS) - UMR 5549, Toulouse, France.
| | - Pascal Girard
- Centre de Recherche Cerveau et Cognition (CerCo), Toulouse, France. .,Institut national de la santé et de la recherche médicale (INSERM), Toulouse, France.
| |
Collapse
|
31
|
Preclinical Marmoset Model for Targeting Chronic Inflammation as a Strategy to Prevent Alzheimer's Disease. Vaccines (Basel) 2021; 9:vaccines9040388. [PMID: 33920929 PMCID: PMC8071309 DOI: 10.3390/vaccines9040388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the aging population, modern society is facing an increasing prevalence of neurological diseases such as Alzheimer’s disease (AD). AD is an age-related chronic neurodegenerative disorder for which no satisfying therapy exists. Understanding the mechanisms underlying the onset of AD is necessary to find targets for protective treatment. There is growing awareness of the essential role of the immune system in the early AD pathology. Amyloidopathy, the main feature of early-stage AD, has a deregulating effect on the immune function. This is reciprocal as the immune system also affects amyloidopathy. It seems that the inflammatory reaction shows a heterogeneous pattern depending on the stage of the disease and the variation between individuals, making not only the target but also the timing of treatment important. The lack of relevant translational animal models that faithfully reproduce clinical and pathogenic features of AD is a major cause of the delay in developing new disease-modifying therapies and their optimal timing of administration. This review describes the communication between amyloidopathy and inflammation and the possibility of using nonhuman primates as a relevant animal model for preclinical AD research.
Collapse
|
32
|
Dorigatti AO, Hussong SA, Hernandez SF, Sills AM, Salmon AB, Galvan V. Primary neuron and astrocyte cultures from postnatal Callithrix jacchus: a non-human primate in vitro model for research in neuroscience, nervous system aging, and neurological diseases of aging. GeroScience 2021; 43:115-124. [PMID: 33063253 PMCID: PMC8050148 DOI: 10.1007/s11357-020-00284-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/08/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to generate in vitro cultures of neuronal cells has been instrumental in advancing our understanding of the nervous system. Rodent models have been the principal source of brain cells used in primary cultures for over a century, providing insights that are widely applicable to human diseases. However, therapeutic agents that showed benefit in rodent models, particularly those pertaining to aging and age-associated dementias, have frequently failed in clinical trials. This discrepancy established a potential "translational gap" between human and rodent studies that may at least partially be explained by the phylogenetic distance between rodent and primate species. Several non-human primate (NHP) species, including the common marmoset (Callithrix jacchus), have been used extensively in neuroscience research, but in contrast to rodent models, practical approaches to the generation of primary cell culture systems amenable to molecular studies that can inform in vivo studies are lacking. Marmosets are a powerful model in biomedical research and particularly in studies of aging and age-associated diseases because they exhibit an aging phenotype similar to humans. Here, we report a practical method to culture primary marmoset neurons and astrocytes from brains of medically euthanized postnatal day 0 (P0) marmoset newborns that yield highly pure primary neuron and astrocyte cultures. Primary marmoset neuron and astrocyte cultures can be generated reliably to provide a powerful NHP in vitro model in neuroscience research that may enable mechanistic studies of nervous system aging and of age-related neurodegenerative disorders. Because neuron and astrocyte cultures can be used in combination with in vivo approaches in marmosets, primary marmoset neuron and astrocyte cultures may help bridge the current translational gap between basic and clinical studies in nervous system aging and age-associated neurological diseases.
Collapse
Affiliation(s)
- Angela O Dorigatti
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 3.200.8, San Antonio, TX, 78245, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stacy A Hussong
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 3.200.8, San Antonio, TX, 78245, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Stephen F Hernandez
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 3.200.8, San Antonio, TX, 78245, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aubrey M Sills
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Adam B Salmon
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 3.200.8, San Antonio, TX, 78245, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- South Texas Veterans Health Care System, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
33
|
Murai T, Sukoff Rizzo SJ. The Importance of Complementary Collaboration of Researchers, Veterinarians, and Husbandry Staff in the Successful Training of Marmoset Behavioral Assays. ILAR J 2021; 61:230-247. [PMID: 33501501 DOI: 10.1093/ilar/ilaa024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/30/2022] Open
Abstract
Interest in marmosets as research models has seen exponential growth over the last decade, especially given that the research community is eager to improve on gaps with historical animal models for behavioral and cognitive disorders. The spectrum of human disease traits that present naturally in marmosets, as well as the range of analogous human behaviors that can be assessed in marmosets, makes them ideally suited as translational models for behavioral and cognitive disorders. Regardless of the specific research aims of any project, without close collaboration between researchers, veterinarians, and animal care staff, it would be impossible to meet these goals. Behavior is inherently variable, as are marmosets that are genetically and phenotypically diverse. Thus, to ensure rigor, reliability, and reproducibility in results, it is important that in the research environment, the animal's daily husbandry and veterinary needs are being met and align with the research goals while keeping the welfare of the animal the most critical and highest priority. Much of the information described herein provides details on key components for successful behavioral testing, based on a compendium of methods from peer-reviewed publications and our own experiences. Specific areas highlighted include habituation procedures, selection of appropriate rewards, optimization of testing environments, and ways to integrate regular veterinary and husbandry procedures into the research program with minimal disruptions to the behavioral testing plan. This article aims to provide a broad foundation for researchers new to establishing behavioral and cognitive testing paradigms in marmosets and especially for the veterinary and husbandry colleagues who are indispensable collaborators of these research projects.
