1
|
İş Ö, Min Y, Wang X, Oatman SR, Abraham Daniel A, Ertekin‐Taner N. Multi Layered Omics Approaches Reveal Glia Specific Alterations in Alzheimer's Disease: A Systematic Review and Future Prospects. Glia 2025; 73:539-573. [PMID: 39652363 PMCID: PMC11784841 DOI: 10.1002/glia.24652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative dementia with multi-layered complexity in its molecular etiology. Multiple omics-based approaches, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and lipidomics are enabling researchers to dissect this molecular complexity, and to uncover a plethora of alterations yielding insights into the pathophysiology of this disease. These approaches reveal multi-omics alterations essentially in all cell types of the brain, including glia. In this systematic review, we screen the literature for human studies implementing any omics approach within the last 10 years, to discover AD-associated molecular perturbations in brain glial cells. The findings from over 200 AD-related studies are reviewed under four different glial cell categories: microglia, oligodendrocytes, astrocytes and brain vascular cells. Under each category, we summarize the shared and unique molecular alterations identified in glial cells through complementary omics approaches. We discuss the implications of these findings for the development, progression and ultimately treatment of this complex disease as well as directions for future omics studies in glia cells.
Collapse
Affiliation(s)
- Özkan İş
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yuhao Min
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Xue Wang
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
2
|
Shapley SM, Shantaraman A, Kearney MA, Dammer EB, Duong DM, Bowen CA, Bagchi P, Guo Q, Rangaraju S, Seyfried NT. Proximity labeling of the Tau repeat domain enriches RNA-binding proteins that are altered in Alzheimer's disease and related tauopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633945. [PMID: 39896523 PMCID: PMC11785194 DOI: 10.1101/2025.01.22.633945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In Alzheimer's disease (AD) and other tauopathies, tau dissociates from microtubules and forms toxic aggregates that contribute to neurodegeneration. Although some of the pathological interactions of tau have been identified from postmortem brain tissue, these studies are limited by their inability to capture transient interactions. To investigate the interactome of aggregate-prone fragments of tau, we applied an in vitro proximity labeling technique using split TurboID biotin ligase (sTurbo) fused with the tau microtubule repeat domain (TauRD), a core region implicated in tau aggregation. We characterized sTurbo TauRD co-expression, robust enzyme activity and nuclear and cytoplasmic localization in a human cell line. Following enrichment of biotinylated proteins and mass spectrometry, we identified over 700 TauRD interactors. Gene ontology analysis of enriched TauRD interactors highlighted processes often dysregulated in tauopathies, including spliceosome complexes, RNA-binding proteins (RBPs), and nuclear speckles. The disease relevance of these interactors was supported by integrating recombinant TauRD interactome data with human AD tau interactome datasets and protein co-expression networks from individuals with AD and related tauopathies. This revealed an overlap with the TauRD interactome and several modules enriched with RBPs and increased in AD and Progressive Supranuclear Palsy (PSP). These findings emphasize the importance of nuclear pathways in tau pathology, such as RNA splicing and nuclear-cytoplasmic transport and establish the sTurbo TauRD system as a valuable tool for exploring the tau interactome.
