1
|
Sun Y, Song X, Jin C, Peng Y, Zhou J, Zheng X. Cerebral Small Vessel Disease: Current and Emerging Therapeutic Strategies. Aging Dis 2025:AD.2024.1515. [PMID: 39965248 DOI: 10.14336/ad.2024.1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Cerebral small vessel disease (CSVD) is a common disease in older people, characterized by damage to intracranial microvessels, leading to cognitive decline, increased risk of stroke, and dementia. This review reviews the current therapeutic approaches for CSVD and the latest research advances, encompassing traditional pharmacological therapies, emerging targeted interventions grounded in pathophysiology, exploratory immune-related treatments, and advances in genetic research. In addition, the role of lifestyle modifications in disease management is discussed. The review emphasizes the importance of a holistic, personalized treatment strategy to improve outcomes. More clinical trials are needed to validate these treatments and optimize individualized treatment options for CSVD patients.
Collapse
|
2
|
Deng F, Dounavi ME, Plini ERG, Ritchie K, Muniz-Terrera G, Hutchinson S, Malhotra P, Ritchie CW, Lawlor B, Naci L. Cardiovascular risk of dementia is associated with brain-behaviour changes in cognitively healthy, middle-aged individuals. Neurobiol Aging 2024; 144:78-92. [PMID: 39293163 DOI: 10.1016/j.neurobiolaging.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Alzheimer's Disease (AD) neuropathology start decades before clinical manifestations, but whether risk factors are associated with early cognitive and brain changes in midlife remains poorly understood. We examined whether AD risk factors were associated with cognition and functional connectivity (FC) between the Locus Coeruleus (LC) and hippocampus - two key brain structures in AD neuropathology - cross-sectionally and longitudinally in cognitively healthy midlife individuals. Neuropsychological assessments and functional Magnetic Resonance Imaging were obtained at baseline (N=210), and two-years follow-up (N=188). Associations of cognition and FC with apolipoprotein ε4 (APOE ε4) genotype, family history of dementia, and the Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) score were investigated. Cross-sectionally, higher CAIDE scores were associated with worse cognition. Menopausal status interacted with the CAIDE risk on cognition. Furthermore, the CAIDE score significantly moderated the relationship between cognition and LC-Hippocampus FC. Longitudinally, the LC-Hippocampus FC decreased significantly over 2 years. These results suggest that cardiovascular risk of dementia is associated with brain-behaviour changes in cognitively healthy, middle-aged individuals.
Collapse
Affiliation(s)
- Feng Deng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| | - Emanuele R G Plini
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Karen Ritchie
- U1061 Neuropsychiatry, INSERM, University of Montpellier, Montpellier, France
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK; Department of Social medicine, Ohio University, USA
| | | | - Paresh Malhotra
- Department of Brain Science, Imperial College Healthcare NHS Trust, UK
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Brian Lawlor
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Soldan A, Wang J, Pettigrew C, Davatzikos C, Erus G, Hohman TJ, Dumitrescu L, Bilgel M, Resnick SM, Rivera-Rivera LA, Langhough R, Johnson SC, Benzinger T, Morris JC, Laws SM, Fripp J, Masters CL, Albert MS. Alzheimer's disease genetic risk and changes in brain atrophy and white matter hyperintensities in cognitively unimpaired adults. Brain Commun 2024; 6:fcae276. [PMID: 39229494 PMCID: PMC11369827 DOI: 10.1093/braincomms/fcae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Reduced brain volumes and more prominent white matter hyperintensities on MRI scans are commonly observed among older adults without cognitive impairment. However, it remains unclear whether rates of change in these measures among cognitively normal adults differ as a function of genetic risk for late-onset Alzheimer's disease, including APOE-ɛ4, APOE-ɛ2 and Alzheimer's disease polygenic risk scores (AD-PRS), and whether these relationships are influenced by other variables. This longitudinal study examined the trajectories of regional brain volumes and white matter hyperintensities in relationship to APOE genotypes (N = 1541) and AD-PRS (N = 1093) in a harmonized dataset of middle-aged and older individuals with normal cognition at baseline (mean baseline age = 66 years, SD = 9.6) and an average of 5.3 years of MRI follow-up (max = 24 years). Atrophy on volumetric MRI scans was quantified in three ways: (i) a composite score of regions vulnerable to Alzheimer's disease (SPARE-AD); (ii) hippocampal volume; and (iii) a composite score of regions indexing advanced non-Alzheimer's disease-related brain aging (SPARE-BA). Global