1
|
Leonard MK, Gwilliams L, Sellers KK, Chung JE, Xu D, Mischler G, Mesgarani N, Welkenhuysen M, Dutta B, Chang EF. Large-scale single-neuron speech sound encoding across the depth of human cortex. Nature 2024; 626:593-602. [PMID: 38093008 PMCID: PMC10866713 DOI: 10.1038/s41586-023-06839-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/06/2023] [Indexed: 01/31/2024]
Abstract
Understanding the neural basis of speech perception requires that we study the human brain both at the scale of the fundamental computational unit of neurons and in their organization across the depth of cortex. Here we used high-density Neuropixels arrays1-3 to record from 685 neurons across cortical layers at nine sites in a high-level auditory region that is critical for speech, the superior temporal gyrus4,5, while participants listened to spoken sentences. Single neurons encoded a wide range of speech sound cues, including features of consonants and vowels, relative vocal pitch, onsets, amplitude envelope and sequence statistics. Neurons at each cross-laminar recording exhibited dominant tuning to a primary speech feature while also containing a substantial proportion of neurons that encoded other features contributing to heterogeneous selectivity. Spatially, neurons at similar cortical depths tended to encode similar speech features. Activity across all cortical layers was predictive of high-frequency field potentials (electrocorticography), providing a neuronal origin for macroelectrode recordings from the cortical surface. Together, these results establish single-neuron tuning across the cortical laminae as an important dimension of speech encoding in human superior temporal gyrus.
Collapse
Affiliation(s)
- Matthew K Leonard
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Gwilliams
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kristin K Sellers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jason E Chung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Duo Xu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gavin Mischler
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Nima Mesgarani
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | | | | | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Huang H, Gregg NM, Ojeda Valencia G, Brinkmann BH, Lundstrom BN, Worrell GA, Miller KJ, Hermes D. Electrical Stimulation of Temporal and Limbic Circuitry Produces Distinct Responses in Human Ventral Temporal Cortex. J Neurosci 2023; 43:4434-4447. [PMID: 37188514 PMCID: PMC10278681 DOI: 10.1523/jneurosci.1325-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The human ventral temporal cortex (VTC) is highly connected to integrate visual perceptual inputs with feedback from cognitive and emotional networks. In this study, we used electrical brain stimulation to understand how different inputs from multiple brain regions drive unique electrophysiological responses in the VTC. We recorded intracranial EEG data in 5 patients (3 female) implanted with intracranial electrodes for epilepsy surgery evaluation. Pairs of electrodes were stimulated with single-pulse electrical stimulation, and corticocortical evoked potential responses were measured at electrodes in the collateral sulcus and lateral occipitotemporal sulcus of the VTC. Using a novel unsupervised machine learning method, we uncovered 2-4 distinct response shapes, termed basis profile curves (BPCs), at each measurement electrode in the 11-500 ms after stimulation interval. Corticocortical evoked potentials of unique shape and high amplitude were elicited following stimulation of several regions and classified into a set of four consensus BPCs across subjects. One of the consensus BPCs was primarily elicited by stimulation of the hippocampus; another by stimulation of the amygdala; a third by stimulation of lateral cortical sites, such as the middle temporal gyrus; and the final one by stimulation of multiple distributed sites. Stimulation also produced sustained high-frequency power decreases and low-frequency power increases that spanned multiple BPC categories. Characterizing distinct shapes in stimulation responses provides a novel description of connectivity to the VTC and reveals significant differences in input from cortical and limbic structures.SIGNIFICANCE STATEMENT Disentangling the numerous input influences on highly connected areas in the brain is a critical step toward understanding how brain networks work together to coordinate human behavior. Single-pulse electrical stimulation is an effective tool to accomplish this goal because the shapes and amplitudes of signals recorded from electrodes are informative of the synaptic physiology of the stimulation-driven inputs. We focused on targets in the ventral temporal cortex, an area strongly implicated in visual object perception. By using a data-driven clustering algorithm, we identified anatomic regions with distinct input connectivity profiles to the ventral temporal cortex. Examining high-frequency power changes revealed possible modulation of excitability at the recording site induced by electrical stimulation of connected regions.
Collapse
Affiliation(s)
| | | | | | | | | | - Gregory A Worrell
- Department of Neurology
- Department of Physiology and Biomedical Engineering
| | - Kai J Miller
- Department of Physiology and Biomedical Engineering
- Department of Neurologic Surgery
| | - Dora Hermes
- Department of Neurology
- Department of Physiology and Biomedical Engineering
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
3
|
Nárai Á, Nemecz Z, Vidnyánszky Z, Weiss B. Lateralization of orthographic processing in fixed-gaze and natural reading conditions. Cortex 2022; 157:99-116. [PMID: 36279756 DOI: 10.1016/j.cortex.2022.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Lateralized processing of orthographic information is a hallmark of proficient reading. However, how this finding obtained for fixed-gaze processing of orthographic stimuli translates to ecologically valid reading conditions remained to be clarified. To address this shortcoming, here we assessed the lateralization of early orthographic processing in fixed-gaze and natural reading conditions using concurrent eye-tracking and EEG data recorded from young adults without reading difficulties. Sensor-space analyses confirmed the well-known left-lateralized negative-going deflection of fixed-gaze EEG activity throughout the period of early orthographic processing. At the same time, fixation-related EEG activity exhibited left-lateralized followed by right-lateralized processing of text stimuli during natural reading. A strong positive relationship was found between the early leftward lateralization in fixed-gaze and natural reading conditions. Using source-space analyses, early left-lateralized brain activity was obtained in lateraloccipital and posterior ventral occipito-temporal cortices reflecting letter-level processing in both conditions. In addition, in the same time interval, left-lateralized source activity was found also in premotor and parietal brain regions during natural reading. While brain activity remained left-lateralized in later stages representing word-level processing in posterior and middle ventral temporal regions in the fixed-gaze condition, fixation-related source activity became stronger in the right hemisphere in medial and more anterior ventral temporal brain regions indicating higher-level processing of orthographic information. Although our results show a strong positive relationship between the lateralization of letter-level processing in the two reading modes and suggest lateralized brain activity as a general marker for processing of orthographic information, they also clearly indicate the need for reading research in ecologically valid conditions to identify the neural basis of visuospatial attentional, oculomotor and higher-level processes specific to natural reading.
Collapse
Affiliation(s)
- Ádám Nárai
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - Zsuzsanna Nemecz
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest H-1117, Hungary; Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest H-1064, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Budapest H-1064, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - Béla Weiss
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest H-1117, Hungary.
| |
Collapse
|
4
|
Hung Y, Vandewouw M, Emami Z, Bells S, Rudberg N, da Costa L, Dunkley BT. Memory retrieval brain-behavior disconnection in mild traumatic brain injury: A magnetoencephalography and diffusion tensor imaging study. Hum Brain Mapp 2022; 43:5296-5309. [PMID: 35796166 PMCID: PMC9812251 DOI: 10.1002/hbm.26003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 01/15/2023] Open
Abstract
Mild traumatic brain (mTBI) injury is often associated with long-term cognitive and behavioral complications, including an increased risk of memory impairment. Current research challenges include a lack of cross-modal convergence regarding the underlying neural-behavioral mechanisms of mTBI, which hinders therapeutics and outcome management for this frequently under-treated and vulnerable population. We used multi-modality imaging methods including magnetoencephalography (MEG) and diffusion tensor imaging (DTI) to investigate brain-behavior impairment in mTBI related to working memory. A total of 41 participants were recruited, including 23 patients with a first-time mTBI imaged within 3 months of injury (all male, age = 29.9, SD = 6.9), and 18 control participants (all male, age = 27.3, SD = 5.3). Whole-brain statistics revealed spatially concomitant functional-structural disruptions in brain-behavior interactions in working memory in the mTBI group compared with the control group. These disruptions are located in the hippocampal-prefrontal region and, additionally, in the amygdala (measured by MEG neural activation and DTI measures of fractional anisotropy in relation to working memory performance; p < .05, two-way ANCOVA, nonparametric permutations, corrected). Impaired brain-behavior connections found in the hippocampal-prefrontal and amygdala circuits indicate brain dysregulation of memory, which may leave mTBI patients vulnerable to increased environmental demands exerting memory resources, leading to related cognitive and emotional psychopathologies. The findings yield clinical implications and highlight a need for early rehabilitation after mTBI, including attention- and sensory-based behavioral exercises.
Collapse
Affiliation(s)
- Yuwen Hung
- Martinos Imaging Center at McGovern Institute for Brain Research, Harvard‐MITCambridgeMassachusettsUSA,Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada
| | - Marlee Vandewouw
- Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada,Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Zahra Emami
- Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada
| | - Sonya Bells
- Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada
| | | | - Leodante da Costa
- Department of Surgery, Division of NeurosurgerySunnybrook HospitalTorontoOntarioCanada
| | - Benjamin T. Dunkley
- Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada,Department of Diagnostic ImagingHospital for Sick ChildrenTorontoOntarioCanada,Department of Medical ImagingUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Individual differences in behavioral and electrophysiological signatures of familiarity- and recollection-based recognition memory. Neuropsychologia 2022; 173:108287. [PMID: 35690114 DOI: 10.1016/j.neuropsychologia.2022.108287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Our everyday memories can vary in terms of accuracy and phenomenology. According to one theoretical account, these differences hinge on whether the memories contain information about both an item itself as well as associated details (remember) versus those that are devoid of these associated contextual details (familiar). This distinction has been supported by computational modeling of behavior, studies in patients, and neuroimaging work including differences both in electrophysiological and functional magnetic resonance imaging. At present, however, little evidence has emerged to suggest that neurophysiological measures track individual differences in estimates of recollection and familiarity. Here, we conducted electrophysiological recordings of brain activity during a recognition memory task designed to differentiate between behavioral indices of recollection and familiarity. Non-parametric cluster-based permutation analyses revealed associations between electrophysiological signatures of familiarity and recollection with their respective behavioral estimates. These results support the idea that recollection and familiarity are distinct phenomena and is the first, to our knowledge, to identify distinct electrophysiological signatures that track individual differences in these processes.
