1
|
Wynn SC, Townsend CD, Nyhus E. The role of theta and gamma oscillations in item memory, source memory, and memory confidence. Psychophysiology 2024; 61:e14602. [PMID: 38715221 PMCID: PMC11330366 DOI: 10.1111/psyp.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Theta and gamma oscillations have been linked to episodic memory processes in various studies. Both oscillations seem to be vital for processes guided by the medial temporal lobe, such as the retrieval of information from memory. While theta oscillations increase with successful memory, it is unclear what the unique contribution of theta is to various subcomponents of memory. On the other hand, memory-related gamma oscillations have been mainly reported in the hippocampus, leaving the role of neocortical gamma in memory underexplored. In this study, we investigated how unique variability in memory accuracy and memory confidence contributes to fluctuations in theta and gamma power. To this end, we recorded EEG from 54 participants while they performed a source memory task. From this task we obtained their item memory accuracy, source memory accuracy, item memory confidence, and source memory confidence. These behavioral measures were put in a trial-by-trial linear mixed effects model to uncover their unique contribution to the oscillatory power in frontal and parietal regions. Our results are in line with the involvement of theta oscillations in both memory accuracy and confidence, but seem to indicate a main role for theta oscillations in memory-related confidence. In addition, we found that gamma oscillations play various roles in memory processing, dependent on brain region.
Collapse
Affiliation(s)
- Syanah C Wynn
- Neuroimaging Center, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
- Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, Maine, USA
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Christopher D Townsend
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Erika Nyhus
- Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, Maine, USA
| |
Collapse
|
2
|
Ünsal E, Duygun R, Yemeniciler İ, Bingöl E, Ceran Ö, Güntekin B. From Infancy to Childhood: A Comprehensive Review of Event- and Task-Related Brain Oscillations. Brain Sci 2024; 14:837. [PMID: 39199528 PMCID: PMC11352659 DOI: 10.3390/brainsci14080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Brain development from infancy through childhood involves complex structural and functional changes influenced by both internal and external factors. This review provides a comprehensive analysis of event and task-related brain oscillations, focusing on developmental changes across different frequency bands, including delta, theta, alpha, beta, and gamma. Electroencephalography (EEG) studies highlight that these oscillations serve as functional building blocks for sensory and cognitive processes, with significant variations observed across different developmental stages. Delta oscillations, primarily associated with deep sleep and early cognitive demands, gradually diminish as children age. Theta rhythms, crucial for attention and memory, display a distinct pattern in early childhood, evolving with cognitive maturation. Alpha oscillations, reflecting thalamocortical interactions and cognitive performance, increase in complexity with age. Beta rhythms, linked to active thinking and problem-solving, show developmental differences in motor and cognitive tasks. Gamma oscillations, associated with higher cognitive functions, exhibit notable changes in response to sensory stimuli and cognitive tasks. This review underscores the importance of understanding oscillatory dynamics to elucidate brain development and its implications for sensory and cognitive processing in childhood. The findings provide a foundation for future research on developmental neuroscience and potential clinical applications.
Collapse
Affiliation(s)
- Esra Ünsal
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Rümeysa Duygun
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - İrem Yemeniciler
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Elifnur Bingöl
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Ömer Ceran
- Department of Pediatrics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | - Bahar Güntekin
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| |
Collapse
|
3
|
Wynn SC, Townsend CD, Nyhus E. The role of theta and gamma oscillations in item memory, source memory, and memory confidence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562880. [PMID: 37905099 PMCID: PMC10614855 DOI: 10.1101/2023.10.18.562880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Theta and gamma oscillations have been linked to episodic memory processes in various studies. Both oscillations seem to be vital for processes guided by the medial temporal lobe, such as the retrieval of information from memory. While theta oscillations increase with successful memory, it is unclear what the unique contribution of theta is to various subcomponents of memory. On the other hand, memory-related gamma oscillations have been mainly reported in the hippocampus, leaving the role of neocortical gamma in memory underexplored. In the current study, we explored how unique variability in memory accuracy and memory confidence contributes to fluctuations in theta and gamma power. To this end, we recorded EEG from 54 participants while they performed a source memory task. From this task we obtained their item memory accuracy, source memory accuracy, item memory confidence, and source memory confidence. These behavioral measures were put in a trial-by-trial linear mixed effects model to uncover their unique contribution to the oscillatory power in frontal and parietal regions. Our results are in line with the involvement of theta oscillations in both memory accuracy and confidence, but seem to indicate a main role for theta oscillations in memory-related confidence. In addition, we found that gamma oscillations play various roles in memory-processing, dependent of brain region.
Collapse
Affiliation(s)
- Syanah C Wynn
- Neuroimaging Center, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
- Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Christopher D Townsend
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Erika Nyhus
- Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
4
|
Choi J, Ku B, Doan DNT, Park J, Cha W, Kim JU, Lee KH. Prefrontal EEG slowing, synchronization, and ERP peak latency in association with predementia stages of Alzheimer's disease. Front Aging Neurosci 2023; 15:1131857. [PMID: 37032818 PMCID: PMC10076640 DOI: 10.3389/fnagi.2023.1131857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Background Early screening of elderly individuals who are at risk of dementia allows timely medical interventions to prevent disease progression. The portable and low-cost electroencephalography (EEG) technique has the potential to serve it. Objective We examined prefrontal EEG and event-related potential (ERP) variables in association with the predementia stages of Alzheimer's disease (AD). Methods One hundred elderly individuals were recruited from the GARD cohort. The participants were classified into four groups according to their amyloid beta deposition (A+ or A-) and neurodegeneration status (N+ or N-): cognitively normal (CN; A-N-, n = 27), asymptomatic AD (aAD; A + N-, n = 15), mild cognitive impairment (MCI) with AD pathology (pAD; A+N+, n = 16), and MCI with non-AD pathology (MCI(-); A-N+, n = 42). Prefrontal resting-state eyes-closed EEG measurements were recorded for five minutes and auditory ERP measurements were recorded for 8 min. Three variables of median frequency (MDF), spectrum triangular index (STI), and positive-peak latency (PPL) were employed to reflect EEG slowing, temporal synchrony, and ERP latency, respectively. Results Decreasing prefrontal MDF and increasing PPL were observed in the MCI with AD pathology. Interestingly, after controlling for age, sex, and education, we found a significant negative association between MDF and the aAD and pAD stages with an odds ratio (OR) of 0.58. Similarly, PPL exhibited a significant positive association with these AD stages with an OR of 2.36. Additionally, compared with the MCI(-) group, significant negative associations were demonstrated by the aAD group with STI and those in the pAD group with MDF with ORs of 0.30 and 0.42, respectively. Conclusion Slow intrinsic EEG oscillation is associated with MCI due to AD, and a delayed ERP peak latency is likely associated with general cognitive impairment. MCI individuals without AD pathology exhibited better cortical temporal synchronization and faster EEG oscillations than those with aAD or pAD. Significance The EEG/ERP variables obtained from prefrontal EEG techniques are associated with early cognitive impairment due to AD and non-AD pathology. This result suggests that prefrontal EEG/ERP metrics may serve as useful indicators to screen elderly individuals' early stages on the AD continuum as well as overall cognitive impairment.
Collapse
Affiliation(s)
- Jungmi Choi
- Human Anti-Aging Standards Research Institute, Uiryeong-gun, Republic of Korea
| | - Boncho Ku
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dieu Ni Thi Doan
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- School of Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Junwoo Park
- Gwangju Alzheimer’s Disease and Related Dementias Cohort Research Center, Chosun University, Gwangju, Republic of Korea
| | - Wonseok Cha
- Human Anti-Aging Standards Research Institute, Uiryeong-gun, Republic of Korea
| | - Jaeuk U. Kim
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- School of Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea
- *Correspondence: Jaeuk U. Kim,
| | - Kun Ho Lee
- Gwangju Alzheimer’s Disease and Related Dementias Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Kun Ho Lee,
| |
Collapse
|
5
|
Inguscio BMS, Cartocci G, Sciaraffa N, Nicastri M, Giallini I, Greco A, Babiloni F, Mancini P. Gamma-Band Modulation in Parietal Area as the Electroencephalographic Signature for Performance in Auditory-Verbal Working Memory: An Exploratory Pilot Study in Hearing and Unilateral Cochlear Implant Children. Brain Sci 2022; 12:1291. [PMID: 36291225 PMCID: PMC9599211 DOI: 10.3390/brainsci12101291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 07/30/2023] Open
Abstract
This pilot study investigates the neurophysiological patterns of visual and auditory verbal working memory (VWM) in unilateral cochlear implant users (UCIs). We compared the task-related electroencephalogram (EEG) power spectral density of 7- to 13-year-old UCIs (n = 7) with a hearing control group (HC, n = 10) during the execution of a three-level n-back task with auditory and visual verbal (letters) stimuli. Performances improved as memory load decreased regardless of sensory modality (SM) and group factors. Theta EEG activation over the frontal area was proportionally influenced by task level; the left hemisphere (LH) showed greater activation in the gamma band, suggesting lateralization of VWM function regardless of SM. However, HCs showed stronger activation patterns in the LH than UCIs regardless of SM and in the parietal area (PA) during the most challenging audio condition. Linear regressions for gamma activation in the PA suggest the presence of a pattern-supporting auditory VWM only in HCs. Our findings seem to recognize gamma activation in the PA as the signature of effective auditory VWM. These results, although preliminary, highlight this EEG pattern as a possible cause of the variability found in VWM outcomes in deaf children, opening up new possibilities for interdisciplinary research and rehabilitation intervention.