Collapse
Affiliation(s)
- Sarah M Shapley
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, Georgia, USA
| | - Anantharaman Shantaraman
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Emory Integrated Proteomics Core, Emory School of Medicine, Atlanta, Georgia, USA
| | - Masin A Kearney
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, Georgia, USA
| | - Eric B Dammer
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Emory Integrated Proteomics Core, Emory School of Medicine, Atlanta, Georgia, USA
| | - Duc M Duong
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Emory Integrated Proteomics Core, Emory School of Medicine, Atlanta, Georgia, USA
| | - Christine A Bowen
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, Georgia, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory School of Medicine, Atlanta, Georgia, USA
| | - Qi Guo
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, Georgia, USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Nicholas T Seyfried
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Johnson AG, Dammer EB, Webster JA, Duong DM, Seyfried NT, Hales CM. Proteomic networks of gray and white matter reveal tissue-specific changes in human tauopathy. Ann Clin Transl Neurol 2024; 11:2138-2152. [PMID: 38924699 PMCID: PMC11330236 DOI: 10.1002/acn3.52134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE To define tauopathy-associated changes in the human gray and white matter proteome. METHOD We applied tandem mass tagged labeling and mass spectrometry, consensus, and ratio weighted gene correlation network analysis (WGCNA) to gray and white matter sampled from postmortem human dorsolateral prefrontal cortex. The sampled tissues included control as well as Alzheimer's disease, corticobasal degeneration, progressive supranuclear palsy, frontotemporal degeneration with tau pathology, and chronic traumatic encephalopathy. RESULTS Only eight proteins were unique to gray matter while six were unique to white matter. Comparison of the gray and white matter proteome revealed an enrichment of microglial proteins in the white matter. Consensus WGCNA sorted over 6700 protein isoforms into 46 consensus modules across the gray and white matter proteomic networks. Consensus network modules demonstrated unique and shared disease-associated microglial and endothelial protein changes. Ratio WGCNA sorted over 6500 protein ratios (white:gray) into 33 modules. Modules associated with mitochondrial proteins and processes demonstrated higher white:gray ratios in diseased tissues relative to control, driven by mitochondrial protein downregulation in gray and upregulation in white. INTERPRETATION The dataset is a valuable resource for understanding proteomic changes in human tauopathy gray and white matter. The identification of unique and shared disease-associated changes across gray and white matter emphasizes the utility of examining both tissue types. Future studies of microglial, endothelial, and mitochondrial changes in white matter may provide novel insights into tauopathy-associated changes in human brain.
Collapse
Affiliation(s)
- Ashlyn G. Johnson
- Neuroscience Graduate Program, Laney Graduate SchoolEmory UniversityAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Eric B. Dammer
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - James A. Webster
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Duc M. Duong
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Chadwick M. Hales
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Halder A, Drummond E. Strategies for translating proteomics discoveries into drug discovery for dementia. Neural Regen Res 2024; 19:132-139. [PMID: 37488854 PMCID: PMC10479849 DOI: 10.4103/1673-5374.373681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 07/26/2023] Open
Abstract
Tauopathies, diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of frontotemporal dementia, make up the vast majority of dementia cases. Although there have been recent developments in tauopathy biomarkers and disease-modifying treatments, ongoing progress is required to ensure these are effective, economical, and accessible for the globally ageing population. As such, continued identification of new potential drug targets and biomarkers is critical. "Big data" studies, such as proteomics, can generate information on thousands of possible new targets for dementia diagnostics and therapeutics, but currently remain underutilized due to the lack of a clear process by which targets are selected for future drug development. In this review, we discuss current tauopathy biomarkers and therapeutics, and highlight areas in need of improvement, particularly when addressing the needs of frail, comorbid and cognitively impaired populations. We highlight biomarkers which have been developed from proteomic data, and outline possible future directions in this field. We propose new criteria by which potential targets in proteomics studies can be objectively ranked as favorable for drug development, and demonstrate its application to our group's recent tau interactome dataset as an example.