white matter hyperintensity volumes were derived from fluid attenuated inversion recovery (FLAIR) MRI. Using linear mixed effects models, there was an APOE-ɛ4 gene-dose effect on atrophy in the SPARE-AD composite and hippocampus, with greatest atrophy among ɛ4/ɛ4 carriers, followed by ɛ4 heterozygouts, and lowest among ɛ3 homozygouts and ɛ2/ɛ2 and ɛ2/ɛ3 carriers, who did not differ from one another. The negative associations of APOE-ɛ4 with atrophy were reduced among those with higher education (P < 0.04) and younger baseline ages (P < 0.03). Higher AD-PRS were also associated with greater atrophy in SPARE-AD (P = 0.035) and the hippocampus (P = 0.014), independent of APOE-ɛ4 status. APOE-ɛ2 status (ɛ2/ɛ2 and ɛ2/ɛ3 combined) was not related to baseline levels or atrophy in SPARE-AD, SPARE-BA or the hippocampus, but was related to greater increases in white matter hyperintensities (P = 0.014). Additionally, there was an APOE-ɛ4 × AD-PRS interaction in relation to white matter hyperintensities (P = 0.038), with greater increases in white matter hyperintensities among APOE-ɛ4 carriers with higher AD-PRS. APOE and AD-PRS associations with MRI measures did not differ by sex. These results suggest that APOE-ɛ4 and AD-PRS independently and additively influence longitudinal declines in brain volumes sensitive to Alzheimer's disease and synergistically increase white matter hyperintensity accumulation among cognitively normal individuals. Conversely, APOE-ɛ2 primarily influences white matter hyperintensity accumulation, not brain atrophy. Results are consistent with the view that genetic factors for Alzheimer's disease influence atrophy in a regionally specific manner, likely reflecting preclinical neurodegeneration, and that Alzheimer's disease risk genes contribute to white matter hyperintensity formation.
Collapse
Affiliation(s)
- Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiangxia Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christos Davatzikos
- Centre for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guray Erus
- Centre for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Logan Dumitrescu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Leonardo A Rivera-Rivera
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53726, USA
| | - Rebecca Langhough
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53726, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53726, USA
| | - Tammie Benzinger
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Jurgen Fripp
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD 4029, Australia
| | - Colin L Masters
- The Florey Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Gregory S, Buller‐Peralta I, Bridgeman K, Góngora VDLC, Dounavi M, Low A, Ntailianis G, O'Brien J, Parra MA, Ritchie CW, Ritchie K, Shannon OM, Stevenson EJ, Muniz‐Terrera G. The Mediterranean diet is not associated with neuroimaging or cognition in middle-aged adults: a cross-sectional analysis of the PREVENT dementia programme. Eur J Neurol 2024; 31:e16345. [PMID: 38794967 PMCID: PMC11236004 DOI: 10.1111/ene.16345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/02/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND AND PURPOSE The Mediterranean diet (MedDiet) has been associated with reduced dementia incidence in several studies. It is important to understand if diet is associated with brain health in midlife, when Alzheimer's disease and related dementias are known to begin. METHODS This study used data from the PREVENT dementia programme. Three MedDiet scores were created (the Pyramid, Mediterranean Diet Adherence Screener [MEDAS] and MEDAS continuous) from a self-reported food frequency questionnaire. Primary outcomes were hippocampal volume and cube-transformed white matter hyperintensity volume. Secondary outcomes included cornu ammonis 1 and subiculum hippocampal subfield volumes, cortical thickness and measures of cognition. Sex-stratified analyses were run to explore differential associations between diet and brain health by sex. An exploratory path analysis was conducted to study if any associations between diet and brain health were mediated by cardiovascular risk factors for dementia. RESULTS In all, 504 participants were included in this analysis, with a mean Pyramid score of 8.10 (SD 1.56). There were no significant associations between any MedDiet scoring method and any of the primary or secondary outcomes. There were no differences by sex in any analyses and no significant mediation between the Pyramid score and global cognition by cardiovascular risk factors. CONCLUSIONS Overall, this study did not find evidence for an association between the MedDiet and either neuroimaging or cognition in a midlife population study. Future work should investigate associations between the MedDiet and Alzheimer's disease and related dementias biomarkers as well as functional neuroimaging in a midlife population.