Collapse
|
6
|
Kaestner E, Wu X, Friedman D, Dugan P, Devinsky O, Carlson C, Doyle W, Thesen T, Halgren E. The Precentral Gyrus Contributions to the Early Time-Course of Grapheme-to-Phoneme Conversion. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:18-45. [PMID: 37215328 PMCID: PMC10158576 DOI: 10.1162/nol_a_00047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/16/2021] [Indexed: 05/24/2023]
Abstract
As part of silent reading models, visual orthographic information is transduced into an auditory phonological code in a process of grapheme-to-phoneme conversion (GPC). This process is often identified with lateral temporal-parietal regions associated with auditory phoneme encoding. However, the role of articulatory phonemic representations and the precentral gyrus in GPC is ambiguous. Though the precentral gyrus is implicated in many functional MRI studies of reading, it is not clear if the time course of activity in this region is consistent with the precentral gyrus being involved in GPC. We recorded cortical electrophysiology during a bimodal match/mismatch task from eight patients with perisylvian subdural electrodes to examine the time course of neural activity during a task that necessitated GPC. Patients made a match/mismatch decision between a 3-letter string and the following auditory bi-phoneme. We characterized the distribution and timing of evoked broadband high gamma (70-170 Hz) as well as phase-locking between electrodes. The precentral gyrus emerged with a high concentration of broadband high gamma responses to visual and auditory language as well as mismatch effects. The pars opercularis, supramarginal gyrus, and superior temporal gyrus were also involved. The precentral gyrus showed strong phase-locking with the caudal fusiform gyrus during letter-string presentation and with surrounding perisylvian cortex during the bimodal visual-auditory comparison period. These findings hint at a role for precentral cortex in transducing visual into auditory codes during silent reading.
Collapse
Affiliation(s)
- Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Xiaojing Wu
- Department of Neurology, NYU Langone School of Medicine, New York, USA
| | - Daniel Friedman
- Department of Neurology, NYU Langone School of Medicine, New York, USA
| | - Patricia Dugan
- Department of Neurology, NYU Langone School of Medicine, New York, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone School of Medicine, New York, USA
| | - Chad Carlson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, USA
| | - Werner Doyle
- Department of Neurology, NYU Langone School of Medicine, New York, USA
- Department of Neurosurgery, NYU Langone School of Medicine, New York, USA
| | - Thomas Thesen
- Department of Neurology, NYU Langone School of Medicine, New York, USA
| | - Eric Halgren
- Department of Neurosciences, University of California at San Diego, La Jolla, USA
- Department of Radiology, University of California at San Diego, La Jolla, USA
| |
Collapse
|
7
|
Paulk AC, Kfir Y, Khanna AR, Mustroph ML, Trautmann EM, Soper DJ, Stavisky SD, Welkenhuysen M, Dutta B, Shenoy KV, Hochberg LR, Richardson RM, Williams ZM, Cash SS. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat Neurosci 2022; 25:252-263. [PMID: 35102333 DOI: 10.1038/s41593-021-00997-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022]
Abstract
Recent advances in multi-electrode array technology have made it possible to monitor large neuronal ensembles at cellular resolution in animal models. In humans, however, current approaches restrict recordings to a few neurons per penetrating electrode or combine the signals of thousands of neurons in local field potential (LFP) recordings. Here we describe a new probe variant and set of techniques that enable simultaneous recording from over 200 well-isolated cortical single units in human participants during intraoperative neurosurgical procedures using silicon Neuropixels probes. We characterized a diversity of extracellular waveforms with eight separable single-unit classes, with differing firing rates, locations along the length of the electrode array, waveform spatial spread and modulation by LFP events such as inter-ictal discharges and burst suppression. Although some challenges remain in creating a turnkey recording system, high-density silicon arrays provide a path for studying human-specific cognitive processes and their dysfunction at unprecedented spatiotemporal resolution.
Collapse
Affiliation(s)
- Angelique C Paulk
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Yoav Kfir
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Arjun R Khanna
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Martina L Mustroph
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Eric M Trautmann
- Department of Neuroscience, Columbia University Medical Center, New York City, NY, USA
- Zuckerman Institute, Columbia University, New York City, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University Medical Center, New York City, NY, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Columbia University, New York City, NY, USA
| | - Dan J Soper
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Sergey D Stavisky
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Department of Neurological Surgery, University of California at Davis, Davis, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | | | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Leigh R Hochberg
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - R Mark Richardson
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA.
| | - Sydney S Cash
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Nour Eddine S, Brothers T, Kuperberg GR. The N400 in silico: A review of computational models. PSYCHOLOGY OF LEARNING AND MOTIVATION 2022. [DOI: 10.1016/bs.plm.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Kaestner E, Thesen T, Devinsky O, Doyle W, Carlson C, Halgren E. An Intracranial Electrophysiology Study of Visual Language Encoding: The Contribution of the Precentral Gyrus to Silent Reading. J Cogn Neurosci 2021; 33:2197-2214. [PMID: 34347873 PMCID: PMC8497063 DOI: 10.1162/jocn_a_01764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Models of reading emphasize that visual (orthographic) processing provides input to phonological as well as lexical-semantic processing. Neurobiological models of reading have mapped these processes to distributed regions across occipital-temporal, temporal-parietal, and frontal cortices. However, the role of the precentral gyrus in these models is ambiguous. Articulatory phonemic representations in the precentral gyrus are obviously involved in reading aloud, but it is unclear if the precentral gyrus is recruited during reading silently in a time window consistent with participation in phonological processing contributions. Here, we recorded intracranial electrophysiology during a speeded semantic decision task from 24 patients to map the spatio-temporal flow of information across the cortex during silent reading. Patients selected animate nouns from a stream of nonanimate words, letter strings, and false-font stimuli. We characterized the distribution and timing of evoked high-gamma power (70-170 Hz) as well as phase-locking between electrodes. The precentral gyrus showed a proportion of electrodes responsive to linguistic stimuli (27%) that was at least as high as those of surrounding peri-sylvian regions. These precentral gyrus electrodes had significantly greater high-gamma power for words compared to both false-font and letter-string stimuli. In a patient with word-selective effects in the fusiform, superior temporal, and precentral gyri, there was significant phase-locking between the fusiform and precentral gyri starting at ∼180 msec and between the precentral and superior temporal gyri starting at ∼220 msec. Finally, our large patient cohort allowed exploratory analyses of the spatio-temporal reading network underlying silent reading. The distribution, timing, and connectivity results place the precentral gyrus as an important hub in the silent reading network.
Collapse
Affiliation(s)
| | | | | | - Werner Doyle
- New York University Comprehensive Epilepsy Center
| | | | | |
Collapse
|
10
|
Liuzzi AG, Bruffaerts R, Vandenberghe R. The medial temporal written word processing system. Cortex 2019; 119:287-300. [DOI: 10.1016/j.cortex.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/14/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
|
11
|
Borghesani V, Buiatti M, Eger E, Piazza M. Conceptual and Perceptual Dimensions of Word Meaning Are Recovered Rapidly and in Parallel during Reading. J Cogn Neurosci 2019; 31:95-108. [DOI: 10.1162/jocn_a_01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A single word (the noun “ elephant”) encapsulates a complex multidimensional meaning, including both perceptual (“ big”, “ gray”, “ trumpeting”) and conceptual (“ mammal”, “ can be found in India”) features. Opposing theories make different predictions as to whether different features (also conceivable as dimensions of the semantic space) are stored in similar neural regions and recovered with similar temporal dynamics during word reading. In this magnetoencephalography study, we tracked the brain activity of healthy human participants while reading single words varying orthogonally across three semantic dimensions: two perceptual ones (i.e., the average implied real-world size and the average strength of association with a prototypical sound) and a conceptual one (i.e., the semantic category). The results indicate that perceptual and conceptual representations are supported by partially segregated neural networks: Whereas visual and auditory dimensions are encoded in the phase coherence of low-frequency oscillations of occipital and superior temporal regions, respectively, semantic features are encoded in the power of low-frequency oscillations of anterior temporal and inferior parietal areas. However, despite the differences, these representations appear to emerge at the same latency: around 200 msec after stimulus onset. Taken together, these findings suggest that perceptual and conceptual dimensions of the semantic space are recovered automatically, rapidly, and in parallel during word reading.
