1
|
Xu J, Sun Y, Zhu X, Pan S, Tong Z, Jiang K. Tactile discrimination as a diagnostic indicator of cognitive decline in patients with mild cognitive impairment: A narrative review. Heliyon 2024; 10:e31256. [PMID: 38803967 PMCID: PMC11129005 DOI: 10.1016/j.heliyon.2024.e31256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tactile discrimination, a cognitive task reliant on fingertip touch for stimulus discrimination, encompasses the somatosensory system and working memory, with its acuity diminishing with advancing age. Presently, the evaluation of cognitive capacity to differentiate between individuals with early Alzheimer's disease (AD) and typical older adults predominantly relies on visual or auditory tasks, yet the efficacy of discrimination remains constrained. Aims To review the existing tactile cognitive tasks and explore the interaction between tactile perception and the pathological process of Alzheimer's disease. The tactile discrimination task may be used as a reference index of cognitive decline in patients with mild cognitive impairment and provide a new method for clinical evaluation. Methods We searched four databases (Embase, PubMed, Web of Science and Google scholar). The reference coverage was from 1936 to 2023. The search terms included "Alzheimer disease" "mild cognitive impairment" "tactile" "tactile discrimination" "tactile test" and so on. Reviews and experimental reports in the field were examined and the effectiveness of different types of tactile tasks was compared. Main results Individuals in the initial phases of Alzheimer's spectrum disease, specifically those in the stage of mild cognitive impairment (MCI), exhibit notable impairments in tasks involving tactile discrimination. These tasks possess certain merits, such as their quick and straightforward comparability, independence from educational background, and ability to circumvent the limitations associated with conventional cognitive assessment scales. Furthermore, tactile discrimination tasks offer enhanced accuracy compared to cognitive tasks that employ visual or auditory stimuli. Conclusions Tactile discrimination has the potential to serve as an innovative reference indicator for the swift diagnosis of clinical MCI patients, thereby assisting in the screening process on a clinical scale.
Collapse
Affiliation(s)
- Jinan Xu
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuqi Sun
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xianghe Zhu
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sipei Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiqian Tong
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ke Jiang
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Center for Brain, Mind and Education, Shaoxing University, China
| |
Collapse
|
2
|
Yang 杨炀 Y, Li 李君君 J, Zhao 赵恺 K, Tam F, Graham SJ, Xu 徐敏 M, Zhou 周可 K. Lateralized Functional Connectivity of the Sensorimotor Cortex and its Variations During Complex Visuomotor Tasks. J Neurosci 2024; 44:e0723232023. [PMID: 38050101 PMCID: PMC10860583 DOI: 10.1523/jneurosci.0723-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
Previous studies have shown that the left hemisphere dominates motor function, often observed through homotopic activation measurements. Using a functional connectivity approach, this study investigated the lateralization of the sensorimotor cortex during handwriting and drawing, two complex visuomotor tasks with varying contextual demands. We found that both left- and right-lateralized connectivity in the primary motor cortex (M1), dorsal premotor cortex (PMd), somatosensory cortex, and visual regions were evident in adults (males and females), primarily in an interhemispheric integrative fashion. Critically, these lateralization tendencies remained highly invariant across task contexts, representing a task-invariant neural architecture for encoding fundamental motor programs consistently implemented in different task contexts. Additionally, the PMd exhibited a slight variation in lateralization degree between task contexts, reflecting the ability of the high-order motor system to adapt to varying task demands. However, connectivity-based lateralization of the sensorimotor cortex was not detected in 10-year-old children (males and females), suggesting that the maturation of connectivity-based lateralization requires prolonged development. In summary, this study demonstrates both task-invariant and task-sensitive connectivity lateralization in sensorimotor cortices that support the resilience and adaptability of skilled visuomotor performance. These findings align with the hierarchical organization of the motor system and underscore the significance of the functional connectivity-based approach in studying functional lateralization.
Collapse
Affiliation(s)
- Yang Yang 杨炀
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjun Li 李君君
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao 赵恺
- Institute of Brain Trauma and Neurology, Pingjin Hospital, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin 300300, China
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Min Xu 徐敏
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Ke Zhou 周可
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Benner J, Reinhardt J, Christiner M, Wengenroth M, Stippich C, Schneider P, Blatow M. Temporal hierarchy of cortical responses reflects core-belt-parabelt organization of auditory cortex in musicians. Cereb Cortex 2023:7030622. [PMID: 36786655 DOI: 10.1093/cercor/bhad020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/15/2023] Open
Abstract
Human auditory cortex (AC) organization resembles the core-belt-parabelt organization in nonhuman primates. Previous studies assessed mostly spatial characteristics; however, temporal aspects were little considered so far. We employed co-registration of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in musicians with and without absolute pitch (AP) to achieve spatial and temporal segregation of human auditory responses. First, individual fMRI activations induced by complex harmonic tones were consistently identified in four distinct regions-of-interest within AC, namely in medial Heschl's gyrus (HG), lateral HG, anterior superior temporal gyrus (STG), and planum temporale (PT). Second, we analyzed the temporal dynamics of individual MEG responses at the location of corresponding fMRI activations. In the AP group, the auditory evoked P2 onset occurred ~25 ms earlier in the right as compared with the left PT and ~15 ms earlier in the right as compared with the left anterior STG. This effect was consistent at the individual level and correlated with AP proficiency. Based on the combined application of MEG and fMRI measurements, we were able for the first time to demonstrate a characteristic temporal hierarchy ("chronotopy") of human auditory regions in relation to specific auditory abilities, reflecting the prediction for serial processing from nonhuman studies.
