1
|
Zeiss CJ, Huttner A, Nairn AC, Arnsten A, Datta D, Strittmatter SM, Wyk BV, Duque A. The neuropathologic basis for translational biomarker development in the macaque model of late-onset Alzheimer's disease. J Alzheimers Dis 2025; 104:1243-1258. [PMID: 40095666 DOI: 10.1177/13872877251323787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BackgroundAccurate placement of the macaque within the Alzheimer's disease (AD) research framework is essential to discover early-stage predictive biomarkers.ObjectiveTo assess utility of the aging macaque in advancing translational biomarker development for preclinical AD, we evaluated relative signal strength of comparable neuropathologic phenomena in macaques and patients.MethodsWe compared pathology in patient and macaque formalin-fixed paraffin embedded (FFPE) tissues using identical criteria. We quantified expression of amyloid-β (Aβ), pTau, and inflammatory and senescence markers across species. Distribution of AD-relevant markers were compared in FFPE and perfused frozen macaque brain to assess expression of labile proteins that could inform in-life fluid biomarkers.ResultsAβ pathology in macaques closely approximated patient pathology. Complex plaque composition in macaques implied significant disruption of synaptic connectivity. In FFPE tissue, pretangle pTau immunoreactivity placed the macaque in Braak Stage 1b. In perfused frozen tissue, soluble pTau distribution approximated Braak Stage III-IV. In macaque, Aβ, pTau, and acetylcholinesterase labeling co-localized to AD-vulnerable circuits. Significant association of glial fibrillary acidic protein with Aβ occurred in humans only. The senescence marker p16 correlated positively with pTau expression and negatively with Aβ in patients only. Macaques lacked neuropathologic co-morbidities.ConclusionsAD-relevant neuropathologic signals in the macaque support biomarker discovery in the areas of Aβ plaque evolution and associated synaptic disruption as well as early-stage tau phosphorylation. Relative protection from accumulation of senescence markers, fibrillar tau and neuropathologic co-morbidities in macaque implicate species difference in rates of biological brain aging. We provide over 4000 digital slides for further study.
Collapse
Affiliation(s)
- Caroline J Zeiss
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Amy Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen M Strittmatter
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Alvaro Duque
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Ouchi K, Yamamoto S, Obara M, Sugase-Miyamoto Y, Tsurugizawa T. Age-related alterations in functional and structural networks in the brain in macaque monkeys. Front Neuroanat 2025; 19:1495735. [PMID: 40201576 PMCID: PMC11975867 DOI: 10.3389/fnana.2025.1495735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/19/2025] [Indexed: 04/10/2025] Open
Abstract
Resting-state networks (RSNs) have been used as biomarkers of brain diseases and cognitive performance. However, age-related changes in the RSNs of macaques, a representative animal model, are still not fully understood. In this study, we measured the RSNs in macaques aged 3-20 years and investigated the age-related changes from both functional and structural perspectives. The proportion of structural connectivity in the RSNs relative to the total fibers in the whole brain significantly decreased in aged macaques, whereas functional connectivity showed an increasing trend with age. Additionally, the amplitude of low-frequency fluctuations tended to increase with age, indicating that resting-state neural activity may be more active in the RSNs may increase with age. These results indicate that structural and functional alterations in typical RSNs are age-dependent and can be a marker of aging in the macaque's brain.
Collapse
Affiliation(s)
- Kazuya Ouchi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
| | - Shinya Yamamoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Yasuko Sugase-Miyamoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
- Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
3
|
Charbonneau JA, Davis B, Raven EP, Patwardhan B, Grebosky C, Halteh L, Bennett JL, Bliss-Moreau E. Evaluation of registration-based vs. manual segmentation of rhesus macaque brain MRIs. Brain Struct Funct 2024; 229:2029-2043. [PMID: 39136727 PMCID: PMC11483197 DOI: 10.1007/s00429-024-02848-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/01/2024] [Indexed: 10/18/2024]
Abstract
With increasing numbers of magnetic resonance imaging (MRI) datasets becoming publicly available, researchers and clinicians alike have turned to automated methods of segmentation to enable population-level analyses of these data. Although prior research has evaluated the extent to which automated methods recapitulate "gold standard" manual segmentation methods in the human brain, such an evaluation has not yet been carried out for segmentation of MRIs of the macaque brain. Macaques offer the important opportunity to bridge gaps between microanatomical studies using invasive methods like tract tracing, neural recordings, and high-resolution histology and non-invasive macroanatomical studies using methods like MRI. As such, it is important to evaluate whether automated tools derive data of sufficient quality from macaque MRIs to bridge these gaps. We tested the relationship between automated registration-based segmentation using an open source and actively maintained NHP imaging analysis pipeline (AFNI) and gold standard manual segmentation of 4 structures (2 cortical: anterior cingulate cortex and insula; 2 subcortical: amygdala and caudate) across 37 rhesus macaques (Macaca mulatta). We identified some variability in the strength of correlation between automated and manual segmentations across neural regions and differences in relationships with demographic variables like age and sex between the two techniques.