Collapse
Affiliation(s)
- Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Scottish Brain SciencesEdinburghUK
| | - Ingrid Buller‐Peralta
- Edinburgh Dementia Prevention, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Katie Bridgeman
- Edinburgh Dementia Prevention, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Vanessa De La Cruz Góngora
- Global Brain Health Institute, Institute of NeuroscienceTrinity College DublinDublinIreland
- Centre for Evaluation and Survey ResearchNational Institute of Public HealthCuernavacaMexico
| | - Maria‐Eleni Dounavi
- Department of Psychiatry, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Audrey Low
- Department of Psychiatry, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Georgios Ntailianis
- Edinburgh Dementia Prevention, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - John O'Brien
- Department of Psychiatry, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Mario A. Parra
- Department of Psychological Sciences and HealthUniversity of StrathclydeGlasgowUK
| | - Craig W. Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Scottish Brain SciencesEdinburghUK
- Mackenzie InstituteUniversity of St AndrewsSt AndrewsUK
| | - Karen Ritchie
- INM, Université de Montpellier, INSERMMontpellierFrance
| | - Oliver M. Shannon
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Emma J. Stevenson
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Graciela Muniz‐Terrera
- Edinburgh Dementia Prevention, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Ohio University Heritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
| |
Collapse
|
5
|
Low A, McKiernan E, Prats-Sedano MA, Carter SF, Stefaniak JD, Su L, Dounavi ME, Muniz-Terrera G, Jenkins N, Bridgeman K, Ritchie K, Lawlor B, Naci L, Malhotra P, Mackay C, Koychev I, Thayanandan T, Raymont V, Ritchie CW, Stewart W, O’Brien JT. Neuroimaging and Clinical Findings in Healthy Middle-Aged Adults With Mild Traumatic Brain Injury in the PREVENT Dementia Study. JAMA Netw Open 2024; 7:e2426774. [PMID: 39145979 PMCID: PMC11327885 DOI: 10.1001/jamanetworkopen.2024.26774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/07/2024] [Indexed: 08/16/2024] Open
Abstract
Importance Traumatic brain injuries (TBI) represent an important, potentially modifiable risk factor for dementia. Despite frequently observed vascular imaging changes in individuals with TBI, the relationships between TBI-associated changes in brain imaging and clinical outcomes have largely been overlooked in community cases of TBI. Objective To assess whether TBI are associated with and interact with midlife changes in neuroimaging and clinical features in otherwise healthy individuals. Design, Setting, and Participants This cross-sectional analysis used baseline data from the PREVENT Dementia program collected across 5 sites in the UK and Ireland between 2014 and 2020. Eligible participants were cognitively healthy midlife adults aged between 40 and 59 years. Data were analyzed between January 2023 and April 2024. Exposure Lifetime TBI history was assessed using the Brain Injury Screening Questionnaire. Main Outcomes and Measures Cerebral microbleeds and other markers of cerebral small vessel disease (white matter hyperintensities [WMH], lacunes, perivascular spaces) were assessed on 3T magnetic resonance imaging. Clinical measures were cognition, sleep, depression, gait, and cardiovascular disease (CVD) risk, assessed using Computerized Assessment of Information Processing (COGNITO), Pittsburgh Sleep Quality Index, Center for Epidemiologic Studies Depression Scale, clinical interviews, and the Framingham Risk Score, respectively. Results Of 617 participants (median [IQR] age, 52 [47-56] years; 380 female [61.6%]), 223 (36.1%) had a history of TBI. TBI was associated with higher microbleed count (β = 0.10; 95% CI, 0.01-0.18; P = .03), with a dose-response association observed with increasing number of TBI events (β = 0.05; 95% CI, 0.01-0.09; P = .03). Conversely, TBI was not associated with other measures of small vessel disease, including WMH. Furthermore, TBI moderated microbleed associations with vascular risk factors and clinical outcomes, such that associations were present only in the absence of TBI. Importantly, observations held when analyses were restricted to individuals reporting only mild TBI. Conclusions and Relevance In this cross-sectional study of healthy middle-aged adults, detectable changes in brain imaging and clinical features were associated with remote, even mild, TBI in the general population. The potential contribution of vascular injury to TBI-related neurodegeneration presents promising avenues to identify potential targets, with findings highlighting the need to reduce TBI through early intervention and prevention in both clinical care and policymaking.
