1
|
Drabek-Maunder ER, Gains J, Hargrave DR, Mankad K, Aquilina K, Dean JA, Nisbet A, Clark CA. Evidence of supratentorial white matter injury prior to treatment in children with posterior fossa tumors using diffusion MRI. Neurooncol Adv 2025; 7:vdaf053. [PMID: 40376680 PMCID: PMC12080551 DOI: 10.1093/noajnl/vdaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Background Pediatric brain tumor survivors can have neurocognitive deficits that negatively impact their quality of life, but it is unclear if deficits are primarily caused by treatments, such as radiotherapy, or manifest earlier due to the tumor and related complications. The aim of this work is to characterize white matter injury caused by brain tumors, unrelated to treatment effects, and explore heterogeneity in these white matter abnormalities between individual patients. Methods We used diffusion tensor imaging and neurite orientation dispersion diffusion imaging to assess white matter injury in 8 posterior fossa tumor patients. A novel one-against-many approach was used by comparing an individual patient to 20 age- and sex-matched healthy controls to assess variability in white matter abnormalities between the posterior fossa tumor patients. White matter was analyzed at presentation (prior to treatment), postsurgery (24-72 hours after surgery), and at follow-up (3-18 months after surgery). Results We demonstrate white matter abnormalities in 5 posterior fossa tumor patients before treatment, likely related to tumor-induced hydrocephalus, which persisted after treatment. White matter changes were complex and patient-specific, and group-based comparisons with control subjects may fail to detect these individual abnormalities. Conclusions Identifying pretreatment white matter injury in posterior fossa tumor patients highlights the importance of personalized assessment of brain microstructure, which should be considered in minimizing neurocognitive deficits to improve patient quality of life.
Collapse
Affiliation(s)
- Emily R Drabek-Maunder
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Jenny Gains
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Darren R Hargrave
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Kshitij Mankad
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Kristian Aquilina
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Jamie A Dean
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Chris A Clark
- Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
2
|
De Pietro S, Di Martino G, Caroprese M, Barillaro A, Cocozza S, Pacelli R, Cuocolo R, Ugga L, Briganti F, Brunetti A, Conson M, Elefante A. The role of MRI in radiotherapy planning: a narrative review "from head to toe". Insights Imaging 2024; 15:255. [PMID: 39441404 PMCID: PMC11499544 DOI: 10.1186/s13244-024-01799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Over the last few years, radiation therapy (RT) techniques have evolved very rapidly, with the aim of conforming high-dose volume tightly to a target. Although to date CT is still considered the imaging modality for target delineation, it has some known limited capabilities in properly identifying pathologic processes occurring, for instance, in soft tissues. This limitation, along with other advantages such as dose reduction, can be overcome using magnetic resonance imaging (MRI), which is increasingly being recognized as a useful tool in RT clinical practice. This review has a two-fold aim of providing a basic introduction to the physics of MRI in a narrative way and illustrating the current knowledge on its application "from head to toe" (i.e., different body sites), in order to highlight the numerous advantages in using MRI to ensure the best therapeutic response. We provided a basic introduction for residents and non-radiologist on the physics of MR and reported evidence of the advantages and future improvements of MRI in planning a tailored radiotherapy treatment "from head to toe". CRITICAL RELEVANCE STATEMENT: This review aims to help understand how MRI has become indispensable, not only to better characterize and evaluate lesions, but also to predict the evolution of the disease and, consequently, to ensure the best therapeutic response. KEY POINTS: MRI is increasingly gaining interest and applications in RT planning. MRI provides high soft tissue contrast resolution and accurate delineation of the target volume. MRI will increasingly become indispensable for characterizing and evaluating lesions, and to predict the evolution of disease.
Collapse
Affiliation(s)
- Simona De Pietro
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giulia Di Martino
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Mara Caroprese
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Angela Barillaro
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Briganti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Andrea Elefante
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
3
|
Drabek-Maunder ER, Mankad K, Aquilina K, Dean JA, Nisbet A, Clark CA. Using diffusion MRI to understand white matter damage and the link between brain microstructure and cognitive deficits in paediatric medulloblastoma patients. Eur J Radiol 2024; 177:111562. [PMID: 38901074 DOI: 10.1016/j.ejrad.2024.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE Survivors of medulloblastoma face a range of challenges after treatment, involving behavioural, cognitive, language and motor skills. Post-treatment outcomes are associated with structural changes within the brain resulting from both the tumour and the treatment. Diffusion magnetic resonance imaging (MRI) has been used to investigate the microstructure of the brain. In this review, we aim to summarise the literature on diffusion MRI in patients treated for medulloblastoma and discuss future directions on how diffusion imaging can be used to improve patient quality. METHOD This review summarises the current literature on medulloblastoma in children, focusing on the impact of both the tumour and its treatment on brain microstructure. We review studies where diffusion MRI has been correlated with either treatment characteristics or cognitive outcomes. We discuss the role diffusion MRI has taken in understanding the relationship between microstructural damage and cognitive and behavioural deficits. RESULTS We identified 35 studies that analysed diffusion MRI changes in patients treated for medulloblastoma. The majority of these studies found significant group differences in measures of brain microstructure between patients and controls, and some of these studies showed associations between microstructure and neurocognitive outcomes, which could be influenced by patient characteristics (e.g. age), treatment, radiation dose and treatment type. CONCLUSIONS In future, studies would benefit from being able to separate microstructural white matter damage caused by the tumour, tumour-related complications and treatment. Additionally, advanced diffusion modelling methods can be explored to understand and describe microstructural changes to white matter.
Collapse
Affiliation(s)
- Emily R Drabek-Maunder
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; UCL Dept of Medical Physics and Biomedical Engineering, Malet Place, Gower St, London WC1E 6BT, UK; Great Ormond Street Hospital for Children, Great Ormond St, London WC1N 3JH, UK.
| | - Kshitij Mankad
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; Great Ormond Street Hospital for Children, Great Ormond St, London WC1N 3JH, UK
| | - Kristian Aquilina
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; Great Ormond Street Hospital for Children, Great Ormond St, London WC1N 3JH, UK
| | - Jamie A Dean
- UCL Dept of Medical Physics and Biomedical Engineering, Malet Place, Gower St, London WC1E 6BT, UK
| | - Andrew Nisbet
- UCL Dept of Medical Physics and Biomedical Engineering, Malet Place, Gower St, London WC1E 6BT, UK
| | - Chris A Clark
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; Great Ormond Street Hospital for Children, Great Ormond St, London WC1N 3JH, UK
| |
Collapse
|
4
|
Şahin S, Ertekin E, Şahin T, Özsunar Y. Evaluation of normal-appearing white matter with perfusion and diffusion MRI in patients with treated glioblastoma. MAGMA (NEW YORK, N.Y.) 2022; 35:153-162. [PMID: 34951690 DOI: 10.1007/s10334-021-00990-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We tried to reveal how the normal appearing white matter (NAWM) was affected in patients with glioblastoma treated with chemo-radiotherapy (CRT) in the period following the treatment, by multiparametric MRI. MATERIALS AND METHODS 43 multiparametric MRI examinations of 17 patients with glioblastoma treated with CRT were examined. A total of six different series or maps were analyzed in the examinations: Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) maps, Gradient Echo (GRE) sequence, Dynamic susceptibility contrast (DSC) and Arterial spin labeling (ASL) perfusion sequences. Each sequence in each examination was examined in detail with 14 Region of Interest (ROI) measurements. The obtained values were proportioned to the contralateral NAWM values and the results were recorded as normalized values. Time dependent changes of normalized values were statistically analyzed. RESULTS The most prominent changes in follow-up imaging occurred in the perilesional region. In perilesional NAWM, we found a decrease in normalized FA (nFA), rCBV (nrCBV), rCBF (nrCBF), ASL (nASL)values (p < 0.005) in the first 3 months after treatment, followed by a plateau and an increase approaching pretreatment values, although it did not reach. Similar but milder findings were present in other NAWM areas. In perilesional NAWM, nrCBV values were found to be positively high correlated with nrCBF and nASL, and negatively high correlated with nADC values (r: 0.963, 0.736, - 0.973, respectively). We also found high correlations between the mean values of nrCBV, nrCBF, nASL in other NAWM areas (r: 0.891, 0.864, respectively). DISCUSSION We showed that both DSC and ASL perfusion values decreased correlatively in the first 3 months and showed a plateau after 1 year in patients with glioblastoma treated with CRT, unlike the literature. Although it was not as evident as perfusion MRI, it was observed that the ADC values also showed a plateau pattern following the increase in the first 3 months. Further studies are needed to explain late pathophysiological changes. Because of the high correlation, our results support ASL perfusion instead of contrast enhanced perfusion methods.
