1
|
Taube W, Lauber B. Re: JP-TR-2024-286891 'The ageing brain: Cortical overactivation - How does it evolve?'. J Physiol 2025. [PMID: 40349328 DOI: 10.1113/jp286891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/15/2025] [Indexed: 05/14/2025] Open
Abstract
There is overwhelming evidence for an age-related change in brain activity when performing motor and motor-cognitive tasks (i.e. dual-tasking). In general this research shows increased cortical activity, i.e. cortical overactivation, and, less evident, subcortical deactivation in the healthy brains of older compared to young adults. Furthermore brain network activity becomes less distinct and less segregated. Interestingly from a behavioural point of view some of these adaptations seem helpful, leading to better motor performances than in age-matched seniors, but others are related to inferior performance. Current theories try to explain these findings, therefore, either in favour of compensatory strategies or in terms of non-selective, inefficient (dedifferentiated) brain activation. However the limitation of current theories is that they are 'static', considering only one point in time instead of age-related progression of brain activity over time. In contrast this review article proposes a developmental process, from compensation to negative overcompensation to chronic maladaptive overcompensation, which leads to dedifferentiation and desegregation. In addition this article highlights that elderly subjects utilize motor control strategies, such as increased cortical activity, down-regulation of inhibitory processes and less-segregated and lateralized brain activation patterns, that are also commonly found in healthy young adults when task challenges increase. Thus many findings about differences in brain activation may result from the fact that although 'absolute task difficulty' remains the same, 'relative task difficulty' increases for the older subjects, forcing them to apply the above-mentioned neural activation strategies. This initially compensatory strategy can, however, turn into non-efficient brain activation over time.
Collapse
Affiliation(s)
- Wolfgang Taube
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Benedikt Lauber
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Li Z, He L, Peng L, Zhu X, Li M, Hu D. Negative hemodynamic response in the visual cortex: Evidence supporting neuronal origin via hemodynamic observation and two-photon imaging. Brain Res Bull 2025; 220:111149. [PMID: 39615859 DOI: 10.1016/j.brainresbull.2024.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
The positive hemodynamic response (PHR) during stimulation often co-occurs with a strong, sustained negative hemodynamic response (NHR). However, the characteristics and neurophysiological mechanisms of the NHR, especially in regions distal to the PHR, remain incompletely understood. Using intrinsic optical imaging (OI) and two-photon imaging, we observed that forelimb electrical stimulation evoked strong PHR signals in the forelimb region of the primary somatosensory cortex (S1FL). Meanwhile, NHR signals primarily appeared in the primary visual cortex (V1), with a delayed onset and lower amplitude relative to the PHR signals. Additionally, stimulation led to a reduction in cerebral blood flow (CBF) in the NHR region. Notably, there was an overall suppression of the calcium response in the NHR region, although a small proportion (14 %) of neurons exhibited concurrent activation. Axon tracing revealed cortico-cortical projections from S1FL to V1. These findings suggest that neuronal deactivation significantly contributes to the origin of the NHR, offering additional insights into the specific inhibitory mechanisms underlying the NHR.
Collapse
Affiliation(s)
- Zhen Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lihua He
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Xuan Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| |
Collapse
|
3
|
Ding H, Nasseroleslami B, Mirzac D, Isaias IU, Volkmann J, Deuschl G, Groppa S, Muthuraman M. Re-emergent Tremor in Parkinson's Disease: Evidence of Pathologic β and Prokinetic γ Activity. Mov Disord 2024; 39:778-787. [PMID: 38532269 DOI: 10.1002/mds.29771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Re-emergent tremor is characterized as a continuation of resting tremor and is often highly therapy refractory. This study examines variations in brain activity and oscillatory responses between resting and re-emergent tremors in Parkinson's disease. METHODS Forty patients with Parkinson's disease (25 males, mean age, 66.78 ± 5.03 years) and 40 age- and sex-matched healthy controls were included in the study. Electroencephalogram and electromyography signals were simultaneously recorded during resting and re-emergent tremors in levodopa on and off states for patients and mimicked by healthy controls. Brain activity was localized using the beamforming technique, and information flow between sources was estimated using effective connectivity. Cross-frequency coupling was used to assess neuronal oscillations between tremor frequency and canonical frequency oscillations. RESULTS During levodopa on, differences in brain activity were observed in the premotor cortex and cerebellum in both the patient and control groups. However, Parkinson's disease patients also exhibited additional activity in the primary sensorimotor cortex. On withdrawal of levodopa, different source patterns were observed in the supplementary motor area and basal ganglia area. Additionally, levodopa was found to suppress the strength of connectivity (P < 0.001) between the identified sources and influence the tremor frequency-related coupling, leading to a decrease in β (P < 0.001) and an increase in γ frequency coupling (P < 0.001). CONCLUSIONS Distinct variations in cortical-subcortical brain activity are evident in tremor phenotypes. The primary sensorimotor cortex plays a crucial role in the generation of re-emergent tremor. Moreover, oscillatory neuronal responses in pathological β and prokinetic γ activity are specific to tremor phenotypes. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hao Ding
- Department of Neurology, University Hospital Würzburg, Würzburg, Bavaria, Germany
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin, Leinster, Ireland
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin, Leinster, Ireland
| | - Daniela Mirzac
- Department of Neurology, University Medical Center of the Johannes Gutenberg-UniversityMainz, Mainz, Rheinland-Pfalz, Germany
| | - Ioannis Ugo Isaias
- Department of Neurology, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Günther Deuschl
- Department of Neurology, UKSH, Christian-Albrechts-University Kiel, Kiel, Schleswig-Holstein, Germany
| | - Sergiu Groppa
- Department of Neurology, University Medical Center of the Johannes Gutenberg-UniversityMainz, Mainz, Rheinland-Pfalz, Germany
| | | |
Collapse
|
4
|
Alemi R, Wolfe J, Neumann S, Manning J, Hanna L, Towler W, Wilson C, Bien A, Miller S, Schafer E, Gemignani J, Koirala N, Gracco VL, Deroche M. Motor Processing in Children With Cochlear Implants as Assessed by Functional Near-Infrared Spectroscopy. Percept Mot Skills 2024; 131:74-105. [PMID: 37977135 PMCID: PMC10863375 DOI: 10.1177/00315125231213167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Auditory-motor and visual-motor networks are often coupled in daily activities, such as when listening to music and dancing; but these networks are known to be highly malleable as a function of sensory input. Thus, congenital deafness may modify neural activities within the connections between the motor, auditory, and visual cortices. Here, we investigated whether the cortical responses of children with cochlear implants (CI) to a simple and repetitive motor task would differ from that of children with typical hearing (TH) and we sought to understand whether this response related to their language development. Participants were 75 school-aged children, including 50 with CI (with varying language abilities) and 25 controls with TH. We used functional near-infrared spectroscopy (fNIRS) to record cortical responses over the whole brain, as children squeezed the back triggers of a joystick that vibrated or not with the squeeze. Motor cortex activity was reflected by an increase in oxygenated hemoglobin concentration (HbO) and a decrease in deoxygenated hemoglobin concentration (HbR) in all children, irrespective of their hearing status. Unexpectedly, the visual cortex (supposedly an irrelevant region) was deactivated in this task, particularly for children with CI who had good language skills when compared to those with CI who had language delays. Presence or absence of vibrotactile feedback made no difference in cortical activation. These findings support the potential of fNIRS to examine cognitive functions related to language in children with CI.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Jace Wolfe
- Oberkotter Foundation, Oklahoma City, OK, USA
| | - Sara Neumann
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Jacy Manning
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Lindsay Hanna
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Will Towler
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Caleb Wilson
- Department of Otolaryngology-Head & Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alexander Bien
- Department of Otolaryngology-Head & Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Miller
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX, USA
| | - Erin Schafer
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX, USA
| | - Jessica Gemignani
- Department of Developmental and Social Psychology, University of Padua, Padova, Italy
| | | | | | - Mickael Deroche
- Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
5
|
Reddy NA, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00057. [PMID: 39328846 PMCID: PMC11426116 DOI: 10.1162/imag_a_00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Motor-task functional magnetic resonance imaging (fMRI) is crucial in the study of several clinical conditions, including stroke and Parkinson's disease. However, motor-task fMRI is complicated by task-correlated head motion, which can be magnified in clinical populations and confounds motor activation results. One method that may mitigate this issue is multi-echo independent component analysis (ME-ICA), which has been shown to separate the effects of head motion from the desired blood oxygenation level dependent (BOLD) signal but has not been tested in motor-task datasets with high amounts of motion. In this study, we collected an fMRI dataset from a healthy population who performed a hand grasp task with and without task-correlated amplified head motion to simulate a motor-impaired population. We analyzed these data using three models: single-echo (SE), multi-echo optimally combined (ME-OC), and ME-ICA. We compared the models' performance in mitigating the effects of head motion on the subject level and group level. On the subject level, ME-ICA better dissociated the effects of head motion from the BOLD signal and reduced noise. Both ME models led to increased t-statistics in brain motor regions. In scans with high levels of motion, ME-ICA additionally mitigated artifacts and increased stability of beta coefficient estimates, compared to SE. On the group level, all three models produced activation clusters in expected motor areas in scans with both low and high motion, indicating that group-level averaging may also sufficiently resolve motion artifacts that vary by subject. These findings demonstrate that ME-ICA is a useful tool for subject-level analysis of motor-task data with high levels of task-correlated head motion. The improvements afforded by ME-ICA are critical to improve reliability of subject-level activation maps for clinical populations in which group-level analysis may not be feasible or appropriate, for example, in a chronic stroke cohort with varying stroke location and degree of tissue damage.