Collapse
Affiliation(s)
- Jan Benner
- Department of Neuroradiology and Section of Biomagnetism, University of Heidelberg Hospital, Heidelberg, Germany
| | - Julia Reinhardt
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Orthopedic Surgery and Traumatology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Markus Christiner
- Centre for Systematic Musicology, University of Graz, Graz, Austria.,Department of Musicology, Vitols Jazeps Latvian Academy of Music, Riga, Latvia
| | - Martina Wengenroth
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Christoph Stippich
- Department of Neuroradiology and Radiology, Kliniken Schmieder, Allensbach, Germany
| | - Peter Schneider
- Department of Neuroradiology and Section of Biomagnetism, University of Heidelberg Hospital, Heidelberg, Germany.,Centre for Systematic Musicology, University of Graz, Graz, Austria.,Department of Musicology, Vitols Jazeps Latvian Academy of Music, Riga, Latvia
| | - Maria Blatow
- Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Neurocenter, Cantonal Hospital Lucerne, University of Lucerne, Lucerne, Switzerland
| |
Collapse
|
4
|
Guu SF, Chao YP, Huang FY, Cheng YT, Ng HYH, Hsu CF, Chuang CH, Huang CM, Wu CW. Interoceptive awareness: MBSR training alters information processing of salience network. Front Behav Neurosci 2023; 17:1008086. [PMID: 37025109 PMCID: PMC10070746 DOI: 10.3389/fnbeh.2023.1008086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Mindfulness refers to a mental state of awareness of internal experience without judgment. Studies have suggested that each mindfulness practice may involve a unique mental state, but the underlying neurophysiological mechanisms remain unknown. Here we examined how distinct mindfulness practices after mindfulness-based intervention alter brain functionality. Specifically, we investigated the functional alterations of the salience network (SN) using functional magnetic resonance imaging (fMRI) among the two interoceptive mindfulness practices-breathing and body scan-associated with interoceptive awareness in fixed attention and shifted attention, respectively. Long-distance functional connectivity (FC) and regional homogeneity (ReHo) approaches were applied to measure distant and local neural information processing across various mental states. We hypothesized that mindful breathing and body scan would yield a unique information processing pattern in terms of long-range and local functional connectivity (FC). A total of 18 meditation-naïve participants were enrolled in an 8-week mindfulness-based stress reduction (MBSR) program alongside a waitlist control group (n = 14), with both groups undergoing multiple fMRI sessions during breathing, body scan and resting state for comparison. We demonstrated that two mindfulness practices affect both the long-distance FC SN and the local ReHo, only apparent after the MBSR program. Three functional distinctions between the mindfulness practices and the resting state are noted: (1) distant SN connectivity to occipital regions increased during the breathing practice (fixed attention), whereas the SN increased connection with the frontal/central gyri during the body scan (shifting attention); (2) local ReHo increased only in the parietal lobe during the body scan (shifting attention); (3) distant and local connections turned into a positive correlation only during the mindfulness practices after the MBSR training, indicating a global enhancement of the SN information processing during mindfulness practices. Though with limited sample size, the functional specificity of mindfulness practices offers a potential research direction on neuroimaging of mindfulness, awaiting further studies for verification.
Collapse
Affiliation(s)
- Shiao-Fei Guu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Feng-Ying Huang
- Department of Education, National Taipei University of Education, Taipei, Taiwan
| | - Yu-Ting Cheng
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Clinical Mental Health Counseling Program, Johns Hopkins University, Baltimore, MD, United States
| | - Hei-Yin Hydra Ng
- Department of Educational Psychology and Counseling, College of Education, National Tsing Hua University, Hsinchu, Taiwan
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Fen Hsu
- Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Child Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chun-Hsiang Chuang
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- *Correspondence: Chih-Mao Huang,
| | - Changwei W. Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center, Shuang Ho Hospital-Taipei Medical University, New Taipei, Taiwan
- Changwei W. Wu,
| |
Collapse
|
5
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
6
|
Anesthetic modulations dissociate neuroelectric characteristics between sensory-evoked and spontaneous activities across bilateral rat somatosensory cortical laminae. Sci Rep 2022; 12:11661. [PMID: 35804171 PMCID: PMC9270342 DOI: 10.1038/s41598-022-13759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Spontaneous neural activity has been widely adopted to construct functional connectivity (FC) amongst distant brain regions. Although informative, the functional role and signaling mechanism of the resting state FC are not intuitive as those in stimulus/task-evoked activity. In order to bridge the gap, we investigated anesthetic modulation of both resting-state and sensory-evoked activities. We used two well-studied GABAergic anesthetics of varying dose (isoflurane: 0.5–2.0% and α-chloralose: 30 and 60 mg/kg∙h) and recorded changes in electrophysiology using a pair of laminar electrode arrays that encompass the entire depth of the bilateral somatosensory cortices (S1fl) in rats. Specifically, the study focused to describe how varying anesthesia conditions affect the resting state activities and resultant FC between bilateral hemispheres in comparison to those obtained by evoked responses. As results, isoflurane decreased the amplitude of evoked responses in a dose-dependent manner mostly due to the habituation of repetitive responses. However, α-chloralose rather intensified the amplitude without exhibiting habituation. No such diverging trend was observed for the spontaneous activity, in which both anesthetics increased the signal power. For α-chloralose, overall FC was similar to that obtained with the lowest dose of isoflurane at 0.5% while higher doses of isoflurane displayed increased FC. Interestingly, only α-chloralose elicited relatively much greater increases in the ipsi-stimulus evoked response (i.e., in S1fl ipsilateral to the stimulated forelimb) than those associated with the contra-stimulus response, suggesting enhanced neuronal excitability. Taken together, the findings demonstrate modulation of the FC profiles by anesthesia is highly non-linear, possibly with a distinct underlying mechanism that affects either resting state or evoked activities differently. Further, the current study warrants thorough investigation of the basal neuronal states prior to the interpretation of resting state FC and evoked activities for accurate understanding of neural signal processing and circuitry.
Collapse
|
7
|
Aggarwal A, Das CJ, Sharma S. Recent advances in imaging techniques of renal masses. World J Radiol 2022; 14:137-150. [PMID: 35978979 PMCID: PMC9258310 DOI: 10.4329/wjr.v14.i6.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Multiphasic multidetector computed tomography (CT) forms the mainstay for the characterization of renal masses whereas magnetic resonance imaging (MRI) acts as a problem-solving tool in some cases. However, a few of the renal masses remain indeterminate even after evaluation by conventional imaging methods. To overcome the deficiency in current imaging techniques, advanced imaging methods have been devised and are being tested. This review will cover the role of contrast-enhanced ultrasonography, shear wave elastography, dual-energy CT, perfusion CT, MR perfusion, diffusion-weighted MRI, blood oxygen level-dependent MRI, MR spectroscopy, positron emission tomography (PET)/prostate-specific membrane antigen-PET in the characterization of renal masses.
Collapse
Affiliation(s)
- Ankita Aggarwal
- Department of Radiology, Vardhman Mahavir Medical College& Safdarjung Hospital, Delhi 110029, India
| | - Chandan J Das
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, Delhi 110029, India
| | - Sanjay Sharma
- Department of Radiology (RPC), All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
8
|
Pondelis NJ, Moulton EA. Supraspinal Mechanisms Underlying Ocular Pain. Front Med (Lausanne) 2022; 8:768649. [PMID: 35211480 PMCID: PMC8862711 DOI: 10.3389/fmed.2021.768649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Supraspinal mechanisms of pain are increasingly understood to underlie neuropathic ocular conditions previously thought to be exclusively peripheral in nature. Isolating individual causes of centralized chronic conditions and differentiating them is critical to understanding the mechanisms underlying neuropathic eye pain and ultimately its treatment. Though few functional imaging studies have focused on the eye as an end-organ for the transduction of noxious stimuli, the brain networks related to pain processing have been extensively studied with functional neuroimaging over the past 20 years. This article will review the supraspinal mechanisms that underlie pain as they relate to the eye.