Collapse
Affiliation(s)
- Joey A Charbonneau
- Neuroscience Graduate Program, University of California Davis, Davis, CA, USA.
- California National Primate Research Center, University of California Davis, Davis, CA, USA.
| | - Brittany Davis
- Neuroscience Graduate Program, University of California Davis, Davis, CA, USA
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Erika P Raven
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Bhakti Patwardhan
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Carson Grebosky
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Lucas Halteh
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Jeffrey L Bennett
- California National Primate Research Center, University of California Davis, Davis, CA, USA
- Department of Psychology, University of California Davis, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA, USA
- The MIND Institute, University of California Davis, Sacramento, CA, USA
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California Davis, Davis, CA, USA.
- Department of Psychology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Dimovasili C, Vitantonio AT, Conner B, Vaughan KL, Mattison JA, Rosene DL. White matter lipid alterations during aging in the rhesus monkey brain. GeroScience 2024:10.1007/s11357-024-01353-3. [PMID: 39312153 DOI: 10.1007/s11357-024-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/14/2024] [Indexed: 03/25/2025] Open
Abstract
The brain of higher organisms, such as nonhuman primates, is particularly rich in lipids, with a gray to white matter ratio of approximately 40 to 60%. White matter primarily consists of lipids, and during normal aging, it undergoes significant degeneration due to myelin pathology, which includes structural abnormalities, like sheath splitting, and local inflammation. Cognitive decline in normal aging, without neurodegenerative diseases, is strongly linked to myelin pathology. Although the exact cause of myelin damage is unclear, older myelin differs from younger myelin, as shown by electron microscopy and altered expression of myelin-related RNAs. However, changes in lipid composition during brain aging remain poorly understood. This study assessed lipid profiles from the frontal lobe corpus callosum, an area where age-related myelin pathology is linked to cognitive decline. Results showed significant changes in lipids with age, revealing distinct age-related profiles. Some lipids that are enriched in myelin sheaths become more saturated, while important structural components, like ceramides, decrease. Disease-associated biomarkers such as cholesterol ester Che (22:6) and sulfatide ST (42:2) also change in older monkeys. Additionally, gene expression of lipid biosynthetic enzymes declines with age, while lipid peroxidation remains stable in the same brain region. This suggests that changes in lipid biosynthesis, rather than oxidative damage, likely account for the differences in lipid composition. Our findings indicate that myelin in the normal aging monkey brain shows diverse lipid changes, which may relate to age-related myelin pathology and could constitute targets for designing nutrient supplements or drugs to rejuvenate the brain's lipidome.
Collapse
Affiliation(s)
- Christina Dimovasili
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St, Room L1004, Boston, MA, 02118, USA.