Collapse
Affiliation(s)
- Aditi Halder
- School of Medical Sciences and Brain & Mind Center, University of Sydney, NSW, Sydney, Australia
- Department of Aged Care, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Eleanor Drummond
- School of Medical Sciences and Brain & Mind Center, University of Sydney, NSW, Sydney, Australia
| |
Collapse
|
5
|
Fiock KL, Hook JN, Hefti MM. Determinants of astrocytic pathology in stem cell models of primary tauopathies. Acta Neuropathol Commun 2023; 11:161. [PMID: 37803326 PMCID: PMC10557325 DOI: 10.1186/s40478-023-01655-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023] Open
Abstract
Astrocytic tau aggregates are seen in several primary and secondary tauopathies, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and chronic traumatic encephalopathy (CTE). In all of these diseases, astrocytic tau consists mostly of the longer (4R) tau isoform, even when adjacent neuronal aggregates consist of a mixture of 3- and 4R tau, as in CTE. Even the rare astrocytic tau aggregates seen in Pick's disease appear to contain both 3R and 4R tau. The reasons for this, and the mechanisms by which astrocytic tau aggregates form, remain unclear. We used a combination of RNA in situ hybridization and immunofluorescence in post-mortem human brain tissue, as well as tau uptake studies in human stem cell-derived astrocytes, to determine the origins of astrocytic tau in 4R tauopathies. We found no differences in tau mRNA expression between diseases or between tau positive and negative astrocytes within PSP. We then found that stem cell-derived astrocytes preferentially take up long isoform (4R) recombinant tau and that this uptake is impaired by induction of reactivity with inflammatory stimuli or nutritional stress. Astrocytes exposed to either 3R or 4R tau also showed downregulation of genes related to astrocyte differentiation. Our findings suggest that astrocytes preferentially take up neuronal 4R tau from the extracellular space, potentially explaining why 4R tau is the predominant isoform in astrocytic tau aggregates.
Collapse
Affiliation(s)
- Kimberly L Fiock
- Department of Pathology, University of Iowa, 25 S Grand Ave MRC-108-A, Iowa City, IA, 52240, USA
- Experimental Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jordan N Hook
- Department of Pathology, University of Iowa, 25 S Grand Ave MRC-108-A, Iowa City, IA, 52240, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, 25 S Grand Ave MRC-108-A, Iowa City, IA, 52240, USA.
- Experimental Pathology Graduate Program, University of Iowa, Iowa City, IA, USA.
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Momin ID, Rigler J, Chitrala KN. Analysis of Potential Biomarkers in Frontal Temporal Dementia: A Bioinformatics Approach. Int J Mol Sci 2023; 24:14910. [PMID: 37834358 PMCID: PMC10573524 DOI: 10.3390/ijms241914910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Frontal temporal dementia (FTD) is a neurological disorder known to have fewer therapeutic options. So far, only a few biomarkers are available for FTD that can be used as potential comorbidity targets. For example, genes such as VCP, which has a role in breast cancer, and WFS1, which has a role in COVID-19, are known to show a role in FTD as well. To this end, in the present study, we aim to identify potential biomarkers or susceptible genes for FTD that show comorbidities with diseases such as COVID-19 and breast cancer. A dataset from Gene Expression Omnibus containing FTD expression profiles from African American and white ethnicity backgrounds was included in our study. In FTD samples of the GSE193391 dataset, we identified 305 DEGs, with 168 genes being up-regulated and 137 genes being down-regulated. We conducted a comorbidity analysis for COVID-19 and breast cancer, followed by an analysis of potential drug interactions, pathogenicity, analysis of genetic variants, and functional enrichment analysis. Our results showed that the genes AKT3, GFAP, ADCYAP1R1, VDAC1, and C4A have significant transcriptomic alterations in FTD along with the comorbidity status with COVID-19 and breast cancer. Functional pathway analysis revealed that these comorbid genes were significantly enriched in the pathways such as glioma, JAK/STAT signaling, systematic lupus erythematosus, neurodegeneration-multiple diseases, and neuroactive ligand-receptor interaction. Overall, from these results, we concluded that these genes could be recommended as potential therapeutic targets for the treatment of comorbidities (breast cancer and COVID-19) in patients with FTD.
