1
|
Palko SI, Benoit MR, Yao AY, Mohan R, Yan R. ER-stress response in retinal Müller glia occurs significantly earlier than amyloid pathology in the Alzheimer's mouse brain and retina. Glia 2024; 72:1067-1081. [PMID: 38497356 PMCID: PMC11006574 DOI: 10.1002/glia.24514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Alzheimer's Disease (AD) pathogenesis is thought to begin up to 20 years before cognitive symptoms appear, suggesting the need for more sensitive diagnostic biomarkers of AD. In this report, we demonstrated pathological changes in retinal Müller glia significantly earlier than amyloid pathology in AD mouse models. By utilizing the knock-in NLGF mouse model, we surprisingly discovered an increase in reticulon 3 (RTN3) protein levels in the NLGF retina as early as postnatal day 30 (P30). Despite RTN3 being a canonically neuronal protein, this increase was noted in the retinal Müller glia, confirmed by immunohistochemical characterization. Further unbiased transcriptomic assays of the P30 NLGF retina revealed that retinal Müller glia were the most sensitive responding cells in this mouse retina, compared with other cell types including photoreceptor cells and ganglion neurons. Pathway analyses of differentially expressed genes in glia cells showed activation of ER stress response via the upregulation of unfolded protein response (UPR) proteins such as ATF4 and CHOP. Early elevation of RTN3 in response to challenges by toxic Aβ likely facilitated UPR. Altogether, these findings suggest that Müller glia act as a sentinel for AD pathology in the retina and should aid for both intervention and diagnosis.
Collapse
Affiliation(s)
| | | | - Annie Y. Yao
- Department of Neuroscience, University of Connecticut Health Center, Farmington CT 06030 USA
| | - Royce Mohan
- Department of Neuroscience, University of Connecticut Health Center, Farmington CT 06030 USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health Center, Farmington CT 06030 USA
| |
Collapse
|
2
|
Huang H, Sharoar MG, Pathoulas J, Fan L, He W, Xiang R, Yan R. Accumulation of neutral lipids in dystrophic neurites surrounding amyloid plaques in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167086. [PMID: 38378084 PMCID: PMC10999334 DOI: 10.1016/j.bbadis.2024.167086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Alzheimer's disease (AD) is characterized by the formation β-amyloid (Aβ) deposited neuritic plaques. Recent evidence suggests that abnormal lipid metabolism and accumulation could serve as biomarkers for neurodegenerative diseases, including AD. Tubular endoplasmic reticulum protein, reticulon 3 (RTN3), plays a crucial role in the development of neuritic plaque and lipid metabolism in AD brains. In present study, we sought to investigate a potential association between neutral lipid accumulation and AD pathology. BODIPY 500/510 dye was used to label neutral lipid surrounding Aβ plaques in APPNL-G-F mouse and AD postmortem brains samples. Immunofluorescent images were captured using confocal microscope and co-localization between lipid metabolism proteins and neutral lipids were evaluated. Lipid accumulation in Aβ plaque surrounding dystrophic neurites (DNs) was observed in the cortical region of AD mouse models and human AD brain samples. The neutral lipid staining was not co-localized with IBA1-labeled microglia or GFAP-labeled astrocytes, but it was co-labeled with VAMP2 and neurofilament. We further showed that neutral lipids were accumulated in RTN3 immunoreactive DNs. Both the neutral lipids accumulation and RIDNs formation showed age-dependent patterns in surrounding amyloid plaques. Mechanistic studies revealed that RTN3 likely contributes to the enrichment of neutral lipids near plaques by interacting with heat shock cognate protein 70 (HSC70) and diminishing its function in chaperone-mediated lipophagy. Our study provides immunohistochemical evidence of neutral lipids being enriched in DNs near amyloid plaques. Our findings shed light on RTN3-mediaed lipid accumulation in AD neuropathology and provide fresh insights into the role of RTN3 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hao Huang
- Department of Nephrology, Xiangya Hospital and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA; Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA; Alzheimer's Disease Research Program, Corewell Health Research Institute, Oakland University William Beaumont School of Medicine, Corewell Health East, Royal Oak, MI 48073, USA
| | - Joseph Pathoulas
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Liangliang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Wanxia He
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
3
|