Collapse
Affiliation(s)
- Bianca Maria Serena Inguscio
- Department of Sense Organs, Sapienza University of Rome, Viale dell’Università 31, 00161 Rome, Italy
- BrainSigns Srl, Lungotevere Michelangelo, 9, 00192 Rome, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, 00161 Rome, Italy
| | - Giulia Cartocci
- BrainSigns Srl, Lungotevere Michelangelo, 9, 00192 Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | | | - Maria Nicastri
- Department of Sense Organs, Sapienza University of Rome, Viale dell’Università 31, 00161 Rome, Italy
| | - Ilaria Giallini
- Department of Sense Organs, Sapienza University of Rome, Viale dell’Università 31, 00161 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale dell’Università 31, 00161 Rome, Italy
| | - Fabio Babiloni
- BrainSigns Srl, Lungotevere Michelangelo, 9, 00192 Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Computer Science, Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Patrizia Mancini
- Department of Sense Organs, Sapienza University of Rome, Viale dell’Università 31, 00161 Rome, Italy
| |
Collapse
|
6
|
Hemispheric Asymmetries in Electroencephalogram Oscillations for Long-Term Memory Retrieval in Healthy Individuals. Brain Sci 2020; 10:brainsci10120937. [PMID: 33291651 PMCID: PMC7761937 DOI: 10.3390/brainsci10120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 12/03/2022] Open
Abstract
The hemispherical encoding retrieval asymmetry (HERA) model, established in 1991, suggests that the involvement of the right prefrontal cortex (PFC) in the encoding process is less than that of the left PFC. The HERA model was previously validated for episodic memory in subjects with brain traumas or injuries. In this study, a revised HERA model is used to investigate long-term memory retrieval from newly learned video-based content for healthy individuals using electroencephalography. The model was tested for long-term memory retrieval in two retrieval sessions: (1) recent long-term memory (recorded 30 min after learning) and (2) remote long-term memory (recorded two months after learning). The results show that long-term memory retrieval in healthy individuals for the frontal region (theta and delta band) satisfies the revised HERA asymmetry model.
Collapse
|
7
|
Jonmohamadi Y, Muthukumaraswamy S, Chen J, Roberts J, Crawford R, Pandey A. Extraction of Common Task Features in EEG-fMRI Data Using Coupled Tensor-Tensor Decomposition. Brain Topogr 2020; 33:636-650. [PMID: 32728794 DOI: 10.1007/s10548-020-00787-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/23/2020] [Indexed: 01/20/2023]
Abstract
The fusion of simultaneously recorded EEG and fMRI data is of great value to neuroscience research due to the complementary properties of the individual modalities. Traditionally, techniques such as PCA and ICA, which rely on strong non-physiological assumptions such as orthogonality and statistical independence, have been used for this purpose. Recently, tensor decomposition techniques such as parallel factor analysis have gained more popularity in neuroimaging applications as they are able to inherently contain the multidimensionality of neuroimaging data and achieve uniqueness in decomposition without making strong assumptions. Previously, the coupled matrix-tensor decomposition (CMTD) has been applied for the fusion of the EEG and fMRI. Only recently the coupled tensor-tensor decomposition (CTTD) has been proposed. Here for the first time, we propose the use of CTTD of a 4th order EEG tensor (space, time, frequency, and participant) and 3rd order fMRI tensor (space, time, participant), coupled partially in time and participant domains, for the extraction of the task related features in both modalities. We used both the sensor-level and source-level EEG for the coupling. The phase shifted paradigm signals were incorporated as the temporal initializers of the CTTD to extract the task related features. The validation of the approach is demonstrated on simultaneous EEG-fMRI recordings from six participants performing an N-Back memory task. The EEG and fMRI tensors were coupled in 9 components out of which seven components had a high correlation (more than 0.85) with the task. The result of the fusion recapitulates the well-known attention network as being positively, and the default mode network working negatively time-locked to the memory task.
Collapse
Affiliation(s)
- Yaqub Jonmohamadi
- School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, Australia.
| | | | - Joseph Chen
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Jonathan Roberts
- School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Ajay Pandey
- School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
8
|
Del Percio C, Franzetti M, De Matti AJ, Noce G, Lizio R, Lopez S, Soricelli A, Ferri R, Pascarelli MT, Rizzo M, Triggiani AI, Stocchi F, Limatola C, Babiloni C. Football Players Do Not Show "Neural Efficiency" in Cortical Activity Related to Visuospatial Information Processing During Football Scenes: An EEG Mapping Study. Front Psychol 2019; 10:890. [PMID: 31080423 PMCID: PMC6497783 DOI: 10.3389/fpsyg.2019.00890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/03/2019] [Indexed: 01/28/2023] Open
Abstract
This study tested the hypothesis of cortical neural efficiency (i.e., reduced brain activation in experts) in the visuospatial information processing related to football (soccer) scenes in football players. Electroencephalographic data were recorded from 56 scalp electrodes in 13 football players and eight matched non-players during the observation of 70 videos with football actions lasting 2.5 s each. During these videos, the central fixation target changed color from red to blue or vice versa. The videos were watched two times. One time, the subjects were asked to estimate the distance between players during each action (FOOTBALL condition, visuospatial). Another time, they had to estimate if the fixation target was colored for a longer time in red or blue color (CONTROL condition, non-visuospatial). The order of the two conditions was pseudo-randomized across the subjects. Cortical activity was estimated as the percent reduction in power of scalp alpha rhythms (about 8-12 Hz) during the videos compared with a pre-video baseline (event-related desynchronization, ERD). In the FOOTBALL condition, a prominent and bilateral parietal alpha ERD (i.e., cortical activation) was greater in the football players than non-players (p < 0.05) in contrast with the neural efficiency hypothesis. In the CONTROL condition, no significant alpha ERD difference was observed. No difference in behavioral response time and accuracy was found between the two groups in any condition. In conclusion, a prominent parietal cortical activity related to visuospatial processes during football scenes was greater in the football players over controls in contrast with the neural efficiency hypothesis.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Mauro Franzetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Adelaide Josy De Matti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | | | - Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS SDN, Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | | | - Marco Rizzo
- Oasi Research Institute – IRCCS, Troina, Italy
| | | | | | - Cristina Limatola
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele Cassino, Cassino, Italy
| |
Collapse
|
9
|
Jonmohamadi Y, Forsyth A, McMillan R, Muthukumaraswamy SD. Constrained temporal parallel decomposition for EEG-fMRI fusion. J Neural Eng 2018; 16:016017. [PMID: 30523889 DOI: 10.1088/1741-2552/aaefda] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Multimodal neuroimaging has become a common practice in neuroscience research. Simultaneous EEG-fMRI is a popular multimodal recording approach due to the complementary spatiotemporal relationship between the two modalities. Several data fusion techniques have been proposed in the literature for EEG-fMRI fusion, including joint-ICA and parallel-ICA frameworks. Previous EEG-fMRI fusion approaches have used sensor-level EEG features. Recently, we introduced source-space ICA for EEG-MEG source reconstruction and component identification, which was shown to be a superior alternative to sensor-space ICA. APPROACH Here, we extend source-space ICA to the fusion of EEG-fMRI data. Additionally, we incorporate the use of a paradigm signal (constrained) and a lag-based signal decomposition approach to accommodate recent findings demonstrating the potentially variable lag structure between electrophysiological and BOLD signals. We evaluated this method on simulated concurrent EEG-fMRI during a boxcar task design, as well as real concurrent EEG-fMRI data from three participants performing an N-Back working memory task. The block diagram of the algorithm and corresponding source codes are provided. MAIN RESULTS Based on the results of the real working memory task, for all three subjects, one frontal theta component, and one right posterior alpha component had the highest contribution coefficients (~0.5) to the paradigm-related fused component. There were also two more alpha band components with contribution coefficients of 0.3. The highest contributing fMRI component (~0.8) was one known in the literature to be related to the attention network. The second fMRI component was related to the well-known default mode network, with a contribution coefficient of 0.3. SIGNIFICANCE The proposed EEG-fMRI fusion approach, is capable of estimating the brain maps of the EEG and fMRI for the fused components and account for the variable lag structure between electrophysiological and BOLD signals.
Collapse
Affiliation(s)
- Yaqub Jonmohamadi
- School of Electrical Engineering and Computer Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia. School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
10
|
Babiloni F, Rossi D, Cherubino P, Trettel A, Picconi D, Maglione AG, Vecchiato G, de Vico Fallani F, Chavez M, Babiloni F. The first impression is what matters: a neuroaesthetic study of the cerebral perception and appreciation of paintings by Titian. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2015:7990-3. [PMID: 26738146 DOI: 10.1109/embc.2015.7320246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper we measured the neuroelectrical and the eye-movements activities in a group of 27 healthy subjects during their visit of a fine arts gallery in which a series of masterpieces of the Italian painter Tiziano Vecellio (also known as Titian, 1488-1576) were shown. The pictures chosen for the visit were 10 portraits and 10 of religious subjects. Each picture was observed for a minute. A mobile EEG device with an eye-tracker was used for this experiment. Evaluation of the appreciation of the pictures was performed by using the neuroelectrical approach-withdrawal index (AW). High value of AW means high appreciation of the picture. The number of eye fixations performed by the subjects during the observation of the pictures was also analyzed. Results showed that in the examined group the AW index was significant higher during the observation of portraits than during the observation of the religious subjects (as resulted from an ANOVA performed on AW index, with a p<;0,007). Interestingly, the average AW index estimated in the first 20 seconds of the observation of the pictures remains highly correlated with the AW index evaluated for the second part of the data (from 20 s to one minute) for all the 20 pictures examined (r = 0,82, p<;0,0001). In addition, the number of eye fixations performed by the subjects in the first 5 or 10 seconds of observation of the pictures that were most appreciated are significantly higher than the number of eye fixations performed on pictures that subjects did not like (p<;0,048 and p<;0,0018, respectively). Such difference vanishes if the entire period of observation of the pictures of one minute is used (p = 0,54). Taken together, such results seem to suggest that the neuroelectrical correlates of the perception of "good" or "bad" pictures are rapidly formed in our brain, within the first 10-20 seconds from the exposition to the picture.