Collapse
Affiliation(s)
| | | | - Kumaraswamy Naidu Chitrala
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA; (I.D.M.); (J.R.)
| |
Collapse
|
7
|
Fiock KL, Hook J, Hefti MM. Determinants of Astrocytic Pathology in Stem Cell Models of Primary Tauopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549558. [PMID: 37546981 PMCID: PMC10401936 DOI: 10.1101/2023.07.18.549558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Astrocytic tau aggregates are seen in several primary and secondary tauopathies, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and chronic traumatic encephalopathy (CTE). In all cases, astrocytic tau consists exclusively of the longer (4R) tau isoform, even when adjacent neuronal aggregates consist of a mixture of 3- and 4R tau, as in CTE. The reasons for this and the mechanisms by which astrocytic tau aggregates form remain unclear. We used a combination of RNA in situ hybridization and immunofluorescence in post-mortem human brain tissue, as well as tau uptake studies in human stem cell-derived astrocytes, to determine the origins of astrocytic tau in 4R tauopathies. We found that astrocytes across tauopathies do not upregulate tau mRNA expression between diseases or between tau-positive and -negative astrocytes within PSP. We then found that stem cell-derived astrocytes preferentially take up long isoform (4R) labeled recombinant tau and that this uptake is impaired by induction of reactivity with inflammatory stimuli or nutritional stress. Astrocytes exposed to either 3R or 4R tau also showed downregulation of genes related to astrocyte differentiation. Our findings suggest that astrocytes preferentially take up neuronal 4R tau from the extracellular space, which potentially explains why astrocytic tau aggregates contain only 4R tau, and that tau uptake is impaired by decreased nutrient availability or neuroinflammation, both of which are common in the aging brain.
Collapse
Affiliation(s)
- Kimberly L. Fiock
- Department of Pathology, University of Iowa, Iowa City, IA
- Experimental Pathology Graduate Program, University of Iowa, Iowa City, IA
| | - Jordan Hook
- Department of Pathology, University of Iowa, Iowa City, IA
- Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Marco M. Hefti
- Department of Pathology, University of Iowa, Iowa City, IA
- Experimental Pathology Graduate Program, University of Iowa, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
| |
Collapse
|
8
|
Bridel C, van Gils JHM, Miedema SSM, Hoozemans JJM, Pijnenburg YAL, Smit AB, Rozemuller AJM, Abeln S, Teunissen CE. Clusters of co-abundant proteins in the brain cortex associated with fronto-temporal lobar degeneration. Alzheimers Res Ther 2023; 15:59. [PMID: 36949537 PMCID: PMC10035199 DOI: 10.1186/s13195-023-01200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Frontotemporal lobar degeneration (FTLD) is characterized pathologically by neuronal and glial inclusions of hyperphosphorylated tau or by neuronal cytoplasmic inclusions of TDP43. This study aimed at deciphering the molecular mechanisms leading to these distinct pathological subtypes. METHODS To this end, we performed an unbiased mass spectrometry-based proteomic and systems-level analysis of the middle frontal gyrus cortices of FTLD-tau (n = 6), FTLD-TDP (n = 15), and control patients (n = 5). We validated these results in an independent patient cohort (total n = 24). RESULTS The middle frontal gyrus cortex proteome was most significantly altered in FTLD-tau compared to controls (294 differentially expressed proteins at FDR = 0.05). The proteomic modifications in FTLD-TDP were more heterogeneous (49 differentially expressed proteins at FDR = 0.1). Weighted co-expression network analysis revealed 17 modules of co-regulated proteins, 13 of which were dysregulated in FTLD-tau. These modules included proteins associated with oxidative phosphorylation, scavenger mechanisms, chromatin regulation, and clathrin-mediated transport in both the frontal and temporal cortex of FTLD-tau. The most strongly dysregulated subnetworks identified cyclin-dependent kinase 5 (CDK5) and polypyrimidine tract-binding protein 1 (PTBP1) as key players in the disease process. Dysregulation of 9 of these modules was confirmed in independent validation data sets of FLTD-tau and control temporal and frontal cortex (total n = 24). Dysregulated modules were primarily associated with changes in astrocyte and endothelial cell protein abundance levels, indicating pathological changes in FTD are not limited to neurons. CONCLUSIONS Using this innovative workflow and zooming in on the most strongly dysregulated proteins of the identified modules, we were able to identify disease-associated mechanisms in FTLD-tau with high potential as biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Claire Bridel