| | - Ana T Vitantonio
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St, Room L1004, Boston, MA, 02118, USA
- Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 700 Albany St., Room 308, Boston, MA, 02118, USA
| | - Bryce Conner
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St, Room L1004, Boston, MA, 02118, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St, Room L1004, Boston, MA, 02118, USA
- Boston University, Center for Systems Neuroscience, 610 Commonwealth Ave., 7th Floor, Boston, MA, 02215, USA
| |
Collapse
|
5
|
Alldritt S, Ramirez J, de Wael RV, Bethlehem R, Seidlitz J, Wang Z, Nenning K, Esper N, Smallwood J, Franco A, Byeon K, Alexander-Bloch A, Amaral D, Amiez C, Balezeau F, Baxter M, Becker G, Bennett J, Berkner O, Blezer E, Brambrink A, Brochier T, Butler B, Campos L, Canet-Soulas E, Chalet L, Chen A, Cléry J, Constantinidis C, Cook D, Dehaene S, Dorfschmidt L, Drzewiecki C, Erdman J, Everling S, Falchier A, Fleysher L, Fox A, Freiwald W, Froesel M, Froudist-Walsh S, Fudge J, Funck T, Gacoin M, Gale D, Gallivan J, Garin C, Griffiths T, Guedj C, Hadj-Bouziane F, Hamed S, Harel N, Hartig R, Hiba B, Howell B, Jarraya B, Jung B, Kalin N, Karpf J, Kastner S, Klink C, Kovacs-Balint Z, Kroenke C, Kuchan M, Kwok S, Lala K, Leopold D, Li G, Lindenfors P, Linn G, Mars R, Masiello K, Menon R, Messinger A, Meunier M, Mok K, Morrison J, Nacef J, Nagy J, Neudecker V, Neuringer M, Noonan M, Ortiz-Rios M, Perez-Zoghbi J, Petkov C, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader S, Rudko D, Rushworth M, Russ B, Sallet J, Sanchez M, Schmid M, Schwiedrzik C, Scott J, Sein J, Sharma K, et alAlldritt S, Ramirez J, de Wael RV, Bethlehem R, Seidlitz J, Wang Z, Nenning K, Esper N, Smallwood J, Franco A, Byeon K, Alexander-Bloch A, Amaral D, Amiez C, Balezeau F, Baxter M, Becker G, Bennett J, Berkner O, Blezer E, Brambrink A, Brochier T, Butler B, Campos L, Canet-Soulas E, Chalet L, Chen A, Cléry J, Constantinidis C, Cook D, Dehaene S, Dorfschmidt L, Drzewiecki C, Erdman J, Everling S, Falchier A, Fleysher L, Fox A, Freiwald W, Froesel M, Froudist-Walsh S, Fudge J, Funck T, Gacoin M, Gale D, Gallivan J, Garin C, Griffiths T, Guedj C, Hadj-Bouziane F, Hamed S, Harel N, Hartig R, Hiba B, Howell B, Jarraya B, Jung B, Kalin N, Karpf J, Kastner S, Klink C, Kovacs-Balint Z, Kroenke C, Kuchan M, Kwok S, Lala K, Leopold D, Li G, Lindenfors P, Linn G, Mars R, Masiello K, Menon R, Messinger A, Meunier M, Mok K, Morrison J, Nacef J, Nagy J, Neudecker V, Neuringer M, Noonan M, Ortiz-Rios M, Perez-Zoghbi J, Petkov C, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader S, Rudko D, Rushworth M, Russ B, Sallet J, Sanchez M, Schmid M, Schwiedrzik C, Scott J, Sein J, Sharma K, Shmuel A, Styner M, Sullivan E, Thiele A, Todorov O, Tsao D, Tusche A, Vlasova R, Wang Z, Wang L, Wang J, Weiss A, Wilson C, Yacoub E, Zarco W, Zhou Y, Zhu J, Margulies D, Fair D, Schroeder C, Milham M, Xu T. Brain Charts for the Rhesus Macaque Lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610193. [PMID: 39257737 PMCID: PMC11383706 DOI: 10.1101/2024.08.28.610193] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Recent efforts to chart human brain growth across the lifespan using large-scale MRI data have provided reference standards for human brain development. However, similar models for nonhuman primate (NHP) growth are lacking. The rhesus macaque, a widely used NHP in translational neuroscience due to its similarities in brain anatomy, phylogenetics, cognitive, and social behaviors to humans, serves as an ideal NHP model. This study aimed to create normative growth charts for brain structure across the macaque lifespan, enhancing our understanding of neurodevelopment and aging, and facilitating cross-species translational research. Leveraging data from the PRIMatE Data Exchange (PRIME-DE) and other sources, we aggregated 1,522 MRI scans from 1,024 rhesus macaques. We mapped non-linear developmental trajectories for global and regional brain structural changes in volume, cortical thickness, and surface area over the lifespan. Our findings provided normative charts with centile scores for macaque brain structures and revealed key developmental milestones from prenatal stages to aging, highlighting both species-specific and comparable brain maturation patterns between macaques and humans. The charts offer a valuable resource for future NHP studies, particularly those with small sample sizes. Furthermore, the interactive open resource (https://interspeciesmap.childmind.org) supports cross-species comparisons to advance translational neuroscience research.