Collapse
Affiliation(s)
- Nicholas J Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Sbaihat H, Rajkumar R, Ramkiran S, Assi AAN, Felder J, Shah NJ, Veselinović T, Neuner I. Test-retest stability of spontaneous brain activity and functional connectivity in the core resting-state networks assessed with ultrahigh field 7-Tesla resting-state functional magnetic resonance imaging. Hum Brain Mapp 2022; 43:2026-2040. [PMID: 35044722 PMCID: PMC8933332 DOI: 10.1002/hbm.25771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
The growing demand for precise and reliable biomarkers in psychiatry is fueling research interest in the hope that identifying quantifiable indicators will improve diagnoses and treatment planning across a range of mental health conditions. The individual properties of brain networks at rest have been highlighted as a possible source for such biomarkers, with the added advantage that they are relatively straightforward to obtain. However, an important prerequisite for their consideration is their reproducibility. While the reliability of resting‐state (RS) measurements has often been studied at standard field strengths, they have rarely been investigated using ultrahigh‐field (UHF) magnetic resonance imaging (MRI) systems. We investigated the intersession stability of four functional MRI RS parameters—amplitude of low‐frequency fluctuations (ALFF) and fractional ALFF (fALFF; representing the spontaneous brain activity), regional homogeneity (ReHo; measure of local connectivity), and degree centrality (DC; measure of long‐range connectivity)—in three RS networks, previously shown to play an important role in several psychiatric diseases—the default mode network (DMN), the central executive network (CEN), and the salience network (SN). Our investigation at individual subject space revealed a strong stability for ALFF, ReHo, and DC in all three networks, and a moderate level of stability in fALFF. Furthermore, the internetwork connectivity between each network pair was strongly stable between CEN/SN and moderately stable between DMN/SN and DMN/SN. The high degree of reliability and reproducibility in capturing the properties of the three major RS networks by means of UHF‐MRI points to its applicability as a potentially useful tool in the search for disease‐relevant biomarkers.
Collapse
Affiliation(s)
- Hasan Sbaihat
- Institute of Neuroscience and Medicine, INM-4, Jülich, Germany.,Department of Medical Imaging, Arab-American University Palestine (AAUP), Jenin, Palestine.,Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Ravichandran Rajkumar
- Institute of Neuroscience and Medicine, INM-4, Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany
| | - Shukti Ramkiran
- Institute of Neuroscience and Medicine, INM-4, Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany
| | - Abed Al-Nasser Assi
- Department of Medical Imaging, Arab-American University Palestine (AAUP), Jenin, Palestine
| | - Jörg Felder
- Institute of Neuroscience and Medicine, INM-4, Jülich, Germany.,Department of Medical Imaging, Arab-American University Palestine (AAUP), Jenin, Palestine
| | - Nadim Jon Shah
- Institute of Neuroscience and Medicine, INM-4, Jülich, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine, INM-11, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine, INM-4, Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany
| |
Collapse
|
10
|
Proprioceptive Training with Visual Feedback Improves Upper Limb Function in Stroke Patients: A Pilot Study. Neural Plast 2022; 2022:1588090. [PMID: 35075359 PMCID: PMC8783730 DOI: 10.1155/2022/1588090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/30/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Proprioceptive deficit is one of the common sensory impairments following stroke and has a negative impact on motor performance. However, evidence-based training procedures and cost-efficient training setups for patients with poststroke are still limited. We compared the effects of proprioceptive training versus nonspecific sensory stimulation on upper limb proprioception and motor function rehabilitation. In this multicenter, single-blind, randomized controlled trial, 40 participants with poststroke hemiparesis were enrolled from 3 hospitals in China. Participants were assigned randomly to receive proprioceptive training involving passive and active movements with visual feedback (proprioceptive training group [PG]; n = 20) or nonspecific sensory stimulation (control group [CG]; n = 20) 20 times in four weeks. Each session lasted 30 minutes. A clinical assessor blinded to group assignment evaluated patients before and after the intervention. The primary outcome was the change in the motor subscale of the Fugl-Meyer assessment for upper extremity (FMA-UE-M). Secondary outcomes were changes in box and block test (BBT), thumb localization test (TLT), the sensory subscale of the Fugl-Meyer assessment for upper extremity (FMA-UE-S), and Barthel Index (BI). The results showed that the mean change scores of FMA-UE were significantly greater in the PG than in the CG (p = 0.010 for FMA-UE-M, p = 0.033 for FMA-UE-S). The PG group was improved significantly in TLT (p = 0.010) and BBT (p = 0.027), while there was no significant improvement in TLT (p = 0.083) and BBT (p = 0.107) for the CG group. The results showed that proprioceptive training was effective in improving proprioception and motor function of the upper extremity in patients with poststroke. This trial is registered in the Chinese Clinical Trial Registry (ChiCTR2000037808).
Collapse
|
11
|
Zlatkina V, Sprung-Much T, Petrides M. Spatial probability maps of the segments of the postcentral sulcus in the human brain. Cereb Cortex 2021; 32:3651-3668. [PMID: 34963136 PMCID: PMC9433426 DOI: 10.1093/cercor/bhab439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
The postcentral sulcus is the posterior boundary of the postcentral gyrus where the somatosensory cortex is represented. In the human brain, the postcentral sulcus is composed of five distinct segments that are related to the somatosensory representation of different parts of the body. Segment 1 of the postcentral sulcus, located near the dorsomedial boundary of each hemisphere, is associated with toe/leg representations, segment 2 with arm/hand representations, segment 3 with blinking, and segments 4 and 5, which are near the lateral fissure and the parietal operculum, with the mouth and tongue representations. The variability in location and spatial extent of these five segments were quantified in 40 magnetic resonance imaging (MRI) anatomical brain scans registered to the stereotaxic space of the Montreal Neurological Institute (MNI space), in the form of volumetric (using MINC Toolkit) and surface (using FreeSurfer) spatial probability maps. These probability maps can be used by researchers and clinicians to improve the localization of the segments of the postcentral sulcus in MRI images of interest and also to improve the interpretation of the location of activation peaks generated in functional neuroimaging studies investigating somatosensory cortex.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Address correspondence to Veronika Zlatkina, Montreal Neurological Institute, 3801 University St., Montreal, QC H3A 2B4, Canada.