Collapse
Affiliation(s)
- Valentina Borghesani
- Université Pierre et Marie Curie, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Gif/Yvette, France
- University of California, San Francisco
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Marco Buiatti
- Institut National de la Santé et de la Recherche Médicale, Gif/Yvette, France
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Evelyn Eger
- Institut National de la Santé et de la Recherche Médicale, Gif/Yvette, France
| | - Manuela Piazza
- Institut National de la Santé et de la Recherche Médicale, Gif/Yvette, France
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
12
|
Hermes D, Rangarajan V, Foster BL, King JR, Kasikci I, Miller KJ, Parvizi J. Electrophysiological Responses in the Ventral Temporal Cortex During Reading of Numerals and Calculation. Cereb Cortex 2018; 27:567-575. [PMID: 26503267 DOI: 10.1093/cercor/bhv250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent evidence suggests that specific neuronal populations in the ventral temporal cortex show larger electrophysiological responses to visual numerals compared with morphologically similar stimuli. This study investigates how these responses change from simple reading of numerals to the active use of numerals in an arithmetic context. We recorded high-frequency broadband (HFB) signals, a reliable measure for local neuronal population activity, while 10 epilepsy patients implanted with subdural electrodes performed separate numeral reading and calculation tasks. We found that calculation increased activity in the posterior inferior temporal gyrus (ITG) with a factor of approximately 1.5 over the first 500 ms of calculation, whereas no such increase was noted for reading numerals without calculation or reading and judging memory statements. In a second experiment conducted in 2 of the same subjects, we show that HFB responses increase in a systematic manner when the single numerals were presented successively in a calculation context: The HFB response in the ITG, to the second and third numerals (i.e., b and c in a + b = c), was approximately 1.5 times larger than the responses to the first numeral (a). These results provide electrophysiological evidence for modulation of local neuronal population responses to visual stimuli based on increasing task demands.
Collapse
Affiliation(s)
- Dora Hermes
- Laboratory of Behavioral and Cognitive Neurology, Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), Department of Neurology and Neurological Sciences.,Department of Psychology
| | - Vinitha Rangarajan
- Laboratory of Behavioral and Cognitive Neurology, Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), Department of Neurology and Neurological Sciences
| | - Brett L Foster
- Laboratory of Behavioral and Cognitive Neurology, Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), Department of Neurology and Neurological Sciences.,Department of Psychology
| | - Jean-Remi King
- Cognitive Neuroimaging Unit, Institute National de la Santé et de la Recherche Médicale, U992, 91191 Gif/Yvette, France
| | - Itir Kasikci
- Neuroscience PhD Program, Istanbul University, Istanbul, Turkey
| | - Kai J Miller
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neurology, Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), Department of Neurology and Neurological Sciences
| |
Collapse
|
13
|
Maess B, Mamashli F, Obleser J, Helle L, Friederici AD. Prediction Signatures in the Brain: Semantic Pre-Activation during Language Comprehension. Front Hum Neurosci 2016; 10:591. [PMID: 27895573 PMCID: PMC5108799 DOI: 10.3389/fnhum.2016.00591] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
There is broad agreement that context-based predictions facilitate lexical-semantic processing. A robust index of semantic prediction during language comprehension is an evoked response, known as the N400, whose amplitude is modulated as a function of semantic context. However, the underlying neural mechanisms that utilize relations of the prior context and the embedded word within it are largely unknown. We measured magnetoencephalography (MEG) data while participants were listening to simple German sentences in which the verbs were either highly predictive for the occurrence of a particular noun (i.e., provided context) or not. The identical set of nouns was presented in both conditions. Hence, differences for the evoked responses of the nouns can only be due to differences in the earlier context. We observed a reduction of the N400 response for highly predicted nouns. Interestingly, the opposite pattern was observed for the preceding verbs: highly predictive (that is more informative) verbs yielded stronger neural magnitude compared to less predictive verbs. A negative correlation between the N400 effect of the verb and that of the noun was found in a distributed brain network, indicating an integral relation between the predictive power of the verb and the processing of the subsequent noun. This network consisted of left hemispheric superior and middle temporal areas and a subcortical area; the parahippocampus. Enhanced activity for highly predictive relative to less predictive verbs, likely reflects establishing semantic features associated with the expected nouns, that is a pre-activation of the expected nouns.
Collapse
Affiliation(s)
- Burkhard Maess
- MEG and Cortical Networks Group, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Fahimeh Mamashli
- MEG and Cortical Networks Group, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Department of Neurology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical SchoolBoston, MA, USA
| | - Jonas Obleser
- Max Planck Research Group "Auditory Cognition", Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Department of Psychology, University of LübeckLübeck, Germany
| | - Liisa Helle
- Elekta OyHelsinki, Finland; Department of Neuroscience and Biomedical Engineering, School of Science, Aalto UniversityEspoo, Finland
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| |
Collapse
|
14
|
Llorens A, Dubarry AS, Trébuchon A, Chauvel P, Alario FX, Liégeois-Chauvel C. Contextual modulation of hippocampal activity during picture naming. BRAIN AND LANGUAGE 2016; 159:92-101. [PMID: 27380274 DOI: 10.1016/j.bandl.2016.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Abstract
Picture naming is a standard task used to probe language processes in healthy and impaired speakers. It recruits a broad neural network of language related areas, among which the hippocampus is rarely included. However, the hippocampus could play a role during picture naming, subtending, for example, implicit learning of the links between pictured objects and their names. To test this hypothesis, we recorded hippocampal activity during plain picture naming, without memorization requirement; we further assessed whether this activity was modulated by contextual factors such as repetition priming and semantic interference. Local field potentials recorded from intracerebral electrodes implanted in the healthy hippocampi of epileptic patients revealed a specific and reliable pattern of activity, markedly modulated by repetition priming and semantic context. These results indicate that the hippocampus is recruited during picture naming, presumably in relation to implicit learning, with contextual factors promoting differential hippocampal processes, possibly subtended by different sub-circuitries.
Collapse
Affiliation(s)
- A Llorens
- Aix Marseille Univ, Inserm, Institut des Neurosciences des Systemes, Marseille, France; Aix Marseille Univ, CNRS, UMR7290, LPC, Marseille, France
| | - A-S Dubarry
- Aix Marseille Univ, Inserm, Institut des Neurosciences des Systemes, Marseille, France; Aix Marseille Univ, CNRS, UMR7290, LPC, Marseille, France
| | - A Trébuchon
- Aix Marseille Univ, Inserm, Institut des Neurosciences des Systemes, Marseille, France; AP-HM, Neurophysiologie Clinique, Marseille, France
| | - P Chauvel
- Aix Marseille Univ, Inserm, Institut des Neurosciences des Systemes, Marseille, France; AP-HM, Neurophysiologie Clinique, Marseille, France
| | - F-X Alario
- Aix Marseille Univ, CNRS, UMR7290, LPC, Marseille, France
| | - C Liégeois-Chauvel
- Aix Marseille Univ, Inserm, Institut des Neurosciences des Systemes, Marseille, France.
| |
Collapse
|
15
|
Reilly J, Garcia A, Binney RJ. Does the sound of a barking dog activate its corresponding visual form? An fMRI investigation of modality-specific semantic access. BRAIN AND LANGUAGE 2016; 159:45-59. [PMID: 27289210 PMCID: PMC5155332 DOI: 10.1016/j.bandl.2016.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/07/2016] [Accepted: 05/12/2016] [Indexed: 06/06/2023]
Abstract
Much remains to be learned about the neural architecture underlying word meaning. Fully distributed models of semantic memory predict that the sound of a barking dog will conjointly engage a network of distributed sensorimotor spokes. An alternative framework holds that modality-specific features additionally converge within transmodal hubs. Participants underwent functional MRI while covertly naming familiar objects versus newly learned novel objects from only one of their constituent semantic features (visual form, characteristic sound, or point-light motion representation). Relative to the novel object baseline, familiar concepts elicited greater activation within association regions specific to the presentation modality. Furthermore, visual form elicited activation within high-level auditory association cortex. Conversely, environmental sounds elicited activation in regions proximal to visual association cortex. Both conditions commonly engaged a putative hub region within lateral anterior temporal cortex. These results support hybrid semantic models in which local hubs and distributed spokes are dually engaged in service of semantic memory.
Collapse
Affiliation(s)
- Jamie Reilly
- Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA; Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA.
| | - Amanda Garcia
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Richard J Binney
- Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA; Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Left perirhinal cortex codes for similarity in meaning between written words: Comparison with auditory word input. Neuropsychologia 2015; 76:4-16. [DOI: 10.1016/j.neuropsychologia.2015.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 11/19/2022]
|
17
|
Ahlfors SP, Wreh C. Modeling the effect of dendritic input location on MEG and EEG source dipoles. Med Biol Eng Comput 2015; 53:879-87. [PMID: 25863693 PMCID: PMC4573790 DOI: 10.1007/s11517-015-1296-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
Abstract
The cerebral sources of magneto- and electroencephalography (MEG, EEG) signals can be represented by current dipoles. We used computational modeling of realistically shaped passive-membrane dendritic trees of pyramidal cells from the human cerebral cortex to examine how the spatial distribution of the synaptic inputs affects the current dipole. The magnitude of the total dipole moment vector was found to be proportional to the vertical location of the synaptic input. The dipole moment had opposite directions for inputs above and below a reversal point located near the soma. Inclusion of shunting-type inhibition either suppressed or enhanced the current dipole, depending on whether the excitatory and inhibitory synapses were on the same or opposite side of the reversal point. Relating the properties of the macroscopic current dipoles to dendritic current distributions can help to provide means for interpreting MEG and EEG data in terms of synaptic connection patterns within cortical areas.