Collapse
|
11
|
Maglione AG, Brizi A, Vecchiato G, Rossi D, Trettel A, Modica E, Babiloni F. A Neuroelectrical Brain Imaging Study on the Perception of Figurative Paintings against Only their Color or Shape Contents. Front Hum Neurosci 2017; 11:378. [PMID: 28790907 PMCID: PMC5524918 DOI: 10.3389/fnhum.2017.00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 11/17/2022] Open
Abstract
In this study, the cortical activity correlated with the perception and appreciation of different set of pictures was estimated by using neuroelectric brain activity and graph theory methodologies in a group of artistic educated persons. The pictures shown to the subjects consisted of original pictures of Titian's and a contemporary artist's paintings (Orig dataset) plus two sets of additional pictures. These additional datasets were obtained from the previous paintings by removing all but the colors or the shapes employed (Color and Style dataset, respectively). Results suggest that the verbal appreciation of Orig dataset when compared to Color and Style ones was mainly correlated to the neuroelectric indexes estimated during the first 10 s of observation of the pictures. Always in the first 10 s of observation: (1) Orig dataset induced more emotion and is perceived with more appreciation than the other two Color and Style datasets; (2) Style dataset is perceived with more attentional effort than the other investigated datasets. During the whole period of observation of 30 s: (1) emotion induced by Color and Style datasets increased across the time while that induced of the Orig dataset remain stable; (2) Color and Style dataset were perceived with more attentional effort than the Orig dataset. During the entire experience, there is evidence of a cortical flow of activity from the parietal and central areas toward the prefrontal and frontal areas during the observation of the images of all the datasets. This is coherent from the notion that active perception of the images with sustained cognitive attention in parietal and central areas caused the generation of the judgment about their aesthetic appreciation in frontal areas.
Collapse
Affiliation(s)
- Anton G Maglione
- Department of Molecular Medicine, Sapienza Università di RomaRome, Italy
| | - Ambra Brizi
- Department of Molecular Medicine, Sapienza Università di RomaRome, Italy
| | | | - Dario Rossi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza Università di RomaRome, Italy
| | | | - Enrica Modica
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza Università di RomaRome, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza Università di RomaRome, Italy.,BrainSigns, Sapienza Università di RomaRome, Italy
| |
Collapse
|
12
|
Effects of handedness & saccadic bilateral eye movements on the specificity of past autobiographical memory & episodic future thinking. Brain Cogn 2017; 114:40-51. [DOI: 10.1016/j.bandc.2017.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/24/2017] [Accepted: 03/13/2017] [Indexed: 11/20/2022]
|
13
|
Babiloni C, Lizio R, Marzano N, Capotosto P, Soricelli A, Triggiani AI, Cordone S, Gesualdo L, Del Percio C. Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms. Int J Psychophysiol 2016; 103:88-102. [PMID: 25660305 DOI: 10.1016/j.ijpsycho.2015.02.008] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Gaeta G, Susac A, Supek S, Babiloni F, Vecchiato G. Analysis of EEG variables to measure the affective dimensions of arousal and valence related to the vision of emotional pictures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:2518-21. [PMID: 26736804 DOI: 10.1109/embc.2015.7318904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present work aims to investigate the electroencephalographic (EEG) activity elicited by the observation of emotional pictures selected from the International Affective Picture System (IAPS) database. We analyzed the evoked activity within time intervals of increasing duration taking into account the related ratings of Valence and Arousal. The scalp statistical maps of Power Spectral Density (PSD), related to pictures with high valence, revealed an enhanced activity across frontal areas in the theta band and the involvement of fronto-parietal circuits in the alpha band. Difference in the processing of low and high arousing pictures, however, seems to be highly dependent on the valence dimension: for low valenced pictures, the difference in arousal was processed immediately after the observation of the picture, while for the high-valenced ones the processing took part in the second part of the observation. These results appear to be congruent with the literature, while the novelty of the current study is represented by the comparison of the activity elicited in different time windows by both the Arousal and Valence dimensions. It is possible, in this way, to observe how the processing of one variable influences the other, creating a dynamic description of the Valence-Arousal space.
Collapse
|
15
|
Vecchiato G, Di Flumeri G, Maglione AG, Cherubino P, Kong W, Trettel A, Babiloni F. An electroencephalographic Peak Density Function to detect memorization during the observation of TV commercials. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:6969-72. [PMID: 25571599 DOI: 10.1109/embc.2014.6945231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nowadays, there is a growing interest in measuring the impact of advertisements through the estimation of cerebral reactions. Several techniques and methods are used and discussed in the consumer neuroscience. In such a context, the present paper provides a novel method to estimate the level of memorization occurred in subjects during the observation of TV commercials. In particular, the present work introduce the Peak Density Function (PDF) as an electroencephalographic (EEG) time-varying variable which is correlated with the cerebral events of memorization of TV commercials. The analysis has been performed on the EEG activity recorded on twenty healthy subjects during the exposition to several advertisements. After the EEG recordings, an interview has been performed to obtain the information about the memorized scenes for all the video clips watched by the subjects. Such information has been put in correlation with the occurrence of transient peaks of EEG synchronization in the theta band, by computing the PDF. The present results show that the increase of PDF is positively correlated, scene by scene, (R=0.46, p<;0.01) with the spontaneous recall of subjects. This technology could be of help for marketers to overcome the drawbacks of the standard marketing tools (e.g., interviews, focus groups) when analyzing the impact of advertisements.
Collapse
|
16
|
Cartocci G, Maglione AG, Vecchiato G, Di Flumeri G, Colosimo A, Scorpecci A, Marsella P, Giannantonio S, Malerba P, Borghini G, Arico P, Babiloni F. Mental workload estimations in unilateral deafened children. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:1654-1657. [PMID: 26736593 DOI: 10.1109/embc.2015.7318693] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite of technological innovations, noisy environments still constitute a challenging and stressful situation for words recognition by hearing impaired subjects. The evaluation of the mental workload imposed by the noisy environments for the recognition of the words in prelingually deaf children is then of paramount importance since it could affect the speed of the learning process during scholar period.The aim of the present study was to investigate different electroencephalographic (EEG) power spectral density (PSD) components (in theta 4-8 Hz - and alpha - 8-12 Hz - frequency bands) to estimate the mental workload index in different noise conditions during a word recognition task in prelingually deaf children, a population not yet investigated in relation to the workload index during auditory tasks. A pilot study involving a small group of prelingually deaf children was then subjected to EEG recordings during an auditory task composed by a listening and a successive recognition of words with different noise conditions. Results showed that in the pre-word listening phase frontal EEG PSD in theta band and the ratio of the frontal EEG PSD in theta band and the parietal EEG PSD in alpha band (workload index; IWL) reported highest values in the most demanding noise condition. In addition, in the phase preceding the word forced-choice task the highest parietal EEG PSD in alpha band and IWL values were reported at the presumably simplest condition (noise emitted in correspondence of the subject's deaf ear). These results could suggest the prominence of EEG PSD theta component activity in the pre-word listening phase. In addition, a more challenging noise situation in the pre-choice phase would be so "over-demanding" to fail to enhance both the alpha power and the IWL in comparison to the already demanding "simple" condition.
Collapse
|
17
|
Propper RE, Barr TD, Brunyé TT. Lateralized differences in tympanic membrane temperature, but not induced mood, are related to episodic memory. Brain Cogn 2015; 94:52-9. [DOI: 10.1016/j.bandc.2015.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 12/19/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
18
|
Different perception of musical stimuli in patients with monolateral and bilateral cochlear implants. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:876290. [PMID: 25180046 PMCID: PMC4142295 DOI: 10.1155/2014/876290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/01/2014] [Indexed: 11/30/2022]
Abstract
The aim of the present study is to measure the perceived pleasantness during the observation of a musical video clip in a group of cochlear implanted adult patients when compared to a group of normal hearing subjects. This comparison was performed by using the imbalance of the EEG power spectra in alpha band over frontal areas as a metric for the perceived pleasantness. Subjects were asked to watch a musical video clip in three different experimental conditions: with the original audio included (Norm), with a distorted version of the audio (Dist), and without the audio (Mute). The frontal EEG imbalance between the estimated power spectra for the left and right prefrontal areas has been calculated to investigate the differences among the two populations. Results suggested that the perceived pleasantness of the musical video clip in the normal hearing population and in the bilateral cochlear implanted populations has similar range of variation across the different stimulations (Norm, Dist, and Mute), when compared to the range of variation of video clip's pleasantness for the monolateral cochlear implanted population. A similarity exists in the trends of the perceived pleasantness across the different experimental conditions in the mono- and bilaterally cochlear implanted patients.
Collapse
|
19
|
Neuroelectrical correlates of trustworthiness and dominance judgments related to the observation of political candidates. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:434296. [PMID: 25214884 PMCID: PMC4158281 DOI: 10.1155/2014/434296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/21/2014] [Indexed: 02/01/2023]
Abstract
The present research investigates the neurophysiological activity elicited by fast observations of faces of real candidates during simulated political elections. We used simultaneous recording of electroencephalographic (EEG) signals as well as galvanic skin response (GSR) and heart rate (HR) as measurements of central and autonomic nervous systems. Twenty healthy subjects were asked to give judgments on dominance, trustworthiness, and a preference of vote related to the politicians' faces. We used high-resolution EEG techniques to map statistical differences of power spectral density (PSD) cortical activity onto a realistic head model as well as partial directed coherence (PDC) and graph theory metrics to estimate the functional connectivity networks and investigate the role of cortical regions of interest (ROIs). Behavioral results revealed that judgment of dominance trait is the most predictive of the outcome of the simulated elections. Statistical comparisons related to PSD and PDC values highlighted an asymmetry in the activation of frontal cortical areas associated with the valence of the judged trait as well as to the probability to cast the vote. Overall, our results highlight the existence of cortical EEG features which are correlated with the prediction of vote and with the judgment of trustworthy and dominant faces.