| | - Trisanna Sprung-Much
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
12
|
Khateb M, Schiller J, Schiller Y. State-Dependent Synchrony and Functional Connectivity in the Primary and Secondary Whisker Somatosensory Cortices. Front Syst Neurosci 2021; 15:713397. [PMID: 34616281 PMCID: PMC8489558 DOI: 10.3389/fnsys.2021.713397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Synchronized activity plays an important role in sensory coding and memory and is a hallmark of functional network connectivity. However, the effect of sensory activation on synchronization and cortical functional connectivity is largely unknown. In this study, we investigated the effect of whisker activation on synchronization and functional connectivity of the primary (wS1) and secondary (wS2) whisker somatosensory cortices at the single-cell level. The results showed that during the spontaneous pre-stimulus state, neurons tended to be functionally connected with nearby neurons which shared similar tuning characteristics. Whisker activation using either ramp-and-hold stimulation or artificial whisking against sandpaper has significantly reduced the average overall pairwise synchronization and functional connectivity within the wS1 barrel and wS2 cortices. Whisker stimulation disconnected approximately a third of neuronal pairs that were functionally connected during the unstimulated state. Nearby neurons with congruent tuning properties were more likely to remain functionally connected during whisker activation. The findings of this study indicated that cortical somatosensory networks are organized in non-random small world networks composed of neurons sharing relatively similar tuning properties. Sensory whisker activation intensifies these properties and further subdivides the cortical network into smaller more functionally uniform subnetworks, which possibly serve to increase the computational capacity of the network.
Collapse
Affiliation(s)
- Mohamed Khateb
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| | - Jackie Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
13
|
Ono Y, Hirosawa T, Hasegawa C, Ikeda T, Kudo K, Naito N, Yoshimura Y, Kikuchi M. Influence of oxytocin administration on somatosensory evoked magnetic fields induced by median nerve stimulation during hand action observation in healthy male volunteers. PLoS One 2021; 16:e0249167. [PMID: 33788881 PMCID: PMC8011787 DOI: 10.1371/journal.pone.0249167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/12/2021] [Indexed: 01/04/2023] Open
Abstract
Watching another person’s hand movement modulates somatosensory evoked magnetic fields (SEFs). Assuming that the mirror neuron system may have a role in this phenomenon, oxytocin should enhance these effects. This single-blinded, placebo-controlled, crossover study therefore used magnetoencephalography (MEG) to investigate SEFs following electrical stimulation of the right median nerve in 20 healthy male participants during hand movement observation, which were initially presented as static images followed by moving images. The participants were randomly assigned to receive either oxytocin or saline during the first trial, with the treatment being reversed during a second trial. Log-transformed ratios of the N20 and N30 amplitudes were calculated and compared between moving and static images observations. Phase locking (calculated using intertrial phase coherence) of brain oscillations was also analyzed to evaluate alpha, beta and gamma rhythm changes after oxytocin administration. Log N30 ratios showed no significant changes after placebo administration but showed a decreasing tendency (albeit not significant) after placebo administration, which may suggest mirror neuron system involvement. In contrast, log N20 ratios were increased after placebo administration, but showed no significant change after oxytocin administration. Interestingly, the gamma band activity around N20 increased after placebo administration, suggesting that oxytocin exerted an analgesic effect on median nerve stimulation, and inhibited the gamma band increase. Oxytocin might therefore modulate not only the mirror neuron system, but also the sensory processing associated with median nerve stimulation.
Collapse
Affiliation(s)
- Yasuki Ono
- Department of Neuropsychiatry, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- * E-mail:
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | | | - Nobushige Naito
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
14
|
Özdenizci O, Eldeeb S, Demir A, Erdoğmuş D, Akçakaya M. EEG-based texture roughness classification in active tactile exploration with invariant representation learning networks. Biomed Signal Process Control 2021; 67. [PMID: 33927780 DOI: 10.1016/j.bspc.2021.102507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During daily activities, humans use their hands to grasp surrounding objects and perceive sensory information which are also employed for perceptual and motor goals. Multiple cortical brain regions are known to be responsible for sensory recognition, perception and motor execution during sensorimotor processing. While various research studies particularly focus on the domain of human sensorimotor control, the relation and processing between motor execution and sensory processing is not yet fully understood. Main goal of our work is to discriminate textured surfaces varying in their roughness levels during active tactile exploration using simultaneously recorded electroencephalogram (EEG) data, while minimizing the variance of distinct motor exploration movement patterns. We perform an experimental study with eight healthy participants who were instructed to use the tip of their dominant hand index finger while rubbing or tapping three different textured surfaces with varying levels of roughness. We use an adversarial invariant representation learning neural network architecture that performs EEG-based classification of different textured surfaces, while simultaneously minimizing the discriminability of motor movement conditions (i.e., rub or tap). Results show that the proposed approach can discriminate between three different textured surfaces with accuracies up to 70%, while suppressing movement related variability from learned representations.
Collapse
Affiliation(s)
- Ozan Özdenizci
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
- Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria
| | - Safaa Eldeeb
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andaç Demir
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Deniz Erdoğmuş
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Murat Akçakaya
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Zhou S, Huang Y, Jiao J, Hu J, Hsing C, Lai Z, Yang Y, Hu X. Impairments of cortico-cortical connectivity in fine tactile sensation after stroke. J Neuroeng Rehabil 2021; 18:34. [PMID: 33588877 PMCID: PMC7885375 DOI: 10.1186/s12984-021-00821-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/12/2021] [Indexed: 01/17/2023] Open
Abstract
Background Fine tactile sensation plays an important role in motor relearning after stroke. However, little is known about its dynamics in post-stroke recovery, principally due to a lack of effective evaluation on neural responses to fine tactile stimulation. This study investigated the post-stroke alteration of cortical connectivity and its functional structure in response to fine tactile stimulation via textile fabrics by electroencephalogram (EEG)-derived functional connectivity and graph theory analyses. Method Whole brain EEG was recorded from 64 scalp channels in 8 participants with chronic stroke and 8 unimpaired controls before and during the skin of the unilateral forearm contacted with a piece of cotton fabric. Functional connectivity (FC) was then estimated using EEG coherence. The fabric stimulation induced FC (SFC) was analyzed by a cluster-based permutation test for the FC in baseline and fabric stimulation. The functional structure of connectivity alteration in the brain was also investigated by assessing the multiscale topological properties of functional brain networks according to the graph theory. Results In the SFC distribution, an altered hemispheric lateralization (HL) (HL degree, 14%) was observed when stimulating the affected forearm in the stroke group, compared to stimulation of the unaffected forearm of the stroke group (HL degree, 53%) and those of the control group (HL degrees, 92% for the left and 69% for the dominant right limb). The involvement of additional brain regions, i.e., the distributed attention networks, was also observed when stimulating either limb of the stroke group compared with those of the control. Significantly increased (P < 0.05) global and local efficiencies were found when stimulating the affected forearm compared to the unaffected forearm. A significantly increased (P < 0.05) degree of inter-hemisphere FC (interdegree) mainly within ipsilesional somatosensory region and a significantly diminished degree of intra-hemisphere FC (intradegree) (P < 0.05) in ipsilesional primary somatosensory region were observed when stimulating the affected forearm, compared with the unaffected forearm. Conclusions The alteration of cortical connectivity in fine tactile sensation post-stroke was characterized by the compensation from the contralesional hemisphere and distributed attention networks related to involuntary attention. The interhemispheric connectivity could implement the compensation from the contralateral hemisphere to the ipsilesional somatosensory region. Stroke participants also exerted increased cortical activities in fine tactile sensation.