Collapse
Affiliation(s)
- Sinan Şahin
- Department of Radiology, Adnan Menderes University, Aydın, Turkey
| | - Ersen Ertekin
- Department of Radiology, Adnan Menderes University, Aydın, Turkey.
| | - Tuna Şahin
- Department of Radiology, Adnan Menderes University, Aydın, Turkey
| | - Yelda Özsunar
- Department of Radiology, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
5
|
Gonçalves FG, Viaene AN, Vossough A. Advanced Magnetic Resonance Imaging in Pediatric Glioblastomas. Front Neurol 2021; 12:733323. [PMID: 34858308 PMCID: PMC8631300 DOI: 10.3389/fneur.2021.733323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
The shortly upcoming 5th edition of the World Health Organization Classification of Tumors of the Central Nervous System is bringing extensive changes in the terminology of diffuse high-grade gliomas (DHGGs). Previously "glioblastoma," as a descriptive entity, could have been applied to classify some tumors from the family of pediatric or adult DHGGs. However, now the term "glioblastoma" has been divested and is no longer applied to tumors in the family of pediatric types of DHGGs. As an entity, glioblastoma remains, however, in the family of adult types of diffuse gliomas under the insignia of "glioblastoma, IDH-wildtype." Of note, glioblastomas still can be detected in children when glioblastoma, IDH-wildtype is found in this population, despite being much more common in adults. Despite the separation from the family of pediatric types of DHGGs, what was previously labeled as "pediatric glioblastomas" still remains with novel labels and as new entities. As a result of advances in molecular biology, most of the previously called "pediatric glioblastomas" are now classified in one of the four family members of pediatric types of DHGGs. In this review, the term glioblastoma is still apocryphally employed mainly due to its historical relevance and the paucity of recent literature dealing with the recently described new entities. Therefore, "glioblastoma" is used here as an umbrella term in the attempt to encompass multiple entities such as astrocytoma, IDH-mutant (grade 4); glioblastoma, IDH-wildtype; diffuse hemispheric glioma, H3 G34-mutant; diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype; and high grade infant-type hemispheric glioma. Glioblastomas are highly aggressive neoplasms. They may arise anywhere in the developing central nervous system, including the spinal cord. Signs and symptoms are non-specific, typically of short duration, and usually derived from increased intracranial pressure or seizure. Localized symptoms may also occur. The standard of care of "pediatric glioblastomas" is not well-established, typically composed of surgery with maximal safe tumor resection. Subsequent chemoradiation is recommended if the patient is older than 3 years. If younger than 3 years, surgery is followed by chemotherapy. In general, "pediatric glioblastomas" also have a poor prognosis despite surgery and adjuvant therapy. Magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of glioblastomas. In addition to the typical conventional MRI features, i.e., highly heterogeneous invasive masses with indistinct borders, mass effect on surrounding structures, and a variable degree of enhancement, the lesions may show restricted diffusion in the solid components, hemorrhage, and increased perfusion, reflecting increased vascularity and angiogenesis. In addition, magnetic resonance spectroscopy has proven helpful in pre- and postsurgical evaluation. Lastly, we will refer to new MRI techniques, which have already been applied in evaluating adult glioblastomas, with promising results, yet not widely utilized in children.
Collapse
Affiliation(s)
- Fabrício Guimarães Gonçalves
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arastoo Vossough
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Bontempi P, Scartoni D, Amelio D, Cianchetti M, Turkaj A, Amichetti M, Farace P. Multicomponent T 2 relaxometry reveals early myelin white matter changes induced by proton radiation treatment. Magn Reson Med 2021; 86:3236-3245. [PMID: 34268786 DOI: 10.1002/mrm.28913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate MRI myelin water imaging (MWI) by multicomponent T2 relaxometry as a quantitative imaging biomarker for brain radiation-induced changes and to compare it with DTI. METHODS Sixteen patients underwent fractionated proton therapy (PT) receiving dose to the healthy tissue because of direct or indirect (base skull tumors) irradiation. MWI was performed by a multi-echo sequence with 32 equally spaced echoes (10-320 ms). Decay data were processed to identify 3 T2 compartments: myelin water (Mw) below 40 ms, intra-extracellular water (IEw) between 40 and 250 ms, and free water (CSFw) above 250 ms. Both MWI and DTI scans were acquired pre (pre)-treatment and immediately at the end (end) of PT. After image registration, voxel-wise difference maps, obtained by subtracting MWI and DTI pre from those acquired at the end of PT, were compared with the corresponding biological equivalent dose (BED). RESULTS Mw difference showed a positive correlation and IEw difference showed a negative correlation with BED considering end-pre changes (P < .01). The changes in CSFw were not significantly correlated with the delivered BED. The changes in DTI data, considering end-pre acquisitions, showed a positive correlation between fractional anisotropy and the delivered BED. CONCLUSION MWI might detect early white matter radiation-induced alterations, providing additional information to DTI, which might improve the understanding of the pathogenesis of the radiation damage.
Collapse
Affiliation(s)
- Pietro Bontempi
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Daniele Scartoni
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Dante Amelio
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Marco Cianchetti
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Ana Turkaj
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Maurizio Amichetti
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Paolo Farace
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| |
Collapse
|
7
|
Neurodevelopmental Consequences of Pediatric Cancer and Its Treatment: The Role of Sleep. Brain Sci 2020; 10:brainsci10070411. [PMID: 32630162 PMCID: PMC7408401 DOI: 10.3390/brainsci10070411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment is frequent in pediatric cancer, and behavioral and psychological disturbances often also affect children who have survived cancer problems. Furthermore, pediatric tumors are also often associated with sleep disorders. The interrelationship between sleep disorders, neurodevelopmental disorders and pediatric cancer, however, is still largely unexplored. In this narrative review we approach this important aspect by first considering studies on pediatric cancer as a possible cause of neurodevelopmental disorders and then describing pediatric cancer occurring as a comorbid condition in children with neurodevelopmental disorders. Finally, we discuss the role of sleep disorders in children with cancer and neurodevelopmental disorders. Even if the specific literature approaching directly the topic of the role of sleep in the complex relationship between pediatric cancer and neurodevelopmental disorders was found to be scarce, the available evidence supports the idea that in-depth knowledge and correct management of sleep disorders can definitely improve the health and quality of life of children with cancer and of their families.