Collapse
Affiliation(s)
- Neha A. Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
- Neuro-X Institute, École polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics (DRIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
6
|
Patelaki E, Foxe JJ, McFerren AL, Freedman EG. Maintaining Task Performance Levels Under Cognitive Load While Walking Requires Widespread Reallocation of Neural Resources. Neuroscience 2023; 532:113-132. [PMID: 37774910 PMCID: PMC10842245 DOI: 10.1016/j.neuroscience.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
This study elucidates the neural mechanisms underlying increasing cognitive load while walking by employing 2 versions of a response inhibition task, the '1-back' version and the more cognitively demanding '2-back' version. By using the Mobile Brain/Body Imaging (MoBI) modality, electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and task-related behavioral responses were collected while young adults (n = 61) performed either the 1-back or 2-back response inhibition task. Interestingly, increasing inhibitory difficulty from 1-back to 2-back during walking was not associated with any detectable costs in response accuracy, response speed, or gait consistency. However, the more difficult cognitive task was associated with distinct EEG component changes during both successful inhibitions (correct rejections) and successful executions (hits) of the motor response. During correct rejections, ERP changes were found over frontal regions, during latencies related to sensory gain control, conflict monitoring and working memory storage and processing. During hits, ERP changes were found over left-parietal regions during latencies related to orienting attention and subsequent selection and execution of the motor plan. The pattern of attenuation in walking-related EEG amplitude changes, during 2-back task performance, is thought to reflect more effortful recalibration of neural processes, a mechanism which might be a key driver of performance maintenance in the face of increased cognitive demands while walking. Overall, the present findings shed light on the extent of the neurocognitive capacity of young adults and may lead to a better understanding of how factors such as aging or neurological disorders could impinge on this capacity.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Amber L McFerren
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
7
|
Reddy NA, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549746. [PMID: 37503125 PMCID: PMC10370165 DOI: 10.1101/2023.07.19.549746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Motor-task functional magnetic resonance imaging (fMRI) is crucial in the study of several clinical conditions, including stroke and Parkinson's disease. However, motor-task fMRI is complicated by task-correlated head motion, which can be magnified in clinical populations and confounds motor activation results. One method that may mitigate this issue is multi-echo independent component analysis (ME-ICA), which has been shown to separate the effects of head motion from the desired BOLD signal but has not been tested in motor-task datasets with high amounts of motion. In this study, we collected an fMRI dataset from a healthy population who performed a hand grasp task with and without task-correlated amplified head motion to simulate a motor-impaired population. We analyzed these data using three models: single-echo (SE), multi-echo optimally combined (ME-OC), and ME-ICA. We compared the models' performance in mitigating the effects of head motion on the subject level and group level. On the subject level, ME-ICA better dissociated the effects of head motion from the BOLD signal and reduced noise. Both ME models led to increased t-statistics in brain motor regions. In scans with high levels of motion, ME-ICA additionally mitigated artifacts and increased stability of beta coefficient estimates, compared to SE. On the group level, all three models produced activation clusters in expected motor areas in scans with both low and high motion, indicating that group-level averaging may also sufficiently resolve motion artifacts that vary by subject. These findings demonstrate that ME-ICA is a useful tool for subject-level analysis of motor-task data with high levels of task-correlated head motion. The improvements afforded by ME-ICA are critical to improve reliability of subject-level activation maps for clinical populations in which group-level analysis may not be feasible or appropriate, for example in a chronic stroke cohort with varying stroke location and degree of tissue damage.
Collapse
Affiliation(s)
- Neha A. Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
- Neuro-X Institute, École polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics (DRIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
8
|
Morita T, Takemura H, Naito E. Functional and Structural Properties of Interhemispheric Interaction between Bilateral Precentral Hand Motor Regions in a Top Wheelchair Racing Paralympian. Brain Sci 2023; 13:brainsci13050715. [PMID: 37239187 DOI: 10.3390/brainsci13050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Long-term motor training can cause functional and structural changes in the human brain. Assessing how the training of specific movements affects specific parts of the neural circuitry is essential to understand better the underlying mechanisms of motor training-induced plasticity in the human brain. We report a single-case neuroimaging study that investigated functional and structural properties in a professional athlete of wheelchair racing. As wheelchair racing requires bilateral synchronization of upper limb movements, we hypothesized that functional and structural properties of interhemispheric interactions in the central motor system might differ between the professional athlete and controls. Functional and diffusion magnetic resonance imaging (fMRI and dMRI) data were obtained from a top Paralympian (P1) in wheelchair racing. With 23 years of wheelchair racing training starting at age eight, she holds an exceptional competitive record. Furthermore, fMRI and dMRI data were collected from three other paraplegic participants (P2-P4) with long-term wheelchair sports training other than wheelchair racing and 37 able-bodied control volunteers. Based on the fMRI data analyses, P1 showed activation in the bilateral precentral hand sections and greater functional connectivity between these sections during a right-hand unimanual task. In contrast, other paraplegic participants and controls showed activation in the contralateral hemisphere and deactivation in the ipsilateral hemisphere. Moreover, dMRI data analysis revealed that P1 exhibited significantly lower mean diffusivity along the transcallosal pathway connecting the bilateral precentral motor regions than control participants, which was not observed in the other paraplegic participants. These results suggest that long-term training with bilaterally synchronized upper-limb movements may promote bilateral recruitment of the precentral hand sections. Such recruitment may affect the structural circuitry involved in the interhemispheric interaction between the bilateral precentral regions. This study provides valuable evidence of the extreme adaptability of the human brain.
Collapse
Affiliation(s)
- Tomoyo Morita
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Aichi, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama 240-0193, Kanagawa, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
9
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
10
|
Takasawa E, Abe M, Chikuda H, Hanakawa T. A computational model based on corticospinal functional MRI revealed asymmetrically organized motor corticospinal networks in humans. Commun Biol 2022; 5:664. [PMID: 35790815 PMCID: PMC9256686 DOI: 10.1038/s42003-022-03615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Evolution of the direct, monosynaptic connection from the primary motor cortex to the spinal cord parallels acquisition of hand dexterity and lateralization of hand preference. In non-human mammals, the indirect, multi-synaptic connections between the bilateral primary motor cortices and the spinal cord also participates in controlling dexterous hand movement. However, it remains unknown how the direct and indirect corticospinal pathways work in concert to control unilateral hand movement with lateralized preference in humans. Here we demonstrated the asymmetric functional organization of the two corticospinal networks, by combining network modelling and simultaneous functional magnetic resonance imaging techniques of the brain and the spinal cord. Moreover, we also found that the degree of the involvement of the two corticospinal networks paralleled lateralization of hand preference. The present results pointed to the functionally lateralized motor nervous system that underlies the behavioral asymmetry of handedness in humans. MRI and network modelling reveal correlation between the degree of involvement of the two corticospinal networks and the lateralization of handedness in humans.
Collapse
Affiliation(s)
- Eiji Takasawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Mitsunari Abe
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan. .,Department of Integrated Neuroanatomy & Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
11
|
Mayhew SD, Coleman SC, Mullinger KJ, Can C. Across the adult lifespan the ipsilateral sensorimotor cortex negative BOLD response exhibits decreases in magnitude and spatial extent suggesting declining inhibitory control. Neuroimage 2022; 253:119081. [PMID: 35278710 PMCID: PMC9130740 DOI: 10.1016/j.neuroimage.2022.119081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Ipsilateral sensorimotor (iSM1) cortex negative BOLD responses (NBR) are observed to unilateral tasks and are thought to reflect a functionally relevant component of sensorimotor inhibition. Evidence suggests that sensorimotor inhibitory mechanisms degrade with age, along with aspects of motor ability and dexterity. However, understanding of age-related changes to NBR is restricted by limited comparisons between young vs old adults groups with relatively small samples sizes. Here we analysed a BOLD fMRI dataset (obtained from the CamCAN repository) of 581 healthy subjects, gender-balanced, sampled from the whole adult lifespan performing a motor response task to an audio-visual stimulus. We aimed to investigate how sensorimotor and default-mode NBR characteristics of magnitude, spatial extent and response shape alter at every decade of the aging process. A linear decrease in iSM1 NBR magnitude was observed across the whole lifespan whereas the contralateral sensorimotor (cSM1) PBR magnitude was unchanged. An age-related decrease in the spatial extent of NBR and an increase in the ipsilateral positive BOLD response (PBR) was observed. This occurred alongside an increasing negative correlation between subject's iSM1 NBR and cSM1 PBR magnitude, reflecting a change in the balance between cortical excitation and inhibition. Conventional GLM analysis, using a canonical haemodynamic response (HR) function, showed disappearance of iSM1 NBR in subjects over 50 years of age. However, a deconvolution analysis showed that the shape of the iSM1 HR altered throughout the lifespan, with delayed time-to-peak and decreased magnitude. The most significant decreases in iSM1 HR magnitude occurred in older age (>60 years) but the first changes in shape and timing occurred as early as 30 years, suggesting possibility of separate mechanisms underlying these alterations. Reanalysis using data-driven HRs for each decade detected significant sensorimotor NBR into late older age, showing the importance of taking changes in HR morphology into account in fMRI aging studies. These results may reflect fMRI measures of the age-related decreases in transcollosal inhibition exerted upon ipsilateral sensorimotor cortex and alterations to the excitatory-inhibitory balance in the sensorimotor network.
Collapse
Affiliation(s)
- Stephen D Mayhew
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK.
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Karen J Mullinger
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK; Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Cam Can
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Chettouf S, Triebkorn P, Daffertshofer A, Ritter P. Unimanual sensorimotor learning-A simultaneous EEG-fMRI aging study. Hum Brain Mapp 2022; 43:2348-2364. [PMID: 35133058 PMCID: PMC8996364 DOI: 10.1002/hbm.25791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 11/06/2022] Open
Abstract
Sensorimotor coordination requires orchestrated network activity in the brain, mediated by inter‐ and intra‐hemispheric interactions that may be affected by aging‐related changes. We adopted a theoretical model, according to which intra‐hemispheric inhibition from premotor to primary motor cortex is mandatory to compensate for inter‐hemispheric excitation through the corpus callosum. To test this as a function of age we acquired electroencephalography (EEG) simultaneously with functional magnetic resonance imaging (fMRI) in two groups of healthy adults (younger N = 13: 20–25 year and older N = 14: 59–70 year) while learning a unimanual motor task. On average, quality of performance of older participants stayed significantly below that of the younger ones. Accompanying decreases in motor‐event‐related EEG β‐activity were lateralized toward contralateral motor regions, albeit more so in younger participants. In this younger group, the mean β‐power during motor task execution was significantly higher in bilateral premotor areas compared to the older adults. In both groups, fMRI blood oxygen level dependent (BOLD) signals were positively correlated with source‐reconstructed β‐amplitudes: positive in primary motor and negative in premotor cortex. This suggests that β‐amplitude modulation is associated with primary motor cortex “activation” (positive BOLD response) and premotor “deactivation” (negative BOLD response). Although the latter results did not discriminate between age groups, they underscore that enhanced modulation in primary motor cortex may be explained by a β‐associated excitatory crosstalk between hemispheres.