Collapse
Affiliation(s)
- Sa Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yanhuan Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiao Jiao
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Junyan Hu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chihchia Hsing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhangqi Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yang Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
16
|
Thomas J, Sharma D, Mohanta S, Jain N. Resting-State functional networks of different topographic representations in the somatosensory cortex of macaque monkeys and humans. Neuroimage 2020; 228:117694. [PMID: 33385552 DOI: 10.1016/j.neuroimage.2020.117694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Information processing in the brain is mediated through a complex functional network architecture whose comprising nodes integrate and segregate themselves on different timescales. To gain an understanding of the network function it is imperative to identify and understand the network structure with respect to the underlying anatomical connectivity and the topographic organization. Here we show that the previously described resting-state network for the somatosensory area 3b comprises of distinct networks that are characteristic for different topographic representations. Seed-based resting-state functional connectivity analysis in macaque monkeys and humans using BOLD-fMRI signals from the face, the hand and rest of the medial somatosensory representations of area 3b revealed different correlation patterns. Both monkeys and humans have many similarities in the connectivity networks, although the networks are more complex in humans with many more nodes. In both the species face area network has the highest ipsilateral and contralateral connectivity, which included areas 3b and 4, and ventral premotor area. The area 3b hand network included ipsilateral hand representation in area 4. The emergent functional network structures largely reflect the known anatomical connectivity. Our results show that different body part representations in area 3b have independent functional networks perhaps reflecting differences in the behavioral use of different body parts. The results also show that large cortical areas if considered together, do not give a complete and accurate picture of the network architecture.
Collapse
Affiliation(s)
- John Thomas
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Dixit Sharma
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Sounak Mohanta
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Neeraj Jain
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India.
| |
Collapse
|
17
|
Del Vecchio M, Avanzini P. La Recherche du Temps Perdu: Timing in Somatosensation. Commentary: Somatosensation in the Brain: A Theoretical Re-evaluation and a New Model. Front Syst Neurosci 2020; 14:597755. [PMID: 33281569 PMCID: PMC7690214 DOI: 10.3389/fnsys.2020.597755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Maria Del Vecchio
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | - Pietro Avanzini
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| |
Collapse
|
18
|
EEG-based trial-by-trial texture classification during active touch. Sci Rep 2020; 10:20755. [PMID: 33247177 PMCID: PMC7699648 DOI: 10.1038/s41598-020-77439-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 11/03/2020] [Indexed: 11/08/2022] Open
Abstract
Trial-by-trial texture classification analysis and identifying salient texture related EEG features during active touch that are minimally influenced by movement type and frequency conditions are the main contributions of this work. A total of twelve healthy subjects were recruited. Each subject was instructed to use the fingertip of their dominant hand's index finger to rub or tap three textured surfaces (smooth flat, medium rough, and rough) with three levels of movement frequency (approximately 2, 1 and 0.5 Hz). EEG and force data were collected synchronously during each touch condition. A systematic feature selection process was performed to select temporal and spectral EEG features that contribute to texture classification but have low contribution towards movement type and frequency classification. A tenfold cross validation was used to train two 3-class (each for texture and movement frequency classification) and a 2-class (movement type) Support Vector Machine classifiers. Our results showed that the total power in the mu (8-15 Hz) and beta (16-30 Hz) frequency bands showed high accuracy in discriminating among textures with different levels of roughness (average accuracy > 84%) but lower contribution towards movement type (average accuracy < 65%) and frequency (average accuracy < 58%) classification.
Collapse
|
19
|
Liu D, Fan HZ, Zhao WX, Wang YH, Li D, Wu JL, Yan TY, Tan SP. Deficits of Tactile Passive Perception Acuity in Patients With Schizophrenia. Front Psychiatry 2020; 11:519248. [PMID: 33192644 PMCID: PMC7652750 DOI: 10.3389/fpsyt.2020.519248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/09/2020] [Indexed: 11/14/2022] Open
Abstract
Background: Scarce literature has yet to characterize the tactile discrimination capability as well as the underlying mechanism of tactile deficits in psychotic disorder. In particular, very little is known regarding the tactile perception acuity in schizophrenia. Methods: A total of 131 clinically stable patients with schizophrenia (SCZ) and 79 healthy control (HC) volunteers were enrolled in the study. All the participants were tested on a tactile stimulus device which could quantify the tactile discrimination capability with right index finger scanned over the angles via the passive finger-movement apparatus. The MATRICS Consensus Cognitive Battery (MCCB) was adapted to assess the neurocognition of the participants. Correlation analysis and multivariate linear regression analysis were performed to investigate the relationship between tactile perception performance and neurocognitive function. Results: It was discovered that there existed a significant deficits in the tactile passive perception acuity (i.e., tactile angle discrimination threshold) in patients with schizophrenia compared with their healthy controls (F (3, 206) = 11.458, P = 0.001,partial η2 = 0.053). The MCCB total score and its six domains were significantly lower in SCZ patients than those in HCs (all p < 0.001). In the SCZ group, the composite score of the MCCB (r = -0.312, P < 0.001) and domains of neurocognition including speed of processing (r = -0.191, P = 0.031), attention/vigilance (r = -0.177, P = 0.047), working memory (r = -0.316, P < 0.001), verbal learning (r = - 0.332, P < 0.001), visual learning (r = -0.260, P = 0.004), and reasoning and problem solving (r = -0.209, P = 0.018) showed significant negative correlations with the tactile angle discrimination threshold. Multivariate linear regression analysis revealed that neurocognition impairment, especially the decline of working memory (B = -0.312, P < 0.001),underpin the tactile perception discrimination deficits in patients with SCZ. Conclusion: To the best of our knowledge, this is the first study to unravel the deficits of tactile passive perception acuity and its underlying neurocognition basis in patients with SCZ. This finding adds novel evidence to the subtle variation in haptic discrimination skills in schizophrenia which contributes to a more comprehensive understanding of the sensory profiles of this disorder.