Collapse
|
20
|
Neurophysiological tools to investigate consumer's gender differences during the observation of TV commercials. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:912981. [PMID: 25147579 PMCID: PMC4134790 DOI: 10.1155/2014/912981] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/01/2014] [Indexed: 11/17/2022]
Abstract
Neuromarketing is a multidisciplinary field of research whose aim is to investigate the consumers' reaction to advertisements from a neuroscientific perspective. In particular, the neuroscience field is thought to be able to reveal information about consumer preferences which are unobtainable through conventional methods, including submitting questionnaires to large samples of consumers or performing psychological personal or group interviews. In this scenario, we performed an experiment in order to investigate cognitive and emotional changes of cerebral activity evaluated by neurophysiologic indices during the observation of TV commercials. In particular, we recorded the electroencephalographic (EEG), galvanic skin response (GSR), and heart rate (HR) in a group of 28 healthy subjects during the observation of a series of TV advertisements that have been grouped by commercial categories. Comparisons of cerebral indices have been performed to highlight gender differences between commercial categories and scenes of interest of two specific commercials. Findings show how EEG methodologies, along with the measurements of autonomic variables, could be used to obtain hidden information to marketers not obtainable otherwise. Most importantly, it was suggested how these tools could help to analyse the perception of TV advertisements and differentiate their production according to the consumer's gender.
Collapse
|
21
|
Marsella P, Scorpecci A, Vecchiato G, Maglione AG, Colosimo A, Babiloni F. Neuroelectrical imaging investigation of cortical activity during listening to music in prelingually deaf children with cochlear implants. Int J Pediatr Otorhinolaryngol 2014; 78:737-43. [PMID: 24642416 DOI: 10.1016/j.ijporl.2014.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To date, no objective measure of the pleasantness of music perception by children with cochlear implants has been reported. The EEG alpha asymmetries of pre-frontal cortex activation are known to relate to emotional/affective engagement in a perceived stimulus. More specifically, according to the "withdrawal/approach" model, an unbalanced de-synchronization of the alpha activity in the left prefrontal cortex has been associated with a positive affective state/approach toward a stimulus, and an unbalanced de-synchronization of the same activity in the right prefrontal cortex with a negative affective state/withdrawal from a stimulus. In the present study, High-Resolution EEG with Source Reconstruction was used to compare the music-induced alpha asymmetries of the prefrontal cortex in a group of prelingually deaf implanted children and in a control group of normal-hearing children. METHODS Six normal-hearing and six age-matched deaf children using a unilateral cochlear implants underwent High-Resolution EEG recordings as they were listening to a musical cartoon. Musical stimuli were delivered in three versions: Normal, Distort (reverse audio flow) and Mute. The EEG alpha rhythm asymmetry was analyzed: Power Spectral Density was calculated for each Region of Interest, together with a right-left imbalance index. A map of cortical activation was then reconstructed on a realistic cortical model. RESULTS Asymmetries of EEG alpha rhythm in the prefrontal cortices were observed in both groups. In the normal-hearing children, the asymmetries were consistent with the withdrawal/approach model, whereas in cochlear implant users they were not. Moreover, in implanted children a different pattern of alpha asymmetries in extrafrontal cortical areas was noticed as compared to normal-hearing subjects. CONCLUSIONS The peculiar pattern of alpha asymmetries in implanted children's prefrontal cortex in response to musical stimuli suggests an inability by these subjects to discriminate normal from dissonant music and to appreciate the pleasantness of normal music. High-Resolution EEG may prove to be a promising tool for objectively measuring prefrontal cortex alpha asymmetries in child cochlear implant users.
Collapse
Affiliation(s)
- Pasquale Marsella
- Otorhinolaryngology Department, Audiology and Otology Unit, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Alessandro Scorpecci
- Otorhinolaryngology Department, Audiology and Otology Unit, Bambino Gesù Pediatric Hospital, Rome, Italy.
| | - Giovanni Vecchiato
- Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Anton Giulio Maglione
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University Sapienza, Rome, Italy
| | - Alfredo Colosimo
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University Sapienza, Rome, Italy
| | - Fabio Babiloni
- Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| |
Collapse
|
22
|
Parker A, Parkin A, Dagnall N. Effects of saccadic bilateral eye movements on episodic and semantic autobiographical memory fluency. Front Hum Neurosci 2013; 7:630. [PMID: 24133435 PMCID: PMC3783856 DOI: 10.3389/fnhum.2013.00630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/11/2013] [Indexed: 11/23/2022] Open
Abstract
Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both episodic autobiographical memory (event/incident based memory) and semantic autobiographical memory (fact based memory) over recent and more distant time periods. It was found that saccadic eye movements facilitated the retrieval of episodic autobiographical memories (over all time periods) but not semantic autobiographical memories. In addition, eye movements did not enhance the retrieval of non-autobiographical semantic memory. This finding illustrates a dissociation between the episodic and semantic characteristics of personal memory and is considered within the context of hemispheric contributions to episodic memory performance.
Collapse
Affiliation(s)
- Andrew Parker
- Department of Psychology, Manchester Metropolitan University , Manchester , UK
| | | | | |
Collapse
|
23
|
Missonnier P, Hasler R, Perroud N, Herrmann FR, Millet P, Richiardi J, Malafosse A, Giannakopoulos P, Baud P. EEG anomalies in adult ADHD subjects performing a working memory task. Neuroscience 2013; 241:135-46. [PMID: 23518223 DOI: 10.1016/j.neuroscience.2013.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
Functional imaging studies have revealed differential brain activation patterns in attention deficit hyperactivity disorder (ADHD) adult patients performing working memory (WM) tasks. The existence of alterations in WM-related cortical circuits during childhood may precede executive dysfunctions in this disorder in adults. To date, there is no study exploring the electrophysiological activation of WM-related neural networks in ADHD. To address this issue, we carried out an electroencephalographic (EEG) activation study associated with time-frequency (TF) analysis in 15 adults with ADHD and 15 controls performing two visual N-back WM tasks, as well as oddball detection and passive fixation tasks. Frontal transient (phasic) theta event-related synchronization (ERS, 0-500 msec) was significantly reduced in ADHD as compared to control subjects. Such reduction was equally present in a task-independent manner. In contrast, the power of the later sustained (∼500-1200 msec) theta ERS for all tasks was comparable in ADHD and control groups. In active WM tasks, ADHD patients displayed lower alpha event-related desynchronization (ERD, ∼200-900 msec) and higher subsequent alpha ERS (∼900-2400 msec) compared to controls. The time course of alpha ERD/ERS cycle was modified in ADHD patients compared to controls, suggesting that they are able to use late compensatory mechanisms in order to perform this WM task. These findings support the idea of an ADHD-related dysfunction of neural generators sub-serving attention directed to the incoming visual information. ADHD cases may successfully face WM needs depending on the preservation of sustained theta ERS and prolonged increase of alpha ERS at later post-stimulus time points.
Collapse
Affiliation(s)
- P Missonnier
- Clinical Neurophysiology and Neuroimaging Unit, Division of Neuropsychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sambataro F, Safrin M, Lemaitre HS, Steele SU, Das SB, Callicott JH, Weinberger DR, Mattay VS. Normal aging modulates prefrontoparietal networks underlying multiple memory processes. Eur J Neurosci 2012; 36:3559-67. [PMID: 22909094 PMCID: PMC3511913 DOI: 10.1111/j.1460-9568.2012.08254.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A functional decline of brain regions underlying memory processing represents a hallmark of cognitive aging. Although a rich literature documents age-related differences in several memory domains, the effect of aging on networks that underlie multiple memory processes has been relatively unexplored. Here we used functional magnetic resonance imaging during working memory and incidental episodic encoding memory to investigate patterns of age-related differences in activity and functional covariance patterns common across multiple memory domains. Relative to younger subjects, older subjects showed increased activation in left dorso-lateral prefrontal cortex along with decreased deactivation in the posterior cingulate. Older subjects showed greater functional covariance during both memory tasks in a set of regions that included a positive prefronto-parietal-occipital network as well as a negative network that spanned the default mode regions. These findings suggest that the memory process-invariant recruitment of brain regions within prefronto-parietal-occipital network increases with aging. Our results are in line with the dedifferentiation hypothesis of neurocognitive aging, thereby suggesting a decreased specialization of the brain networks supporting different memory networks.
Collapse
Affiliation(s)
- Fabio Sambataro
- Brain Center for Motor and Social Cognition @UniPr, Istituto Italiano di Tecnologia, 43100 Parma, Italy
- Genes, Cognition, and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892
| | - Martin Safrin
- Genes, Cognition, and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892
| | - Herve S. Lemaitre
- Genes, Cognition, and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892
| | - Sonya U. Steele
- Genes, Cognition, and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892
| | - Saumitra B. Das
- Genes, Cognition, and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892
| | - Joseph H Callicott
- Genes, Cognition, and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892
| | - Daniel R. Weinberger
- Genes, Cognition, and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Baltimore, Maryland 21205, USA
| | - Venkata S. Mattay
- Genes, Cognition, and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Baltimore, Maryland 21205, USA
| |
Collapse
|
25
|
Sweeney-Reed CM, Riddell PM, Ellis JA, Freeman JE, Nasuto SJ. Neural correlates of true and false memory in mild cognitive impairment. PLoS One 2012; 7:e48357. [PMID: 23118992 PMCID: PMC3485202 DOI: 10.1371/journal.pone.0048357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/24/2012] [Indexed: 12/04/2022] Open
Abstract
The goal of this research was to investigate the changes in neural processing in mild cognitive impairment. We measured phase synchrony, amplitudes, and event-related potentials in veridical and false memory to determine whether these differed in participants with mild cognitive impairment compared with typical, age-matched controls. Empirical mode decomposition phase locking analysis was used to assess synchrony, which is the first time this analysis technique has been applied in a complex cognitive task such as memory processing. The technique allowed assessment of changes in frontal and parietal cortex connectivity over time during a memory task, without a priori selection of frequency ranges, which has been shown previously to influence synchrony detection. Phase synchrony differed significantly in its timing and degree between participant groups in the theta and alpha frequency ranges. Timing differences suggested greater dependence on gist memory in the presence of mild cognitive impairment. The group with mild cognitive impairment had significantly more frontal theta phase locking than the controls in the absence of a significant behavioural difference in the task, providing new evidence for compensatory processing in the former group. Both groups showed greater frontal phase locking during false than true memory, suggesting increased searching when no actual memory trace was found. Significant inter-group differences in frontal alpha phase locking provided support for a role for lower and upper alpha oscillations in memory processing. Finally, fronto-parietal interaction was significantly reduced in the group with mild cognitive impairment, supporting the notion that mild cognitive impairment could represent an early stage in Alzheimer's disease, which has been described as a 'disconnection syndrome'.