Collapse
Affiliation(s)
- Sabrina Chettouf
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam
| | - Paul Triebkorn
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Andreas Daffertshofer
- Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam
| | - Petra Ritter
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neuroscience Berlin, Berlin, Germany.,Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
13
|
Vinehout K, Tynes K, Sotelo MR, Hyngstrom AS, McGuire JR, Schmit BD. Changes in Cortical Activity in Stroke Survivors Undergoing Botulinum Neurotoxin Therapy for Treatment of Focal Spasticity. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:735819. [PMID: 36188774 PMCID: PMC9397708 DOI: 10.3389/fresc.2021.735819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
Background: Botulinum NeuroToxin-A (BoNT-A) relieves muscle spasticity and increases range of motion necessary for stroke rehabilitation. Determining the effects of BoNT-A therapy on brain neuroplasticity could help physicians customize its use and predict its outcome. Objective: The purpose of this study was to investigate the effects of Botulinum Toxin-A therapy for treatment of focal spasticity on brain activation and functional connectivity. Design: We used functional Magnetic Resonance Imaging (fMRI) to track changes in blood oxygen-level dependent (BOLD) activation and functional connectivity associated with BoNT-A therapy in nine chronic stroke participants, and eight age-matched controls. Scans were acquired before BoNT-A injections (W0) and 6 weeks after the injections (W6). The task fMRI scan consisted of a block design of alternating mass finger flexion and extension. The voxel-level changes in BOLD activation, and pairwise changes in functional connectivity were analyzed for BoNT-A treatment (stroke W0 vs. W6). Results: BoNT-A injection therapy resulted in significant increases in brain activation in the contralesional premotor cortex, cingulate gyrus, thalamus, superior cerebellum, and in the ipsilesional sensory integration area. Lastly, cerebellar connectivity correlated with the Fugl-Meyer assessment of motor impairment before injection, while premotor connectivity correlated with the Fugl-Meyer score after injection. Conclusion: BoNT-A therapy for treatment of focal spasticity resulted in increased brain activation in areas associated with motor control, and cerebellar connectivity correlated with motor impairment before injection. These results suggest that neuroplastic effects might take place in response to improvements in focal spasticity.
Collapse
Affiliation(s)
- Kaleb Vinehout
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kelsey Tynes
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Miguel R. Sotelo
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Allison S. Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - John R. McGuire
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Brian D. Schmit
| |
Collapse
|
14
|
Naito E, Morita T, Hirose S, Kimura N, Okamoto H, Kamimukai C, Asada M. Bimanual digit training improves right-hand dexterity in older adults by reactivating declined ipsilateral motor-cortical inhibition. Sci Rep 2021; 11:22696. [PMID: 34811433 PMCID: PMC8608823 DOI: 10.1038/s41598-021-02173-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Improving deteriorated sensorimotor functions in older individuals is a social necessity in a super-aging society. Previous studies suggested that the declined interhemispheric sensorimotor inhibition observed in older adults is associated with their deteriorated hand/finger dexterity. Here, we examined whether bimanual digit exercises, which can train the interhemispheric inhibitory system, improve deteriorated hand/finger dexterity in older adults. Forty-eight healthy, right-handed, older adults (65–78 years old) were divided into two groups, i.e., the bimanual (BM) digit training and right-hand (RH) training groups, and intensive daily training was performed for 2 months. Before and after the training, we evaluated individual right hand/finger dexterity using a peg task, and the individual state of interhemispheric sensorimotor inhibition by analyzing ipsilateral sensorimotor deactivation via functional magnetic resonance imaging when participants experienced a kinesthetic illusory movement of the right-hand without performing any motor tasks. Before training, the degree of reduction/loss of ipsilateral motor-cortical deactivation was associated with dexterity deterioration. After training, the dexterity improved only in the BM group, and the dexterity improvement was correlated with reduction in ipsilateral motor-cortical activity. The capability of the brain to inhibit ipsilateral motor-cortical activity during a simple right-hand sensory-motor task is tightly related to right-hand dexterity in older adults.
Collapse
Affiliation(s)
- Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Hirose
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Otemon Gakuin University, Faculty of Psychology, 2-1-15, Nishiai, Ibaraki, Osaka, Japan
| | - Nodoka Kimura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideya Okamoto
- Element Technology Research & Development Section, Global Research & Development Department, , Mizuno Corporation, 1-12-35 Nanko-kita, Suminoe-ku, Osaka, Osaka, 559-8510, Japan
| | - Chikako Kamimukai
- Element Technology Research & Development Section, Global Research & Development Department, , Mizuno Corporation, 1-12-35 Nanko-kita, Suminoe-ku, Osaka, Osaka, 559-8510, Japan
| | - Minoru Asada
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,International Professional University of Technology in Osaka, 3-3-1 Umeda, Kita-ku, Osaka, 530-0001, Japan
| |
Collapse
|
15
|
Handedness Does Not Impact Inhibitory Control, but Movement Execution and Reactive Inhibition Are More under a Left-Hemisphere Control. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The relationship between handedness, laterality, and inhibitory control is a valuable benchmark for testing the hypothesis of the right-hemispheric specialization of inhibition. According to this theory, and given that to stop a limb movement, it is sufficient to alter the activity of the contralateral hemisphere, then suppressing a left arm movement should be faster than suppressing a right-arm movement. This is because, in the latter case, inhibitory commands produced in the right hemisphere should be sent to the other hemisphere. Further, as lateralization of cognitive functions in left-handers is less pronounced than in right-handers, in the former, the inhibitory control should rely on both hemispheres. We tested these predictions on a medium-large sample of left- and right-handers (n = 52). Each participant completed two sessions of the reaching versions of the stop-signal task, one using the right arm and one using the left arm. We found that reactive and proactive inhibition do not differ according to handedness. However, we found a significant advantage of the right versus the left arm in canceling movements outright. By contrast, there were no differences in proactive inhibition. As we also found that participants performed movements faster with the right than with the left arm, we interpret our results in light of the dominant role of the left hemisphere in some aspects of motor control.
Collapse
|
16
|
Existence of Interhemispheric Inhibition between Foot Sections of Human Primary Motor Cortices: Evidence from Negative Blood Oxygenation-Level Dependent Signal. Brain Sci 2021; 11:brainsci11081099. [PMID: 34439718 PMCID: PMC8393214 DOI: 10.3390/brainsci11081099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Interhemispheric inhibition (IHI) between the left and right primary motor cortices (M1) plays an important role when people perform an isolated unilateral limb movement. Moreover, negative blood oxygenation-level dependent signal (deactivation) obtained from the M1 ipsilateral to the limb could be a surrogate IHI marker. Studies have reported deactivation in the hand section of the ipsilateral M1 during simple unilateral hand movement. However, deactivation in the foot section during unilateral foot movement has not been reported. Therefore, IHI between the foot sections of the bilateral M1s has been considered very weak or absent. Thirty-seven healthy adults performed active control of the right foot and also passively received vibration to the tendon of the tibialis anterior muscle of the right foot, which activates the foot section of the contralateral M1, with brain activity being examined through functional magnetic resonance imaging. The vibration and active tasks significantly and non-significantly, respectively, deactivated the foot section of the ipsilateral M1, with a corresponding 86% and 60% of the participants showing decreased activity. Thus, there could be IHI between the foot sections of the bilateral M1s. Further, our findings demonstrate between-task differences and similarities in cross-somatotopic deactivation.
Collapse
|
17
|
Naito E, Morita T, Asada M. Importance of the Primary Motor Cortex in Development of Human Hand/Finger Dexterity. Cereb Cortex Commun 2021; 1:tgaa085. [PMID: 34296141 PMCID: PMC8152843 DOI: 10.1093/texcom/tgaa085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022] Open
Abstract
Hand/finger dexterity is well-developed in humans, and the primary motor cortex (M1) is believed to play a particularly important role in it. Here, we show that efficient recruitment of the contralateral M1 and neuronal inhibition of the ipsilateral M1 identified by simple hand motor and proprioceptive tasks are related to hand/finger dexterity and its ontogenetic development. We recruited healthy, right-handed children (n = 21, aged 8–11 years) and adults (n = 23, aged 20–26 years) and measured their brain activity using functional magnetic resonance imaging during active and passive right-hand extension–flexion tasks. We calculated individual active control-related activity (active–passive) to evaluate efficient brain activity recruitment and individual task-related deactivation (neuronal inhibition) during both tasks. Outside the scanner, participants performed 2 right-hand dexterous motor tasks, and we calculated the hand/finger dexterity index (HDI) based on their individual performance. Participants with a higher HDI exhibited less active control-related activity in the contralateral M1 defined by the active and passive tasks, independent of age. Only children with a higher HDI exhibited greater ipsilateral M1 deactivation identified by these tasks. The results imply that hand/finger dexterity can be predicted by recruitment and inhibition styles of the M1 during simple hand sensory–motor tasks.
Collapse
Affiliation(s)
- Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Minoru Asada
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Kusano T, Kurashige H, Nambu I, Moriguchi Y, Hanakawa T, Wada Y, Osu R. Wrist and finger motor representations embedded in the cerebral and cerebellar resting-state activation. Brain Struct Funct 2021; 226:2307-2319. [PMID: 34236531 PMCID: PMC8354910 DOI: 10.1007/s00429-021-02330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/22/2021] [Indexed: 11/02/2022]
Abstract
Several functional magnetic resonance imaging (fMRI) studies have demonstrated that resting-state brain activity consists of multiple components, each corresponding to the spatial pattern of brain activity induced by performing a task. Especially in a movement task, such components have been shown to correspond to the brain activity pattern of the relevant anatomical region, meaning that the voxels of pattern that are cooperatively activated while using a body part (e.g., foot, hand, and tongue) also behave cooperatively in the resting state. However, it is unclear whether the components involved in resting-state brain activity correspond to those induced by the movement of discrete body parts. To address this issue, in the present study, we focused on wrist and finger movements in the hand, and a cross-decoding technique trained to discriminate between the multi-voxel patterns induced by wrist and finger movement was applied to the resting-state fMRI. We found that the multi-voxel pattern in resting-state brain activity corresponds to either wrist or finger movements in the motor-related areas of each hemisphere of the cerebrum and cerebellum. These results suggest that resting-state brain activity in the motor-related areas consists of the components corresponding to the elementary movements of individual body parts. Therefore, the resting-state brain activity possibly has a finer structure than considered previously.