Collapse
|
8
|
Tang TT, Zawaski JA, Kesler SR, Beamish CA, Reddick WE, Glass JO, Carney DH, Sabek OM, Grosshans DR, Gaber MW. A comprehensive preclinical assessment of late-term imaging markers of radiation-induced brain injury. Neurooncol Adv 2019; 1:vdz012. [PMID: 31608330 PMCID: PMC6777502 DOI: 10.1093/noajnl/vdz012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Cranial radiotherapy (CRT) is an important part of brain tumor treatment, and although highly effective, survivors suffer from long-term cognitive side effects. In this study we aim to establish late-term imaging markers of CRT-induced brain injury and identify functional markers indicative of cognitive performance. Specifically, we aim to identify changes in executive function, brain metabolism, and neuronal organization. Methods Male Sprague Dawley rats were fractionally irradiated at 28 days of age to a total dose of 30 Gy to establish a radiation-induced brain injury model. Animals were trained at 3 months after CRT using the 5-choice serial reaction time task. At 12 months after CRT, animals were evaluated for cognitive and imaging changes, which included positron emission tomography (PET) and magnetic resonance imaging (MRI). Results Cognitive deficit with signs of neuroinflammation were found at 12 months after CRT in irradiated animals. CRT resulted in significant volumetric changes in 38% of brain regions as well as overall decrease in brain volume and reduced gray matter volume. PET imaging showed higher brain glucose uptake in CRT animals. Using MRI, irradiated brains had an overall decrease in fractional anisotropy, lower global efficiency, increased transitivity, and altered regional connectivity. Cognitive measurements were found to be significantly correlated with six image features that included myelin integrity and local organization of the neural network. Conclusions These results demonstrate that CRT leads to late-term morphological changes, reorganization of neural connections, and metabolic dysfunction. The correlation between imaging markers and cognitive deficits can be used to assess late-term side effects of brain tumor treatment and evaluate efficacy of new interventions.
Collapse
Affiliation(s)
- Tien T Tang
- Department of Pediatrics, Hematology-Oncology Section, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| | - Janice A Zawaski
- Department of Pediatrics, Hematology-Oncology Section, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Shelli R Kesler
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Wilburn E Reddick
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John O Glass
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Darrell H Carney
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and Chrysalis BioTherapeutics, Inc., Galveston, Texas
| | - Omaima M Sabek
- Department of Surgery, Houston Methodist Research Institute, Houston, Texas
| | - David R Grosshans
- Departments of Radiation and Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - M Waleed Gaber
- Department of Pediatrics, Hematology-Oncology Section, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| |
Collapse
|
9
|
Marusak HA, Iadipaolo AS, Harper FW, Elrahal F, Taub JW, Goldberg E, Rabinak CA. Neurodevelopmental consequences of pediatric cancer and its treatment: applying an early adversity framework to understanding cognitive, behavioral, and emotional outcomes. Neuropsychol Rev 2018; 28:123-175. [PMID: 29270773 PMCID: PMC6639713 DOI: 10.1007/s11065-017-9365-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/08/2017] [Indexed: 01/29/2023]
Abstract
Today, children are surviving pediatric cancer at unprecedented rates, making it one of modern medicine's true success stories. However, we are increasingly becoming aware of several deleterious effects of cancer and the subsequent "cure" that extend beyond physical sequelae. Indeed, survivors of childhood cancer commonly report cognitive, emotional, and psychological difficulties, including attentional difficulties, anxiety, and posttraumatic stress symptoms (PTSS). Cognitive late- and long-term effects have been largely attributed to neurotoxic effects of cancer treatments (e.g., chemotherapy, cranial irradiation, surgery) on brain development. The role of childhood adversity in pediatric cancer - namely, the presence of a life-threatening disease and endurance of invasive medical procedures - has been largely ignored in the existing neuroscientific literature, despite compelling research by our group and others showing that exposure to more commonly studied adverse childhood experiences (i.e., domestic and community violence, physical, sexual, and emotional abuse) strongly imprints on neural development. While these adverse childhood experiences are different in many ways from the experience of childhood cancer (e.g., context, nature, source), they do share a common element of exposure to threat (i.e., threat to life or physical integrity). Therefore, we argue that the double hit of early threat and cancer treatments likely alters neural development, and ultimately, cognitive, behavioral, and emotional outcomes. In this paper, we (1) review the existing neuroimaging research on child, adolescent, and adult survivors of childhood cancer, (2) summarize gaps in our current understanding, (3) propose a novel neurobiological framework that characterizes childhood cancer as a type of childhood adversity, particularly a form of early threat, focusing on development of the hippocampus and the salience and emotion network (SEN), and (4) outline future directions for research.
Collapse
Affiliation(s)
- Hilary A Marusak
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Suite 2190, Detroit, MI, 48202, USA.
| | - Allesandra S Iadipaolo
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Suite 2190, Detroit, MI, 48202, USA
| | - Felicity W Harper
- Population Studies and Disparities Research Program, Karmanos Cancer Institute, Detroit, MI, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Farrah Elrahal
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Suite 2190, Detroit, MI, 48202, USA
| | - Jeffrey W Taub
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI, USA
- Children's Hospital of Michigan, Detroit, MI, USA
| | - Elimelech Goldberg
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI, USA
- Kids Kicking Cancer, Southfield, MI, USA
| | - Christine A Rabinak
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Suite 2190, Detroit, MI, 48202, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
10
|
Murzin VL, Woods K, Moiseenko V, Karunamuni R, Tringale KR, Seibert TM, Connor MJ, Simpson DR, Sheng K, Hattangadi-Gluth JA. 4π plan optimization for cortical-sparing brain radiotherapy. Radiother Oncol 2018; 127:128-135. [PMID: 29519628 PMCID: PMC6084493 DOI: 10.1016/j.radonc.2018.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND PURPOSE Incidental irradiation of normal brain tissue during radiotherapy is linked to cognitive decline, and may be mediated by damage to healthy cortex. Non-coplanar techniques may be used for cortical sparing. We compared normal brain sparing and probability of cortical atrophy using 4π radiation therapy planning vs. standard fixed gantry intensity-modulated radiotherapy (IMRT). MATERIAL AND METHODS Plans from previously irradiated brain tumor patients ("original IMRT", n = 13) were re-planned to spare cortex using both 4π optimization ("4π") and IMRT optimization ("optimized IMRT"). Homogeneity index (HI), gradient measure, doses to cortex and white matter (excluding tumor), brainstem, optics, and hippocampus were compared with matching PTV coverage. Probability of three grades of post-treatment cortical atrophy was modeled based on previously established dose response curves. RESULTS With matching PTV coverage, 4π significantly improved HI by 27% (p = 0.005) and gradient measure by 8% (p = 0.001) compared with optimized IMRT. 4π optimization reduced mean and equivalent uniform doses (EUD) to all standard OARs, with 14-15% reduction in hippocampal EUD (p ≤ 0.003) compared with the other two plans. 4π significantly reduced dose to fractional cortical volumes (V50, V40 and V30) compared with the original IMRT plans, and reduced cortical V30 by 7% (p = 0.008) compared with optimized IMRT. White matter EUD, mean dose, and fractional volumes V50, V40 and V30 were also significantly lower with 4π (p ≤ 0.001). With 4π, probability of grade 1, 2 and 3 cortical atrophy decreased by 12%, 21% and 26% compared with original IMRT and by 8%, 14% and 3% compared with optimized IMRT, respectively (p ≤ 0.001). CONCLUSIONS 4π radiotherapy significantly improved cortical sparing and reduced doses to standard brain OARs, white matter, and the hippocampus. This was achieved with superior PTV dose homogeneity. Such sparing could reduce the probability of cortical atrophy that may lead to cognitive decline.