Collapse
Affiliation(s)
- Catherine M Sweeney-Reed
- Memory and Consciousness Research Group, University Clinic for Neurology and Stereotactic Neurosurgery, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
26
|
Cortical sources of EEG rhythms in congestive heart failure and Alzheimer's disease. Int J Psychophysiol 2012; 86:98-107. [PMID: 22771500 DOI: 10.1016/j.ijpsycho.2012.06.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 06/14/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The brain needs continuous oxygen supply even in resting-state. Hypoxia enhances resting-state electroencephalographic (EEG) rhythms in the delta range, and reduces those in the alpha range, with a pattern similar to that observed in Alzheimer's disease (AD). Here we tested whether resting-state cortical EEG rhythms in patients with congestive heart failure (CHF), as a model of acute hypoxia, present frequency similarities with AD patients, comparable by cognitive status revealed by the mini mental state examination (MMSE). METHODS Eyes-closed EEG data were recorded in 10 CHF patients, 20 AD patients, and 20 healthy elderly subjects (Nold) as controls. LORETA software estimated cortical EEG generators. RESULTS Compared to Nold, both AD and CHF groups presented higher delta (2-4Hz) and lower alpha (8-13Hz) temporal sources. The highest delta and lowest alpha sources were observed in CHF subjects. In these subjects, the global amplitude of delta sources correlated with brain natriuretic peptide (BNP) level in the blood, as a marker of disease severity. CONCLUSIONS Resting-state delta and alpha rhythms suggest analogies between the effects of acute hypoxia and AD neurodegeneration on the cortical neurons' synchronization. SIGNIFICANCE Acute ischemic hypoxia could affect the mechanisms of cortical neural synchronization generating resting state EEG rhythms, inducing the "slowing" of EEG rhythms typically observed in AD patients.
Collapse
|
27
|
A frequency band analysis of two-year-olds' memory processes. Int J Psychophysiol 2011; 83:315-22. [PMID: 22137966 DOI: 10.1016/j.ijpsycho.2011.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 11/22/2022]
Abstract
Research on the functional meaning of EEG frequency bands during memory processing has only examined two developmental periods: infancy and from late childhood to adulthood. The purpose of this study was to examine changes in EEG power for three toddler EEG frequency bands (3-5Hz, 6-9Hz, 10-12Hz) during a verbal recall task. To this end, we asked three questions: (a) Which frequency band(s) discriminate baseline from memory processing?; (b) Which frequency band(s) differentiate between memory encoding and retrieval processes?; (c) Which frequency band(s) distinguish toddlers with high and low verbal recall performance? Analysis of 2-year-olds' (n=79) power values revealed that all three frequency bands differentiated the retrieval and encoding phases from the baseline phase; however, the particular regions that exhibited this dissociation varied. Retrieval-related increases in 3-5Hz (theta) power were widespread. Only the 3-5Hz and 6-9Hz bands distinguished encoding and retrieval processes; retrieval power values were higher than encoding power values. High and low verbal recall performers were discriminated by all frequency bands; high performers had greater power values than low performers. Thus, the 3-5Hz (theta) and 6-9Hz (alpha) bands were most informative about 2-year-olds' memory processes. Theta and alpha rhythms are critical to memory processes during late childhood and adulthood, and our findings provide initial evidence that these rhythms are also intricately linked to memory processing during toddlerhood. These findings are discussed in relation to behavioral changes in memory processes.
Collapse
|
28
|
Xiao X, Ding J, Guo C. Effects of encoding and retrieval on the mechanism of item + context binding. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4501-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Feurra M, Paulus W, Walsh V, Kanai R. Frequency specific modulation of human somatosensory cortex. Front Psychol 2011; 2:13. [PMID: 21713181 PMCID: PMC3111335 DOI: 10.3389/fpsyg.2011.00013] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/13/2011] [Indexed: 11/25/2022] Open
Abstract
Oscillatory neuronal activities are commonly observed in response to sensory stimulation. However, their functional roles are still the subject of debate. One-way to probe the roles of oscillatory neural activities is to deliver alternating current to the cortex at biologically relevant frequencies and examine whether such stimulation influences perception and cognition. In this study, we tested whether transcranial alternating current stimulation (tACS) over the primary somatosensory cortex (SI) could elicit tactile sensations in humans in a frequency-dependent manner. We tested the effectiveness of tACS over SI at frequency bands ranging from 2 to 70 Hz. Our results show that stimulation in alpha (10–14 Hz) and high gamma (52–70 Hz) frequency range produces a tactile sensation in the contralateral hand. A weaker effect was also observed for beta (16–20 Hz) stimulation. These findings highlight the frequency dependency of effective tACS over SI with the effective frequencies corresponding to those observed in previous electroencephalography/magnetoencephalography studies of tactile perception. Our present study suggests that tACS could be used as a powerful online stimulation technique to reveal the causal roles of oscillatory brain activities.
Collapse
Affiliation(s)
- Matteo Feurra
- Institute of Cognitive Neuroscience, Department of Psychology, University College London London, UK
| | | | | | | |
Collapse
|
30
|
Sarà M, Pistoia F, Pasqualetti P, Sebastiano F, Onorati P, Rossini PM. Functional isolation within the cerebral cortex in the vegetative state: a nonlinear method to predict clinical outcomes. Neurorehabil Neural Repair 2010; 25:35-42. [PMID: 20952634 DOI: 10.1177/1545968310378508] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Establishing prognosis in patients in a persistent vegetative state (VS) is still challenging. Neural networks underlying consciousness may be regarded as complex systems whose outputs show a degree of unpredictability experimentally quantifiable by means of nonlinear parameters such as approximate entropy (ApEn). OBJECTIVE The authors propose that the VS might be the result of derangement of the above neural networks, with an ensuing decrease in complexity and mutual interconnectivity: this might lead to a functional isolation within the cerebral cortex and to a reduction in the chaotic behavior of its outputs, with monotony taking the place of unpredictability. To test this hypothesis, the authors investigated whether nonlinear dynamics methods applied to electroencephalography (EEG) recordings may be able to predict outcomes. METHODS A total of 38 vegetative patients and 40 matched healthy controls were investigated. At admission, all patients were assessed by means of the Extended Glasgow Outcomes Coma Scale (E-GOS) and the Coma Recovery Scale-Revised (CRS-R). At the same time an EEG recording was performed and used for time series analysis and ApEn computation. Patients were clinically reassessed at 6 months from the first evaluation. RESULTS Mean ApEn values (0.73, standard deviation [SD] = 0.12 vs 0.97, SD = 0.02; P < .001) were lower in patients than in controls. Patients with the lowest ApEn values either died (n = 14) or remained in a VS (n = 12), whereas patients with the highest ApEn values became minimally conscious (n = 5) or showed partial (n = 4) or full recovery (n = 3). CONCLUSIONS These findings suggest that dynamic correlates of neural residual complexity might help in predicting outcomes in vegetative patients.
Collapse
Affiliation(s)
- Marco Sarà
- Post Coma and Rehabilitation Care Unit, San Raffaele Cassino, Cassino, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Rossi S, Innocenti I, Polizzotto NR, Feurra M, De Capua A, Ulivelli M, Bartalini S, Cappa SF. Temporal Dynamics of Memory Trace Formation in the Human Prefrontal Cortex. Cereb Cortex 2010; 21:368-73. [DOI: 10.1093/cercor/bhq103] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Inter-hemispheric functional coupling of eyes-closed resting EEG rhythms in adolescents with Down syndrome. Clin Neurophysiol 2009; 120:1619-27. [PMID: 19643663 DOI: 10.1016/j.clinph.2009.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 05/13/2009] [Accepted: 06/18/2009] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We tested the hypothesis that inter-hemispheric directional functional coupling of eyes-closed resting EEG rhythms is abnormal in adolescents with Down syndrome (DS). METHODS Eyes-closed resting EEG data were recorded in 38 DS adolescents (18.7 years +/-0.67 SE, IQ=49+/-1.9 SE) and in 17 matched normal control subjects (NYoung=19.1 years +/-0.39 SE). The EEG data were recorded from 8 electrodes (Fp1, Fp2, C3, C4, T3, T4, O1, O2) referenced to vertex. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). Power of EEG rhythms was evaluated by FFT for control purposes, whereas inter-hemispheric directional EEG functional coupling was computed by directed transfer function (DTF). RESULTS As expected, alpha, beta, and gamma power was widely higher in NYoung than DS subjects, whereas the opposite was true for delta power. As a novelty, DTF (directionality) values globally prevailed from right to left occipital areas in NYoung subjects and in the opposite direction in DS patients. A control experiment showed that this DTF difference could not be observed in the comparison between DS adults with mild cognitive impairment and normal age-matched adults. CONCLUSIONS These results indicate a peculiar abnormal directional inter-hemispheric interplay in visual occipital areas of DS adolescents. SIGNIFICANCE Direction of inter-hemispheric EEG functional coupling unveils a new abnormal brain network feature in DS adolescents.