Collapse
Affiliation(s)
- Toshiki Kusano
- Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| | - Hiroki Kurashige
- Research and Information Center, Tokai University, 2-3-23 Takanawa, Minato-ku, Tokyo, 108-8619, Japan.
| | - Isao Nambu
- Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| | - Yoshiya Moriguchi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasuhiro Wada
- Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Rieko Osu
- The Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai Seika, Soraku, Kyoto, 619-0288, Japan.,Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| |
Collapse
|
19
|
Tisseyre J, Amarantini D, Tallet J. Behavioural and cerebral asymmetries of mirror movements are specific to rhythmic task and related to higher attentional and executive control. Behav Brain Res 2021; 412:113429. [PMID: 34175358 DOI: 10.1016/j.bbr.2021.113429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
Mirror movements (MM) refer to the involuntary movements or contractions occurring in homologous muscles contralateral to the unilateral voluntary movements. This behavioural manifestation increases in elderly. In right-handed adults, some studies report asymmetry in MM production, with greater MM in the right dominant hand during voluntary movements of the left non-dominant hand than the opposite. However, other studies report contradictory results, suggesting that MM asymmetry could depend on the characteristics of the task. The present study investigates the behavioural asymmetry of MM and its associated cerebral correlates during a rhythmic task and a non-rhythmic task using low-force contractions (i.e., 25 % MVC). We determined the quantity and the intensity of MM using electromyography (EMG) and cerebral correlates through electroencephalography (EEG) in right-handed healthy young and middle-aged adults during unimanual rhythmic vs. non-rhythmic tasks. Overall, results revealed (1) behavioural asymmetry of MM specific to the rhythmic task and irrespective of age, (2) cerebral asymmetry of motor activations specific to the rhythmic task and irrespective of age and (3) greater attentional and executive activations in the rhythmic task compared to the non-rhythmic task. In line with our hypotheses, behavioural and cerebral motor asymmetries of MM seem to be specific to the rhythmic task. Results are discussed in terms of cognitive-motor interactions: greater attentional and executive control required in the rhythmic tasks could contribute to the increased occurrence of involuntary movements in both young and middle-aged adults.
Collapse
Affiliation(s)
- Joseph Tisseyre
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
20
|
Wang L, Tomson SN, Lu G, Yau JM. Cortical representations of phantom movements in lower limb amputees. Eur J Neurosci 2021; 53:3160-3174. [PMID: 33662143 DOI: 10.1111/ejn.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Understanding how sensorimotor cortex (SMC) organization relates to limb loss has major clinical implications, as cortical activity associated with phantom hand movements has been shown to predict phantom pain reports. Critically, earlier studies have largely focused on upper limb amputees; far less is known regarding SMC activity in lower limb amputees, despite the fact that this population comprises the majority of major limb loss cases. We aimed to characterize BOLD fMRI responses associated with phantom and sound limb movements to test the hypothesis that SMC organization is preserved in individuals with lower limb loss. Individuals with unilateral or bilateral lower limb loss underwent fMRI scans as they performed simple movements of their sound or phantom limbs. We observed that voluntary movements of the sound and phantom ankles were associated with BOLD signal changes in medial and superior portions of the precentral and postcentral gyri. In both hemispheres, contralateral limb movements were associated with greater signal changes compared to ipsilateral limb movements. Hand and mouth movements were associated with distinct activation patterns localized to more lateral SMC regions. We additionally tested whether activations associated with phantom movements related to self-report assessments indexing phantom pain experiences, nonpainful phantom sensations and phantom movement capabilities. We found that responses during phantom ankle movements did not correlate with any of the composite phantom limb indices in our sample. Our collective results reveal that SMC representations of the amputated limb persist and that traditional somatotopic organization is generally preserved in individuals suffering from lower limb loss.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Steffie N Tomson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Grace Lu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey M Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Morita T, Asada M, Naito E. Examination of the development and aging of brain deactivation using a unimanual motor task. Adv Robot 2021. [DOI: 10.1080/01691864.2021.1886168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tomoyo Morita
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
| | - Minoru Asada
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
22
|
MacDonald HJ, Laksanaphuk C, Day A, Byblow WD, Jenkinson N. The role of interhemispheric communication during complete and partial cancellation of bimanual responses. J Neurophysiol 2021; 125:875-886. [PMID: 33567982 DOI: 10.1152/jn.00688.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precise control of upper limb movements in response to external stimuli is vital to effectively interact with the environment. Accurate execution of bimanual movement is known to rely on finely orchestrated interhemispheric communication between the primary motor cortices (M1s). However, relatively little is known about the role of interhemispheric communication during sudden cancellation of prepared bimanual movement. The current study investigated the role of interhemispheric interactions during complete and partial cancellation of bimanual movement. In two experiments, healthy young human participants received transcranial magnetic stimulation to both M1s during a bimanual response inhibition task. The increased corticomotor excitability in anticipation of bimanual movement was accompanied by a release of inhibition from both M1s. After a stop cue, inhibition was reengaged onto both hemispheres to successfully cancel the complete bimanual response. However, when the stop cue signaled partial cancellation (stopping of one digit only), inhibition was reengaged with regard to the cancelled digit, but the responding digit representation was facilitated. This bifurcation in interhemispheric communication between M1s occurred 75 ms later in the more difficult condition when the nondominant, as opposed to dominant, hand was still responding. Our results demonstrate that interhemispheric communication is integral to response inhibition once a bimanual response has been prepared. Interestingly, M1-M1 interhemispheric circuitry does not appear to be responsible for the nonselective suppression of all movement components that has been observed during partial cancellation. Instead such interhemispheric communication enables uncoupling of bimanual response components and facilitates the selective initiation of just the required unimanual movement.NEW & NOTEWORTHY We provide the first evidence that interhemispheric communication plays an important role during sudden movement cancellation of two-handed responses. Simultaneously increased inhibition onto both hemispheres assists with two-handed movement cancellation. However, this network is not responsible for the widespread suppression of motor activity observed when only one of the two hands is cancelled. Instead, communication between hemispheres enables the separation of motor activity for the two hands and helps to execute the required one-handed response.
Collapse
Affiliation(s)
- Hayley J MacDonald
- School of Sport, Exercise and Rehabilitation Sciences, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Chotica Laksanaphuk
- Faculty of Physical Therapy and Sports Medicine, Rangsit University, Pathumthani, Thailand
| | - Alice Day
- School of Sport, Exercise and Rehabilitation Sciences, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Winston D Byblow
- Department of Exercise Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ned Jenkinson
- School of Sport, Exercise and Rehabilitation Sciences, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Corticospinal excitability of untrained side depends on the type of motor task and degree of improvement in motor function. Brain Cogn 2021; 148:105691. [PMID: 33515865 DOI: 10.1016/j.bandc.2021.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022]
Abstract
Unimanual motor tasks change the corticospinal excitability of the trained and untrained side. However, whether the motor task type influences the modulation of the corticospinal excitability of the untrained side remains unclear. This study aimed to clarify the effects of motor tasks on the corticospinal excitability of the untrained side and the relationship between the excitability and motor function. In Experiment I, we measured the corticospinal excitability of the untrained side and motor function after 10 min of motor training in two conditions (gripping task and ball rotation task). The gripping task decreased the excitability. In contrast, excitability remained unchanged after the ball rotation task; further, the modulation of excitability and motor function showed a correlation. In Experiment II, we measured the corticospinal excitability of the untrained side and motor function after two sessions of the ball rotation task. The excitability increased, but motor function remained unchanged after the first session, whereas the excitability decreased to the level observed before training, and motor function improved after the second session. We suggest that the training condition modulates the corticospinal excitability of the untrained side and that this is related to the modulation of motor function.
Collapse
|
24
|
Yang H, Hu Z, Imai F, Yang Y, Ogawa K. Effects of neurofeedback on the activities of motor-related areas by using motor execution and imagery. Neurosci Lett 2021; 746:135653. [PMID: 33482311 DOI: 10.1016/j.neulet.2021.135653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/21/2020] [Accepted: 01/08/2021] [Indexed: 12/23/2022]
Abstract
Previous studies have reported that real-time functional magnetic resonance imaging (fMRI) neurofeedback using motor imagery can modulate the activity of several motor-related areas. However, the differences in these modulatory effects on distinct motor-related target regions using the same experimental protocol remain unelucidated. This study aimed to compare neurofeedback effects on the primary motor area (M1) and the ventral premotor cortex (PMv). Of the included participants, 15 received blood oxygenation level-dependent (BOLD) signals from their left M1, and the other 15 received signals from their left PMv. Both groups were instructed to try to increase the neurofeedback score (NF-Score), which reflected the averaged activation level of the target region, by executing or imagining a right-hand clenching movement. The result revealed that during imagery condition, the left M1 was deactivated in the PMv-group but not in the M1-group, whereas the left PMv was activated in the PMv-group but not in the M1-group. Our finding indicates that neurofeedback from distinct motor-related regions has different effects on brain activity regulation.
Collapse
Affiliation(s)
- Huixiang Yang
- Department of Psychology, Hokkaido University, Sapporo, Japan
| | - Zhengfei Hu
- Department of Psychology, Hokkaido University, Sapporo, Japan
| | - Fumihito Imai
- Department of Psychology, Hokkaido University, Sapporo, Japan
| | - Yuxiang Yang
- Department of Psychology, Hokkaido University, Sapporo, Japan
| | - Kenji Ogawa
- Department of Psychology, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
25
|
Landelle C, Anton JL, Nazarian B, Sein J, Gharbi A, Felician O, Kavounoudias A. Functional brain changes in the elderly for the perception of hand movements: A greater impairment occurs in proprioception than touch. Neuroimage 2020; 220:117056. [PMID: 32562781 DOI: 10.1016/j.neuroimage.2020.117056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/28/2022] Open
Abstract
Unlike age-related brain changes linked to motor activity, neural alterations related to self-motion perception remain unknown. Using fMRI data, we investigated age-related changes in the central processing of somatosensory information by inducing illusions of right-hand rotations with specific proprioceptive and tactile stimulation. Functional connectivity during resting-state (rs-FC) was also compared between younger and older participants. Results showed common sensorimotor activations in younger and older adults during proprioceptive and tactile illusions, but less deactivation in various right frontal regions and the precuneus were found in the elderly. Older participants exhibited a less-lateralized pattern of activity across the primary sensorimotor cortices (SM1) in the proprioceptive condition only. This alteration of the interhemispheric balance correlated with declining individual performance in illusion velocity perception from a proprioceptive, but not a tactile, origin. By combining task-related data, rs-FC and behavioral performance, this study provided consistent results showing that hand movement perception was altered in the elderly, with a more pronounced deterioration of the proprioceptive system, likely due to the breakdown of inhibitory processes with aging. Nevertheless, older people could benefit from an increase in internetwork connectivity to overcome this kinesthetic decline.