Collapse
Affiliation(s)
- Vyacheslav L Murzin
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States
| | - Kaley Woods
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States
| | - Kathryn R Tringale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States
| | - Michael J Connor
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States
| | - Daniel R Simpson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States
| | - Ke Sheng
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States.
| |
Collapse
|
11
|
Doger de Speville E, Robert C, Perez-Guevara M, Grigis A, Bolle S, Pinaud C, Dufour C, Beaudré A, Kieffer V, Longaud A, Grill J, Valteau-Couanet D, Deutsch E, Lefkopoulos D, Chiron C, Hertz-Pannier L, Noulhiane M. Relationships between Regional Radiation Doses and Cognitive Decline in Children Treated with Cranio-Spinal Irradiation for Posterior Fossa Tumors. Front Oncol 2017; 7:166. [PMID: 28868253 PMCID: PMC5563322 DOI: 10.3389/fonc.2017.00166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Pediatric posterior fossa tumor (PFT) survivors who have been treated with cranial radiation therapy often suffer from cognitive impairments that might relate to IQ decline. Radiotherapy (RT) distinctly affects brain regions involved in different cognitive functions. However, the relative contribution of regional irradiation to the different cognitive impairments still remains unclear. We investigated the relationships between the changes in different cognitive scores and radiation dose distribution in 30 children treated for a PFT. Our exploratory analysis was based on a principal component analysis (PCA) and an ordinary least square regression approach. The use of a PCA was an innovative way to cluster correlated irradiated regions due to similar radiation therapy protocols across patients. Our results suggest an association between working memory decline and a high dose (equivalent uniform dose, EUD) delivered to the orbitofrontal regions, whereas the decline of processing speed seemed more related to EUD in the temporal lobes and posterior fossa. To identify regional effects of RT on cognitive functions may help to propose a rehabilitation program adapted to the risk of cognitive impairment.
Collapse
Affiliation(s)
- Elodie Doger de Speville
- INSERM U1129, CEA, Paris Descartes University, Paris, France.,UNIACT, Institut Joliot, DRF, Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France.,Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Radiation Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France.,INSERM, U1030, Villejuif, France.,Paris Sud University, Paris-Saclay University, Villejuif, France.,Gustave Roussy, Paris-Saclay University, Department of Medical Physics, Villejuif, France
| | | | - Antoine Grigis
- Institut Joliot, Neurospin, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Stephanie Bolle
- Radiation Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Clemence Pinaud
- INSERM U1129, CEA, Paris Descartes University, Paris, France.,UNIACT, Institut Joliot, DRF, Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Anne Beaudré
- Radiation Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy, Paris-Saclay University, Department of Medical Physics, Villejuif, France
| | - Virginie Kieffer
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France.,CSI Department for Children with Acquired Brain Injury, Hopitaux de Saint Maurice, Saint-Maurice, France
| | - Audrey Longaud
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France.,Paris Sud University, Orsay, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France.,Paris Sud University, Orsay, France
| | - Dominique Valteau-Couanet
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France.,Paris Sud University, Orsay, France
| | - Eric Deutsch
- Radiation Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France.,INSERM, U1030, Villejuif, France.,Paris Sud University, Paris-Saclay University, Villejuif, France.,Gustave Roussy, Paris-Saclay University, Department of Medical Physics, Villejuif, France
| | - Dimitri Lefkopoulos
- Radiation Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy, Paris-Saclay University, Department of Medical Physics, Villejuif, France
| | - Catherine Chiron
- INSERM U1129, CEA, Paris Descartes University, Paris, France.,UNIACT, Institut Joliot, DRF, Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| | - Lucie Hertz-Pannier
- INSERM U1129, CEA, Paris Descartes University, Paris, France.,UNIACT, Institut Joliot, DRF, Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| | - Marion Noulhiane
- INSERM U1129, CEA, Paris Descartes University, Paris, France.,UNIACT, Institut Joliot, DRF, Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Hou P, Zhu KH, Park PC, Li H, Mahajan A, Grosshans DR. Proton Therapy for Juvenile Pilocytic Astrocytoma: Quantifying Treatment Responses by Magnetic Resonance Diffusion Tensor Imaging. Int J Part Ther 2017; 3:414-420. [PMID: 31772991 DOI: 10.14338/ijpt-16-00024.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/29/2016] [Indexed: 11/21/2022] Open
Abstract
Purpose Proton therapy is increasingly used to treat pediatric brain tumors. However, the response of both tumors and healthy tissues to proton therapy is currently under investigation. One way of assessing this response is magnetic resonance (MR) diffusion tensor imaging (DTI), which can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). In addition, DTI may reveal axonal fiber directional information in white matter, quantified by fractional anisotropy (FA). Here we report use of DTI to assess tumor and unexposed healthy brain tissue responses in a child who received proton therapy for juvenile pilocytic astrocytoma. Materials and Methods A 10-year-old boy with recurrent juvenile pilocytic astrocytoma of the left thalamus received proton therapy to a dose of 50.4Gy (RBE) in 28 fractions. Functional magnetic resonance imaging was used to select beam angles for treatment planning. Over the course of the 7-year follow-up period, magnetic resonance imaging including DTI was done to assess response. The MR images were registered to the treatment-planning computed tomography scan, and the gross tumor volume (GTV) was mapped onto the MR images at each follow-up. The GTV contour was then mirrored to the right side of brain through the midline to represent unexposed healthy brain tissue. Results Proton therapy delivered the full prescribed dose to the target while completely sparing the contralateral brain. The MR ADC images obtained before and after proton therapy showed that enhancement corresponding to the GTV had nearly disappeared by 25 months. The ADC and FA measurements confirmed that contralateral healthy brain tissue was not affected, and the GTV reverted to clinically normal ADC and FA values. Conclusion Use of DTI allowed quantitative evaluation of tumor and healthy brain tissue responses to proton therapy.