Collapse
Affiliation(s)
- Dan Liu
- Huilongguan College of Clinical Medicine, Peking University, Beijing Huilongguan Hospital, Beijing, China
| | - Hong Zhen Fan
- Huilongguan College of Clinical Medicine, Peking University, Beijing Huilongguan Hospital, Beijing, China
| | - Wen Xuan Zhao
- Huilongguan College of Clinical Medicine, Peking University, Beijing Huilongguan Hospital, Beijing, China
| | - Yun Hui Wang
- Huilongguan College of Clinical Medicine, Peking University, Beijing Huilongguan Hospital, Beijing, China
| | - Dong Li
- Huilongguan College of Clinical Medicine, Peking University, Beijing Huilongguan Hospital, Beijing, China
| | - Jing Long Wu
- School of Mechatronical Engineering, Intelligent Robotics Institute, Beijing Institute of Technology, Beijing, China
| | - Tian Yi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shu Ping Tan
- Huilongguan College of Clinical Medicine, Peking University, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
20
|
Lo Presti D, Dall’Orso S, Muceli S, Arichi T, Neumane S, Lukens A, Sabbadini R, Massaroni C, Caponero MA, Formica D, Burdet E, Schena E. An fMRI Compatible Smart Device for Measuring Palmar Grasping Actions in Newborns. SENSORS 2020; 20:s20216040. [PMID: 33114180 PMCID: PMC7660640 DOI: 10.3390/s20216040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/09/2023]
Abstract
Grasping is one of the first dominant motor behaviors that enable interaction of a newborn infant with its surroundings. Although atypical grasping patterns are considered predictive of neuromotor disorders and injuries, their clinical assessment suffers from examiner subjectivity, and the neuropathophysiology is poorly understood. Therefore, the combination of technology with functional magnetic resonance imaging (fMRI) may help to precisely map the brain activity associated with grasping and thus provide important insights into how functional outcomes can be improved following cerebral injury. This work introduces an MR-compatible device (i.e., smart graspable device (SGD)) for detecting grasping actions in newborn infants. Electromagnetic interference immunity (EMI) is achieved using a fiber Bragg grating sensor. Its biocompatibility and absence of electrical signals propagating through the fiber make the safety profile of the SGD particularly favorable for use with fragile infants. Firstly, the SGD design, fabrication, and metrological characterization are described, followed by preliminary assessments on a preterm newborn infant and an adult during an fMRI experiment. The results demonstrate that the combination of the SGD and fMRI can safely and precisely identify the brain activity associated with grasping behavior, which may enable early diagnosis of motor impairment and help guide tailored rehabilitation programs.
Collapse
Affiliation(s)
- Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (D.L.P.); (R.S.); (C.M.)
| | - Sofia Dall’Orso
- Division of Signal Processing and Biomedical Engineering, Department of Electrical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (S.D.); (S.M.)
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (T.A.); (S.N.)
| | - Silvia Muceli
- Division of Signal Processing and Biomedical Engineering, Department of Electrical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (S.D.); (S.M.)
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (T.A.); (S.N.)
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (T.A.); (S.N.)
- Paediatric Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK;
| | - Sara Neumane
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (T.A.); (S.N.)
- NeuroDiderot Unit UMR1141, Université de Paris, INSERM, F-75019 Paris, France
- UNIACT, Université Paris-Saclay, CEA, NeuroSpin, F-91191 Gif-sur-Yvette, France
| | - Anna Lukens
- Paediatric Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK;
| | - Riccardo Sabbadini
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (D.L.P.); (R.S.); (C.M.)
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (D.L.P.); (R.S.); (C.M.)
| | - Michele Arturo Caponero
- Photonics Micro- and Nanostructures Laboratory, ENEA Research Center of Frascati, 00044 Frascati (RM), Italy;
| | - Domenico Formica
- Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXt Lab), Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy;
| | - Etienne Burdet
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK;
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (D.L.P.); (R.S.); (C.M.)
- Correspondence: ; Tel.: +39-062-2541-9650
| |
Collapse
|
21
|
Reinhardt J, Rus-Oswald OG, Bürki CN, Bridenbaugh SA, Krumm S, Michels L, Stippich C, Kressig RW, Blatow M. Neural Correlates of Stepping in Healthy Elderly: Parietal and Prefrontal Cortex Activation Reflects Cognitive-Motor Interference Effects. Front Hum Neurosci 2020; 14:566735. [PMID: 33132879 PMCID: PMC7550687 DOI: 10.3389/fnhum.2020.566735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julia Reinhardt
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Radiology, Division of Diagnostic and Interventional Neuroradiology, University Hospital of Basel, University of Basel, Basel, Switzerland
- *Correspondence: Julia Reinhardt,
| | - Oana G. Rus-Oswald
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Department of Geriatric Medicine Felix Platter, Basel, Switzerland
| | - Céline N. Bürki
- Department of Radiology, Division of Diagnostic and Interventional Neuroradiology, University Hospital of Basel, University of Basel, Basel, Switzerland
- University Department of Geriatric Medicine Felix Platter, Basel, Switzerland
| | | | - Sabine Krumm
- University Department of Geriatric Medicine Felix Platter, Basel, Switzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christoph Stippich
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto W. Kressig
- University Department of Geriatric Medicine Felix Platter, Basel, Switzerland
| | - Maria Blatow
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Yoshinaga K, Matsuhashi M, Mima T, Fukuyama H, Takahashi R, Hanakawa T, Ikeda A. Comparison of Phase Synchronization Measures for Identifying Stimulus-Induced Functional Connectivity in Human Magnetoencephalographic and Simulated Data. Front Neurosci 2020; 14:648. [PMID: 32636735 PMCID: PMC7318889 DOI: 10.3389/fnins.2020.00648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Phase synchronization measures are widely used for investigating inter-regional functional connectivity (FC) of brain oscillations, but which phase synchronization measure should be chosen for a given experiment remains unclear. Using neuromagnetic brain signals recorded from healthy participants during somatosensory stimuli, we compared the performance of four phase synchronization measures, imaginary part of phase-locking value, imaginary part of coherency (ImCoh), phase lag index and weighted phase lag index (wPLI), for detecting stimulus-induced FCs between the contralateral primary and ipsilateral secondary somatosensory cortices. The analyses revealed that ImCoh exhibited the best performance for detecting stimulus-induced FCs, followed by the wPLI. We found that amplitude weighting, which is related to computing both ImCoh and wPLI, effectively attenuated the influence of noise contamination. A simulation study modeling noise-contaminated periodograms replicated these findings. The present results suggest that the amplitude-dependent measures, ImCoh followed by wPLI, may have the advantage in detecting stimulus-induced FCs.