Collapse
Affiliation(s)
- Seppo P Ahlfors
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, 149 13th Street, Rm 2301, Charlestown, MA, 02129, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02135, USA.
| | - Christopher Wreh
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, 149 13th Street, Rm 2301, Charlestown, MA, 02129, USA
| |
Collapse
|
18
|
Halgren E, Kaestner E, Marinkovic K, Cash SS, Wang C, Schomer DL, Madsen JR, Ulbert I. Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration. Neuropsychologia 2015; 76:108-24. [PMID: 25801916 PMCID: PMC4575841 DOI: 10.1016/j.neuropsychologia.2015.03.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 01/01/2023]
Abstract
Theta may play a central role during language understanding and other extended cognitive processing, providing an envelope for widespread integration of participating cortical areas. We used linear microelectrode arrays in epileptics to define the circuits generating theta in inferotemporal, perirhinal, entorhinal, prefrontal and anterior cingulate cortices. In all locations, theta was generated by excitatory current sinks in middle layers which receive predominantly feedforward inputs, alternating with sinks in superficial layers which receive mainly feedback/associative inputs. Baseline and event-related theta were generated by indistinguishable laminar profiles of transmembrane currents and unit-firing. Word presentation could reset theta phase, permitting theta to contribute to late event-related potentials, even when theta power decreases relative to baseline. Limited recordings during sentence reading are consistent with rhythmic theta activity entrained by a given word modulating the neural background for the following word. These findings show that theta occurs spontaneously, and can be momentarily suppressed, reset and synchronized by words. Theta represents an alternation between feedforward/divergent and associative/convergent processing modes that may temporally organize sustained processing and optimize the timing of memory formation. We suggest that words are initially encoded via a ventral feedforward stream which is lexicosemantic in the anteroventral temporal lobe; its arrival may trigger a widespread theta rhythm which integrates the word within a larger context.
Collapse
Affiliation(s)
- Eric Halgren
- Departments of Radiology and Neurosciences, University of California at San Diego, La Jolla, CA 92069, USA.
| | - Erik Kaestner
- Interdepartmental Neurosciences Program, University of California at San Diego, La Jolla, CA 92069, USA
| | - Ksenija Marinkovic
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Chunmao Wang
- Departments of Radiology and Neurosciences, University of California at San Diego, La Jolla, CA 92069, USA; Interdepartmental Neurosciences Program, University of California at San Diego, La Jolla, CA 92069, USA; Department of Psychology, San Diego State University, San Diego, CA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Children's Hospital, Harvard Medical School, Boston, MA, USA; Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest-1117, Hungary
| | - Donald L Schomer
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Istvan Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest-1117, Hungary
| |
Collapse
|
19
|
Ahlfors SP, Jones SR, Ahveninen J, Hämäläinen MS, Belliveau JW, Bar M. Direction of magnetoencephalography sources associated with feedback and feedforward contributions in a visual object recognition task. Neurosci Lett 2014; 585:149-54. [PMID: 25445356 DOI: 10.1016/j.neulet.2014.11.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/31/2014] [Accepted: 11/18/2014] [Indexed: 11/30/2022]
Abstract
Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depend on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visual object recognition experiment in which there were specific expectations of activation in the fusiform region being driven by either feedforward or feedback inputs. The source for the early non-specific visual evoked response, presumably corresponding to feedforward driven activity, pointed outward, i.e., away from the white matter. In contrast, the source for the later, object-recognition related signals, expected to be driven by feedback inputs, pointed inward, toward the white matter. Associating specific features of the MEG/EEG source waveforms to feedforward and feedback inputs could provide unique information about the activation patterns within hierarchically organized cortical areas.
Collapse
Affiliation(s)
- Seppo P Ahlfors
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02135, USA.
| | - Stephanie R Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA; Brown University, Providence, RI, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02135, USA
| | - John W Belliveau
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02135, USA
| | - Moshe Bar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA; Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
20
|
Plank M, Snider J, Kaestner E, Halgren E, Poizner H. Neurocognitive stages of spatial cognitive mapping measured during free exploration of a large-scale virtual environment. J Neurophysiol 2014; 113:740-53. [PMID: 25376779 DOI: 10.1152/jn.00114.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using a novel, fully mobile virtual reality paradigm, we investigated the EEG correlates of spatial representations formed during unsupervised exploration. On day 1, subjects implicitly learned the location of 39 objects by exploring a room and popping bubbles that hid the objects. On day 2, they again popped bubbles in the same environment. In most cases, the objects hidden underneath the bubbles were in the same place as on day 1. However, a varying third of them were misplaced in each block. Subjects indicated their certainty that the object was in the same location as the day before. Compared with bubble pops revealing correctly placed objects, bubble pops revealing misplaced objects evoked a decreased negativity starting at 145 ms, with scalp topography consistent with generation in medial parietal cortex. There was also an increased negativity starting at 515 ms to misplaced objects, with scalp topography consistent with generation in inferior temporal cortex. Additionally, misplaced objects elicited an increase in frontal midline theta power. These findings suggest that the successive neurocognitive stages of processing allocentric space may include an initial template matching, integration of the object within its spatial cognitive map, and memory recall, analogous to the processing negativity N400 and theta that support verbal cognitive maps in humans.
Collapse
Affiliation(s)
- Markus Plank
- Institute for Neural Computation, University of California, San Diego, La Jolla, California
| | - Joseph Snider
- Institute for Neural Computation, University of California, San Diego, La Jolla, California
| | - Erik Kaestner
- Interdepartmental Neuroscience Program, University of California, San Diego, La Jolla, California; and
| | - Eric Halgren
- Interdepartmental Neuroscience Program, University of California, San Diego, La Jolla, California; and Departments of Radiology, Neurosciences, and Psychiatry, University of California, San Diego, La Jolla, California
| | - Howard Poizner
- Institute for Neural Computation, University of California, San Diego, La Jolla, California; Interdepartmental Neuroscience Program, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
21
|
Amsel BD, Urbach TP, Kutas M. Empirically grounding grounded cognition: the case of color. Neuroimage 2014; 99:149-57. [PMID: 24844740 DOI: 10.1016/j.neuroimage.2014.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/29/2014] [Accepted: 05/10/2014] [Indexed: 12/16/2022] Open
Abstract
Grounded cognition theories hold that the neural states involved in experiencing objects play a direct functional role in representing and accessing object knowledge from memory. However, extant data marshaled to support this view are also consistent with an opposing view that perceptuo-motor activations occur only following access to knowledge from amodal memory systems. We provide novel discriminating evidence for the functional involvement of visuo-perceptual states specifically in accessing knowledge about an object's color. We recorded event-related brain potentials (ERPs) while manipulating the visual contrast of monochromatic words ("lime") in a semantic decision task: responses were made for valid colors ("green") and locations ("kitchen") and withheld for invalid colors and locations. Low contrast delayed perceptual processing for both color and location. Critically, low contrast slowed access to color knowledge only. This finding reveals that the visual system plays a functional role in accessing object knowledge and uniquely supports grounded views of cognition.
Collapse
Affiliation(s)
- Ben D Amsel
- Department of Cognitive Science, University of CA, San Diego, USA.
| | - Thomas P Urbach
- Department of Cognitive Science, University of CA, San Diego, USA
| | - Marta Kutas
- Department of Cognitive Science, University of CA, San Diego, USA; Department of Neurosciences, University of CA, San Diego, USA
| |
Collapse
|
22
|
Marinkovic K, Rosen BQ, Cox B, Hagler DJ. Spatio-temporal processing of words and nonwords: hemispheric laterality and acute alcohol intoxication. Brain Res 2014; 1558:18-32. [PMID: 24565928 DOI: 10.1016/j.brainres.2014.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/06/2014] [Accepted: 02/16/2014] [Indexed: 11/18/2022]
Abstract
This study examined neurofunctional correlates of reading by modulating semantic, lexical, and orthographic attributes of letter strings. It compared the spatio-temporal activity patterns elicited by real words (RW), pseudowords, orthographically regular, pronounceable nonwords (PN) that carry no meaning, and orthographically illegal, nonpronounceable nonwords (NN). A double-duty lexical decision paradigm instructed participants to detect RW while ignoring nonwords and to additionally respond to words that refer to animals (AW). Healthy social drinkers (N=22) participated in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg for women) and placebo conditions in a counterbalanced design. Whole-head MEG signals were analyzed with an anatomically-constrained MEG method. Simultaneously acquired ERPs confirm previous evidence. Spatio-temporal MEG estimates to RW and PN are consistent with the highly replicable left-lateralized ventral visual processing stream. However, the PN elicit weaker activity than other stimuli starting at ~230 ms and extending to the M400 (magnetic equivalent of N400) in the left lateral temporal area, indicating their reduced access to lexicosemantic stores. In contrast, the NN uniquely engage the right hemisphere during the M400. Increased demands on lexicosemantic access imposed by AW result in greater activity in the left temporal cortex starting at ~230 ms and persisting through the M400 and response preparation stages. Alcohol intoxication strongly attenuates early visual responses occipito-temporally overall. Subsequently, alcohol selectively affects the left prefrontal cortex as a function of orthographic and semantic dimensions, suggesting that it modulates the dynamics of the lexicosemantic processing in a top-down manner, by increasing difficulty of semantic retrieval.