Collapse
Affiliation(s)
- Ping Hou
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine H Zhu
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Peter C Park
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heng Li
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita Mahajan
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David R Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Connor M, Karunamuni R, McDonald C, White N, Pettersson N, Moiseenko V, Seibert T, Marshall D, Cervino L, Bartsch H, Kuperman J, Murzin V, Krishnan A, Farid N, Dale A, Hattangadi-Gluth J. Dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 2016; 121:209-216. [PMID: 27776747 PMCID: PMC5136508 DOI: 10.1016/j.radonc.2016.10.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/16/2016] [Accepted: 10/02/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Brain radiotherapy is limited in part by damage to white matter, contributing to neurocognitive decline. We utilized diffusion tensor imaging (DTI) with multiple b-values (diffusion weightings) to model the dose-dependency and time course of radiation effects on white matter. MATERIALS AND METHODS Fifteen patients with high-grade gliomas treated with radiotherapy and chemotherapy underwent MRI with DTI prior to radiotherapy, and after months 1, 4-6, and 9-11. Diffusion tensors were calculated using three weightings (high, standard, and low b-values) and maps of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ∥), and radial diffusivity (λ⊥) were generated. The region of interest was all white matter. RESULTS MD, λ∥, and λ⊥ increased significantly with time and dose, with corresponding decrease in FA. Greater changes were seen at lower b-values, except for FA. Time-dose interactions were highly significant at 4-6months and beyond (p<.001), and the difference in dose response between high and low b-values reached statistical significance at 9-11months for MD, λ∥, and λ⊥ (p<.001, p<.001, p=.005 respectively) as well as at 4-6months for λ∥ (p=.04). CONCLUSIONS We detected dose-dependent changes across all doses, even <10Gy. Greater changes were observed at low b-values, suggesting prominent extracellular changes possibly due to vascular permeability and neuroinflammation.
Collapse
Affiliation(s)
- Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States; Department of Psychiatry, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Nathan White
- Department of Radiology, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Niclas Pettersson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States
| | - Tyler Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Deborah Marshall
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States
| | - Laura Cervino
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States
| | - Hauke Bartsch
- Department of Radiology, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Joshua Kuperman
- Department of Radiology, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Vyacheslav Murzin
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States
| | - Anitha Krishnan
- Department of Radiology, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Nikdokht Farid
- Department of Radiology, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Anders Dale
- Department of Radiology, University of California San Diego, United States; Department of Psychiatry, University of California San Diego, United States; Department of Neurosciences, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States.
| |
Collapse
|
14
|
Moxon-Emre I, Bouffet E, Taylor MD, Laperriere N, Sharpe MB, Laughlin S, Bartels U, Scantlebury N, Law N, Malkin D, Skocic J, Richard L, Mabbott DJ. Vulnerability of white matter to insult during childhood: evidence from patients treated for medulloblastoma. J Neurosurg Pediatr 2016; 18:29-40. [PMID: 27015518 DOI: 10.3171/2016.1.peds15580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Craniospinal irradiation damages the white matter in children treated for medulloblastoma, but the treatment-intensity effects are unclear. In a cross-sectional retrospective study, the effects of treatment with the least intensive radiation protocol versus protocols that delivered more radiation to the brain, in addition to the effects of continuous radiation dose, on white matter architecture were evaluated. METHODS Diffusion tensor imaging was used to assess fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity. First, regional white matter analyses and tract-based spatial statistics were conducted in 34 medulloblastoma patients and 38 healthy controls. Patients were stratified according to those treated with 1) the least intensive radiation protocol, specifically reduced-dose craniospinal irradiation plus a boost to the tumor bed only (n = 17), or 2) any other dose and boost combination that delivered more radiation to the brain, which was also termed the "all-other-treatments" group (n = 17), and comprised patients treated with standard-dose craniospinal irradiation plus a posterior fossa boost, standard-dose craniospinal irradiation plus a tumor bed boost, or reduced-dose craniospinal irradiation plus a posterior fossa boost. Second, voxel-wise dose-distribution analyses were conducted on a separate cohort of medulloblastoma patients (n = 15). RESULTS The all-other-treatments group, but not the reduced-dose craniospinal irradiation plus tumor bed group, had lower fractional anisotropy and higher radial diffusivity than controls in all brain regions (all p < 0.05). The reduced-dose craniospinal irradiation plus tumor bed boost group had higher fractional anisotropy (p = 0.05) and lower radial diffusivity (p = 0.04) in the temporal region, and higher fractional anisotropy in the frontal region (p = 0.04), than the all-other-treatments group. Linear mixed-effects modeling revealed that the dose and age at diagnosis together 1) better predicted fractional anisotropy in the temporal region than models with either alone (p < 0.005), but 2) did not better predict fractional anisotropy in comparison with dose alone in the occipital region (p > 0.05). CONCLUSIONS Together, the results show that white matter damage has a clear association with increasing radiation dose, and that treatment with reduced-dose craniospinal irradiation plus tumor bed boost appears to preserve white matter in some brain regions.
Collapse
Affiliation(s)
- Iska Moxon-Emre
- Program in Neuroscience and Mental Health and ,Departments of 2 Psychology.,Pediatric Oncology Group of Ontario, Toronto; and
| | | | | | - Normand Laperriere
- Radiation Oncology, and.,Radiation Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Michael B Sharpe
- Radiation Oncology, and.,Radiation Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | | | | | | | - Nicole Law
- Program in Neuroscience and Mental Health and ,Departments of 2 Psychology
| | - David Malkin
- Divisions of 4 Hematology/Oncology.,Paediatrics, University of Toronto;,Pediatric Oncology Group of Ontario, Toronto; and
| | | | - Logan Richard
- Program in Neuroscience and Mental Health and ,Departments of 2 Psychology
| | - Donald J Mabbott
- Program in Neuroscience and Mental Health and ,Departments of 2 Psychology
| |
Collapse
|
15
|
Effects of Surgery and Proton Therapy on Cerebral White Matter of Craniopharyngioma Patients. Int J Radiat Oncol Biol Phys 2015; 93:64-71. [PMID: 26279025 DOI: 10.1016/j.ijrobp.2015.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/22/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022]
Abstract
PURPOSE The purpose of this study was to determine radiation dose effect on the structural integrity of cerebral white matter in craniopharyngioma patients receiving surgery and proton therapy. METHODS AND MATERIALS Fifty-one patients (2.1-19.3 years of age) with craniopharyngioma underwent surgery and proton therapy in a prospective therapeutic trial. Anatomical magnetic resonance images acquired after surgery but before proton therapy were inspected to identify white matter structures intersected by surgical corridors and catheter tracks. Longitudinal diffusion tensor imaging (DTI) was performed to measure microstructural integrity changes in cerebral white matter. Fractional anisotropy (FA) derived from DTI was statistically analyzed for 51 atlas-based white matter structures of the brain to determine radiation dose effect. FA in surgery-affected regions in the corpus callosum was compared to that in its intact counterpart to determine whether surgical defects affect radiation dose effect. RESULTS Surgical defects were seen most frequently in the corpus callosum because of transcallosal resection of tumors and insertion of ventricular or cyst catheters. Longitudinal DTI data indicated reductions in FA 3 months after therapy, which was followed by a recovery in most white matter structures. A greater FA reduction was correlated with a higher radiation dose in 20 white matter structures, indicating a radiation dose effect. The average FA in the surgery-affected regions before proton therapy was smaller (P=.0001) than that in their non-surgery-affected counterparts with more intensified subsequent reduction of FA (P=.0083) after therapy, suggesting that surgery accentuated the radiation dose effect. CONCLUSIONS DTI data suggest that mild radiation dose effects occur in patients with craniopharyngioma receiving surgery and proton therapy. Surgical defects present at the time of proton therapy appear to accentuate the radiation dose effect longitudinally. This study supports consideration of pre-existing surgical defects and their locations in proton therapy planning and studies of treatment effect.