Collapse
Affiliation(s)
- Caroline Landelle
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jean-Luc Anton
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - Bruno Nazarian
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - Julien Sein
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - Ali Gharbi
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France
| | - Olivier Felician
- Aix Marseille Univ, INSERM, INS (Institut des Neurosciences des Systèmes - UMR1106), Marseille, France
| | - Anne Kavounoudias
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France.
| |
Collapse
|
26
|
Barany DA, Revill KP, Caliban A, Vernon I, Shukla A, Sathian K, Buetefisch CM. Primary motor cortical activity during unimanual movements with increasing demand on precision. J Neurophysiol 2020; 124:728-739. [PMID: 32727264 PMCID: PMC7509291 DOI: 10.1152/jn.00546.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In functional magnetic resonance imaging (fMRI) studies, performance of unilateral hand movements is associated with primary motor cortex activity ipsilateral to the moving hand (M1ipsi), in addition to contralateral activity (M1contra). The magnitude of M1ipsi activity increases with the demand on precision of the task. However, it is unclear how demand-dependent increases in M1ipsi recruitment relate to the control of hand movements. To address this question, we used fMRI to measure blood oxygenation level-dependent (BOLD) activity during performance of a task that varied in demand on precision. Participants (n = 23) manipulated an MRI-compatible joystick with their right or left hand to move a cursor into targets of different sizes (small, medium, large, extra large). Performance accuracy, movement time, and number of velocity peaks scaled with target size, whereas reaction time, maximum velocity, and initial direction error did not. In the univariate analysis, BOLD activation in M1contra and M1ipsi was higher for movements to smaller targets. Representational similarity analysis, corrected for mean activity differences, revealed multivoxel BOLD activity patterns during movements to small targets were most similar to those for medium targets and least similar to those for extra-large targets. Only models that varied with demand (target size, performance accuracy, and number of velocity peaks) correlated with the BOLD dissimilarity patterns, though differently for right and left hands. Across individuals, M1contra and M1ipsi similarity patterns correlated with each other. Together, these results suggest that increasing demand on precision in a unimanual motor task increases M1 activity and modulates M1 activity patterns.NEW & NOTEWORTHY Contralateral primary motor cortex (M1) predominantly controls unilateral hand movements, but the role of ipsilateral M1 is unclear. We used functional magnetic resonance imaging (fMRI) to investigate how M1 activity is modulated by unimanual movements at different levels of demand on precision. Our results show that task characteristics related to demand on precision influence bilateral M1 activity, suggesting that in addition to contralateral M1, ipsilateral M1 plays a key role in controlling hand movements to meet performance precision requirements.
Collapse
Affiliation(s)
| | | | | | | | - Ashwin Shukla
- Department of Neurology, Emory University, Atlanta, Georgia
| | - K Sathian
- Departments of Neurology and Neural & Behavioral Sciences, Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, Pennsylvania
- Department of Psychology, College of Liberal Arts, The Pennsylvania State University, University Park, Pennsylvania
| | - Cathrin M Buetefisch
- Department of Neurology, Emory University, Atlanta, Georgia
- Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia
- Department of Radiology, Emory University, Atlanta, Georgia
| |
Collapse
|
27
|
Wilson R, Thomas A, Mayhew SD. Spatially congruent negative BOLD responses to different stimuli do not summate in visual cortex. Neuroimage 2020; 218:116891. [DOI: 10.1016/j.neuroimage.2020.116891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023] Open
|
28
|
Mayer AR, Hanlon FM, Shaff NA, Stephenson DD, Ling JM, Dodd AB, Hogeveen J, Quinn DK, Ryman SG, Pirio-Richardson S. Evidence for asymmetric inhibitory activity during motor planning phases of sensorimotor synchronization. Cortex 2020; 129:314-328. [PMID: 32554227 DOI: 10.1016/j.cortex.2020.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/15/2020] [Accepted: 04/19/2020] [Indexed: 01/11/2023]
Abstract
Sensorimotor synchronization (SMS) is frequently dependent on coordination of excitatory and inhibitory activity across hemispheres, as well as the cognitive control over environmental distractors. However, the timing (motor planning versus execution) and cortical regions involved in these processes remain actively debated. Functional magnetic resonance imaging data were therefore analyzed from 34 strongly right-handed healthy adults performing a cued (to initiate motor planning) SMS task with either their right or left hand (motor execution phase) based on spatially congruent or incongruent visual stimuli. Behavioral effects of incongruent stimuli were limited to the first stimulus. Functionally, greater activation was observed in left sensorimotor cortex (SMC) and right cerebellar Lobule V for congruent versus incongruent stimuli. A negative blood-oxygen level dependent response, a putative marker of neural inhibition, was present in bilateral SMC, right supplemental motor area (SMA) and bilateral cerebellar Lobule V during the motor planning, but not execution phase. The magnitude of the inhibitory response was greater in right cortical regions and cerebellar Lobule V. Homologue connectivity was associated with inhibitory activity in the right SMA, suggesting that individual differences in intrinsic connectivity may mediate transcallosal inhibition. In summary, results suggest increased inhibition (i.e., greater negative BOLD response) within the right relative to left hemisphere, which was released once motor programs were executed. Both task and intrinsic functional connectivity results highlight a critical role of the left SMA in interhemispheric inhibition and motor planning.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM, USA; Departments of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurology, University of New Mexico, Albuquerque, NM, USA; Departments of Psychiatry, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | - Jeremy Hogeveen
- Departments of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Davin K Quinn
- Departments of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | | | | |
Collapse
|
29
|
Zuev AA, Golovteev AL, Pedyash NV, Kalybaeva NA, Bronov OY. [Pre-surgical Diagnosties in Patients with Intractable epilepsy]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:109-117. [PMID: 32207750 DOI: 10.17116/neiro202084011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To conduct a systematic assessment of scientific publications devoted to pre-surgical examination of patients with intactable epilepsy. MATERIAL AND METHODS We found, using PubMed and available Internet search tools, and analyzed 1.414 articles on pre-surgical diagnostics in patients with intractable epilepsy. RESULTS Epilepsy is a chronic disorder caused by brain injury, which manifests as repeated epileptic seizures and is accompanied by a variety of personality changes. Mortality risks in the population of patients with uncontrolled intractable epilepsy significantly exceed those in the general population. Early onset of comprehensive treatment prevents pathological personality changes and reduces the risks of mortality. However, complete seizure control is not achieved in 30% of patients, and they develop pharmacoresistance later, which is the reason for considering these patients as candidates for surgical treatment. In the literature, many approaches to pre-surgical examination are described as each clinic has its own concept of pre-surgical diagnostics and its own approaches to surgical management. Based on the conducted analysis, we tried to summarize the received information and describe current ideas about pre-surgical examination of patients with intactable epilepsy. CONCLUSION On the basis of analyzed literature, we performed a systematic assessment and the evaluated effectiveness of various approaches in the pre-surgical diagnostics of patients with intactable epilepsy.
Collapse
Affiliation(s)
- A A Zuev
- N.I. Pirogov National Medical and Surgical Center, Moscow, Russia
| | | | - N V Pedyash
- N.I. Pirogov National Medical and Surgical Center, Moscow, Russia
| | - N A Kalybaeva
- N.I. Pirogov National Medical and Surgical Center, Moscow, Russia
| | - O Yu Bronov
- N.I. Pirogov National Medical and Surgical Center, Moscow, Russia
| |
Collapse
|
30
|
Bundy DT, Leuthardt EC. The Cortical Physiology of Ipsilateral Limb Movements. Trends Neurosci 2019; 42:825-839. [PMID: 31514976 PMCID: PMC6825896 DOI: 10.1016/j.tins.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
Abstract
Whereas voluntary movements have long been understood to derive primarily from the cortical hemisphere contralateral to a moving limb, substantial cortical activations also occur in the same-sided, or ipsilateral, cortical hemisphere. These ipsilateral motor activations have recently been shown to be useful to decode specific movement features. Furthermore, in contrast to the classical understanding that unilateral limb movements are solely driven by the contralateral hemisphere, it appears that the ipsilateral hemisphere plays an active and specific role in the planning and execution of voluntary movements. Here we review the movement-related activations observed in the ipsilateral cortical hemisphere, interpret this evidence in light of the potential roles of the ipsilateral hemisphere in the planning and execution of movements, and describe the implications for clinical populations.
Collapse
Affiliation(s)
- David T Bundy
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Department of Neurological Surgery, Washington University, St. Louis, MO, USA; Center of Innovation in Neuroscience and Technology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
31
|
Caruso P, Ridolfi M, Furlanis G, Ajčević M, Semenic M, Moretti R, Naccarato M, Manganotti P. Cerebral hemodynamic changes during motor imagery and passive robot-assisted movement of the lower limbs. J Neurol Sci 2019; 405:116427. [PMID: 31450060 DOI: 10.1016/j.jns.2019.116427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/18/2019] [Accepted: 08/13/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neurovascular Coupling is the cerebral mechanism responsible for linking neuronal activity, cerebral metabolism and regional cerebral blood flow (CBF). The direct relation between functional brain activity during active, passive and motor imagery paradigms and changes in CBF has been widely investigated using different techniques. However, CBF changes have not been investigated beat by beat during robot assisted passive movement (PM) and motor imagery (MI) of lower limb, yet. MATERIALS AND METHODS We investigated beat-to-beat hemodynamic changes in 8 healthy subjects using TCD during MI and robot-assisted PM of lower limb. RESULTS The results showed that MI and PM induce a significant CBFv increase and that PM and MI lead to similar hemodynamic changes in healthy subjects. CONCLUSIONS The findings may be useful to better understand the variation of CBFv in brain pathology and to develop more specific and efficient rehabilitation therapy protocols in neurological diseases, such as stroke.
Collapse
Affiliation(s)
- Paola Caruso
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy.
| | - Mariana Ridolfi
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Giovanni Furlanis
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Miloš Ajčević
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Mauro Semenic
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Rita Moretti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Marcello Naccarato
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| |
Collapse
|
32
|
Handedness Side and Magnetization Transfer Ratio in the Primary Sensorimotor Cortex Central Sulcus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5610849. [PMID: 31467897 PMCID: PMC6699472 DOI: 10.1155/2019/5610849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/24/2019] [Accepted: 07/21/2019] [Indexed: 11/17/2022]
Abstract
Left-handers show lower asymmetry in manual ability when compared to right-handers. Unlike right-handers, left-handers do not show larger deactivation of the ipsilateral primary sensorimotor (SM1) cortex on functional magnetic resonance imaging when moving their dominant than their nondominant hand. However, it should be noted that morphometric MRI studies have reported no differences between right-handers and left-handers in volume, thickness, or surface area of the SM1 cortex. In this regard, magnetization transfer (MT) imaging is a technique with the potential to provide information on microstructural organization and macromolecular content of tissue. In particular, MT ratio index of the brain gray matter is assumed to reflect the variable content of afferent or efferent myelinated fibers, with higher MT ratio values being associated with increased fibers number or degree of myelination. The aim of this study was hence to assess, for the first time, through quantitative MT ratio measurements, potential differences in microstructural organization/characteristics of SM1 cortex between left- and right-handers, which could underlay handedness side. Nine left-handed and 9 right-handed healthy subjects, as determined by the Edinburgh handedness inventory, were examined with T1-weighted and MT-weighted imaging on a 3 T scanner. The hands of subjects were kept still during all acquisitions. Using FreeSurfer suite and the automatic anatomical labeling parcellations defined by the Destrieux atlas, we measured MT ratio, as well as cortical thickness, in three regions of interests corresponding to the precentral gyrus, the central sulcus, and the postcentral gyrus in the bilateral SM1 cortex. No significant difference between left- and right-handers was revealed in the thickness of the three partitions of the SM1 cortex. However, left-handers showed a significantly (p = 0.007) lower MT ratio (31.92% ± 0.96%) in the right SM1 central sulcus (i.e., the hand representation area for left-handers) as compared to right-handers (33.28% ± 0.94%). The results of this preliminary study indicate that quantitative MT imaging, unlike conventional morphometric MRI measurements, can be a useful tool to reveal, in SM1 cortex, potential microstructural correlates of handedness side.