Collapse
Affiliation(s)
- Ksenija Marinkovic
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., 0841, La Jolla, CA 92093-0841, USA; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Burke Q Rosen
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., 0841, La Jolla, CA 92093-0841, USA
| | - Brendan Cox
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donald J Hagler
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., 0841, La Jolla, CA 92093-0841, USA
| |
Collapse
|
23
|
Trébuchon A, Démonet JF, Chauvel P, Liégeois-Chauvel C. Ventral and dorsal pathways of speech perception: an intracerebral ERP study. BRAIN AND LANGUAGE 2013; 127:273-283. [PMID: 24028995 DOI: 10.1016/j.bandl.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/29/2013] [Accepted: 04/11/2013] [Indexed: 06/02/2023]
Abstract
Recent theory of physiology of language suggests a dual stream dorsal/ventral organization of speech perception. Using intra-cerebral Event-related potentials (ERPs) during pre-surgical assessment of twelve drug-resistant epileptic patients, we aimed to single out electrophysiological patterns during both lexical-semantic and phonological monitoring tasks involving ventral and dorsal regions respectively. Phonological information processing predominantly occurred in the left supra-marginal gyrus (dorsal stream) and lexico-semantic information occurred in anterior/middle temporal and fusiform gyri (ventral stream). Similar latencies were identified in response to phonological and lexico-semantic tasks, suggesting parallel processing. Typical ERP components were strongly left lateralized since no evoked responses were recorded in homologous right structures. Finally, ERP patterns suggested the inferior frontal gyrus as the likely final common pathway of both dorsal and ventral streams. These results brought out detailed evidence of the spatial-temporal information processing in the dual pathways involved in speech perception.
Collapse
Affiliation(s)
- Agnès Trébuchon
- INS INSERM, UMR 1106, 13005 Marseille, France; Aix Marseille Université, 13000 Marseille, France; Assistance Publique-Hôpitaux Marseille, 13005 Marseille, France.
| | | | | | | |
Collapse
|
24
|
Sequential then interactive processing of letters and words in the left fusiform gyrus. Nat Commun 2013; 3:1284. [PMID: 23250414 PMCID: PMC4407686 DOI: 10.1038/ncomms2220] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/23/2012] [Indexed: 11/08/2022] Open
Abstract
Despite decades of cognitive, neuropsychological and neuroimaging studies, it is unclear if letters are identified before word-form encoding during reading, or if letters and their combinations are encoded simultaneously and interactively. Here using functional magnetic resonance imaging, we show that a 'letter-form' area (responding more to consonant strings than false fonts) can be distinguished from an immediately anterior 'visual word-form area' in ventral occipito-temporal cortex (responding more to words than consonant strings). Letter-selective magnetoencephalographic responses begin in the letter-form area ∼60 ms earlier than word-selective responses in the word-form area. Local field potentials confirm the latency and location of letter-selective responses. This area shows increased high-gamma power for ∼400 ms, and strong phase-locking with more anterior areas supporting lexico-semantic processing. These findings suggest that during reading, visual stimuli are first encoded as letters before their combinations are encoded as words. Activity then rapidly spreads anteriorly, and the entire network is engaged in sustained integrative processing.
Collapse
|
25
|
Chan AM, Dykstra AR, Jayaram V, Leonard MK, Travis KE, Gygi B, Baker JM, Eskandar E, Hochberg LR, Halgren E, Cash SS. Speech-specific tuning of neurons in human superior temporal gyrus. ACTA ACUST UNITED AC 2013; 24:2679-93. [PMID: 23680841 DOI: 10.1093/cercor/bht127] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
How the brain extracts words from auditory signals is an unanswered question. We recorded approximately 150 single and multi-units from the left anterior superior temporal gyrus of a patient during multiple auditory experiments. Against low background activity, 45% of units robustly fired to particular spoken words with little or no response to pure tones, noise-vocoded speech, or environmental sounds. Many units were tuned to complex but specific sets of phonemes, which were influenced by local context but invariant to speaker, and suppressed during self-produced speech. The firing of several units to specific visual letters was correlated with their response to the corresponding auditory phonemes, providing the first direct neural evidence for phonological recoding during reading. Maximal decoding of individual phonemes and words identities was attained using firing rates from approximately 5 neurons within 200 ms after word onset. Thus, neurons in human superior temporal gyrus use sparse spatially organized population encoding of complex acoustic-phonetic features to help recognize auditory and visual words.
Collapse
Affiliation(s)
- Alexander M Chan
- Medical Engineering and Medical Physics, Department of Neurology
| | - Andrew R Dykstra
- Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA, Department of Neurology
| | - Vinay Jayaram
- Department of Neuroscience, Harvard University, Cambridge, MA, USA
| | | | | | - Brian Gygi
- National Institute for Health Research, Nottingham Hearing Biomedical Research Unit, Nottingham, UK and
| | - Janet M Baker
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Emad Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Eric Halgren
- Multimodal Imaging Laboratory, Department of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
26
|
Cortical gamma oscillations: the functional key is activation, not cognition. Neurosci Biobehav Rev 2013; 37:401-17. [PMID: 23333264 DOI: 10.1016/j.neubiorev.2013.01.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 12/19/2022]
Abstract
Cortical oscillatory synchrony in the gamma range has been attracting increasing attention in cognitive neuroscience ever since being proposed as a solution to the so-called binding problem. This growing literature is critically reviewed in both its basic neuroscience and cognitive aspects. A physiological "default assumption" regarding these oscillations is introduced, according to which they signal a state of physiological activation of cortical tissue, and the associated need to balance excitation with inhibition in particular. As such these oscillations would belong among a variety of generic neural control operations that enable neural tissue to perform its systems level functions, without implementing those functions themselves. Regional control of cerebral blood flow provides an analogy in this regard, and gamma oscillations are tightly correlated with this even more elementary control operation. As correlates of neural activation they will also covary with cognitive activity, and this typically suffices to account for the covariation between gamma activity and cognitive task variables. A number of specific cases of gamma synchrony are examined in this light, including the original impetus for attributing cognitive significance to gamma activity, namely the experiments interpreted as evidence for "binding by synchrony". This examination finds no compelling reasons to assign functional roles to oscillatory synchrony in the gamma range beyond its generic functions at the level of infrastructural neural control.
Collapse
|
27
|
Age-related changes in the neurophysiology of language in adults: relationship to regional cortical thinning and white matter microstructure. J Neurosci 2012; 32:12204-13. [PMID: 22933802 DOI: 10.1523/jneurosci.0136-12.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although reading skill remains relatively stable with advancing age in humans, neurophysiological measures suggest potential reductions in efficiency of lexical information processing. It is unclear whether these age-related changes are secondary to decreases in regional cortical thickness and/or microstructure of fiber tracts essential to language. Magnetoencephalography, volumetric MRI, and diffusion tensor imaging were performed in 10 young (18-33 years) and 10 middle-aged (42-64 years) human individuals to evaluate the spatiotemporal dynamics and structural correlates of age-related changes in lexical-semantic processing. Increasing age was associated with reduced activity in left temporal lobe regions from 250 to 350 ms and in left inferior prefrontal cortex from 350 to 450 ms (i.e., N400). Hierarchical regression indicated that age no longer predicted left inferior prefrontal activity after cortical thickness and fractional anisotropy (FA) of the uncinate fasciculus (UF) were considered. Interestingly, FA of the UF was a stronger predictor of the N400 response than cortical thickness. Age-related reductions in left-lateralization of language responses were observed between 250 and 350 ms, and were associated with left temporal thinning and frontotemporal FA reductions. N400 reductions were not associated with poorer task performance. Rather, increasing age was associated with reduction in the left prefrontal N400, which in turn was also associated with slower response time. These results reveal that changes in the neurophysiology of language occur by middle age and appear to be partially mediated by structural brain loss. These neurophysiological changes may reflect an adaptive process that ensues as communication between left perisylvian regions declines.
Collapse
|
28
|
Signed words in the congenitally deaf evoke typical late lexicosemantic responses with no early visual responses in left superior temporal cortex. J Neurosci 2012; 32:9700-5. [PMID: 22787055 DOI: 10.1523/jneurosci.1002-12.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Congenitally deaf individuals receive little or no auditory input, and when raised by deaf parents, they acquire sign as their native and primary language. We asked two questions regarding how the deaf brain in humans adapts to sensory deprivation: (1) is meaning extracted and integrated from signs using the same classical left hemisphere frontotemporal network used for speech in hearing individuals, and (2) in deafness, is superior temporal cortex encompassing primary and secondary auditory regions reorganized to receive and process visual sensory information at short latencies? Using MEG constrained by individual cortical anatomy obtained with MRI, we examined an early time window associated with sensory processing and a late time window associated with lexicosemantic integration. We found that sign in deaf individuals and speech in hearing individuals activate a highly similar left frontotemporal network (including superior temporal regions surrounding auditory cortex) during lexicosemantic processing, but only speech in hearing individuals activates auditory regions during sensory processing. Thus, neural systems dedicated to processing high-level linguistic information are used for processing language regardless of modality or hearing status, and we do not find evidence for rewiring of afferent connections from visual systems to auditory cortex.