Collapse
Affiliation(s)
- Audrey Low
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth McKiernan
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maria A. Prats-Sedano
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephen F. Carter
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James D. Stefaniak
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Natalie Jenkins
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Katie Bridgeman
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Brian Lawlor
- Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Lorina Naci
- Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Paresh Malhotra
- Division of Brain Science, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Clare Mackay
- Department of Psychiatry, Oxford University, Oxford, United Kingdom
| | - Ivan Koychev
- Department of Psychiatry, Oxford University, Oxford, United Kingdom
| | - Tony Thayanandan
- Department of Psychiatry, Oxford University, Oxford, United Kingdom
| | - Vanessa Raymont
- Department of Psychiatry, Oxford University, Oxford, United Kingdom
| | - Craig W. Ritchie
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom
- Scottish Brain Sciences, Edinburgh, United Kingdom
| | - William Stewart
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - John T. O’Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
6
|
Ritchie CW, Bridgeman K, Gregory S, O’Brien JT, Danso SO, Dounavi ME, Carriere I, Driscoll D, Hillary R, Koychev I, Lawlor B, Naci L, Su L, Low A, Mak E, Malhotra P, Manson J, Marioni R, Murphy L, Ntailianis G, Stewart W, Muniz-Terrera G, Ritchie K. The PREVENT dementia programme: baseline demographic, lifestyle, imaging and cognitive data from a midlife cohort study investigating risk factors for dementia. Brain Commun 2024; 6:fcae189. [PMID: 38863576 PMCID: PMC11166176 DOI: 10.1093/braincomms/fcae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
PREVENT is a multi-centre prospective cohort study in the UK and Ireland that aims to examine midlife risk factors for dementia and identify and describe the earliest indices of disease development. The PREVENT dementia programme is one of the original epidemiological initiatives targeting midlife as a critical window for intervention in neurodegenerative conditions. This paper provides an overview of the study protocol and presents the first summary results from the initial baseline data to describe the cohort. Participants in the PREVENT cohort provide demographic data, biological samples (blood, saliva, urine and optional cerebrospinal fluid), lifestyle and psychological questionnaires, undergo a comprehensive cognitive test battery and are imaged using multi-modal 3-T MRI scanning, with both structural and functional sequences. The PREVENT cohort governance structure is described, which includes a steering committee, a scientific advisory board and core patient and public involvement groups. A number of sub-studies that supplement the main PREVENT cohort are also described. The PREVENT cohort baseline data include 700 participants recruited between 2014 and 2020 across five sites in the UK and Ireland (Cambridge, Dublin, Edinburgh, London and Oxford). At baseline, participants had a mean age of 51.2 years (range 40-59, SD ± 5.47), with the majority female (n = 433, 61.9%). There was a near equal distribution of participants with and without a parental history of dementia (51.4% versus 48.6%) and a relatively high prevalence of APOEɛ4 carriers (n = 264, 38.0%). Participants were highly educated (16.7 ± 3.44 years of education), were mainly of European Ancestry (n = 672, 95.9%) and were cognitively healthy as measured by the Addenbrookes Cognitive Examination-III (total score 95.6 ± 4.06). Mean white matter hyperintensity volume at recruitment was 2.26 ± 2.77 ml (median = 1.39 ml), with hippocampal volume being 8.15 ± 0.79 ml. There was good representation of known dementia risk factors in the cohort. The PREVENT cohort offers a novel data set to explore midlife risk factors and early signs of neurodegenerative disease. Data are available open access at no cost via the Alzheimer's Disease Data Initiative platform and Dementia Platforms UK platform pending approval of the data access request from the PREVENT steering group committee.