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Juami H. M. van Gils
- Department of Computer Science, Bioinformatics group, VU University, Amsterdam, The Netherlands
| | - Suzanne S. M. Miedema
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Jeroen J. M. Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Yolande A. L. Pijnenburg
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | | | - Sanne Abeln
- Department of Computer Science, Bioinformatics group, VU University, Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Kecheliev V, Boss L, Maheshwari U, Konietzko U, Keller A, Razansky D, Nitsch RM, Klohs J, Ni R. Aquaporin 4 is differentially increased and dislocated in association with tau and amyloid-beta. Life Sci 2023; 321:121593. [PMID: 36934970 DOI: 10.1016/j.lfs.2023.121593] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
AIMS Neurovascular-glymphatic dysfunction plays an important role in Alzheimer's disease and has been analysed mainly in relation to amyloid-beta (Aβ) pathology. Here, we aim to investigate the neurovascular alterations and mapping of aquaporin 4 (AQP4) distribution and dislocation associated with tau and Aβ. MATERIALS AND METHODS Perfusion, susceptibility weighted imaging and structural magnetic resonance imaging (MRI) were performed in the pR5 mouse model of 4-repeat tau and the arcAβ mouse model of amyloidosis. Immunofluorescence staining was performed using antibodies against AQP4, vessel, astroglia, microglia, phospho-tau and Aβ in brain tissue slices from pR5, arcAβ and non-transgenic mice. KEY FINDINGS pR5 mice showed regional atrophy, preserved cerebral blood flow, and reduced cerebral vessel density compared to non-transgenic mice, while arcAβ mice showed cerebral microbleeds and reduced cerebral vessel density. AQP4 dislocation and peri-tau enrichment in the hippocampus and increased AQP4 levels in the cortex and hippocampus were detected in pR5 mice compared to non-transgenic mice. In comparison, cortical AQP4 dislocation and cortical/hippocampal peri-plaque increases were observed in arcAβ mice. Increased expression of reactive astrocytes were detected around the tau inclusions in pR5 mice and Aβ plaques in arcAβ mice. SIGNIFICANCE We demonstrated the neurovascular alterations, microgliosis, astrogliosis and increased AQP4 regional expression in pR5 tau and arcAβ mice. We observed a divergent region-specific AQP4 dislocation and association with phospho-tau and Aβ pathologies.
Collapse
Affiliation(s)
- Vasil Kecheliev
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Leo Boss
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, Zurich, Switzerland; Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Bartolo ND, Mortimer N, Manter MA, Sanchez N, Riley M, O'Malley TT, Hooker JM. Identification and Prioritization of PET Neuroimaging Targets for Microglial Phenotypes Associated with Microglial Activity in Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3641-3660. [PMID: 36473177 DOI: 10.1021/acschemneuro.2c00607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of microglial cells accompanies the progression of many neurodegenerative disorders, including Alzheimer's disease (AD). Development of molecular imaging tools specific to microglia can help elucidate the mechanism through which microglia contribute to the pathogenesis and progression of neurodegenerative disorders. Through analysis of published genetic, transcriptomic, and proteomic data sets, we identified 19 genes with microglia-specific expression that we then ranked based on association with the AD characteristics, change in expression, and potential druggability of the target. We believe that the process we used to identify and rank microglia-specific genes is broadly applicable to the identification and evaluation of targets in other disease areas and for applications beyond molecular imaging.