Collapse
|
33
|
Babiloni C, Frisoni GB, Pievani M, Vecchio F, Infarinato F, Geroldi C, Salinari S, Ferri R, Fracassi C, Eusebi F, Rossini PM. White matter vascular lesions are related to parietal-to-frontal coupling of EEG rhythms in mild cognitive impairment. Hum Brain Mapp 2009; 29:1355-67. [PMID: 17979121 DOI: 10.1002/hbm.20467] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Do cerebrovascular and Alzheimer's disease (AD) lesions represent additive factors in the development of mild cognitive impairment (MCI) as a putative preclinical stage of AD? Here we tested the hypothesis that directionality of fronto-parietal functional coupling of electroencephalographic (EEG) rhythms is relatively preserved in amnesic MCI subjects in whom the cognitive decline is mainly explained by white-matter vascular load. Resting EEG was recorded in 40 healthy elderly (Nold) and 78 amnesic MCI. In the MCI subjects, white-matter vascular load was quantified based on magnetic resonance images (0-30 visual rating scale). EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), and beta2 (20-30 Hz). Directionality of fronto-parietal functional coupling of EEG rhythms was estimated by directed transfer function software. As main results, (i) fronto-parietal functional coupling of EEG rhythms was higher in magnitude in the Nold than in the MCI subjects; (ii) more interestingly, that coupling was higher at theta, alpha1, alpha2, and beta1 in MCI V+ (high vascular load; N = 42; MMSE = 26) than in MCI V- group (low vascular load; N = 36; MMSE= 26.7). These results are interpreted as supporting the additive model according to which MCI state would result from the combination of cerebrovascular and neurodegenerative lesions.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dip. Fisiologia Umana e Farmacologia, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Electrophysiological data measured by electroencephalography and magnetoencephalography (MEG) are widely used to investigate human brain activity in various cognitive tasks. This is typically done by characterizing event-related potentials/fields or modulations of oscillatory activity (e.g., event-related synchronization) in response to cognitively relevant stimuli. Here, we provide a link between the two phenomena. An essential component of our theory is that peaks and troughs of oscillatory activity fluctuate asymmetrically; e.g., peaks are more strongly modulated than troughs in response to stimuli. As a consequence, oscillatory brain activity will not "average out" when multiple trials are averaged. Using MEG, we demonstrate that such asymmetric amplitude fluctuations of the oscillatory alpha rhythm explain the generation of slow event-related fields. Furthermore, we provide a physiological explanation for the observed asymmetric amplitude fluctuations. In particular, slow event-related components are modulated by a wide range of cognitive tasks. Hence, our findings provide new insight into the physiological basis of cognitive modulation in event-related brain activity.
Collapse
|
35
|
Babiloni C, Frisoni GB, Pievani M, Toscano L, Del Percio C, Geroldi C, Eusebi F, Miniussi C, Rossini PM. White-matter vascular lesions correlate with alpha EEG sources in mild cognitive impairment. Neuropsychologia 2008; 46:1707-20. [PMID: 18440574 DOI: 10.1016/j.neuropsychologia.2008.03.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 11/25/2022]
Abstract
It is an open issue if vascular and Alzheimer's disease (AD) lesions represent additive factors in the development of mild cognitive impairment (MCI), as a preclinical stage of Alzheimer's disease (AD) at group level. In the present study, we tested the hypothesis that electroencephalographic (EEG) alpha rhythms, which are affected (i.e. decreased in amplitude) by AD processes, are relatively preserved in MCI subjects in whom the cognitive decline is mainly explained by white-matter vascular load. Resting EEG was recorded in 40 healthy elderly (Nold), 80 MCI, and 40 AD subjects. In the MCI subjects, white-matter vascular load was quantified based on MRI (0-30 Wahlund visual rating scale). EEG rhythms of interest were delta (2-4Hz), theta (4-8Hz), alpha 1 (8-10.5Hz), alpha 2 (10.5-13Hz), beta 1 (13-20Hz), and beta 2 (20-30Hz). Low resolution electromagnetic source tomography (LORETA) was used for EEG source analysis. As expected, we observed that alpha 1 sources in parietal, occipital, and temporal areas were lower in amplitude in the AD and MCI subjects than in the Nold subjects, whereas the amplitude of wide delta sources was higher in the AD than in the Nold and MCI subjects. As novel results, the amplitude of parietal, occipital, and temporal alpha 1 sources was higher in the MCI V+ (high vascular load; N=42; MMSE=26) than MCI V- group (low vascular load; N=37; MMSE=26.7). Furthermore, a weak but significant (p<0.05) positive statistical correlation was found between the parietal alpha 1 sources and the score of Wahlund scale across all MCI subjects (i.e. the more severe white-matter lesions, the higher parietal alpha source power). The present results are in line with the additive model of cognitive impairment postulating that this arises as the sum of neurodegenerative and cerebrovascular lesions.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy; Casa di Cura San Raffaele Cassino, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Effect of bilateral eye movements on frontal interhemispheric gamma EEG coherence: implications for EMDR therapy. J Nerv Ment Dis 2007; 195:785-8. [PMID: 17984782 DOI: 10.1097/nmd.0b013e318142cf73] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The use of bilateral eye movements (EMs) is an important component of Eye Movement Desensitization and Reprocessing (EMDR) therapy for posttraumatic stress disorder. The neural mechanisms underlying EMDR remain unclear. However, prior behavioral work looking at the effects of bilateral EMs on the retrieval of episodic memories suggests that the EMs enhance interhemispheric interaction. The present study examined the effects of the EMs used in EMDR on interhemispheric electroencephalogram coherence. Relative to noneye-movement controls, engaging in bilateral EMs led to decreased interhemispheric gamma electroencephalogram coherence. Implications for future work on EMDR and episodic memory are discussed.
Collapse
|
37
|
Babiloni C, Cassetta E, Binetti G, Tombini M, Del Percio C, Ferreri F, Ferri R, Frisoni G, Lanuzza B, Nobili F, Parisi L, Rodriguez G, Frigerio L, Gurzì M, Prestia A, Vernieri F, Eusebi F, Rossini PM. Resting EEG sources correlate with attentional span in mild cognitive impairment and Alzheimer's disease. Eur J Neurosci 2007; 25:3742-57. [PMID: 17610594 DOI: 10.1111/j.1460-9568.2007.05601.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous evidence has shown that resting delta and alpha electroencephalographic (EEG) rhythms are abnormal in patients with Alzheimer's disease (AD) and its potential preclinical stage (mild cognitive impairment, MCI). Here, we tested the hypothesis that these EEG rhythms are correlated with memory and attention in the continuum across MCI and AD. Resting eyes-closed EEG data were recorded in 34 MCI and 53 AD subjects. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). These sources were correlated with neuropsychological measures such as Rey list immediate recall (word short-term memory), Rey list delayed recall (word medium-term memory), Digit span forward (immediate memory for digits probing focused attention), and Corsi span forward (visuo-spatial immediate memory probing focused attention). A statistically significant negative correlation (Bonferroni corrected, P < 0.05) was observed between Corsi span forward score and amplitude of occipital or temporal delta sources across MCI and AD subjects. Furthermore, a positive correlation was shown between Digit span forward score and occipital alpha 1 sources (Bonferroni corrected, P < 0.05). These results suggest that cortical sources of resting delta and alpha rhythms correlate with neuropsychological measures of immediate memory based on focused attention in the continuum of MCI and AD subjects.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dip. Fisiologia Umana e Farmacologia, Università degli Studi di Roma La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Babiloni C, Squitti R, Del Percio C, Cassetta E, Ventriglia MC, Ferreri F, Tombini M, Frisoni G, Binetti G, Gurzi M, Salinari S, Zappasodi F, Rossini PM. Free copper and resting temporal EEG rhythms correlate across healthy, mild cognitive impairment, and Alzheimer’s disease subjects. Clin Neurophysiol 2007; 118:1244-60. [PMID: 17462944 DOI: 10.1016/j.clinph.2007.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 01/15/2007] [Accepted: 03/08/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The present study tested the hypothesis that the serum copper abnormalities were correlated with alterations of resting electroencephalographic (EEG) rhythms across the continuum of healthy elderly (Hold), mild cognitive impairment (MCI), and AD subjects. METHODS Resting eyes-closed EEG rhythms delta (2-4Hz), theta (4-8Hz), alpha 1 (8-10.5Hz), alpha 2 (10.5-13Hz), beta 1 (13-20Hz), beta 2 (20-30Hz), and gamma (30-40Hz), estimated by LORETA, were recorded in 17 Hold, 19 MCI, 27 AD- (MMSE< or =20), and 27 AD+ (MMSE20) individuals and correlated with copper biological variables. RESULTS Across the continuum of Hold, MCI and AD subjects, alpha sources in parietal, occipital, and temporal areas were decreased, while the magnitude of the delta and theta EEG sources in parietal, occipital, and temporal areas was increased. The fraction of serum copper unbound to ceruloplasmin positively correlated with temporal and frontal delta sources, regardless of the effects of age, gender, and education. CONCLUSIONS These results sustain the hypothesis of a toxic component of serum copper that is correlated with functional loss of AD, as revealed by EEG indexes. SIGNIFICANCE The present study represents the first demonstration that the fraction of serum copper unbound to ceruloplasmin is correlated with cortical delta rhythms across Hold, MCI, and AD subjects, thus unveiling possible relationships among the biological parameter, advanced neurodegenerative processes, and synchronization mechanisms regulating the relative amplitude of selective EEG rhythms.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dip Fisiologia Umana e Farmacologia, Univ La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Homocysteine and electroencephalographic rhythms in Alzheimer disease: a multicentric study. Neuroscience 2007; 145:942-54. [PMID: 17321055 DOI: 10.1016/j.neuroscience.2006.12.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
High plasma concentration of homocysteine is an independent risk factor for Alzheimer's disease (AD), due to microvascular impairment and consequent neural loss [Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 346(7):476-483]. Is high plasma homocysteine level related to slow electroencephalographic (EEG) rhythms in awake resting AD subjects, as a reflection of known relationships between cortical neural loss and these rhythms? To test this hypothesis, we enrolled 34 mild AD patients and 34 subjects with mild cognitive impairment (MCI). Enrolled people were then subdivided into four sub-groups of 17 persons: MCI and AD subjects with low homocysteine level (MCI- and AD-, homocysteine level <11 micromol/l); MCI and AD subjects with high homocysteine level (MCI+ and AD+, homocysteine level >or=11 micromol/l). Resting eyes-closed EEG data were recorded. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Results showed that delta (frontal and temporal), theta (central, frontal, parietal, occipital, and temporal), alpha 1 (parietal, occipital, and temporal), and alpha 2 (parietal and occipital) sources were stronger in magnitude in AD+ than AD- group. Instead, no difference was found between MCI- and MCI+ groups. In conclusion, high plasma homocysteine level is related to unselective increment of cortical delta, theta, and alpha rhythms in mild AD, thus unveiling possible relationships among that level, microvascular concomitants of advanced neurodegenerative processes, and synchronization mechanisms generating EEG rhythms.