Collapse
Affiliation(s)
- Craig W Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Scottish Brain Sciences, Edinburgh, EH12 9DQ, UK
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Katie Bridgeman
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Scottish Brain Sciences, Edinburgh, EH12 9DQ, UK
| | - John T O’Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Samuel O Danso
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK
| | | | | | - Robert Hillary
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Brian Lawlor
- Global Brain Health Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lorina Naci
- Global Brain Health Institute, Trinity College Dublin, Dublin 2, Ireland
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, D02 PX31, Ireland
| | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK
- Department of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Audrey Low
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Paresh Malhotra
- Imperial College London, UK Dementia Research Institute Care Research and Technology Centre, London, W12 0BZ, UK
- Brain Sciences, Imperial College London, London, W12 0NN, UK
- Clinical Neurosciences, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, W6 8RF, UK
| | - Jean Manson
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Riccardo Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Georgios Ntailianis
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QB, UK
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Ohio, OH 45701, USA
| | - Karen Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
- INM, Université de Montpellier, INSERM, Montpellier, 34091, France
| |
Collapse
|
7
|
Buller-Peralta I, Gregory S, Low A, Dounavi ME, Bridgeman K, Ntailianis G, Lawlor B, Naci L, Koychev I, Malhotra P, O'Brien JT, Ritchie CW, Muniz-Terrera G. Comprehensive allostatic load risk index is associated with increased frontal and left parietal white matter hyperintensities in mid-life cognitively healthy adults. Sci Rep 2024; 14:573. [PMID: 38177228 PMCID: PMC10766612 DOI: 10.1038/s41598-023-49656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
To date, there is a considerable heterogeneity of methods to score Allostatic Load (AL). Here we propose a comprehensive algorithm (ALCS) that integrates commonly used approaches to generate AL risk categories and assess associations to brain structure deterioration. In a cohort of cognitively normal mid-life adults (n = 620, age 51.3 ± 5.48 years), we developed a comprehensive composite for AL scoring incorporating gender and age differences, high quartile approach, clinical reference values, and current medications, to then generate AL risk categories. Compared to the empirical approach (ALES), ALCS showed better model fit criteria and a strong association with age and sex. ALSC categories were regressed against brain and white matter hyperintensity (WMH) volumes. Higher AL risk categories were associated with increased total, periventricular, frontal, and left parietal WMH volumes, also showing better fit compared to ALES. When cardiovascular biomarkers were removed from the ALSC algorithm, only left-frontal WMHV remained associated with AL, revealing a strong vascular burden influencing the index. Our results agree with previous evidence and suggest that sustained stress exposure enhances brain deterioration in mid-life adults. Showing better fit than ALES, our comprehensive algorithm can provide a more accurate AL estimation to explore how stress exposure enhances age-related health decline.
Collapse
Affiliation(s)
- Ingrid Buller-Peralta
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Outpatients Department Level 2 Western General Hospital, The University of Edinburgh, Crewe Rd S, Edinburgh, EH4 2XU, UK.
| | - Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Outpatients Department Level 2 Western General Hospital, The University of Edinburgh, Crewe Rd S, Edinburgh, EH4 2XU, UK
| | - Audrey Low
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Level E4, Box 189, Cambridge, CB2 0QQ, UK
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Level E4, Box 189, Cambridge, CB2 0QQ, UK
| | - Katie Bridgeman
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Outpatients Department Level 2 Western General Hospital, The University of Edinburgh, Crewe Rd S, Edinburgh, EH4 2XU, UK
| | - Georgios Ntailianis
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Outpatients Department Level 2 Western General Hospital, The University of Edinburgh, Crewe Rd S, Edinburgh, EH4 2XU, UK
| | - Brian Lawlor
- Trinity College Institute of Neuroscience, School of Psychology, Aras an Phiarsaigh, Trinity College Dublin, Dublin 2, Ireland
- Global Brain Health Institute, Trinity College Dublin, GBHI Office Room 0.60, Lloyd Building Trinity College Dublin, Dublin 2, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Aras an Phiarsaigh, Trinity College Dublin, Dublin 2, Ireland
- Global Brain Health Institute, Trinity College Dublin, GBHI Office Room 0.60, Lloyd Building Trinity College Dublin, Dublin 2, Ireland
| | - Ivan Koychev
- Department of Psychiatry, Warneford Hospital, Oxford University, Warneford Ln, Headington, Oxford, OX3 7JX, UK
| | - Paresh Malhotra
- Department of Brain Sciences, Imperial College London, Burlington Danes, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Level E4, Box 189, Cambridge, CB2 0QQ, UK
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Outpatients Department Level 2 Western General Hospital, The University of Edinburgh, Crewe Rd S, Edinburgh, EH4 2XU, UK
- Scottish Brain Sciences, Gyleview House, 3 Redheughs Rigg, South Gyle, Edinburgh, EH12 9DQ, UK
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Outpatients Department Level 2 Western General Hospital, The University of Edinburgh, Crewe Rd S, Edinburgh, EH4 2XU, UK
- Ohio University Heritage College of Osteopathic Medicine, 191 W Union St, Athens, OH, 45701, USA