Collapse
Affiliation(s)
- Kenji Yoshinaga
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Hidenao Fukuyama
- Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
Zarei SP, Briscese L, Capitani S, Rossi B, Carboncini MC, Santarcangelo EL, Motie Nasrabadi A. Hypnotizability-Related Effects of Pain Expectation on the Later Modulation of Cortical Connectivity. Int J Clin Exp Hypn 2020; 68:306-326. [PMID: 32510271 DOI: 10.1080/00207144.2020.1762196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study examined hypnotizability-related modulation of the cortical network following expected and nonexpected nociceptive stimulation. The electroencephalogram (EEG) was recorded in 9 high (highs) and 8 low (lows) hypnotizable participants receiving nociceptive stimulation with (W1) and without (noW) a visual warning preceding the stimulation by 1 second. W1 and noW were compared to baseline conditions to assess the presence of any later effect and between each other to assess the effects of expectation. The studied EEG variables measured local and global features of the cortical connectivity. With respect to lows, highs exhibited scarce differences between experimental conditions. The hypnotizability-related differences in the later processing of nociceptive information could be relevant to the development of pain-related individual traits. Present findings suggest a lower impact of nociceptive stimulation in highs than in lows.
Collapse
Affiliation(s)
| | - Lucia Briscese
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa , Italy
| | - Simone Capitani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa , Italy
| | - Bruno Rossi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa , Italy
| | - Maria C Carboncini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa , Italy
| | - Enrica L Santarcangelo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa , Italy
| | | |
Collapse
|
24
|
Wang Y, Sibaii F, Custead R, Oh H, Barlow SM. Functional Connectivity Evoked by Orofacial Tactile Perception of Velocity. Front Neurosci 2020; 14:182. [PMID: 32210753 PMCID: PMC7068713 DOI: 10.3389/fnins.2020.00182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
The cortical representations of orofacial pneumotactile stimulation involve complex neuronal networks, which are still unknown. This study aims to identify the characteristics of functional connectivity (FC) evoked by three different saltatory velocities over the perioral and buccal surface of the lower face using functional magnetic resonance imaging in twenty neurotypical adults. Our results showed a velocity of 25 cm/s evoked stronger connection strength between the right dorsolateral prefrontal cortex and the right thalamus than a velocity of 5 cm/s. The decreased FC between the right secondary somatosensory cortex and right posterior parietal cortex for 5-cm/s velocity versus all three velocities delivered simultaneously (“All ON”) and the increased FC between the right thalamus and bilateral secondary somatosensory cortex for 65 cm/s vs “All ON” indicated that the right secondary somatosensory cortex might play a role in the orofacial tactile perception of velocity. Our results have also shown different patterns of FC for each seed (bilateral primary and secondary somatosensory cortex) at various velocity contrasts (5 vs 25 cm/s, 5 vs 65 cm/s, and 25 vs 65 cm/s). The similarities and differences of FC among three velocities shed light on the neuronal networks encoding the orofacial tactile perception of velocity.
Collapse
Affiliation(s)
- Yingying Wang
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Center for Research on Children, Youth, Families and schools, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Fatima Sibaii
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rebecca Custead
- Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hyuntaek Oh
- Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Steven M Barlow
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
25
|
Jia X, Xie Y, Dong D, Pei H, Jiang S, Ma S, Huang Y, Zhang X, Wang Y, Zhu Q, Zhang Y, Yao D, Yu L, Luo C. Reconfiguration of dynamic large-scale brain network functional connectivity in generalized tonic-clonic seizures. Hum Brain Mapp 2019; 41:67-79. [PMID: 31517428 PMCID: PMC7267969 DOI: 10.1002/hbm.24787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/02/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
An increasing number of studies in patients with generalized tonic–clonic seizures (GTCS) have reported the alteration of functional connectivity (FC) in many brain networks. However, little is known about the underlying temporal variability of FC in large‐scale brain functional networks in patients. Recently, dynamic FC could provide novel insight into the physiological mechanisms in the brain. Here, we recruited 63 GTCS and 65 age‐ and sex‐matched healthy controls. Dynamic FC approaches were used to evaluate alterations in the temporal variability of FC in patients at the region‐ and network‐levels. In addition, two kinds of brain templates (>102 and > 103 regions) and two kinds of temporal variability FC approaches were adopted to verify the stability of the results. Patients showed increased FC variability in regions of the default mode network (DMN), ventral attention network (VAN) and motor‐related areas. The DAN, VAN, and DMN illustrated enhanced FC variability at the within‐network level. In addition, increased FC variabilities between networks were found between the DMN and cognition‐related networks, including the VAN, dorsal attention network and frontal–parietal network in GTCS. Meanwhile, the alterations in FC variability were relatively consistent across different methods and templates. Therefore, the consistent alteration of FC variability would reflect a dynamic restructuring of the large‐scale brain networks in patients with GTCS. Overly frequent information communication among cognition‐related networks, especially in the DMN, might play a role in the epileptic activity and/or cognitive dysfunction in patients.
Collapse
Affiliation(s)
- Xiaoyan Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Xie
- Neurology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Debo Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuai Ma
- Neurology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yang Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingxing Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhong Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Zhu
- Neurology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yanan Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Yu
- Neurology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
García-Piqueras J, García-Mesa Y, Cárcaba L, Feito J, Torres-Parejo I, Martín-Biedma B, Cobo J, García-Suárez O, Vega JA. Ageing of the somatosensory system at the periphery: age-related changes in cutaneous mechanoreceptors. J Anat 2019; 234:839-852. [PMID: 30924930 DOI: 10.1111/joa.12983] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Decline of tactile sensation associated with ageing depends on modifications in skin and both central and peripheral nervous systems. At present, age-related changes in the periphery of the somatosensory system, particularly concerning the effects on mechanoreceptors, remain unknown. Here we used immunohistochemistry to analyse the age-dependent changes in Meissner's and Pacinian corpuscles as well as in Merkel cell-neurite complexes. Moreover, variations in the neurotrophic TrkB-BDNF system and the mechanoprotein Piezo2 (involved in maintenance of cutaneous mechanoreceptors and light touch, respectively) were evaluated. The number of Meissner's corpuscles and Merkel cells decreased progressively with ageing. Meissner's corpuscles were smaller, rounded in morphology and located deeper in the dermis, and signs of corpuscular denervation were found in the oldest subjects. Pacinian corpuscles generally showed no relevant age-related alterations. Reduced expression of Piezo2 in the axon of Meissner's corpuscles and in Merkel cells was observed in old subjects, as well was a decline in the BDNF-TrkB neurotrophic system. This study demonstrates that cutaneous Meissner's corpuscles and Merkel cell-neurite complexes (and less evidently Pacinian corpuscles) undergo morphological and size changes during the ageing process, as well as a reduction in terms of density. Furthermore, the mechanoprotein Piezo2 and the neurotrophic TrkB-BDNF system are reduced in aged corpuscles. Taken together, these alterations might explain part of the impairment of the somatosensory system associated with ageing.