Collapse
Affiliation(s)
- Nicole D Bartolo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Niall Mortimer
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Mariah A Manter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Nicholas Sanchez
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Misha Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Tiernan T O'Malley
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
11
|
Cousins KAQ, Shaw LM, Chen-Plotkin A, Wolk DA, Van Deerlin VM, Lee EB, McMillan CT, Grossman M, Irwin DJ. Distinguishing Frontotemporal Lobar Degeneration Tau From TDP-43 Using Plasma Biomarkers. JAMA Neurol 2022; 79:1155-1164. [PMID: 36215050 PMCID: PMC9552044 DOI: 10.1001/jamaneurol.2022.3265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/05/2022] [Indexed: 01/14/2023]
Abstract
Importance Biomarkers are lacking that can discriminate frontotemporal lobar degeneration (FTLD) associated with tau (FTLD-tau) or TDP-43 (FTLD-TDP). Objective To test whether plasma biomarkers glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), or their ratio (GFAP/NfL) differ between FTLD-tau and FTLD-TDP. Design, Setting, and Participants This retrospective cross-sectional study included data from 2009 to 2020 from the University of Pennsylvania Integrated Neurodegenerative Disease Database, with a median (IQR) follow-up duration of 2 (0.3-4.2) years. The training sample was composed of patients with autopsy-confirmed and familial FTLD; nonimpaired controls were included as a reference group. The independent validation sample included patients with FTD with a clinical diagnosis of progressive supranuclear palsy syndrome (PSPS) associated with tau (PSPS-tau) or amytrophic lateral sclerosis (ALS) associated with TDP-43 (ALS-TDP). In patients with FTLD with autopsy-confirmed or variant-confirmed pathology, receiver operating characteristic (ROC) curves tested the GFAP/NfL ratio and established a pathology-confirmed cut point. The cut point was validated in an independent sample of patients with clinical frontotemporal dementia (FTD). Data were analyzed from February to July 2022. Exposures Clinical, postmortem histopathological assessments, and plasma collection. Main Outcomes and Measures ROC and area under the ROC curve (AUC) with 90% CIs evaluated discrimination of pure FTLD-tau from pure FTLD-TDP using plasma GFAP/NfL ratio; the Youden index established optimal cut points. Sensitivity and specificity of cut points were assessed in an independent validation sample. Results Of 349 participants with available plasma data, 234 met inclusion criteria (31 controls, 141 in the training sample, and 62 in the validation sample). In the training sample, patients with FTLD-tau were older than patients with FTLD-TDP (FTLD-tau: n = 46; mean [SD] age, 65.8 [8.29] years; FTLD-TDP: n = 95; mean [SD] age, 62.3 [7.82] years; t84.6 = 2.45; mean difference, 3.57; 95% CI, 0.67-6.48; P = .02) but with similar sex distribution (FTLD-tau: 27 of 46 [59%] were male; FTLD-TDP: 51 of 95 [54%] were male; χ21 = 0.14; P = .70). In the validation sample, patients with PSPS-tau were older than those with ALS-TDP (PSPS-tau: n = 31; mean [SD] age, 69.3 [7.35] years; ALS-TDP: n = 31; mean [SD] age, 54.6 [10.17] years; t54.6 = 6.53; mean difference, 14.71; 95% CI, 10.19-19.23; P < .001) and had fewer patients who were male (PSPS-tau: 9 of 31 [29%] were male; ALS-TDP: 22 of 31 [71%] were male; χ21 = 9.3; P = .002). ROC revealed excellent discrimination of FTLD-tau from FTLD-TDP by plasma GFAP/NfL ratio (AUC = 0.89; 90% CI, 0.82-0.95; sensitivity = 0.73; 90% CI, 0.65-0.89; specificity = 0.89; 90% CI, 0.78-0.98), which was higher than either GFAP level alone (AUC = 0.65; 90% CI, 0.54-0.76) or NfL levels alone (AUC = 0.75; 90% CI, 0.64-0.85). In the validation sample, there was sensitivity of 0.84 (90% CI, 0.66-0.94) and specificity of 0.81 (90% CI, 0.62-0.91) when applying the autopsy-derived plasma GFAP/NfL threshold. Conclusions and Relevance The plasma ratio of GFAP/NfL may discriminate FTLD-tau from FTLD-TDP.
Collapse
Affiliation(s)
- Katheryn A. Q. Cousins
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David A. Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | - Edward B. Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Corey T. McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|