| |
Collapse
|
8
|
Heneghan A, Deng F, Wells K, Ritchie K, Muniz-Terrera G, Ritchie CW, Lawlor B, Naci L. Modifiable Lifestyle Activities Affect Cognition in Cognitively Healthy Middle-Aged Individuals at Risk for Late-Life Alzheimer's Disease. J Alzheimers Dis 2023; 91:833-846. [PMID: 36502318 DOI: 10.3233/jad-220267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is now acknowledged that Alzheimer's disease (AD) processes are present decades before the onset of clinical symptoms, but it remains unknown whether lifestyle factors can protect against these early AD processes in mid-life. OBJECTIVE We asked whether modifiable lifestyle activities impact cognition in middle-aged individuals who are cognitively healthy, but at risk for late life AD. Participants (40-59 years) completed cognitive and clinical assessments at baseline (N = 206) and two years follow-up (N = 174). METHODS Mid-life activities were measured with the Lifetime of Experiences Questionnaire. We assessed the impact of lifestyle activities, known risk factors for sporadic late-onset AD (Apolipoprotein E ɛ4 allele status, family history of dementia, and the Cardiovascular Risk Factors Aging and Dementia score), and their interactions on cognition. RESULTS More frequent engagement in physically, socially, and intellectually stimulating activities was associated with better cognition (verbal, spatial, and relational memory), at baseline and follow-up. Critically, more frequent engagement in these activities was associated with stronger cognition (verbal and visuospatial functions, and conjunctive short-term memory binding) in individuals with family history of dementia. Impaired visuospatial function is one of the earliest cognitive deficits in AD and has previously associated with increased AD risk in this cohort. Additionally, conjunctive memory functions have been found impaired in the pre-symptomatic stages of AD. CONCLUSION These findings suggest that modifiable lifestyle activities offset cognitive decrements due to AD risk in mid-life and support the targeting of modifiable lifestyle activities for the prevention of AD.
Collapse
Affiliation(s)
- Amy Heneghan
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland.,Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Feng Deng
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland.,Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Katie Wells
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Karen Ritchie
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK.,INSERM and University of Montpellier, Montpellier, France
| | | | - Craig W Ritchie
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Brian Lawlor
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland.,Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland.,Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Low A, Prats-Sedano MA, McKiernan E, Carter SF, Stefaniak JD, Nannoni S, Su L, Dounavi ME, Muniz-Terrera G, Ritchie K, Lawlor B, Naci L, Malhotra P, Mackay C, Koychev I, Ritchie CW, Markus HS, O’Brien JT. Modifiable and non-modifiable risk factors of dementia on midlife cerebral small vessel disease in cognitively healthy middle-aged adults: the PREVENT-Dementia study. Alzheimers Res Ther 2022; 14:154. [PMID: 36224605 PMCID: PMC9554984 DOI: 10.1186/s13195-022-01095-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Background Considerable overlap exists between the risk factors of dementia and cerebral small vessel disease (SVD). However, studies remain limited to older cohorts wherein pathologies of both dementia (e.g. amyloid) and SVD (e.g. white matter hyperintensities) already co-exist. In younger asymptomatic adults, we investigated differential associations and interactions of modifiable and non-modifiable inherited risk factors of (future) late-life dementia to (present-day) mid-life SVD. Methods Cognitively healthy middle-aged adults (aged 40–59; mean 51.2 years) underwent 3T MRI (n = 630) as part of the PREVENT-Dementia study. To assess SVD, we quantified white matter hyperintensities, enlarged perivascular spaces, microbleeds, lacunes, and computed composite scores of SVD burden and subtypes of hypertensive arteriopathy and cerebral amyloid angiopathy (CAA). Non-modifiable (inherited) risk factors were APOE4 status and parental family history of dementia. Modifiable risk factors were derived from the 2020 Lancet Commission on dementia prevention (early/midlife: education, hypertension, obesity, alcohol, hearing impairment, head injuries). Confirmatory factor analysis (CFA) was used to evaluate the latent variables of SVD and risk factors. Structural equation modelling (SEM) of the full structural assessed associations of SVD with risk factors and APOE4*risk interaction. Results In SEM, the latent variable of global SVD related to the latent variable of modifiable midlife risk SVD (β = 0.80, p = .009) but not non-modifiable inherited risk factors of APOE4 or family history of dementia. Interaction analysis demonstrated that the effect of modifiable risk on SVD was amplified in APOE4 non-carriers (β = − 0.31, p = .009), rather than carriers. These associations and interaction effects were observed in relation to the SVD subtype of hypertensive arteriopathy, rather than CAA. Sensitivity analyses using separate general linear models validated SEM results. Conclusions Established modifiable risk factors of future (late-life) dementia related to present-day (mid-life) SVD, suggesting that early lifestyle modifications could potentially reduce rates of vascular cognitive impairment attributed to SVD, a major ‘silent’ contributor to global dementia cases. This association was amplified in APOE4 non-carriers, suggesting that lifestyle modifications could be effective even in those with genetic predisposition to dementia. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01095-4.