Collapse
|
29
|
Binney RJ, Parker GJM, Lambon Ralph MA. Convergent connectivity and graded specialization in the rostral human temporal lobe as revealed by diffusion-weighted imaging probabilistic tractography. J Cogn Neurosci 2012; 24:1998-2014. [PMID: 22721379 DOI: 10.1162/jocn_a_00263] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent years, multiple independent neuroscience investigations have implicated critical roles for the rostral temporal lobe in auditory and visual perception, language, and semantic memory. Although arising in the context of different cognitive functions, most of these suggest that there is a gradual convergence of sensory information in the temporal lobe that culminates in modality- and perceptually invariant representations at the most rostral aspect. Currently, however, too little is known regarding connectivity within the human temporal lobe to be sure of exactly how and where convergence occurs; existing hypotheses are primarily derived on the basis of cross-species generalizations from invasive nonhuman primate studies, the validity of which is unclear, especially where language function is concerned. In this study, we map the connectivity of the human rostral temporal lobe in vivo for the first time using diffusion-weighted imaging probabilistic tractography. The results indicate that convergence of sensory information in the temporal lobe is in fact a graded process that occurs along both its longitudinal and lateral axes and culminates in the most rostral limits. We highlight the consistency of our results with those of prior functional neuroimaging, computational modeling, and patient studies. By going beyond simple fasciculus reconstruction, we systematically explored the connectivity of specific temporal lobe areas to frontal and parietal language regions. In contrast to the graded within-temporal lobe connectivity, this intertemporal connectivity was found to dissociate across caudal, mid, and rostral subregions. Furthermore, we identified a basal rostral temporal region with very limited connectivity to areas outside the temporal lobe, which aligns with recent evidence that this subregion underpins the extraction of modality- and context-invariant semantic representations.
Collapse
|
30
|
Travis KE, Leonard MK, Chan AM, Torres C, Sizemore ML, Qu Z, Eskandar E, Dale AM, Elman JL, Cash SS, Halgren E. Independence of early speech processing from word meaning. ACTA ACUST UNITED AC 2012; 23:2370-9. [PMID: 22875868 DOI: 10.1093/cercor/bhs228] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We combined magnetoencephalography (MEG) with magnetic resonance imaging and electrocorticography to separate in anatomy and latency 2 fundamental stages underlying speech comprehension. The first acoustic-phonetic stage is selective for words relative to control stimuli individually matched on acoustic properties. It begins ∼60 ms after stimulus onset and is localized to middle superior temporal cortex. It was replicated in another experiment, but is strongly dissociated from the response to tones in the same subjects. Within the same task, semantic priming of the same words by a related picture modulates cortical processing in a broader network, but this does not begin until ∼217 ms. The earlier onset of acoustic-phonetic processing compared with lexico-semantic modulation was significant in each individual subject. The MEG source estimates were confirmed with intracranial local field potential and high gamma power responses acquired in 2 additional subjects performing the same task. These recordings further identified sites within superior temporal cortex that responded only to the acoustic-phonetic contrast at short latencies, or the lexico-semantic at long. The independence of the early acoustic-phonetic response from semantic context suggests a limited role for lexical feedback in early speech perception.
Collapse
|
31
|
Lachaux JP, Axmacher N, Mormann F, Halgren E, Crone NE. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog Neurobiol 2012; 98:279-301. [PMID: 22750156 DOI: 10.1016/j.pneurobio.2012.06.008] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/31/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
Human intracranial EEG (iEEG) recordings are primarily performed in epileptic patients for presurgical mapping. When patients perform cognitive tasks, iEEG signals reveal high-frequency neural activities (HFAs, between around 40 Hz and 150 Hz) with exquisite anatomical, functional and temporal specificity. Such HFAs were originally interpreted in the context of perceptual or motor binding, in line with animal studies on gamma-band ('40 Hz') neural synchronization. Today, our understanding of HFA has evolved into a more general index of cortical processing: task-induced HFA reveals, with excellent spatial and time resolution, the participation of local neural ensembles in the task-at-hand, and perhaps the neural communication mechanisms allowing them to do so. This review promotes the claim that studying HFA with iEEG provides insights into the neural bases of cognition that cannot be derived as easily from other approaches, such as fMRI. We provide a series of examples supporting that claim, drawn from studies on memory, language and default-mode networks, and successful attempts of real-time functional mapping. These examples are followed by several guidelines for HFA research, intended for new groups interested by this approach. Overall, iEEG research on HFA should play an increasing role in cognitive neuroscience in humans, because it can be explicitly linked to basic research in animals. We conclude by discussing the future evolution of this field, which might expand that role even further, for instance through the use of multi-scale electrodes and the fusion of iEEG with MEG and fMRI.
Collapse
Affiliation(s)
- Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Brain Dynamics and Cognition Team, F-69500 Lyon-Bron, France.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Active reading requires coordination between frequent eye movements (saccades) and short fixations in text. Yet, the impact of saccades on word processing remains unknown, as neuroimaging studies typically employ constant eye fixation. Here we investigate eye-movement effects on word recognition processes in healthy human subjects using anatomically constrained magnetoencephalography, psychophysical measurements, and saccade detection in real time. Word recognition was slower and brain responses were reduced to words presented early versus late after saccades, suggesting an overall transient impairment of word processing after eye movements. Response reductions occurred early in visual cortices and later in language regions, where they colocalized with repetition priming effects. Qualitatively similar effects occurred when words appeared early versus late after background movement that mimicked saccades, suggesting that retinal motion contributes to postsaccadic inhibition. Further, differences in postsaccadic and background-movement effects suggest that central mechanisms also contribute to postsaccadic modulation. Together, these results suggest a complex interplay between visual and central saccadic mechanisms during reading.
Collapse
|
33
|
Abstract
How the brain encodes the semantic concepts represented by words is a fundamental question in cognitive neuroscience. Hemodynamic neuroimaging studies have robustly shown that different areas of posteroventral temporal lobe are selectively activated by images of animals versus manmade objects. Selective responses in these areas to words representing animals versus objects are sometimes also seen, but they are task-dependent, suggesting that posteroventral temporal cortex may encode visual categories, while more anterior areas encode semantic categories. Here, using the spatiotemporal resolution provided by intracranial macroelectrode and microelectrode arrays, we report category-selective responses to words representing animals and objects in human anteroventral temporal areas including inferotemporal, perirhinal, and entorhinal cortices. This selectivity generalizes across tasks and sensory modalities, suggesting that it represents abstract lexicosemantic categories. Significant category-specific responses are found in measures sensitive to synaptic activity (local field potentials, high gamma power, current sources and sinks) and unit-firing (multiunit and single-unit activity). Category-selective responses can occur at short latency (as early as 130 ms) in middle cortical layers and thus are extracted in the first pass of activity through the anteroventral temporal lobe. This activation may provide input to posterior areas for iconic representations when required by the task, as well as to the hippocampal formation for categorical encoding and retrieval of memories, and to the amygdala for emotional associations. More generally, these results support models in which the anteroventral temporal lobe plays a primary role in the semantic representation of words.
Collapse
|
34
|
Llorens A, Trébuchon A, Liégeois-Chauvel C, Alario FX. Intra-cranial recordings of brain activity during language production. Front Psychol 2011; 2:375. [PMID: 22207857 PMCID: PMC3246222 DOI: 10.3389/fpsyg.2011.00375] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/28/2011] [Indexed: 02/06/2023] Open
Abstract
Recent findings in the neurophysiology of language production have provided a detailed description of the brain network underlying this behavior, as well as some indications about the timing of operations. Despite their invaluable utility, these data generally suffer from limitations either in terms of temporal resolution, or in terms of spatial localization. In addition, studying the neural basis of speech is complicated by the presence of articulation artifacts such as electro-myographic activity that interferes with the neural signal. These difficulties are virtually absent in a powerful albeit much less frequent methodology, namely the recording of intra-cranial brain activity (intra-cranial electroencephalography). Such recordings are only possible under very specific clinical circumstances requiring functional mapping before brain surgery, most notably in patients that suffer from pharmaco-resistant epilepsy. Here we review the research conducted with this methodology in the field of language production, with explicit consideration of its advantages and drawbacks. The available evidence is shown to be diverse, both in terms of the tasks and the cognitive processes tested and in terms of the brain localizations being studied. Still, the review provides valuable information for characterizing the dynamics of the neural events occurring in the language production network. Following modality specific activities (in auditory or visual cortices), there is a convergence of activity in superior temporal sulcus, which is a plausible neural correlate of phonological encoding processes. Later, between 500 and 800 ms, inferior frontal gyrus (around Broca's area) is involved. Peri-rolandic areas are recruited in the two modalities relatively early (200-500 ms window), suggesting a very early involvement of (pre-) motor processes. We discuss how some of these findings may be at odds with conclusions drawn from available meta-analysis of language production studies.
Collapse
Affiliation(s)
- Anaïs Llorens
- INSERM UMR 751, Aix-Marseille Université Marseille, France
| | | | | | | |
Collapse
|
35
|
Gratiy SL, Devor A, Einevoll GT, Dale AM. On the estimation of population-specific synaptic currents from laminar multielectrode recordings. Front Neuroinform 2011; 5:32. [PMID: 22203801 PMCID: PMC3243925 DOI: 10.3389/fninf.2011.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/21/2011] [Indexed: 11/21/2022] Open
Abstract
Multielectrode array recordings of extracellular electrical field potentials along the depth axis of the cerebral cortex are gaining popularity as an approach for investigating the activity of cortical neuronal circuits. The low-frequency band of extracellular potential, i.e., the local field potential (LFP), is assumed to reflect synaptic activity and can be used to extract the laminar current source density (CSD) profile. However, physiological interpretation of the CSD profile is uncertain because it does not disambiguate synaptic inputs from passive return currents and does not identify population-specific contributions to the signal. These limitations prevent interpretation of the CSD in terms of synaptic functional connectivity in the columnar microcircuit. Here we present a novel anatomically informed model for decomposing the LFP signal into population-specific contributions and for estimating the corresponding activated synaptic projections. This involves a linear forward model, which predicts the population-specific laminar LFP in response to synaptic inputs applied at different positions along each population and a linear inverse model, which reconstructs laminar profiles of synaptic inputs from laminar LFP data based on the forward model. Assuming spatially smooth synaptic inputs within individual populations, the model decomposes the columnar LFP into population-specific contributions and estimates the corresponding laminar profiles of synaptic input as a function of time. It should be noted that constant synaptic currents at all positions along a neuronal population cannot be reconstructed, as this does not result in a change in extracellular potential. However, constraining the solution using a priori knowledge of the spatial distribution of synaptic connectivity provides the further advantage of estimating the strength of active synaptic projections from the columnar LFP profile thus fully specifying synaptic inputs.