Collapse
|
16
|
Abstract
Children treated for medulloblastoma (MB) exhibit long-term impairments in declarative memory, but the pathophysiology underlying this is unclear. Previous studies report declines in global white matter volume, but have failed to link this to declines in memory performance. We examined the effects of treatment on measures of global brain structure (i.e., total white and gray matter volume) and specific memory structures (i.e., hippocampus and uncinate fasciculus). We used volumetric MRI and diffusion tensor imaging in pediatric survivors of MB and one survivor of astrocytoma treated with cranial-spinal radiation (n = 20), and healthy controls (n = 13). Compared to controls, the survivor group exhibited reduced white matter volume, damage to the uncinate fasciculus, and a smaller right hippocampus. Critically, reduced hippocampal volume was not related to differences in brain volume, suggesting that the hippocampus may be especially vulnerable to treatment effects. A subset of the survivors (n = 10) also underwent memory testing using the Children's Memory Scale (CMS). Performance on the general index of the CMS was significantly correlated with measures of hippocampal volume and uncinate fasciculus. The examination of treatment effects on specific brain regions provides a better understanding of long-term cognitive outcome in children with brain tumors, particularly medulloblastoma.
Collapse
|
17
|
Peiffer AM, Leyrer CM, Greene-Schloesser DM, Shing E, Kearns WT, Hinson WH, Tatter SB, Ip EH, Rapp SR, Robbins ME, Shaw EG, Chan MD. Neuroanatomical target theory as a predictive model for radiation-induced cognitive decline. Neurology 2013; 80:747-53. [PMID: 23390169 DOI: 10.1212/wnl.0b013e318283bb0a] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE In a retrospective review to assess neuroanatomical targets of radiation-induced cognitive decline, dose volume histogram (DVH) analyses of specific brain regions of interest (ROI) are correlated to neurocognitive performance in 57 primary brain tumor survivors. METHODS Neurocognitive assessment at baseline included Trail Making Tests A/B, a modified Rey-Osterreith Complex Figure, California or Hopkins Verbal Learning Test, Digit Span, and Controlled Oral Word Association. DVH analysis was performed for multiple neuroanatomical targets considered to be involved in cognition. The %v10 (percent of ROI receiving 10 Gy), %v40, and %v60 were calculated for each ROI. Factor analysis was used to estimate global cognition based on a summary of performance on individual cognitive tests. Stepwise regression was used to determine which dose volume predicted performance on global factors and individual neurocognitive tests for each ROI. RESULTS Regions that predicted global cognitive outcomes at doses <60 Gy included the corpus callosum, left frontal white matter, right temporal lobe, bilateral hippocampi, subventricular zone, and cerebellum. Regions of adult neurogenesis primarily predicted cognition at %v40 except for the right hippocampus which predicted at %v10. Regions that did not predict global cognitive outcomes at any dose include total brain volume, frontal pole, anterior cingulate, right frontal white matter, and the right precentral gyrus. CONCLUSIONS Modeling of radiation-induced cognitive decline using neuroanatomical target theory appears to be feasible. A prospective trial is necessary to validate these data.
Collapse
Affiliation(s)
- Ann M Peiffer
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kesler SR, Lacayo NJ, Jo B. A pilot study of an online cognitive rehabilitation program for executive function skills in children with cancer-related brain injury. Brain Inj 2011; 25:101-12. [PMID: 21142826 DOI: 10.3109/02699052.2010.536194] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVES Children with a history of cancer are at increased risk for cognitive impairments, particularly in executive and memory domains. Traditional, in-person cognitive rehabilitation strategies may be unavailable and/or impractical for many of these children given difficulties related to resources and health status. The feasibility and efficacy of implementing a computerized, home-based cognitive rehabilitation curriculum designed to improve executive function skills was examined in these children. METHODS A one-arm open trial pilot study of an original executive function cognitive rehabilitation curriculum was conducted with 23 paediatric cancer survivors aged 7-19. RESULTS Compliance with the cognitive rehabilitation program was 83%, similar to that of many traditional programs. Following the cognitive intervention, participants showed significantly increased processing speed, cognitive flexibility, verbal and visual declarative memory scores as well as significantly increased pre-frontal cortex activation compared to baseline. CONCLUSIONS These results suggest that a program of computerized cognitive exercises can be successfully implemented at home in young children with cancer. These exercises may be effective for improving executive and memory skills in this group, with concurrent changes in neurobiologic status.
Collapse
Affiliation(s)
- Shelli R Kesler
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA.
| | | | | |
Collapse
|
19
|
De Luca CR, Conroy R, McCarthy MC, Anderson VA, Ashley DM. Neuropsychological impact of treatment of brain tumors. Cancer Treat Res 2010; 150:277-96. [PMID: 19834674 DOI: 10.1007/b109924_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Cinzia R De Luca
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, VIC, Australia.
| | | | | | | | | |
Collapse
|
20
|
Rueckriegel SM, Driever PH, Blankenburg F, Lüdemann L, Henze G, Bruhn H. Differences in supratentorial damage of white matter in pediatric survivors of posterior fossa tumors with and without adjuvant treatment as detected by magnetic resonance diffusion tensor imaging. Int J Radiat Oncol Biol Phys 2009; 76:859-66. [PMID: 19540067 DOI: 10.1016/j.ijrobp.2009.02.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/26/2009] [Accepted: 02/27/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To elucidate morphologic correlates of brain dysfunction in pediatric survivors of posterior fossa tumors by using magnetic resonance diffusion tensor imaging (DTI) to examine neuroaxonal integrity in white matter. PATIENTS AND METHODS Seventeen medulloblastoma (MB) patients who had received surgery and adjuvant treatment, 13 pilocytic astrocytoma (PA) patients who had been treated only with surgery, and age-matched healthy control subjects underwent magnetic resonance imaging on a 3-Tesla system. High-resolution conventional T1- and T2-weighted magnetic resonance imaging and DTI data sets were obtained. Fractional anisotropy (FA) maps were analyzed using tract-based spatial statistics, a part of the Functional MRI of the Brain Software Library. RESULTS Compared with control subjects, FA values of MB patients were significantly decreased in the cerebellar midline structures, in the frontal lobes, and in the callosal body. Fractional anisotropy values of the PA patients were not only decreased in cerebellar hemispheric structures as expected, but also in supratentorial parts of the brain, with a distribution similar to that in MB patients. However, the amount of significantly decreased FA was greater in MB than in PA patients, underscoring the aggravating neurotoxic effect of the adjuvant treatment. CONCLUSIONS Neurotoxic mechanisms that are present in PA patients (e.g., internal hydrocephalus and damaged cerebellar structures affecting neuronal circuits) contribute significantly to the alteration of supratentorial white matter in pediatric posterior fossa tumor patients.