Collapse
Affiliation(s)
- Audrey Low
- grid.5335.00000000121885934Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge, Cambridgeshire CB2 0SP UK
| | - Maria A. Prats-Sedano
- grid.5335.00000000121885934Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge, Cambridgeshire CB2 0SP UK
| | - Elizabeth McKiernan
- grid.5335.00000000121885934Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge, Cambridgeshire CB2 0SP UK
| | - Stephen F. Carter
- grid.5335.00000000121885934Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge, Cambridgeshire CB2 0SP UK
| | - James D. Stefaniak
- grid.5335.00000000121885934Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge, Cambridgeshire CB2 0SP UK ,grid.5335.00000000121885934Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefania Nannoni
- grid.5335.00000000121885934Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Li Su
- grid.5335.00000000121885934Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge, Cambridgeshire CB2 0SP UK ,grid.11835.3e0000 0004 1936 9262Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Maria-Eleni Dounavi
- grid.5335.00000000121885934Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge, Cambridgeshire CB2 0SP UK
| | - Graciela Muniz-Terrera
- grid.4305.20000 0004 1936 7988Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Karen Ritchie
- grid.4305.20000 0004 1936 7988Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK ,grid.457377.5INSERM, Montpellier, France
| | - Brian Lawlor
- grid.8217.c0000 0004 1936 9705Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Lorina Naci
- grid.8217.c0000 0004 1936 9705Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Paresh Malhotra
- grid.417895.60000 0001 0693 2181Division of Brain Science, Imperial College Healthcare NHS Trust, London, UK
| | - Clare Mackay
- grid.4991.50000 0004 1936 8948Department of Psychiatry, Oxford University, Oxford, UK
| | - Ivan Koychev
- grid.4991.50000 0004 1936 8948Department of Psychiatry, Oxford University, Oxford, UK
| | - Craig W. Ritchie
- grid.4305.20000 0004 1936 7988Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Hugh S. Markus
- grid.5335.00000000121885934Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John T. O’Brien
- grid.5335.00000000121885934Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge, Cambridgeshire CB2 0SP UK ,grid.450563.10000 0004 0412 9303Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
10
|
Zou C, Huang X, Zhang Y, Pan M, Xie J, Chen L, Meng Y, Zou D, Luo J. Potential biomarkers of Alzheimer’s disease and cerebral small vessel disease. Front Mol Neurosci 2022; 15:996107. [PMID: 36299860 PMCID: PMC9588985 DOI: 10.3389/fnmol.2022.996107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background Cerebral small vessel disease (CSVD) is associated with the pathogenesis of Alzheimer’s disease (AD). Effective treatments to alleviate AD are still not currently available. Hence, we explored markers and underlying molecular mechanisms associated with AD by utilizing gene expression profiles of AD and CSVD patients from public databases, providing more options for early diagnosis and its treatment. Methods Gene expression profiles were collected from GSE63060 (for AD) and GSE162790 (for CSVD). Differential analysis was performed between AD and mild cognitive impairment (MCI) or CSVD progression and CSVD no-progression. In both datasets, differentially expressed genes (DEGs) with the same expression direction were identified as common DEGs. Then protein-protein interaction (PPI) network was constructed for common DEGs. Differential immune cells and checkpoints were calculated between AD and MCI. Results A total of 146 common DEGs were identified. Common DEGs were mainly enriched in endocytosis and oxytocin signaling pathways. Interestingly, endocytosis and metabolic pathways were shown both from MCI to AD and from CSVD no-progression to CSVD progression. Moreover, SIRT1 was identified as a key gene by ranking degree of connectivity in the PPI network. SIRT1 was associated with obesity-related genes and metabolic disorders. Additionally, SIRT1 showed correlations with CD8 T cells, NK CD56 bright cells, and checkpoints in AD. Conclusion The study revealed that the progression of AD is associated with abnormalities in gene expression and metabolism and that the SIRT1 gene may serve as a promising therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohua Huang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yilong Zhang
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jieqiong Xie
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Youshi Meng
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Donghua Zou,
| | - Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Jiefeng Luo,
| |
Collapse
|
11
|
Liu X, Sun P, Yang J, Fan Y. Biomarkers involved in the pathogenesis of cerebral small-vessel disease. Front Neurol 2022; 13:969185. [PMID: 36119691 PMCID: PMC9475115 DOI: 10.3389/fneur.2022.969185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral small-vessel disease (CSVD) has been found to have a strong association with vascular cognitive impairment (VCI) and functional loss in elderly patients. At present, the diagnosis of CSVD mainly relies on brain neuroimaging markers, but they cannot fully reflect the overall picture of the disease. Currently, some biomarkers were found to be related to CSVD, but the underlying mechanisms remain unclear. We aimed to systematically review and summarize studies on the progress of biomarkers related to the pathogenesis of CSVD, which is mainly the relationship between these indicators and neuroimaging markers of CSVD. Concerning the pathophysiological mechanism of CSVD, the biomarkers of CSVD have been described as several categories related to sporadic and genetic factors. Monitoring of biomarkers might contribute to the early diagnosis and progression prediction of CSVD, thus providing ideas for better diagnosis and treatment of CSVD.