Collapse
|
33
|
Morita T, Asada M, Naito E. Developmental Changes in Task-Induced Brain Deactivation in Humans Revealed by a Motor Task. Dev Neurobiol 2019; 79:536-558. [PMID: 31136084 PMCID: PMC6771882 DOI: 10.1002/dneu.22701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Performing tasks activates relevant brain regions in adults while deactivating task-irrelevant regions. Here, using a well-controlled motor task, we explored how deactivation is shaped during typical human development and whether deactivation is related to task performance. Healthy right-handed children (8-11 years), adolescents (12-15 years), and young adults (20-24 years; 20 per group) underwent functional magnetic resonance imaging with their eyes closed while performing a repetitive button-press task with their right index finger in synchronization with a 1-Hz sound. Deactivation in the ipsilateral sensorimotor cortex (SM1), bilateral visual and auditory (cross-modal) areas, and bilateral default mode network (DMN) progressed with development. Specifically, ipsilateral SM1 and lateral occipital deactivation progressed prominently between childhood and adolescence, while medial occipital (including primary visual) and DMN deactivation progressed from adolescence to adulthood. In adults, greater cross-modal deactivation in the bilateral primary visual cortices was associated with higher button-press timing accuracy relative to the sound. The region-specific deactivation progression in a developmental period may underlie the gradual promotion of sensorimotor function segregation required in the task. Task-induced deactivation might have physiological significance regarding suppressed activity in task-irrelevant regions. Furthermore, cross-modal deactivation develops to benefit some aspects of task performance in adults.
Collapse
Affiliation(s)
- Tomoyo Morita
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minoru Asada
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
34
|
Nakata H, Domoto R, Mizuguchi N, Sakamoto K, Kanosue K. Negative BOLD responses during hand and foot movements: An fMRI study. PLoS One 2019; 14:e0215736. [PMID: 31002697 PMCID: PMC6474656 DOI: 10.1371/journal.pone.0215736] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/08/2019] [Indexed: 11/18/2022] Open
Abstract
The present study employed functional magnetic resonance imaging (fMRI) to examine the characteristics of negative blood oxygen level-dependent (Negative BOLD) signals during motor execution. Subjects repeated extension and flexion of one of the following: the right hand, left hand, right ankle, or left ankle. Negative BOLD responses during hand movements were observed in the ipsilateral hemisphere of the hand primary sensorimotor area (SMI), medial frontal gyrus (MeFG), middle frontal gyrus (MFG), and superior frontal gyrus (SFG). Negative BOLD responses during foot movements were also noted in the bilateral hand SMI, MeFG, MFG, SFG, inferior frontal gyrus, middle temporal gyrus, parahippocampal gyrus, anterior cingulate cortex, cingulate gyrus (CG), fusiform gyrus, and precuneus. A conjunction analysis showed that portions of the MeFG and CG involving similar regions to those of the default mode network were commonly deactivated during voluntary movements of the right/left hand or foot. The present results suggest that three mechanisms are involved in the Negative BOLD responses observed during voluntary movements: (1) transcallosal inhibition from the contralateral to ipsilateral hemisphere in the SMI, (2) the deactivated neural network with several brain regions, and (3) the default mode network in the MeFG and CG.
Collapse
Affiliation(s)
- Hiroki Nakata
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.,Health Sciences, Faculty of Human Life and Environment, Nara Women's University, Nara City, Japan
| | - Ryo Domoto
- School of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Nobuaki Mizuguchi
- The Japan Society for the Promotion of Science, Tokyo, Japan.,Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kiwako Sakamoto
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | |
Collapse
|
35
|
Tisseyre J, Marquet-Doléac J, Barral J, Amarantini D, Tallet J. Lateralized inhibition of symmetric contractions is associated with motor, attentional and executive processes. Behav Brain Res 2019; 361:65-73. [DOI: 10.1016/j.bbr.2018.12.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
36
|
Mancini C, Modugno N, Santilli M, Pavone L, Grillea G, Morace R, Mirabella G. Unilateral Stimulation of Subthalamic Nucleus Does Not Affect Inhibitory Control. Front Neurol 2019; 9:1149. [PMID: 30666229 PMCID: PMC6330317 DOI: 10.3389/fneur.2018.01149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023] Open
Abstract
Despite the relevance of inhibitory control in shaping our behavior its neural substrates are still hotly debated. In this regard, it has been suggested that inhibitory control relies upon a right-lateralized network which involves the right subthalamic nucleus (STN). To assess the role of STN, we took advantage of a relatively rare model, i.e., advanced Parkinson's patients who received unilateral deep-brain stimulation (DBS) of the STN either of the left (n = 10) or of the right (n = 10) hemisphere. We gave them a stop-signal reaching task, and we compared patients' performance in two experimental conditions, DBS-ON and DBS-OFF. In addition, we also tested 22 age-matched healthy participants. As expected, we found that inhibitory control is impaired in Parkinson's patients with respect to healthy participants. However, neither reactive nor proactive inhibition is improved when either the right or the left DBS is active. We interpreted these findings in light of the fact that previous studies, exploiting exactly the same task, have shown that only bilateral STN DBS restores a near-normal inhibitory control. Thus, although null results have to be interpreted with caution, our current findings confirm that the right STN does not play a key role in suppressing pending actions. However, on the ground of previous studies, it is very likely that this subcortical structure is part of the brain network subserving inhibition but to implement this executive function both subthalamic nuclei must be simultaneously active. Our findings are of significance to other researchers studying the effects of STN DBS on key executive functions, such as impulsivity and inhibition and they are also of clinical relevance for determining the therapeutic benefits of STN DBS as they suggest that, at least as far as inhibitory control is concerned, it is better to implant DBS bilaterally than unilaterally.
Collapse
Affiliation(s)
- Christian Mancini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | | | | | | | | | | | - Giovanni Mirabella
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
37
|
Turesky TK, Olulade OA, Luetje MM, Eden GF. An fMRI study of finger tapping in children and adults. Hum Brain Mapp 2018; 39:3203-3215. [PMID: 29611256 DOI: 10.1002/hbm.24070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/08/2018] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Functional brain imaging studies have characterized the neural bases of voluntary movement for finger tapping in adults, but equivalent information for children is lacking. When contrasted to adults, one would expect children to have relatively greater activation, reflecting compensation for an underdeveloped motor system combined with less experience in the execution of voluntary movement. To test this hypothesis, we acquired functional magnetic resonance imaging (fMRI) data on 17 healthy right-handed children (7.48 ± 0.66 years) and 15 adults (24.9 ± 2.9 years) while they performed an irregularly paced finger-tapping task in response to a visual cue (left- and right-hand examined separately). Whole-brain within-group analyses revealed that finger tapping in either age group and for either hand activated contralateral SM1, SMA, ipsilateral anterior cerebellum, and occipital cortices. We used an ANOVA factorial design to test for main effects of Age Group (children vs adults), Hand (left vs. right), and their interactions. For main effects of Age Group, children showed relatively greater activity in left SM1 (extending into bilateral SMA), and, surprisingly, adults exhibited relatively greater activity in right pre-SMA/SMA (extending into left pre-SMA/SMA), right lateral globus pallidus, left putamen, and right anterior cerebellum. The interaction of Age Group × Hand revealed that while both groups activated right SM1 during left finger tapping and exhibited signal decreases (i.e., below fixation baseline) during right finger tapping, both these responses were attenuated in children relative to adults. These data provide an important foundation by which to study children with motor disorders.
Collapse
Affiliation(s)
- Ted K Turesky
- Center for the Study of Learning, Georgetown University Medical Center, Washington, Washington D.C.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, Washington D.C
| | - Olumide A Olulade
- Center for the Study of Learning, Georgetown University Medical Center, Washington, Washington D.C
| | - Megan M Luetje
- Center for the Study of Learning, Georgetown University Medical Center, Washington, Washington D.C
| | - Guinevere F Eden
- Center for the Study of Learning, Georgetown University Medical Center, Washington, Washington D.C
| |
Collapse
|
38
|
Vergallito A, Romero Lauro LJ, Bonandrini R, Zapparoli L, Danelli L, Berlingeri M. What is difficult for you can be easy for me. Effects of increasing individual task demand on prefrontal lateralization: A tDCS study. Neuropsychologia 2018; 109:283-294. [DOI: 10.1016/j.neuropsychologia.2017.12.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/22/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
|
39
|
Lei Y, Perez MA. Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity. J Physiol 2017; 595:6203-6217. [PMID: 28513860 DOI: 10.1113/jp274504] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/11/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS It has long been known that the somatosensory cortex gates sensory inputs from the contralateral side of the body. Here, we examined the contribution of the ipsilateral somatosensory cortex (iS1) to sensory gating during index finger voluntary activity. The amplitude of the P25/N33, but not other somatosensory evoked potential (SSEP) components, was reduced during voluntary activity compared with rest. Interhemispheric inhibition between S1s and intracortical inhibition in the S1 modulated the amplitude of the P25/N33. Note that changes in interhemispheric inhibition between S1s correlated with changes in cortical circuits in the ipsilateral motor cortex. Our findings suggest that cortical circuits, probably from somatosensory and motor cortex, contribute to sensory gating in the iS1 during voluntary activity in humans. ABSTRACT An important principle in the organization of the somatosensory cortex is that it processes afferent information from the contralateral side of the body. The role of the ipsilateral somatosensory cortex (iS1) in sensory gating in humans remains largely unknown. Using electroencephalographic (EEG) recordings over the iS1 and electrical stimulation of the ulnar nerve at the wrist, we examined somatosensory evoked potentials (SSEPs; P14/N20, N20/P25 and P25/N33 components) and paired-pulse SSEPs between S1s (interhemispheric inhibition) and within (intracortical inhibition) the iS1 at rest and during tonic index finger voluntary activity. We found that the amplitude of the P25/N33, but not other SSEP components, was reduced during voluntary activity compared with rest. Interhemispheric inhibition increased the amplitude of the P25/N33 and intracortical inhibition reduced the amplitude of the P25/N33, suggesting a cortical origin for this effect. The P25/N33 receives inputs from the motor cortex, so we also examined the contribution of distinct sets of cortical interneurons by testing the effect of ulnar nerve stimulation on motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the ipsilateral motor cortex with the coil in the posterior-anterior (PA) and anterior-posterior (AP) orientation. Afferent input attenuated PA, but not AP, MEPs during voluntary activity compared with rest. Notably, changes in interhemispheric inhibition correlated with changes in PA MEPs. Our novel findings suggest that interhemispheric projections between S1s and intracortical circuits, probably from somatosensory and motor cortex, contribute to sensory gating in the iS1 during voluntary activity in humans.