Collapse
Affiliation(s)
- Sergey L Gratiy
- Department of Radiology, University of California San Diego La Jolla, CA, USA
| | | | | | | |
Collapse
|
36
|
Right hemisphere has the last laugh: neural dynamics of joke appreciation. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2011; 11:113-30. [PMID: 21264646 PMCID: PMC3047694 DOI: 10.3758/s13415-010-0017-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Understanding a joke relies on semantic, mnemonic, inferential, and emotional contributions from multiple brain areas. Anatomically constrained magnetoencephalography (aMEG) combining high-density whole-head MEG with anatomical magnetic resonance imaging allowed us to estimate where the humor-specific brain activations occur and to understand their temporal sequence. Punch lines provided either funny, not funny (semantically congruent), or nonsensical (incongruent) replies to joke questions. Healthy subjects rated them as being funny or not funny. As expected, incongruous endings evoke the largest N400m in left-dominant temporo-prefrontal areas, due to integration difficulty. In contrast, funny punch lines evoke the smallest N400m during this initial lexical–semantic stage, consistent with their primed “surface congruity” with the setup question. In line with its sensitivity to ambiguity, the anteromedial prefrontal cortex may contribute to the subsequent “second take” processing, which, for jokes, presumably reflects detection of a clever “twist” contained in the funny punch lines. Joke-selective activity simultaneously emerges in the right prefrontal cortex, which may lead an extended bilateral temporo-frontal network in establishing the distant unexpected creative coherence between the punch line and the setup. This progression from an initially promising but misleading integration from left frontotemporal associations, to medial prefrontal ambiguity evaluation and right prefrontal reprocessing, may reflect the essential tension and resolution underlying humor.
Collapse
|
37
|
Leonard MK, Torres C, Travis KE, Brown TT, Hagler DJ, Dale AM, Elman JL, Halgren E. Language proficiency modulates the recruitment of non-classical language areas in bilinguals. PLoS One 2011; 6:e18240. [PMID: 21455315 PMCID: PMC3063800 DOI: 10.1371/journal.pone.0018240] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 03/01/2011] [Indexed: 11/18/2022] Open
Abstract
Bilingualism provides a unique opportunity for understanding the relative roles of proficiency and order of acquisition in determining how the brain represents language. In a previous study, we combined magnetoencephalography (MEG) and magnetic resonance imaging (MRI) to examine the spatiotemporal dynamics of word processing in a group of Spanish-English bilinguals who were more proficient in their native language. We found that from the earliest stages of lexical processing, words in the second language evoke greater activity in bilateral posterior visual regions, while activity to the native language is largely confined to classical left hemisphere fronto-temporal areas. In the present study, we sought to examine whether these effects relate to language proficiency or order of language acquisition by testing Spanish-English bilingual subjects who had become dominant in their second language. Additionally, we wanted to determine whether activity in bilateral visual regions was related to the presentation of written words in our previous study, so we presented subjects with both written and auditory words. We found greater activity for the less proficient native language in bilateral posterior visual regions for both the visual and auditory modalities, which started during the earliest word encoding stages and continued through lexico-semantic processing. In classical left fronto-temporal regions, the two languages evoked similar activity. Therefore, it is the lack of proficiency rather than secondary acquisition order that determines the recruitment of non-classical areas for word processing.
Collapse
Affiliation(s)
- Matthew K Leonard
- Department of Cognitive Science, University of California San Diego, La Jolla, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Event-related potentials reflecting the frequency of unattended spoken words: A neuronal index of connection strength in lexical memory circuits? Neuroimage 2011; 55:658-68. [DOI: 10.1016/j.neuroimage.2010.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022] Open
|
39
|
Travis KE, Leonard MK, Brown TT, Hagler DJ, Curran M, Dale AM, Elman JL, Halgren E. Spatiotemporal neural dynamics of word understanding in 12- to 18-month-old-infants. ACTA ACUST UNITED AC 2011; 21:1832-9. [PMID: 21209121 DOI: 10.1093/cercor/bhq259] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Learning words is central in human development. However, lacking clear evidence for how or where language is processed in the developing brain, it is unknown whether these processes are similar in infants and adults. Here, we use magnetoencephalography in combination with high-resolution structural magnetic resonance imaging to noninvasively estimate the spatiotemporal distribution of word-selective brain activity in 12- to 18-month-old infants. Infants watched pictures of common objects and listened to words that they understood. A subset of these infants also listened to familiar words compared with sensory control sounds. In both experiments, words evoked a characteristic event-related brain response peaking ∼400 ms after word onset, which localized to left frontotemporal cortices. In adults, this activity, termed the N400m, is associated with lexico-semantic encoding. Like adults, we find that the amplitude of the infant N400m is also modulated by semantic priming, being reduced to words preceded by a semantically related picture. These findings suggest that similar left frontotemporal areas are used for encoding lexico-semantic information throughout the life span, from the earliest stages of word learning. Furthermore, this ontogenetic consistency implies that the neurophysiological processes underlying the N400m may be important both for understanding already known words and for learning new words.
Collapse
Affiliation(s)
- Katherine E Travis
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0662, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Csercsa R, Dombovári B, Fabó D, Wittner L, Eross L, Entz L, Sólyom A, Rásonyi G, Szucs A, Kelemen A, Jakus R, Juhos V, Grand L, Magony A, Halász P, Freund TF, Maglóczky Z, Cash SS, Papp L, Karmos G, Halgren E, Ulbert I. Laminar analysis of slow wave activity in humans. ACTA ACUST UNITED AC 2010; 133:2814-29. [PMID: 20656697 DOI: 10.1093/brain/awq169] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Brain electrical activity is largely composed of oscillations at characteristic frequencies. These rhythms are hierarchically organized and are thought to perform important pathological and physiological functions. The slow wave is a fundamental cortical rhythm that emerges in deep non-rapid eye movement sleep. In animals, the slow wave modulates delta, theta, spindle, alpha, beta, gamma and ripple oscillations, thus orchestrating brain electrical rhythms in sleep. While slow wave activity can enhance epileptic manifestations, it is also thought to underlie essential restorative processes and facilitate the consolidation of declarative memories. Animal studies show that slow wave activity is composed of rhythmically recurring phases of widespread, increased cortical cellular and synaptic activity, referred to as active- or up-state, followed by cellular and synaptic inactivation, referred to as silent- or down-state. However, its neural mechanisms in humans are poorly understood, since the traditional intracellular techniques used in animals are inappropriate for investigating the cellular and synaptic/transmembrane events in humans. To elucidate the intracortical neuronal mechanisms of slow wave activity in humans, novel, laminar multichannel microelectrodes were chronically implanted into the cortex of patients with drug-resistant focal epilepsy undergoing cortical mapping for seizure focus localization. Intracortical laminar local field potential gradient, multiple-unit and single-unit activities were recorded during slow wave sleep, related to simultaneous electrocorticography, and analysed with current source density and spectral methods. We found that slow wave activity in humans reflects a rhythmic oscillation between widespread cortical activation and silence. Cortical activation was demonstrated as increased wideband (0.3-200 Hz) spectral power including virtually all bands of cortical oscillations, increased multiple- and single-unit activity and powerful inward transmembrane currents, mainly localized to the supragranular layers. Neuronal firing in the up-state was sparse and the average discharge rate of single cells was less than expected from animal studies. Action potentials at up-state onset were synchronized within +/-10 ms across all cortical layers, suggesting that any layer could initiate firing at up-state onset. These findings provide strong direct experimental evidence that slow wave activity in humans is characterized by hyperpolarizing currents associated with suppressed cell firing, alternating with high levels of oscillatory synaptic/transmembrane activity associated with increased cell firing. Our results emphasize the major involvement of supragranular layers in the genesis of slow wave activity.
Collapse
Affiliation(s)
- Richárd Csercsa
- Institute for Psychology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing. Neuroimage 2010; 53:707-17. [PMID: 20620212 DOI: 10.1016/j.neuroimage.2010.06.069] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/10/2010] [Accepted: 06/26/2010] [Indexed: 11/22/2022] Open
Abstract
Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, 'N') and words that repeated (old, 'O'). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs. O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs. O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350 to 450 ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal.