Collapse
Affiliation(s)
- Stefan Mark Rueckriegel
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Fossati P, Ricardi U, Orecchia R. Pediatric medulloblastoma: toxicity of current treatment and potential role of protontherapy. Cancer Treat Rev 2008; 35:79-96. [PMID: 18976866 DOI: 10.1016/j.ctrv.2008.09.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/30/2008] [Accepted: 09/03/2008] [Indexed: 11/25/2022]
Abstract
Post-operative craniospinal irradiation and systemic chemotherapy are both necessary in the treatment of pediatric medulloblastoma. Late toxicity is a major problem in long term survivors and significantly affects their quality of life. We have systematically reviewed the literature to examine data on late toxicity, specifically focusing on: endocrine function, growth and bone development, neurocognitive development, second cancers, ototoxicity, gynecological toxicity and health of the offspring, cardiac toxicity and pulmonary toxicity. In this paper, we describe qualitatively the kind of detected side effects and, whenever possible, try to assess their incidence and the relative role of craniospinal irradiation (as opposed to other treatments and to the disease itself) in producing them. Subsequently we examine the possible approach to reduce unwanted effects from craniospinal irradiation to target and non-target tissues and we consider briefly the role of hyperfractionation, tomotherapy and IMRT. We describe the characteristics of protontherapy and its potential for non-target tissues toxicity reduction reviewing the existing physical and dosimetric studies and the (still very limited) clinical experiences. Finally we propose intensity modulated spot scanning protontherapy with multiportal simultaneous optimization (IMPT) as a possible tool for dose distribution optimization within different areas of CNS and potential reduction of target tissues toxicity.
Collapse
Affiliation(s)
- Piero Fossati
- Institute of Radiological Sciences, University of Milan, Milano, Italy.
| | | | | |
Collapse
|
22
|
Dellani PR, Eder S, Gawehn J, Vucurevic G, Fellgiebel A, Müller MJ, Schmidberger H, Stoeter P, Gutjahr P. Late structural alterations of cerebral white matter in long-term survivors of childhood leukemia. J Magn Reson Imaging 2008; 27:1250-5. [PMID: 18504742 DOI: 10.1002/jmri.21364] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To look for the presence and age-dependence of late structural alterations of otherwise normal-appearing cerebral gray and white matter after radiation and chemotherapy in adult survivors of acute lymphoblastic leukemia (ALL) during childhood. MATERIALS AND METHODS In a group of 13 adult survivors 17-37 years old, who had been treated by total brain radiation (18-24 Gy) and chemotherapy 16-28 years ago, prospective MR examinations including diffusion tensor imaging (DTI) were performed. Evaluation included volumetry, calculation of mean diffusivity (MD) and fractional anisotropy (FA), and comparison of results to an age-matched control group. RESULTS DTI showed significantly reduced FA values in the temporal lobes (difference of 0.069 units, P < 0.001), hippocampi (difference of 0.033 units, P < 0.001), and thalami (difference of 0.046 units, P = 0.001), which were accompanied by significant white matter volume loss (difference of 92 cm(3), P < 0.001). Significant elevations of MD were limited to the temporal white matter (difference of 42 x 10(-6) mm(2)/s, P = 0.005). Global and frontal white matter MD correlated negatively to increasing age of the survivors (P < 0.01). CONCLUSION With regard to structural white matter alterations, adult long-term survivors of childhood ALL, who had received total brain radiation and chemotherapy, apparently show the same overall age dependence as controls. Follow-up studies are needed for confirmation.
Collapse
Affiliation(s)
- Paulo R Dellani
- Institute of Neuroradiology, University Clinic, Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Haris M, Kumar S, Raj MK, Das KJM, Sapru S, Behari S, Rathore RKS, Narayana PA, Gupta RK. Serial diffusion tensor imaging to characterize radiation-induced changes in normal-appearing white matter following radiotherapy in patients with adult low-grade gliomas. ACTA ACUST UNITED AC 2008; 26:140-50. [PMID: 18683569 DOI: 10.1007/s11604-007-0209-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this study was to ascertain whether diffusion tensor imaging (DTI) metrics fractional anisotropy (FA), mean diffusivity (MD), linear case (CL), planar case (CP), spherical case (CS)-can characterize a threshold dose and temporal evolution of changes in normal-appearing white matter (NAWM) of adults with low-grade gliomas (LGGs) treated with radiation therapy (RT). METHODS AND MATERIALS Conventional and DTI imaging were performed before RT in 5 patients and subsequently, on average, at 3 months (n = 5), 8 months (n = 3), and 14 months (n = 5) following RT for a total of 18 examinations. Isodose distribution at 5-Gy intervals were visualized in all the slices of fluid attenuated inversion recovery (FLAIR) and the corresponding DTI images without diffusion sensitization (b0DTI). The latter were exported for relative quantitative analysis. RESULTS Compared to pre-RT values, FA and CL decreased, whereas CS increased at 3 and 8 months and recovered partially at 14 months for the dose bins >55 Gy and 50-55 Gy. For the 45 50 Gy bin, the FA and CL decreased with an increase in CS at 3 months; no further change was seen at 8 or 14 months. For the >55 Gy and 50-55 Gy bins, CP decreased and MD increased at 3 months and returned to baseline at 8 months following RT. CONCLUSION Radiation-induced changes in NAWM can be detected at 3 months after RT, with changes in FA, CL, and CS (but not CP or MD) values seen at a threshold dose of 45-50 Gy. A partial recovery was evident by 14 months to regions that received doses of 50-55 Gy and >55 Gy, thus providing an objective measure of radiation effect on NAWM.
Collapse
Affiliation(s)
- Mohammad Haris
- Department of Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareily Road, Lucknow 226014, India
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rauschecker AM, Deutsch GK, Ben-Shachar M, Schwartzman A, Perry LM, Dougherty RF. Reading impairment in a patient with missing arcuate fasciculus. Neuropsychologia 2008; 47:180-94. [PMID: 18775735 DOI: 10.1016/j.neuropsychologia.2008.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 07/27/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
Abstract
We describe the case of a child ("S") who was treated with radiation therapy at age 5 for a recurrent malignant brain tumor. Radiation successfully abolished the tumor but caused radiation-induced tissue necrosis, primarily affecting cerebral white matter. S was introduced to us at age 15 because of her profound dyslexia. We assessed cognitive abilities and performed diffusion tensor imaging (DTI) to measure cerebral white matter pathways. Diffuse white matter differences were evident in T1-weighted, T2-weighted, diffusion anisotropy, and mean diffusivity measures in S compared to a group of 28 normal female controls. In addition, we found specific white matter pathway deficits by comparing tensor-orientation directions in S's brain with those of the control brains. While her principal diffusion direction maps appeared consistent with those of controls over most of the brain, there were tensor-orientation abnormalities in the fiber tracts that form the superior longitudinal fasciculus (SLF) in both hemispheres. Tractography analysis indicated that the left and right arcuate fasciculus (AF), as well as other tracts within the SLF, were missing in S. Other major white matter tracts, such as the corticospinal and inferior occipitofrontal pathways, were intact. Functional MRI measurements indicated left-hemisphere dominance for language with a normal activation pattern. Despite the left AF abnormality, S had preserved oral language with average sentence repetition skills. In addition to profound dyslexia, S exhibited visuospatial, calculation, and rapid naming deficits and was impaired in both auditory and spatial working memory. We propose that the reading and visuospatial deficits were due to the abnormal left and right SLF pathways, respectively. These results advance our understanding of the functional significance of the SLF and are the first to link radiation necrosis with selective damage to a specific set of fiber tracts.