Collapse
Affiliation(s)
- Yuming Lei
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Centre, 1201 NW 16th Street, Miami, FL, 33125, USA
| |
Collapse
|
40
|
Ciechanski P, Zewdie E, Kirton A. Developmental profile of motor cortex transcallosal inhibition in children and adolescents. J Neurophysiol 2017; 118:140-148. [PMID: 28381485 DOI: 10.1152/jn.00076.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 11/22/2022] Open
Abstract
Transcallosal fibers facilitate interhemispheric networks involved in motor tasks. Despite their clinical relevance, interhemispheric motor control systems have not been completely defined in the developing brain. The objective of this study was to examine the developmental profile of transcallosal inhibition in healthy children and adolescents. Nineteen typically developing right-handed participants were recruited. Two transcranial magnetic stimulation (TMS) paradigms assessed transcallosal inhibition: ipsilateral silent periods (iSP) and paired-pulse interhemispheric inhibition (IHI). TMS was applied to the motor hotspot of the first dorsal interosseous muscle. Resting motor threshold (RMT), iSP latency, duration and suppression strength, and paired-pulse IHI were measured from both hemispheres. The Purdue Pegboard Test assessed unimanual motor function. Hemispheric differences were evident for RMT and iSP latency and suppression strength, where the left hemisphere had a lower RMT, prolonged latency, and greater suppression strength. iSP duration showed hemispheric symmetry. RMT and iSP latency decreased with age, whereas iSP suppression strength increased. Girls showed shorter iSP latency. Children typically displayed IHI, although hemispheric differences were observed. iSP suppression strength was uniquely associated with IHI within individuals. iSP duration correlated with motor performance. TMS can characterize transcallosal inhibition in normal children and adolescents with effects of age, directionality, sex, and motor performance. Establishing this developmental profile of interhemispheric interactions may advance understanding and therapeutic strategies for pediatric motor disorders such as cerebral palsy.NEW & NOTEWORTHY Here we demonstrate that transcranial magnetic stimulation can characterize transcallosal inhibition in normal children and adolescents with effects of age, directionality, handedness, and motor performance. Interestingly, we also demonstrated sex effects, possibly related to the differing developmental profiles of boys and girls. Establishing this developmental profile of interhemispheric interactions may advance understanding and therapeutic strategies for pediatric motor disorders such as cerebral palsy.
Collapse
Affiliation(s)
- Patrick Ciechanski
- Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; and
| | - Ephrem Zewdie
- Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; and
| | - Adam Kirton
- Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; and .,Departments of Pediatrics and Clinical Neurosciences, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Alahmadi AAS, Pardini M, Samson RS, Friston KJ, Toosy AT, D'Angelo E, Gandini Wheeler-Kingshott CAM. Cerebellar lobules and dentate nuclei mirror cortical force-related-BOLD responses: Beyond all (linear) expectations. Hum Brain Mapp 2017; 38:2566-2579. [PMID: 28240422 PMCID: PMC5413835 DOI: 10.1002/hbm.23541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/17/2017] [Accepted: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
The relationship between the BOLD response and an applied force was quantified in the cerebellum using a power grip task. To investigate whether the cerebellum responds in an on/off way to motor demands or contributes to motor responses in a parametric fashion, similarly to the cortex, five grip force levels were investigated under visual feedback. Functional MRI data were acquired in 13 healthy volunteers and their responses were analyzed using a cerebellum-optimized pipeline. This allowed us to evaluate, within the cerebellum, voxelwise linear and non-linear associations between cerebellar activations and forces. We showed extensive non-linear activations (with a parametric design), covering the anterior and posterior lobes of the cerebellum with a BOLD-force relationship that is region-dependent. Linear responses were mainly located in the anterior lobe, similarly to the cortex, where linear responses are localized in M1. Complex responses were localized in the posterior lobe, reflecting its key role in attention and executive processing, required during visually guided movement. Given the highly organized responses in the cerebellar cortex, a key question is whether deep cerebellar nuclei show similar parametric effects. We found positive correlations with force in the ipsilateral dentate nucleus and negative correlations on the contralateral side, suggesting a somatotopic organization of the dentate nucleus in line with cerebellar and cortical areas. Our results confirm that there is cerebellar organization involving all grey matter structures that reflect functional segregation in the cortex, where cerebellar lobules and dentate nuclei contribute to complex motor tasks with different BOLD response profiles in relation to the forces. Hum Brain Mapp 38:2566-2579, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.,NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom
| | - Matteo Pardini
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Rebecca S Samson
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom
| | - Karl J Friston
- Wellcome Trust Centre for Human Neuroimaging, UCL, Institute of Neurology, London, United Kingdom
| | - Ahmed T Toosy
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom
| | - Egidio D'Angelo
- Brain Connectivity Centre, C. Mondino National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Italy
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom.,Department of Brain and Behavioural Sciences, University of Pavia, Italy.,Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
42
|
Tal Z, Geva R, Amedi A. Positive and Negative Somatotopic BOLD Responses in Contralateral Versus Ipsilateral Penfield Homunculus. Cereb Cortex 2017; 27:962-980. [PMID: 28168279 PMCID: PMC6093432 DOI: 10.1093/cercor/bhx024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/17/2017] [Indexed: 11/20/2022] Open
Abstract
One of the basic properties of sensory cortices is their topographical organization. Most imaging studies explored this organization using the positive blood oxygenation level-dependent (BOLD) signal. Here, we studied the topographical organization of both positive and negative BOLD in contralateral and ipsilateral primary somatosensory cortex (S1). Using phase-locking mapping methods, we verified the topographical organization of contralateral S1, and further showed that different body segments elicit pronounced negative BOLD responses in both hemispheres. In the contralateral hemisphere, we found a sharpening mechanism in which stimulation of a given body segment triggered a gradient of activation with a significant deactivation in more remote areas. In the ipsilateral cortex, deactivation was not only located in the homolog area of the stimulated parts but rather was widespread across many parts of S1. Additionally, analysis of resting-state functional magnetic resonance imaging signal showed a gradient of connectivity to the neighboring contralateral body parts as well as to the ipsilateral homologous area for each body part. Taken together, our results indicate a complex pattern of baseline and activity-dependent responses in the contralateral and ipsilateral sides. Both primary sensory areas were characterized by unique negative BOLD responses, suggesting that they are an important component in topographic organization of sensory cortices.
Collapse
Affiliation(s)
- Zohar Tal
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
| | - Ran Geva
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
| | - Amir Amedi
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
- The Edmond and Lily Safra Center for Brain Science (ELSC)
- Program of Cognitive Science, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| |
Collapse
|
43
|
A positive association between active lifestyle and hemispheric lateralization for motor control and learning in older adults. Behav Brain Res 2016; 314:38-44. [DOI: 10.1016/j.bbr.2016.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/29/2016] [Indexed: 11/20/2022]
|
44
|
Turesky TK, Turkeltaub PE, Eden GF. An Activation Likelihood Estimation Meta-Analysis Study of Simple Motor Movements in Older and Young Adults. Front Aging Neurosci 2016; 8:238. [PMID: 27799910 PMCID: PMC5065996 DOI: 10.3389/fnagi.2016.00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
The functional neuroanatomy of finger movements has been characterized with neuroimaging in young adults. However, less is known about the aging motor system. Several studies have contrasted movement-related activity in older versus young adults, but there is inconsistency among their findings. To address this, we conducted an activation likelihood estimation (ALE) meta-analysis on within-group data from older adults and young adults performing regularly paced right-hand finger movement tasks in response to external stimuli. We hypothesized that older adults would show a greater likelihood of activation in right cortical motor areas (i.e., ipsilateral to the side of movement) compared to young adults. ALE maps were examined for conjunction and between-group differences. Older adults showed overlapping likelihoods of activation with young adults in left primary sensorimotor cortex (SM1), bilateral supplementary motor area, bilateral insula, left thalamus, and right anterior cerebellum. Their ALE map differed from that of the young adults in right SM1 (extending into dorsal premotor cortex), right supramarginal gyrus, medial premotor cortex, and right posterior cerebellum. The finding that older adults uniquely use ipsilateral regions for right-hand finger movements and show age-dependent modulations in regions recruited by both age groups provides a foundation by which to understand age-related motor decline and motor disorders.
Collapse
Affiliation(s)
- Ted K Turesky
- Center for the Study of Learning, Georgetown University Medical Center, WashingtonDC, USA; Interdisciplinary Program in Neuroscience, Georgetown University, WashingtonDC, USA
| | - Peter E Turkeltaub
- Center for the Study of Learning, Georgetown University Medical Center, WashingtonDC, USA; Neurology Department, Georgetown University Medical Center, WashingtonDC, USA; Research Division, MedStar National Rehabilitation Hospital, WashingtonDC, USA
| | - Guinevere F Eden
- Center for the Study of Learning, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
45
|
Mayhew SD, Mullinger KJ, Ostwald D, Porcaro C, Bowtell R, Bagshaw AP, Francis ST. Global signal modulation of single-trial fMRI response variability: Effect on positive vs negative BOLD response relationship. Neuroimage 2016; 133:62-74. [PMID: 26956909 DOI: 10.1016/j.neuroimage.2016.02.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 01/25/2023] Open
Abstract
In functional magnetic resonance imaging (fMRI), the relationship between positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to stimulation is potentially informative about the balance of excitatory and inhibitory brain responses in sensory cortex. In this study, we performed three separate experiments delivering visual, motor or somatosensory stimulation unilaterally, to one side of the sensory field, to induce PBR and NBR in opposite brain hemispheres. We then assessed the relationship between the evoked amplitudes of contralateral PBR and ipsilateral NBR at the level of both single-trial and average responses. We measure single-trial PBR and NBR peak amplitudes from individual time-courses, and show that they were positively correlated in all experiments. In contrast, in the average response across trials the absolute magnitudes of both PBR and NBR increased with increasing stimulus intensity, resulting in a negative correlation between mean response amplitudes. Subsequent analysis showed that the amplitude of single-trial PBR was positively correlated with the BOLD response across all grey-matter voxels and was not specifically related to the ipsilateral sensory cortical response. We demonstrate that the global component of this single-trial response modulation could be fully explained by voxel-wise vascular reactivity, the BOLD signal standard deviation measured in a separate resting-state scan (resting state fluctuation amplitude, RSFA). However, bilateral positive correlation between PBR and NBR regions remained. We further report that modulations in the global brain fMRI signal cannot fully account for this positive PBR-NBR coupling and conclude that the local sensory network response reflects a combination of superimposed vascular and neuronal signals. More detailed quantification of physiological and noise contributions to the BOLD signal is required to fully understand the trial-by-trial PBR and NBR relationship compared with that of average responses.