Collapse
|
40
|
Rossini PM, Del Percio C, Pasqualetti P, Cassetta E, Binetti G, Dal Forno G, Ferreri F, Frisoni G, Chiovenda P, Miniussi C, Parisi L, Tombini M, Vecchio F, Babiloni C. Conversion from mild cognitive impairment to Alzheimer's disease is predicted by sources and coherence of brain electroencephalography rhythms. Neuroscience 2006; 143:793-803. [PMID: 17049178 DOI: 10.1016/j.neuroscience.2006.08.049] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/25/2006] [Accepted: 08/16/2006] [Indexed: 10/23/2022]
Abstract
Objective. Can quantitative electroencephalography (EEG) predict the conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD)? Methods. Sixty-nine subjects fulfilling criteria for MCI were enrolled; cortical connectivity (spectral coherence) and (low resolution brain electromagnetic tomography) sources of EEG rhythms (delta=2-4 Hz; theta=4-8 Hz; alpha 1=8-10.5 Hz; alpha 2=10.5-13 Hz: beta 1=13-20 Hz; beta 2=20-30 Hz; and gamma=30-40) were evaluated at baseline (time of MCI diagnosis) and follow up (about 14 months later). At follow-up, 45 subjects were still MCI (MCI Stable) and 24 subjects were converted to AD (MCI Converted). Results. At baseline, fronto-parietal midline coherence as well as delta (temporal), theta (parietal, occipital and temporal), and alpha 1 (central, parietal, occipital, temporal, limbic) sources were stronger in MCI Converted than stable subjects (P<0.05). Cox regression modeling showed low midline coherence and weak temporal source associated with 10% annual rate AD conversion, while this rate increased up to 40% and 60% when strong temporal delta source and high midline gamma coherence were observed respectively. Interpretation. Low-cost and diffuse computerized EEG techniques are able to statistically predict MCI to AD conversion.
Collapse
Affiliation(s)
- P M Rossini
- IRCCS "Centro S. Giovanni di Dio-F.B.F.," Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Krause CM, Grönholm P, Leinonen A, Laine M, Säkkinen AL, Söderholm C. Modality matters: the effects of stimulus modality on the 4- to 30-Hz brain electric oscillations during a lexical decision task. Brain Res 2006; 1110:182-92. [PMID: 16901470 DOI: 10.1016/j.brainres.2006.06.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 03/31/2006] [Accepted: 06/22/2006] [Indexed: 11/24/2022]
Abstract
The aim of the current study was to assess modality-specific brain oscillatory responses during cognitive processing. Brain oscillatory ERD/ERS responses of the 4- to 30-Hz EEG frequency bands were examined during lexical decision where the task is to identify whether the presented stimulus is a word or a pseudoword. Seven subjects performed the task with visual stimuli and twelve subjects with auditory stimuli. Visual stimuli elicited greater theta ERS responses as compared to the auditory stimuli. Both stimulus modalities elicited alpha and beta frequency ERD, these being greater for the auditory stimuli. Auditory stimuli elicited also later emerging beta ERS responses, absent for the visual stimuli. The lexicality effects (words vs. pseudowords) were greater for the auditory than for the visual stimuli. When studying brain oscillatory correlates of cognitive processing, the stimulus modality matters. Some effects may arise and some vanish depending on in which modality a cognitive experiment is being conducted.
Collapse
Affiliation(s)
- Christina M Krause
- Department of Psychology, Cognitive Science Unit, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
42
|
Rossi S, Pasqualetti P, Zito G, Vecchio F, Cappa SF, Miniussi C, Babiloni C, Rossini PM. Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation. Eur J Neurosci 2006; 23:793-800. [PMID: 16487159 DOI: 10.1111/j.1460-9568.2006.04600.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuroimaging findings, including repetitive transcranial magnetic stimulation (rTMS) interference, point to an engagement of prefrontal cortex (PFC) in learning and memory. Whether parietal cortex (PC) activity is causally linked to successful episodic encoding and retrieval is still uncertain. We compared the effects of event-related active or sham rTMS (a rapid-rate train coincident to the very first phases of memoranda presentation) to the left or right intraparietal sulcus, during a standardized episodic memory task of visual scenes, with those obtained in a fully matched sample of subjects who received rTMS on left or right dorsolateral PFC during the same task. In these subjects, specific hemispheric effects of rTMS included interference with encoding after left stimulation and disruption of retrieval after right stimulation. The interference of PC-rTMS on encoding/retrieval performance was negligible, lacking specificity even when higher intensities of stimulation were applied. However, right PC-rTMS of the same intensity lengthened reaction times in the context of a purely attentive visuospatial task. These results suggest that the activity of intraparietal sulci shown in several functional magnetic resonance studies on memory, unlike that of the dorsolateral PFC, is not causally engaged to a useful degree in memory encoding and retrieval of visual scenes. The parietal activations accompanying the memorization processes could reflect the engagement of a widespread brain attentional network, in which interference on a single 'node' is insufficient for an overt disruption of memory performance.
Collapse
Affiliation(s)
- Simone Rossi
- Dipartimento di Neuroscienze, Sezione Neurologia, Università di Siena, Policlinico le Scotte, Viale Bracci, I-53100, Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Babiloni C, Benussi L, Binetti G, Bosco P, Busonero G, Cesaretti S, Dal Forno G, Del Percio C, Ferri R, Frisoni G, Ghidoni R, Rodriguez G, Squitti R, Rossini PM. Genotype (cystatin C) and EEG phenotype in Alzheimer disease and mild cognitive impairment: A multicentric study. Neuroimage 2006; 29:948-64. [PMID: 16213753 DOI: 10.1016/j.neuroimage.2005.08.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/22/2005] [Accepted: 08/25/2005] [Indexed: 11/18/2022] Open
Abstract
Previous findings demonstrated that haplotype B of CST3, the gene coding for cystatin C, is a recessive risk factor for late-onset Alzheimer's disease (AD; Finckh, U., von der Kammer, H., Velden, J., Michel, T., Andresen, B., Deng, A., Zhang, J., Muller-Thomsen, T., Zuchowski, K., Menzer, G., Mann, U., Papassotiropoulos, A., Heun, R., Zurdel, J., Holst, F., Benussi, L., Stoppe, G., Reiss, J., Miserez, A.R., Staehelin, H.B., Rebeck, G.W., Hyman, B.T., Binetti, G., Hock, C., Growdon, J.H., Nitsch, R.M., 2000. Genetic association of the cystatin C gene with late-onset Alzheimer disease. Arch. Neurol. 57, 1579-1583). In the present multicentric electroencephalographic (EEG) study, we analyzed the effects of CST3 haplotypes on resting cortical rhythmicity in subjects with AD and mild cognitive impairment (MCI) with the hypothesis that sources of resting EEG rhythms are more impaired in carriers of the CST3 B haplotype than non-carriers. We enrolled a population of 84 MCI subjects (42% with the B haplotype) and 65 AD patients (40% with the B haplotype). Resting eyes-closed EEG data were recorded in all subjects. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Results showed that the amplitude of alpha 1 (parietal, occipital, temporal areas) and alpha 2 (occipital area) was statistically lower in CST3 B carriers than non-carriers (P < 0.01). Whereas there was a trend towards statistical significance that amplitude of occipital delta sources was stronger in CST3 B carriers than in non-carriers. This was true for both MCI and AD subjects. The present findings represent the first demonstration of relationships between the AD genetic risk factor CST3 B and global neurophysiological phenotype (i.e., cortical delta and alpha rhythmicity) in MCI and AD subjects, prompting future genotype-EEG phenotype studies for the early prediction of AD conversion in individual MCI subjects.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dip. Fisiologia Umana e Farmacologia, Univ. La Sapienza Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Babiloni C, Vecchio F, Cappa S, Pasqualetti P, Rossi S, Miniussi C, Rossini PM. Functional frontoparietal connectivity during encoding and retrieval processes follows HERA model. Brain Res Bull 2006; 68:203-12. [PMID: 16377425 DOI: 10.1016/j.brainresbull.2005.04.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/26/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Recent neuroimaging studies of long-term episodic memory have suggested that left prefrontal cortex predominates in encoding condition, whereas right prefrontal cortex predominates in retrieval condition (hemispheric encoding and retrieval asymmetry, HERA model). The present electroencephalographic (EEG) study investigated the functional coupling of fronto-parietal regions during long-term memorization of visuo-spatial contents (i.e. landscapes, interiors of apartments), to test the predictions of the HERA model. Global fronto-parietal coupling was estimated by spectral coherence, whereas the "direction" of the fronto-parietal information flow was estimated by directed transfer function (DTF). The EEG rhythms of interest were theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz), and gamma (30-45 Hz). Statistically significant coherence in line with the HERA model was obtained at the gamma band. Namely, the fronto-parietal gamma coherence prevailed in the left hemisphere during the encoding condition and in the right hemisphere during the retrieval condition. The DTF estimates of the gamma band showed a dominant parietal-to-frontal directional flow in the right hemisphere during the encoding condition and in the left hemisphere during the retrieval condition (i.e. hemisphere-condition combination not involved by the HERA model). In contrast, a balanced bidirectional flow of the fronto-parietal coupling was observed in the left hemisphere during the encoding condition and in the right hemisphere during the retrieval condition (i.e. hemisphere-condition combination involved by the HERA model). In conclusion, the present encoding-retrieval conditions induced maximal fronto-parietal gamma coupling with bidirectional information flow in the hemisphere-condition combination predicted by the HERA model.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Sezione di EEG ad Alta Risoluzione, Università degli Studi di Roma, La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Abstract: Objective: The present study investigates intracerebrally the concurrent occurrence of event-related potentials (ERPs) and event-related desynchronization/synchronization phenomena (ERD/ERS) in subjects performing a visual oddball task. Methods: Evoked (P3) and induced ERD/ERS changes were studied in six subjects with drug-resistant epilepsy. Depth EEG activity from the mesiotemporal limbic structures (amygdala, hippocampus, and parahippocampal gyrus) was analyzed. We used an averaging of raw data to obtain ERPs, and an averaging of the amplitude/power envelope (complex demodulation) in five frequency bands: theta, α 1, α 2, beta, and gamma to obtain ERD/ERS. The P3 component of ERP and ERD/ERS in response to target and nontarget stimuli were evaluated. Results: Even though both P3 and ERD/ERS phenomena were observed in all of the investigated mesiotemporal regions, the most pronounced findings were revealed in the hippocampus. A P3 component of ERP was repeatedly observed in the hippocampus after target stimuli. Significant changes in the oscillatory hippocampal activity were found: ERD in the α 1 and α 2 frequency bands. Evident, near-significant changes were observed throughout the hippocampus in the theta band. No apparent ERD/ERS changes in the beta or in the gamma frequency band were seen in our intracerebral data. The distribution of the P3 and ERD/ERS maxima differed slightly in adjacent contacts, but occurred at the same time. Conclusions: The cognitive processing of visual information is simultaneously accompanied by several electrophysiological phenomena. In addition to ERPs, apparent changes in oscillatory activity were detected in the intracerebral recordings from mesiotemporal limbic structures. Timing of both neuronal processes seems to be simultaneous, but differing spatial distribution could reflect the involvement of different networks.