Kuehner JN, Walia NR, Seong R, Li Y, Martinez-Feduchi P, Yao B. Social defeat stress induces genome-wide 5mC and 5hmC alterations in the mouse brain. G3 (BETHESDA, MD.) 2023; 13:jkad114. [PMID: 37228107 PMCID: PMC10411578 DOI: 10.1093/g3journal/jkad114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Stress is adverse experience that require constant adaptation to reduce the emotional and physiological burden, or "allostatic load", of an individual. Despite their everyday occurrence, a subpopulation of individuals is more susceptible to stressors, while others remain resilient with unknown molecular signatures. In this study, we investigated the contribution of the DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), underlying the individual differences in stress susceptibility and resilience. Genome-wide 5mC and 5hmC profiles from 3- and 6-month adult male mice that underwent various durations of social defeat were generated. In 3-month animals, 5mC and 5hmC work in parallel and do not distinguish between stress-susceptible and resilient phenotypes, while in 6-month animals, 5mC and 5hmC show distinct enrichment patterns. Acute stress responses may epigenetically "prime" the animals to either increase or decrease their predisposition to depression susceptibility. In support of this, re-exposure studies reveal that the enduring effects of social defeat affect differential biological processes between susceptible and resilient animals. Finally, the stress-induced 5mC and 5hmC fluctuations across the acute-chronic-longitudinal time course demonstrate that the negative outcomes of chronic stress do not discriminate between susceptible and resilient animals. However, resilience is more associated with neuroprotective processes while susceptibility is linked to neurodegenerative processes. Furthermore, 5mC appears to be responsible for acute stress response, whereas 5hmC may function as a persistent and stable modification in response to stress. Our study broadens the scope of previous research offering a comprehensive analysis of the role of DNA modifications in stress-induced depression.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Nevin R Walia
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Rachel Seong
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Paula Martinez-Feduchi
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Yu J, Yang X, Zheng J, Sgobio C, Sun L, Cai H. Deficiency of Perry syndrome-associated p150 Glued in midbrain dopaminergic neurons leads to progressive neurodegeneration and endoplasmic reticulum abnormalities. NPJ Parkinsons Dis 2023; 9:35. [PMID: 36879021 PMCID: PMC9988887 DOI: 10.1038/s41531-023-00478-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple missense mutations in p150Glued are linked to Perry syndrome (PS), a rare neurodegenerative disease pathologically characterized by loss of nigral dopaminergic (DAergic) neurons. Here we generated p150Glued conditional knockout (cKO) mice by deleting p150Glued in midbrain DAergic neurons. The young cKO mice displayed impaired motor coordination, dystrophic DAergic dendrites, swollen axon terminals, reduced striatal dopamine transporter (DAT), and dysregulated dopamine transmission. The aged cKO mice showed loss of DAergic neurons and axons, somatic accumulation of α-synuclein, and astrogliosis. Further mechanistic studies revealed that p150Glued deficiency in DAergic neurons led to the reorganization of endoplasmic reticulum (ER) in dystrophic dendrites, upregulation of ER tubule-shaping protein reticulon 3, accumulation of DAT in reorganized ERs, dysfunction of COPII-mediated ER export, activation of unfolded protein response, and exacerbation of ER stress-induced cell death. Our findings demonstrate the importance of p150Glued in controlling the structure and function of ER, which is critical for the survival and function of midbrain DAergic neurons in PS.
Collapse
Affiliation(s)
- Jia Yu
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China.
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Xuan Yang
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Jiayin Zheng
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Carmelo Sgobio
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, 81377, Germany
| | - Lixin Sun
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Hu B, Duan S, Wang Z, Li X, Zhou Y, Zhang X, Zhang YW, Xu H, Zheng H. Insights Into the Role of CSF1R in the Central Nervous System and Neurological Disorders. Front Aging Neurosci 2021; 13:789834. [PMID: 34867307 PMCID: PMC8634759 DOI: 10.3389/fnagi.2021.789834] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.
Collapse
Affiliation(s)
- Banglian Hu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Shengshun Duan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Ziwei Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yuhang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|