Collapse
Affiliation(s)
- Andreas M Rauschecker
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, United States.
| | | | | | | | | | | |
Collapse
|
25
|
Welzel T, Niethammer A, Mende U, Heiland S, Wenz F, Debus J, Krempien R. Diffusion tensor imaging screening of radiation-induced changes in the white matter after prophylactic cranial irradiation of patients with small cell lung cancer: first results of a prospective study. AJNR Am J Neuroradiol 2008; 29:379-83. [PMID: 17974610 DOI: 10.3174/ajnr.a0797] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Diffusion tensor imaging (DTI) will show abnormal fractional anisotropy (FA) in the normal-appearing brain after prophylactic cranial irradiation (PCI). These abnormalities will be more accentuated in patients with underlying vascular risk factors. MATERIALS AND METHODS A prospective study by use of DTI and conventional T2-weighted MR images was performed with a 1.5T unit with 16 patients with small cell lung cancer and undergoing PCI. All of the T2-weighted images were evaluated with respect to abnormalities in signal intensity of white matter as markers of radiation damage. Measurements of FA were performed before, at the end of, and 6 weeks after radiation therapy. On the FA maps, the bifrontal white matter, the corona radiata, the cerebellum, and the brain stem were evaluated. FA values were compared with respect to age, demographic, and vascular risk factors. Statistical analyses (Friedman test, Wilcoxon test, and Mann-Whitney U test) were performed. RESULTS Fractional anisotropy decreased significantly in supratentorial and infratentorial normal-appearing white matter from the beginning to the end of PCI (P < .01). A further decline in FA occurred 6 weeks after irradiation (P < .05). A stronger reduction in FA was observed in patients with more than 1 vascular risk factor. There was an age-related reduction of white matter FA. Patients 65 years and older showed a trend toward a stronger reduction in FA. CONCLUSION During the acute phase, after PCI, patients with many vascular risk factors showed stronger damage in the white matter compared with patients with only 1 risk factor.
Collapse
Affiliation(s)
- T Welzel
- Department of Radiooncology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Whole brain voxel-wise analysis of single-subject serial DTI by permutation testing. Neuroimage 2007; 39:1693-705. [PMID: 18082426 DOI: 10.1016/j.neuroimage.2007.10.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 08/10/2007] [Accepted: 10/24/2007] [Indexed: 01/25/2023] Open
Abstract
Diffusion tensor MRI (DTI) has been widely used to investigate brain microstructural changes in pathological conditions as well as for normal development and aging. In particular, longitudinal changes are vital to the understanding of progression but these studies are typically designed for specific regions of interest. To analyze changes in these regions traditional statistical methods are often employed to elucidate group differences which are measured against the variability found in a control cohort. However, in some cases, rather than collecting multiple subjects into two groups, it is necessary and more informative to analyze the data for individual subjects. There is also a need for understanding changes in a single subject without prior information regarding the spatial distribution of the pathology, but no formal statistical framework exists for these voxel-wise analyses of DTI. In this study, we present PERVADE (permutation voxel-wise analysis of diffusion estimates), a whole brain analysis method for detecting localized FA changes between two separate points in time of any given subject, without any prior hypothesis about where changes might occur. Exploiting the nature of DTI that it is calculated from multiple diffusion-weighted images of each region, permutation testing, a non-parametric hypothesis testing technique, was modified for the analysis of serial DTI data and implemented for voxel-wise hypothesis tests of diffusion metric changes, as well as for suprathreshold cluster analysis to correct for multiple comparisons. We describe PERVADE in detail and present results from Monte Carlo simulation supporting the validity of the technique as well as illustrative examples from a healthy subject and patients in the early stages of multiple sclerosis.
Collapse
|
27
|
Abstract
Diffusion tensor imaging (DTI) is a promising method for characterizing microstructural changes or differences with neuropathology and treatment. The diffusion tensor may be used to characterize the magnitude, the degree of anisotropy, and the orientation of directional diffusion. This review addresses the biological mechanisms, acquisition, and analysis of DTI measurements. The relationships between DTI measures and white matter pathologic features (e.g., ischemia, myelination, axonal damage, inflammation, and edema) are summarized. Applications of DTI to tissue characterization in neurotherapeutic applications are reviewed. The interpretations of common DTI measures (mean diffusivity, MD; fractional anisotropy, FA; radial diffusivity, D(r); and axial diffusivity, D(a)) are discussed. In particular, FA is highly sensitive to microstructural changes, but not very specific to the type of changes (e.g., radial or axial). To maximize the specificity and better characterize the tissue microstructure, future studies should use multiple diffusion tensor measures (e.g., MD and FA, or D(a) and D(r)).
Collapse
Affiliation(s)
- Andrew L Alexander
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
28
|
Qiu D, Kwong DLW, Chan GCF, Leung LHT, Khong PL. Diffusion tensor magnetic resonance imaging finding of discrepant fractional anisotropy between the frontal and parietal lobes after whole-brain irradiation in childhood medulloblastoma survivors: reflection of regional white matter radiosensitivity? Int J Radiat Oncol Biol Phys 2007; 69:846-51. [PMID: 17544593 DOI: 10.1016/j.ijrobp.2007.04.041] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/13/2007] [Accepted: 04/13/2007] [Indexed: 11/30/2022]
Abstract
PURPOSE To test the hypothesis that fractional anisotropy (FA) is more severely reduced in white matter of the frontal lobe compared with the parietal lobe after receiving the same whole-brain irradiation dose in a cohort of childhood medulloblastoma survivors. METHODS AND MATERIALS Twenty-two medulloblastoma survivors (15 male, mean [+/- SD] age = 12.1 +/- 4.6 years) and the same number of control subjects (15 male, aged 12.0 +/- 4.2 years) were recruited for diffusion tensor magnetic resonance imaging scans. Using an automated tissue classification method and the Talairach Daemon atlas, FA values of frontal and parietal lobes receiving the same radiation dose, and the ratio between them were quantified and denoted as FFA, PFA, and FA(f/p), respectively. The Mann-Whitney U test was used to test for significant differences of FFA, PFA, and FA(f/p) between medulloblastoma survivors and control subjects. RESULTS Frontal lobe and parietal lobe white matter FA were found to be significantly less in medulloblastoma survivors compared with control subjects (frontal p = 0.001, parietal p = 0.026). Moreover, these differences were found to be discrepant, with the frontal lobe having a significantly larger difference in FA compared with the parietal lobe. The FA(f/p) of control and medulloblastoma survivors was 1.110 and 1.082, respectively (p = 0.029). CONCLUSION Discrepant FA changes after the same irradiation dose suggest radiosensitivity of the frontal lobe white matter compared with the parietal lobe. Special efforts to address the potentially vulnerable frontal lobe after treatment with whole-brain radiation may be needed so as to balance disease control and treatment-related morbidity.
Collapse
Affiliation(s)
- Deqiang Qiu
- Department of Diagnostic Radiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
29
|
Yu JB, Shiao SL, Knisely JPS. A dosimetric evaluation of conventional helmet field irradiation versus two-field intensity-modulated radiotherapy technique. Int J Radiat Oncol Biol Phys 2007; 68:621-31. [PMID: 17276616 DOI: 10.1016/j.ijrobp.2006.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 12/01/2006] [Accepted: 12/04/2006] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. METHODS AND MATERIALS Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. RESULTS Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. CONCLUSIONS Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients.
Collapse
Affiliation(s)
- James B Yu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | | | | |
Collapse
|