Collapse
Affiliation(s)
- Daniela Sochurková
- First Department of Neurology, Saint Anne's University Hospital, Brno, Czech Republic
| | - Milan Brázdil
- First Department of Neurology, Saint Anne's University Hospital, Brno, Czech Republic
| | - Pavel Jurák
- Institute of Scientific Instruments, Academy of Sciences, Brno, Czech Republic
| | - Ivan Rektor
- First Department of Neurology, Saint Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
46
|
Babiloni C, Binetti G, Cassetta E, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Frisoni G, Hirata K, Lanuzza B, Miniussi C, Moretti DV, Nobili F, Rodriguez G, Romani GL, Salinari S, Rossini PM. Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study. Clin Neurophysiol 2005; 117:252-68. [PMID: 16377238 DOI: 10.1016/j.clinph.2005.09.019] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/29/2005] [Accepted: 09/23/2005] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The present study tested the hypothesis that cortical electroencephalographic (EEG) rhythms. change across normal elderly (Nold), mild cognitive impairment (MCI), and Alzheimer's disease (AD) subjects as a function of the global cognitive level. METHODS Resting eyes-closed EEG data were recorded in 155 MCI, 193 mild AD, and 126 age-matched Nold subjects. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by LORETA. RESULTS Occipital delta and alpha 1 sources in parietal, occipital, temporal, and 'limbic' areas had an intermediate magnitude in MCI subjects compared to mild AD and Nold subjects. These five EEG sources presented both linear and nonlinear (linear, exponential, logarithmic, and power) correlations with the global cognitive level (as revealed by mini mental state examination score) across all subjects. CONCLUSIONS Cortical EEG rhythms change in pathological aging as a function of the global cognitive level. SIGNIFICANCE The present functional data on large populations support the 'transitional hypothesis' of a shadow zone across normality, pre-clinical stage of dementia (MCI), and AD.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dip. Fisiologia Umana e Farmacologia, Univ. La Sapienza Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Babiloni C, Benussi L, Binetti G, Cassetta E, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Frisoni G, Ghidoni R, Miniussi C, Rodriguez G, Romani GL, Squitti R, Ventriglia MC, Rossini PM. Apolipoprotein E and alpha brain rhythms in mild cognitive impairment: A multicentric Electroencephalogram study. Ann Neurol 2005; 59:323-34. [PMID: 16358334 DOI: 10.1002/ana.20724] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Relationships between the apolipoprotein E epsilon4 allele and electroencephalographic (EEG) rhythmicity have been demonstrated in Alzheimer's disease (AD) patients but not in the preclinical stage prodromic to it, namely, mild cognitive impairment (MCI). The present multicentric EEG study tested the hypothesis that presence of epsilon4 affects sources of resting EEG rhythms in both MCI and AD subjects. METHODS We enrolled 89 MCI subjects (34.8% with epsilon4) and 103 AD patients (50.4% with epsilon4). Resting eyes-closed EEG data were recorded for all subjects. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography. RESULTS Results showed that amplitude of alpha 1 and 2 sources in occipital, temporal, and limbic areas was lower in subjects carrying the epsilon4 allele than in those not carrying the epsilon4 allele (p < 0.01). This was true for both MCI and AD. For the first time to our knowledge, a relationship was shown between ApoE genotype and global neurophysiological phenotype (ie, cortical alpha rhythmicity) in a preclinical AD condition, MCI, in addition to clinically manifest AD. INTERPRETATION Such a demonstration motivates future genotype-EEG phenotype studies for the early prediction of AD conversion in individual MCI subjects.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Universitá La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Babiloni C, Babiloni F, Carducci F, Cincotti F, Del Percio C, Della Penna S, Franciotti R, Pignotti S, Pizzella V, Rossini PM, Sabatini E, Torquati K, Romani GL. Human alpha rhythms during visual delayed choice reaction time tasks: a magnetoencephalography study. Hum Brain Mapp 2005; 24:184-92. [PMID: 15495216 PMCID: PMC6871688 DOI: 10.1002/hbm.20079] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Magnetoencephalography (MEG) includes fast and comfortable recording procedures very suitable for the neurophysiological study of cognitive functions in aged people. In this exploratory MEG study in normal young adults, we tested whether very simple short-term memory (STM) demands induce visible changes in amplitude and latency of surface alpha rhythms. Two delayed response tasks were used. In the STM condition, a simple cue stimulus (one bit) was memorized along a brief delay period (3.5-5.5 s). In the control (no short-term memory; NSTM) condition, the cue stimulus remained available along the delay period. To make extremely simple the tasks, the explicit demand was visuospatial but the retention could be also based on phonological and somatomotor coding. Compared to the control condition, the amplitude of the alpha 1 (6-8 Hz) ERD decreased in the left hemisphere, whereas the amplitude of the alpha 2 (8-10 Hz) and alpha 3 (10-12 Hz) event-related desynchronization (ERD) increased in right and left parietal areas, respectively. Furthermore, the latency of the alpha ERD peak was slightly but significantly (P < 0.05) later in STM compared to control condition. In conclusion, whole-head MEG technology and very simple STM demands revealed significant changes of human neuromagnetic alpha rhythms in normal young adults.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Università La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Summerfield C, Mangels JA. Coherent theta-band EEG activity predicts item-context binding during encoding. Neuroimage 2005; 24:692-703. [PMID: 15652304 DOI: 10.1016/j.neuroimage.2004.09.012] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 06/09/2004] [Accepted: 09/09/2004] [Indexed: 11/18/2022] Open
Abstract
Episodic memories consist of semantic information coupled with a rich array of contextual detail. Here, we investigate the neural processes by which information about the sensory context of a learning event is "bound" to the semantic representation of the to-be-encoded item. We present evidence that item-context binding during encoding is mediated by frontoposterior electroencephalographic (EEG) phase locking within and between hemispheres in the theta (4-8 Hz) band. During a task in which subjects encoded words in different font colors, later memory for the word was associated with sustained frontal theta activity and frontoposterior theta-band coherence, primarily within the left hemisphere. When the word-color association was later successfully retrieved, however, neurons synchronized their theta-band responses bilaterally in a more sustained fashion, particularly during the latter part of the stimulus epoch (>800 ms). Our results confirm the importance of functional coupling between frontal and posterior regions for successful encoding. One interpretation of these data is hemispheric contributions to item and context encoding may be asymmetric, with left hemisphere coherence facilitating semantic processing of an item and right hemisphere coherence facilitating processing of sensory context. Theta-band coherence may be an important mechanism by which brain networks exchange information during learning.
Collapse
|
50
|
Summerfield C, Mangels JA. Functional coupling between frontal and parietal lobes during recognition memory. Neuroreport 2005; 16:117-22. [PMID: 15671858 DOI: 10.1097/00001756-200502080-00008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuroimaging studies have suggested that the frontal and parietal lobes may be important for the process by which we remember information. However, little is known about how these regions exchange information during memory retrieval. We measured EEG synchronisation in the gamma-band (25-55 Hz), a putative measure of functional coupling between brain regions, while human subjects performed a recognition memory task. Fronto-parietal synchrony was increased for true old memories relative to false memories and new items. Our results suggest that synchronization of neuronal responses in the gamma-band may be an important mechanism by which frontal and parietal regions exchange information during the recognition of past events.
Collapse
Affiliation(s)
- Christopher Summerfield
- Psychology Department, Schermerhorn Hall, Room 406, Columbia University, 1190 Amsterdam Ave, New York, NY 10027, USA.
| | | |
Collapse
|