Collapse
Affiliation(s)
- Takeshi Murai
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
34
|
Wittkowski J, Fritz RG, Meier M, Schmidtke D. Conditioning learning in an attentional task relates to age and ventricular expansion in a nonhuman primate (Microcebus murinus). Behav Brain Res 2020; 399:113053. [PMID: 33279643 DOI: 10.1016/j.bbr.2020.113053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 01/25/2023]
Abstract
The grey mouse lemur (Microcebus murinus) is a promising nonhuman primate model for brain ageing and neurodegenerative diseases. Age-related cognitive decline in this model is well described, however, data on possible relations between attention and age, as they are known from humans, are missing. We tested 10 mouse lemurs in a touchscreen-based version of the 5-choice-serial-reaction-time-task (5CSRTT) on visuo-spatial attention: subjects had to interact with a briefly presented stimulus occurring unpredictably in one out of five locations on the touchscreen. Animals were trained to an 80 % performance at a four seconds stimulus presentation duration (SPD) and subsequently challenged by a SPD of two seconds. Additionally, ventricular expansion was assessed using structural magnetic resonance imaging. Trials to the 80 % criterion at four seconds SPD correlated significantly with age and with ventricular expansion, especially around the occipital lobe. Once criterion performance was reached, two seconds challenge performance was independent of age. In four subjects that were additionally challenged with 1.5, 1.0, 0.8, or 0.6 s SPDs or variable delays preceding stimulus presentation, performance linearly declined with decreasing SPD, i.e. increasing attentional demand. In conclusion, this is the first report of 5CSRTT data in mouse lemurs and demonstrates the general applicability of this task of visuo-spatial attention to this nonhuman primate model. Results further demonstrate age-related deficits in learning during acquisition of the 5CSRTT and suggest that both may be linked through age-related atrophy of occipital structures and a resulting deficit in central visual processes.
Collapse
Affiliation(s)
- Jennifer Wittkowski
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Rebecca G Fritz
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Meier
- ZTL-Imaging, Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
35
|
Nephew BC, Febo M, Cali R, Workman KP, Payne L, Moore CM, King JA, Lacreuse A. Robustness of sex-differences in functional connectivity over time in middle-aged marmosets. Sci Rep 2020; 10:16647. [PMID: 33024242 PMCID: PMC7538565 DOI: 10.1038/s41598-020-73811-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Nonhuman primates (NHPs) are an essential research model for gaining a comprehensive understanding of the neural mechanisms of neurocognitive aging in our own species. In the present study, we used resting state functional connectivity (rsFC) to investigate the relationship between prefrontal cortical and striatal neural interactions, and cognitive flexibility, in unanaesthetized common marmosets (Callithrix jacchus) at two time points during late middle age (8 months apart, similar to a span of 5-6 years in humans). Based on our previous findings, we also determine the reproducibility of connectivity measures over the course of 8 months, particularly previously observed sex differences in rsFC. Male marmosets exhibited remarkably similar patterns of stronger functional connectivity relative to females and greater cognitive flexibility between the two imaging time points. Network analysis revealed that the consistent sex differences in connectivity and related cognitive associations were characterized by greater node strength and/or degree values in several prefrontal, premotor and temporal regions, as well as stronger intra PFC connectivity, in males compared to females. The current study supports the existence of robust sex differences in prefrontal and striatal resting state networks that may contribute to differences in cognitive function and offers insight on the neural systems that may be compromised in cognitive aging and age-related conditions such as mild cognitive impairment and Alzheimer's disease.