Collapse
|
12
|
Groeger JL, Ayers E, Barzilai N, Beauchet O, Callisaya M, Torossian MR, Derby C, Doi T, Lipton RB, Milman S, Nakakubo S, Shimada H, Srikanth V, Wang C, Verghese J. Inflammatory biomarkers and motoric cognitive risk syndrome: Multicohort survey. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100151. [PMID: 36324399 PMCID: PMC9616385 DOI: 10.1016/j.cccb.2022.100151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022]
Abstract
Raised IL-6 and CRP levels are associated with increased odds of MCR. IL-6 and CRP are involved in overlapping inflammatory, vascular, and neurological pathology. Establishing these pathways can guide interventions to prevent progression of MCR to dementia.
Background Inflammation may play a role in Motoric Cognitive Risk (MCR) syndrome, a pre-dementia syndrome comprised of slow gait and cognitive complaints. Our objective was to examine associations of inflammatory biomarkers with MCR. Methods We examined association of interleukin-6 (IL-6) and C-reactive protein (CRP) with prevalent MCR using logistic regression in 3,101 older adults (52% female) from five cohorts (National Center for Geriatrics & Gerontology Study of Geriatric Syndromes [NCGG-SGS], Central Control of Mobility in Aging [CCMA], Tasmanian Study of Cognition and Gait [TASCOG], LonGenity, and Einstein Aging Study [EAS]). Associations were reported as odds ratios adjusted for sex, age, education, depressive symptoms, body mass index, and vascular diseases (aOR) with 95% confidence intervals (CI). Meta-analysis and analyses stratified by vascular disease were also done. Results Although associations between higher (worse) CRP and IL-6 tertiles and MCR were only seen in three out of the five cohorts (EAS, TASCOG, and LonGenity), when a pooled meta-analysis was performed, a robust association was demonstrated. In meta-analysis, highest tertiles of IL-6 (aOR 1.57, 95%CI 1.01- 2.44) and CRP (aOR 1.65, 95%CI 1.09–2.48) was associated with MCR versus lowest tertiles in the pooled sample. Higher CRP was associated with MCR among those with vascular disease in TASCOG and LonGenity cohorts, and among those without vascular disease in EAS. Conclusions IL-6 and CRP levels are associated with MCR in older adults, and this association varies by presence of vascular disease.
Collapse
Affiliation(s)
- Justina L Groeger
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Corresponding author.
| | - Emmeline Ayers
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Olivier Beauchet
- Department of Medicine, Division of Geriatric Medicine, Sir Mortimer B. Davis - Jewish General Hospital and Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada; Department of Medicine, Faculty of Medicine, University of Montreal, Quebec, Canada; Centre of Research of "Institut Universitaire de Montreal", Quebec, Canada; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Michele Callisaya
- Peninsula Clinical School, Central Clinical School, Monash University, 2 Hastings Road, Frankston, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania, Australia
- The National Centre for Healthy Ageing, Melbourne, Victoria, Australia
| | - Maral R. Torossian
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carol Derby
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Takehiko Doi
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi 474-8511, Japan
| | - Richard B. Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sofiya Milman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sho Nakakubo
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi 474-8511, Japan
| | - Hiroyuki Shimada
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi 474-8511, Japan
| | - Velandai Srikanth
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania, Australia
- The National Centre for Healthy Ageing, Melbourne, Victoria, Australia
- Department of Geriatric Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Cuiling Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joe Verghese
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|