Collapse
Affiliation(s)
- S D Mayhew
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - K J Mullinger
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - D Ostwald
- Arbeitsbereich Computational Cognitive Neuroscience, Department of Education and Psychology, Free University Berlin, Berlin, Germany; Center for Adaptive Rationality (ARC), Max-Planck-Institute for Human Development, Berlin, Germany
| | - C Porcaro
- Laboratory of Electrophysiology for Translational Neuroscience (LET'S) - ISTC - CNR, Department of Neuroscience, Fatebenefratelli Hospital Isola Tiberina, Rome, Italy; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK; Department of Information Engineering,Università Politecnica delle Marche, Ancona, Italy
| | - R Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - A P Bagshaw
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - S T Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
46
|
Reliability of negative BOLD in ipsilateral sensorimotor areas during unimanual task activity. Brain Imaging Behav 2016; 9:245-54. [PMID: 24788334 DOI: 10.1007/s11682-014-9302-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Research using functional magnetic resonance imaging has for numerous years now reported the existence of a negative blood oxygenation level dependent (BOLD) response. Based on accumulating evidence, this negative BOLD signal appears to represent an active inhibition of cortical areas in which it is found during task activity. This particularly important with respect to motor function given that it is fairly well-established that, in younger adults, the ipsilateral sensorimotor cortex exhibits negative BOLD during unimanual movements in fMRI. This interhemispheric suppression of cortical activity may have useful implications for our understanding of both basic motor function and rehabilitation of injury or disease. However, to date, we are aware of no study that has tested the reliability of evoked negative BOLD in ipsilateral sensorimotor cortex in individuals across sessions. The current study employs a unimanual finger opposition task previously shown to evoke negative BOLD in ipsilateral sensorimotor cortex across three sessions. Reliability metrics across sessions indicates that both the magnitude and location of ipsilateral sensorimotor negative BOLD response is relatively stable over each of the three sessions. Moreover, the volume of negative BOLD in ipsilateral cortex was highly correlated with volume of positive BOLD activity in the contralateral primary motor cortex. These findings show that the negative BOLD signal can be reliably evoked in unimanual task paradigms, and that the signal dynamic could represent an active suppression of the ipsilateral sensorimotor cortex originating from the contralateral motor areas.
Collapse
|
47
|
Sehm B, Steele CJ, Villringer A, Ragert P. Mirror Motor Activity During Right-Hand Contractions and Its Relation to White Matter in the Posterior Midbody of the Corpus Callosum. Cereb Cortex 2015; 26:4347-4355. [DOI: 10.1093/cercor/bhv217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Asemi A, Ramaseshan K, Burgess A, Diwadkar VA, Bressler SL. Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior. Front Hum Neurosci 2015; 9:309. [PMID: 26089783 PMCID: PMC4454840 DOI: 10.3389/fnhum.2015.00309] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/14/2015] [Indexed: 12/28/2022] Open
Abstract
Motor control is integral to all types of human behavior, and the dorsal Anterior Cingulate Cortex (dACC) is thought to play an important role in the brain network underlying motor control. Yet the role of the dACC in motor control is under-characterized. Here we aimed to characterize the dACC's role in adolescent brain network interactions during a simple motor control task involving visually coordinated unimanual finger movements. Network interactions were assessed using both undirected and directed functional connectivity analysis of functional Magnetic Resonance Imaging (fMRI) Blood-Oxygen-Level-Dependent (BOLD) signals, comparing the task with a rest condition. The relation between the dACC and Supplementary Motor Area (SMA) was compared to that between the dACC and Primary Motor Cortex (M1). The directed signal from dACC to SMA was significantly elevated during motor control in the task. By contrast, the directed signal from SMA to dACC, both directed signals between dACC and M1, and the undirected functional connections of dACC with SMA and M1, all did not differ between task and rest. Undirected coupling of dACC with both SMA and dACC, and only the dACC-to-SMA directed signal, were significantly greater for a proactive than a reactive task condition, suggesting that dACC plays a role in motor control by maintaining stimulus timing expectancy. Overall, these results suggest that the dACC selectively modulates the SMA during visually coordinated unimanual behavior in adolescence. The role of the dACC as an important brain area for the mediation of task-related motor control may be in place in adolescence, continuing into adulthood. The task and analytic approach described here should be extended to the study of healthy adults to examine network profiles of the dACC during basic motor behavior.
Collapse
Affiliation(s)
- Avisa Asemi
- Center for Complex Systems and Brain Sciences, Florida Atlantic University Boca Raton, FL, USA
| | - Karthik Ramaseshan
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine Detroit, MI, USA
| | - Ashley Burgess
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine Detroit, MI, USA
| | - Vaibhav A Diwadkar
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine Detroit, MI, USA
| | - Steven L Bressler
- Center for Complex Systems and Brain Sciences, Florida Atlantic University Boca Raton, FL, USA ; Department of Psychology, Florida Atlantic University Boca Raton, FL, USA
| |
Collapse
|
49
|
Kamson DO, Juhász C, Chugani HT, Jeong JW. Novel diffusion tensor imaging technique reveals developmental streamline volume changes in the corticospinal tract associated with leg motor control. Brain Dev 2015; 37:370-5. [PMID: 25027193 PMCID: PMC4291315 DOI: 10.1016/j.braindev.2014.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) has expanded our knowledge of corticospinal tract (CST) anatomy and development. However, previous developmental DTI studies assessed the CST as a whole, overlooking potential differences in development of its components related to control of the upper and lower extremities. The present cross-sectional study investigated age-related changes, side and gender differences in streamline volume of the leg- and hand-related segments of the CST in children. SUBJECTS AND METHODS DTI data of 31 children (1-14 years; mean age: 6±4 years; 17 girls) with normal conventional MRI were analyzed. Leg- and hand-related CST streamline volumes were quantified separately, using a recently validated novel tractography approach. CST streamline volumes on both sides were compared between genders and correlated with age. RESULTS Higher absolute streamline volumes were found in the left leg-related CST compared to the right (p=0.001) without a gender effect (p=0.4), whereas no differences were found in the absolute hand-related CST volumes (p>0.4). CST leg-related streamline volumes, normalized to hemispheric white matter volumes, declined with age in the right hemisphere only (R=-.51; p=0.004). Absolute leg-related CST streamline volumes showed similar, but slightly weaker correlations. Hand-related absolute or normalized CST streamline volumes showed no age-related variations on either side. CONCLUSION These results suggest differential development of CST segments controlling hand vs. leg movements. Asymmetric volume changes in the lower limb motor pathway may be secondary to gradually strengthening left hemispheric dominance and is consistent with previous data suggesting that footedness is a better predictor of hemispheric lateralization than handedness.
Collapse
Affiliation(s)
- David O. Kamson
- Translational Imaging Laboratory, Children’s Hospital of Michigan
| | - Csaba Juhász
- Translational Imaging Laboratory, Children’s Hospital of Michigan,Department of Neurology, Wayne State University,Department of Pediatrics, Wayne State University
| | - Harry T. Chugani
- Translational Imaging Laboratory, Children’s Hospital of Michigan,Department of Neurology, Wayne State University,Department of Pediatrics, Wayne State University
| | - Jeong-Won Jeong
- Translational Imaging Laboratory, Children's Hospital of Michigan, United States; Department of Neurology, Wayne State University, United States; Department of Pediatrics, Wayne State University, United States.
| |
Collapse
|
50
|
Mullinger KJ, Mayhew SD, Bagshaw AP, Bowtell R, Francis ST. Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG-BOLD-CBF study in humans. Neuroimage 2014; 94:263-274. [PMID: 24632092 DOI: 10.1016/j.neuroimage.2014.02.029] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022] Open
Abstract
Unambiguous interpretation of changes in the BOLD signal is challenging because of the complex neurovascular coupling that translates changes in neuronal activity into the subsequent haemodynamic response. In particular, the neurophysiological origin of the negative BOLD response (NBR) remains incompletely understood. Here, we simultaneously recorded BOLD, EEG and cerebral blood flow (CBF) responses to 10 s blocks of unilateral median nerve stimulation (MNS) in order to interrogate the NBR. Both negative BOLD and negative CBF responses to MNS were observed in the same region of the ipsilateral primary sensorimotor cortex (S1/M1) and calculations showed that MNS induced a decrease in the cerebral metabolic rate of oxygen consumption (CMRO2) in this NBR region. The ∆CMRO2/∆CBF coupling ratio (n) was found to be significantly larger in this ipsilateral S1/M1 region (n=0.91±0.04, M=10.45%) than in the contralateral S1/M1 (n=0.65±0.03, M=10.45%) region that exhibited a positive BOLD response (PBR) and positive CBF response, and a consequent increase in CMRO2 during MNS. The fMRI response amplitude in ipsilateral S1/M1 was negatively correlated with both the power of the 8-13 Hz EEG mu oscillation and somatosensory evoked potential amplitude. Blocks in which the largest magnitude of negative BOLD and CBF responses occurred therefore showed greatest mu power, an electrophysiological index of cortical inhibition, and largest somatosensory evoked potentials. Taken together, our results suggest that a neuronal mechanism underlies the NBR, but that the NBR may originate from a different neurovascular coupling mechanism to the PBR, suggesting that caution should be taken in assuming the NBR simply represents the neurophysiological inverse of the PBR.
Collapse
Affiliation(s)
- K J Mullinger
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK; Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham, UK.
| | - S D Mayhew
- Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham, UK
| | - A P Bagshaw
- Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham, UK
| | - R Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - S T Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|