Collapse
Affiliation(s)
- Benjamin C Nephew
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- Center for Comparative Neuroimaging, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Ryan Cali
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kathryn P Workman
- Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Laurellee Payne
- Center for Comparative Neuroimaging, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Constance M Moore
- Center for Comparative Neuroimaging, University of Massachusetts Medical School, Worcester, MA, 01655, USA
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Jean A King
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Center for Comparative Neuroimaging, University of Massachusetts Medical School, Worcester, MA, 01655, USA
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Agnès Lacreuse
- Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, 01003, USA
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, 01003, USA
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
36
|
Lacreuse A, Raz N, Schmidtke D, Hopkins WD, Herndon JG. Age-related decline in executive function as a hallmark of cognitive ageing in primates: an overview of cognitive and neurobiological studies. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190618. [PMID: 32951543 DOI: 10.1098/rstb.2019.0618] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Executive function (EF) is a complex construct that reflects multiple higher-order cognitive processes such as planning, updating, inhibiting and set-shifting. Decline in these functions is a hallmark of cognitive ageing in humans, and age differences and changes in EF correlate with age-related differences and changes in association cortices, particularly the prefrontal areas. Here, we review evidence for age-related decline in EF and associated neurobiological changes in prosimians, New World and Old World monkeys, apes and humans. While EF declines with age in all primate species studied, the relationship of this decline with age-related alterations in the prefrontal cortex remains unclear, owing to the scarcity of neurobiological studies focusing on the ageing brain in most primate species. In addition, the influence of sex, vascular and metabolic risk, and hormonal status has rarely been considered. We outline several methodological limitations and challenges with the goal of producing a comprehensive integration of cognitive and neurobiological data across species and elucidating how ageing shapes neurocognitive trajectories in primates with different life histories, lifespans and brain architectures. Such comparative investigations are critical for fostering translational research and understanding healthy and pathological ageing in our own species. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Agnès Lacreuse
- Psychological and Brain Sciences, University of Massachusetts, Tobin Hall, 135 Hicks Way, Amherst, MA 01003, USA
| | - Naftali Raz
- Department of Psychology, Wayne State University, Detroit, MI, USA.,Max Planck Institute for Human Development, Berlin, Germany
| | - Daniel Schmidtke
- University of Veterinary Medicine, Foundation, Hannover, Germany
| | - William D Hopkins
- Keeling Center for Comparative Medicine and Research, University of Texas, MD Anderson Cancer Center, Bastrop, TX, USA
| | - James G Herndon
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
37
|
Boyer F, Jaouen F, Ibrahim EC, Gascon E. Deficits in Social Behavior Precede Cognitive Decline in Middle-Aged Mice. Front Behav Neurosci 2019; 13:55. [PMID: 30971905 PMCID: PMC6445840 DOI: 10.3389/fnbeh.2019.00055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
An extensive literature details deterioration of multiple brain functions, especially memory and learning, during aging in humans and in rodents. In contrast, the decline of social functions is less well understood. It is presently not clear whether age-dependent deficits observed in social behavior mainly reflect the disruption of social networks activity or are simply secondary to a more general impairment of cognitive and executive functions in older individuals. To address this issue, we carried out a battery of behavioral tasks exploring different brain functions in young (3 months) and middle-aged wild-type mice (9 months). Consistent with previous reports, our results show no obvious differences between these two groups in most of the domains investigated including learning and memory. Surprisingly, in social tasks, middle-aged animals showed significantly reduced levels of interactions when exposed to a new juvenile mouse. In the absence of overt cognitive decline, our findings suggest that social impairments may precede the disruption of other brain functions and argue for a selective vulnerability of social circuits during aging.
Collapse
Affiliation(s)
- Flora Boyer
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), Marseille, France
| | - Florence Jaouen
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), Marseille, France
| | - El Chérif Ibrahim
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), Marseille, France
| | - Eduardo Gascon
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), Marseille, France
| |
Collapse
|
38
|
Rodríguez-Callejas JDD, Cuervo-Zanatta D, Rosas-Arellano A, Fonta C, Fuchs E, Perez-Cruz C. Loss of ferritin-positive microglia relates to increased iron, RNA oxidation, and dystrophic microglia in the brains of aged male marmosets. Am J Primatol 2019; 81:e22956. [DOI: 10.1002/ajp.22956] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | - Daniel Cuervo-Zanatta
- Department of Pharmacology; Center of Research in Advance Studies; Mexico City Mexico
| | | | - Caroline Fonta
- Brain and Cognition Research Centre (CERCO); CNRS/University of Toulouse; Toulouse France
| | - Eberhard Fuchs
- German Primate Center; Leibniz Institute for Primate Research; Göttingen Germany
| | - Claudia Perez-Cruz
- Department of Pharmacology; Center of Research in Advance Studies; Mexico City Mexico
| |
Collapse
|