Collapse
|
42
|
McDonald CR, Gharapetian L, McEvoy LK, Fennema-Notestine C, Hagler DJ, Holland D, Dale AM. Relationship between regional atrophy rates and cognitive decline in mild cognitive impairment. Neurobiol Aging 2010; 33:242-53. [PMID: 20471718 DOI: 10.1016/j.neurobiolaging.2010.03.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/02/2010] [Accepted: 03/21/2010] [Indexed: 11/15/2022]
Abstract
We investigated the relationship between regional atrophy rates and 2-year cognitive decline in a large cohort of patients with mild cognitive impairment (MCI; n = 103) and healthy controls (n = 90). Longitudinal magnetic resonance image (MRI) scans were analyzed using high-throughput image analysis procedures. Atrophy rates were derived by calculating percent cortical volume loss between baseline and 24 month scans. Stepwise regressions were performed to investigate the contribution of atrophy rates to language, memory, and executive functioning decline, controlling for age, gender, baseline performances, and disease progression. In MCI, left temporal lobe atrophy rates were associated with naming decline, whereas bilateral temporal, left frontal, and left anterior cingulate atrophy rates were associated with semantic fluency decline. Left entorhinal atrophy rate was associated with memory decline and bilateral frontal atrophy rates were associated with executive function decline. These data provide evidence that regional atrophy rates in MCI contribute to domain-specific cognitive decline, which appears to be partially independent of disease progression. MRI measures of regional atrophy can provide valuable information for understanding the neural basis of cognitive impairment in MCI.
Collapse
Affiliation(s)
- Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Binney RJ, Embleton KV, Jefferies E, Parker GJM, Ralph MAL. The Ventral and Inferolateral Aspects of the Anterior Temporal Lobe Are Crucial in Semantic Memory: Evidence from a Novel Direct Comparison of Distortion-Corrected fMRI, rTMS, and Semantic Dementia. Cereb Cortex 2010; 20:2728-38. [PMID: 20190005 DOI: 10.1093/cercor/bhq019] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Richard J Binney
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
44
|
Maillard L, Barbeau EJ, Baumann C, Koessler L, Bénar C, Chauvel P, Liégeois-Chauvel C. From perception to recognition memory: time course and lateralization of neural substrates of word and abstract picture processing. J Cogn Neurosci 2010; 23:782-800. [PMID: 20146594 DOI: 10.1162/jocn.2010.21434] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Through study of clinical cases with brain lesions as well as neuroimaging studies of cognitive processing of words and pictures, it has been established that material-specific hemispheric specialization exists. It remains however unclear whether such specialization holds true for all processes involved in complex tasks, such as recognition memory. To investigate neural signatures of transition from perception to recognition, according to type of material (words or abstract pictures), high-resolution scalp ERPs were recorded in adult humans engaged either in categorization or in memory recognition tasks within the same experimental setup. Several steps in the process from perception to recognition were identified. Source localization showed that the early stage of perception processing (N170) takes place in the fusiform gyrus and is lateralized according to the nature of stimuli (left side for words and right side for pictures). Late stages of processing (N400/P600) corresponding to recognition are material independent and involve anterior medial-temporal and ventral prefrontal structures bilaterally. A crucial transitional process between perception (N170) and recognition (N400/P600) is reflected by the N270, an often overlooked component, which occurs in anterior rhinal cortices and shows material-specific hemispheric lateralization.
Collapse
|
45
|
Mugikura S, Abe N, Suzuki M, Ueno A, Higano S, Takahashi S, Fujii T. Hippocampal activation associated with successful external source monitoring. Neuropsychologia 2010; 48:1543-50. [PMID: 20117120 DOI: 10.1016/j.neuropsychologia.2010.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 01/22/2010] [Accepted: 01/23/2010] [Indexed: 11/26/2022]
Abstract
Studies demonstrating hippocampal activation associated with memories for persons from whom information is acquired (external source monitoring) are lacking. In this study, we used functional magnetic resonance imaging (fMRI) to investigate whether the medial temporal lobe (MTL), especially the hippocampus, is activated during the retrieval of external source information as well as during the retrieval of the items themselves. Before the fMRI, subjects intentionally studied photographs with names that were presented by either a woman or a man in a videotape. During the fMRI, subjects were asked to judge whether each photograph was new or old and, if they judged it as old, to indicate which person had presented the photograph during the study phase according to a confidence rating (high or low). The results showed that successful retrieval of a source with high confidence was associated with increased activity in the hippocampus and that correct item recognition with failed source retrieval and low confidence for a source (i.e., item-only hits) was associated with decreased activity in the perirhinal cortex. Further analysis revealed that the hippocampus was also associated with familiarity/novelty distinction for the items themselves. The present study is the first to provide evidence that hippocampal activation is associated with external source monitoring. The results also support existing models suggesting that the hippocampus is associated with recollection-based recognition and the perirhinal cortex with familiarity-based recognition, with the possibility that the hippocampus plays roles in both recognition processes.
Collapse
Affiliation(s)
- Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Voss JL, Hauner KK, Paller KA. Establishing a relationship between activity reduction in human perirhinal cortex and priming. Hippocampus 2009; 19:773-8. [DOI: 10.1002/hipo.20608] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
McDonald CR, Thesen T, Hagler DJ, Carlson C, Devinksy O, Kuzniecky R, Barr W, Gharapetian L, Trongnetrpunya A, Dale AM, Halgren E. Distributed source modeling of language with magnetoencephalography: application to patients with intractable epilepsy. Epilepsia 2009; 50:2256-66. [PMID: 19552656 DOI: 10.1111/j.1528-1167.2009.02172.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To examine distributed patterns of language processing in healthy controls and patients with epilepsy using magnetoencephalography (MEG), and to evaluate the concordance between laterality of distributed MEG sources and language laterality as determined by the intracarotid amobarbital procedure (IAP). METHODS MEG was performed in 10 healthy controls using an anatomically constrained, noise-normalized distributed source solution (dynamic statistical parametric map, dSPM). Distributed source modeling of language was then applied to eight patients with intractable epilepsy. Average source strengths within temporoparietal and frontal lobe regions of interest (ROIs) were calculated, and the laterality of activity within ROIs during discrete time windows was compared to results from the IAP. RESULTS In healthy controls, dSPM revealed activity in visual cortex bilaterally from approximately 80 to 120 ms in response to novel words and sensory control stimuli (i.e., false fonts). Activity then spread to fusiform cortex approximately 160-200 ms, and was dominated by left hemisphere activity in response to novel words. From approximately 240 to 450 ms, novel words produced activity that was left-lateralized in frontal and temporal lobe regions, including anterior and inferior temporal, temporal pole, and pars opercularis, as well as bilaterally in posterior superior temporal cortex. Analysis of patient data with dSPM demonstrated that from 350 to 450 ms, laterality of temporoparietal sources agreed with the IAP 75% of the time, whereas laterality of frontal MEG sources agreed with the IAP in all eight patients. DISCUSSION Our results reveal that dSPM can unveil the timing and spatial extent of language processes in patients with epilepsy and may enhance knowledge of language lateralization and localization for use in preoperative planning.
Collapse
Affiliation(s)
- Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, California, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cornelissen PL, Kringelbach ML, Ellis AW, Whitney C, Holliday IE, Hansen PC. Activation of the left inferior frontal gyrus in the first 200 ms of reading: evidence from magnetoencephalography (MEG). PLoS One 2009; 4:e5359. [PMID: 19396362 PMCID: PMC2671164 DOI: 10.1371/journal.pone.0005359] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 04/03/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question. METHODOLOGY/PRINCIPAL FINDINGS MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100-250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at approximately 130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at approximately 115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at approximately 140 ms, at a location coincident with the fMRI-defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus. CONCLUSIONS/SIGNIFICANCE These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code.
Collapse
|
49
|
Is the left uncinate fasciculus essential for language? A cerebral stimulation study. J Neurol 2009; 256:382-9. [PMID: 19271103 DOI: 10.1007/s00415-009-0053-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 06/08/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
Despite a better understanding of the anatomy of the uncinate fasciculus (UF), its function remains poorly known. Our aim was to study the exact role of UF in language, and the possible existence of parallel distributed language networks within the "ventral stream", underlaid by distinct subcortical tracts--namely the inferior occipito-temporal fasciculus (IOF) and UF.We report a series of 13 patients operated on awake for a glioma involving the left anterior temporal lobe or the orbitofrontal area. We used intraoperative electrostimulation, to perform accurate and reliable anatomofunctional correlations both at cortical and subcortical levels. Using postoperative MRI, we correlated these functional findings with the anatomical locations of the sites where language disturbances were elicited by stimulation.Intraoperative cortical stimulation found perilesional language sites in all cases. Subcortically, semantic paraphasia were induced in the 13 patients by stimulating the IOF, and phonological paraphasia were generated in 6 patients by stimulating the arcuate fasciculus. Interestingly, subcortical stimulation never elicited any language disturbances when performed at the level of the UF. Moreover, after a transient postoperative language deficit, all patients recovered, despite the removal of at least one part of the UF, as confirmed by control MRI.We suggest that UF is not systematically essential for language. It can be explained by the fact that the "semantic ventral stream" might be constituted by at least two parallel pathways, i. e. a direct pathway underlaid by the IOF, crucial for language semantics, and an indirect pathway subserved by UF, which can be functionally compensated. However, we have to underline the fact not all language functions can be probed during surgery, and that more sensitive tasks have now to be added.
Collapse
|
50
|
The neurocognitive basis of reading single words as seen through early latency ERPs: A model of converging pathways. Biol Psychol 2009; 80:10-22. [PMID: 18538915 DOI: 10.1016/j.biopsycho.2008.04.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/28/2008] [Accepted: 04/28/2008] [Indexed: 11/23/2022]
|