Collapse
Affiliation(s)
- S. Alldritt
- Center for the Integrative Developmental Neuroscience, Child Mind Institute
| | | | | | - R. Bethlehem
- University of Cambridge, Department of Psychology
| | | | | | | | | | | | | | | | - A. Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia
- Department of Psychiatry, University of Pennsylvania
| | - D.G. Amaral
- Department of Psychiatry and Behavioral Sciences and The MIND Institute
- University of California Davis
| | - C. Amiez
- Stem Cell and Brain Research Institute
| | | | - M.G. Baxter
- Section on Comparative Medicine, Wake Forest University School of Medicine
| | | | - J. Bennett
- University of California Davis, Dept of Psychology
| | - O. Berkner
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | | | - B. Butler
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | | | - A. Chen
- East China Normal University
| | | | | | | | | | | | | | | | | | - A. Falchier
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | - A. Fox
- University of California Davis
| | | | - M. Froesel
- Institute for Cognitive Science Marc Jeannerod
| | | | | | | | - M. Gacoin
- Institute for Cognitive Science Marc Jeannerod
| | | | | | - C.M. Garin
- Department of Biomedical Engineering, Vanderbilt University
- Institut des Sciences Cognitives Marc Jeannerod (ISC-MJ)
| | | | - C. Guedj
- Lyon Neuroscience Research Center, University of Geneva
| | | | - S.B. Hamed
- Institute for Cognitive Science Marc Jeannerod
| | | | - R. Hartig
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | - B. Hiba
- Institute for Cognitive Science Marc Jeannerod
| | - B.R. Howell
- Emory National Primate Research Center, Emory University
- Fralin Biomedical Research Institute, Virginia Tech
- Carilion Department of Human Development and Family Science, Virginia Tech
| | | | | | | | - J. Karpf
- Oregon National Primate Research Center
| | - S. Kastner
- Princeton Neuroscience Institute & Department of Psychology, Princeton University
| | - C. Klink
- Netherlands Institute for Neuroscience
| | | | | | | | | | - K.N. Lala
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St. Andrews
| | | | - G. Li
- University of North Carolina at Chapel Hill
| | - P. Lindenfors
- Institute for Futures Studies, Stockholm, Sweden
- Centre for Cultural Evolution & Department of Zoology, Stockholm University, Sweden
| | - G. Linn
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | - K. Masiello
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | - M. Meunier
- Lyon Neuroscience Research Center, ImpAct Team
| | | | | | | | - J. Nagy
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | | | | | | | - M. Ortiz-Rios
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate Research
| | | | | | - M. Pinsk
- Princeton Neuroscience Institute, Princeton University
| | | | - E. Procyk
- Stem Cell and Brain Research Institute
| | - R. Rajimehr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
| | - S.M. Reader
- Department of Biology, Utrecht University
- Department of Biology, McGill University
| | | | | | - B.E. Russ
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | - J. Sallet
- University of Oxford
- INSERM Stem Cell & Brain Research Institute
| | - M.M. Sanchez
- Emory National Primate Research Center; Emory University
- Department of Psychiatry & Behavioral Sciences, School of Medicine
| | | | - C.M. Schwiedrzik
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Cognitive Neurobiology
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen
- Perception and Plasticity Group, German Primate Center – Leibniz Institute for Primate Research
| | - J.A. Scott
- Department of Bioengineering, Santa Clara University
| | | | | | | | - M. Styner
- University of North Carolina at Chapel Hill
| | | | | | - O.S. Todorov
- Department of Biology and Helmholtz Institute, Utrecht University
| | - D. Tsao
- Department of Computation and Neural Systems, California Institute of Technology
| | | | - R. Vlasova
- University of North Carolina at Chapel Hill
| | | | - L. Wang
- East China Normal University
| | - J. Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | | | | | | | | | - Y. Zhou
- Krieger Mind/Brain Institute, Department of Neurosurgery, Johns Hopkins University
| | - J. Zhu
- Department of Biomedical Engineering, Vanderbilt University
| | | | | | - C. Schroeder
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
- Deptartment of Psychiatry, Neurology and Neurosurgery, Columbia University
| | - M. Milham
- Child Mind Institute
- Nathan Kline Institute
| | - T. Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute
| |
Collapse
|