Collapse
Affiliation(s)
- Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Lucia Cárcaba
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Jorge Feito
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain.,Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Isidro Torres-Parejo
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain.,Instituto Asturiano de Odontología, Oviedo, Spain
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Jose A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
27
|
Lamp G, Goodin P, Palmer S, Low E, Barutchu A, Carey LM. Activation of Bilateral Secondary Somatosensory Cortex With Right Hand Touch Stimulation: A Meta-Analysis of Functional Neuroimaging Studies. Front Neurol 2019; 9:1129. [PMID: 30687211 PMCID: PMC6335946 DOI: 10.3389/fneur.2018.01129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Brain regions involved in processing somatosensory information have been well documented through lesion, post-mortem, animal, and more recently, structural and functional neuroimaging studies. Functional neuroimaging studies characterize brain activation related to somatosensory processing; yet a meta-analysis synthesis of these findings is currently lacking and in-depth knowledge of the regions involved in somatosensory-related tasks may also be confounded by motor influences. Objectives: Our Activation Likelihood Estimate (ALE) meta-analysis sought to quantify brain regions that are involved in the tactile processing of the right (RH) and left hands (LH) separately, with the exclusion of motor related activity. Methods: The majority of studies (n = 41) measured activation associated with RH tactile stimulation. RH activation studies were grouped into those which conducted whole-brain analyses (n = 29) and those which examined specific regions of interest (ROI; n = 12). Few studies examined LH activation, though all were whole-brain studies (N = 7). Results: Meta-analysis of brain activation associated with RH tactile stimulation (whole-brain studies) revealed large clusters of activation in the left primary somatosensory cortex (S1) and bilaterally in the secondary somatosensory cortex (S2; including parietal operculum) and supramarginal gyrus (SMG), as well as the left anterior cingulate. Comparison between findings from RH whole-brain and ROI studies revealed activation as expected, but restricted primarily to S1 and S2 regions. Further, preliminary analyses of LH stimulation studies only, revealed two small clusters within the right S1 and S2 regions, likely limited due to the small number of studies. Contrast analyses revealed the one area of overlap for RH and LH, was right secondary somatosensory region. Conclusions: Findings from the whole-brain meta-analysis of right hand tactile stimulation emphasize the importance of taking into consideration bilateral activation, particularly in secondary somatosensory cortex. Further, the right parietal operculum/S2 region was commonly activated for right and left hand tactile stimulation, suggesting a lateralized pattern of somatosensory activation in right secondary somatosensory region. Implications for further research and for possible differences in right and left hemispheric stroke lesions are discussed.
Collapse
Affiliation(s)
- Gemma Lamp
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Occupational Therapy, School of Allied Health, La Trobe University, Bundoora, VIC, Australia
| | - Peter Goodin
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
| | - Susan Palmer
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
| | - Essie Low
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Department of Neurology, Sunshine Hospital, Western Health, Melbourne, VIC, Australia
- Department of Psychology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Ayla Barutchu
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Balliol College, University of Oxford, Oxford, United Kingdom
| | - Leeanne M. Carey
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Occupational Therapy, School of Allied Health, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
28
|
Dall'Orso S, Steinweg J, Allievi AG, Edwards AD, Burdet E, Arichi T. Somatotopic Mapping of the Developing Sensorimotor Cortex in the Preterm Human Brain. Cereb Cortex 2018; 28:2507-2515. [PMID: 29901788 PMCID: PMC5998947 DOI: 10.1093/cercor/bhy050] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/13/2018] [Indexed: 01/26/2023] Open
Abstract
In the mature mammalian brain, the primary somatosensory and motor cortices are known to be spatially organized such that neural activity relating to specific body parts can be somatopically mapped onto an anatomical "homunculus". This organization creates an internal body representation which is fundamental for precise motor control, spatial awareness and social interaction. Although it is unknown when this organization develops in humans, animal studies suggest that it may emerge even before the time of normal birth. We therefore characterized the somatotopic organization of the primary sensorimotor cortices using functional MRI and a set of custom-made robotic tools in 35 healthy preterm infants aged from 31 + 6 to 36 + 3 weeks postmenstrual age. Functional responses induced by somatosensory stimulation of the wrists, ankles, and mouth had a distinct spatial organization as seen in the characteristic mature homunculus map. In comparison to the ankle, activation related to wrist stimulation was significantly larger and more commonly involved additional areas including the supplementary motor area and ipsilateral sensorimotor cortex. These results are in keeping with early intrinsic determination of a somatotopic map within the primary sensorimotor cortices. This may explain why acquired brain injury in this region during the preterm period cannot be compensated for by cortical reorganization and therefore can lead to long-lasting motor and sensory impairment.
Collapse
Affiliation(s)
- S Dall'Orso
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - J Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - A G Allievi
- Department of Bioengineering, Imperial College London, London, UK
| | - A D Edwards
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - E Burdet
- Department of Bioengineering, Imperial College London, London, UK
| | - T Arichi
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, London, UK
| |
Collapse
|
29
|
Increased brain activation during motor imagery suggests central abnormality in Neonatal Brachial Plexus Palsy. Neurosci Res 2017; 123:19-26. [DOI: 10.1016/j.neures.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/18/2017] [Accepted: 05/02/2017] [Indexed: 11/22/2022]
|
30
|
Custead R, Oh H, Wang Y, Barlow S. Brain encoding of saltatory velocity through a pulsed pneumotactile array in the lower face. Brain Res 2017; 1677:58-73. [PMID: 28958864 DOI: 10.1016/j.brainres.2017.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022]
Abstract
Processing dynamic tactile inputs is a primary function of the somatosensory system. Spatial velocity encoding mechanisms by the nervous system are important for skilled movement production and may play a role in recovery of sensorimotor function following neurological insult. Little is known about tactile velocity encoding in mechanosensory trigeminal networks required for speech, suck, mastication, and facial gesture. High resolution functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of velocity encoding in the human orofacial somatosensory system during unilateral saltatory pneumotactile stimulation of perioral and buccal hairy skin in 20 neurotypical adults. A custom multichannel, scalable pneumotactile array consisting of 7 TAC-Cells was used to present 5 stimulus conditions: 5cm/s, 25cm/s, 65cm/s, ALL-ON synchronous activation, and ALL-OFF. The spatiotemporal organization of whole-brain blood oxygen level-dependent (BOLD) response was analyzed with general linear modeling (GLM) and fitted response estimates of percent signal change to compare activations associated with each velocity, and the main effect of velocity alone. Sequential saltatory inputs to the right lower face produced localized BOLD responses in 6 key regions of interest (ROI) including; contralateral precentral and postcentral gyri, and ipsilateral precentral, superior temporal (STG), supramarginal gyri (SMG), and cerebellum. The spatiotemporal organization of the evoked BOLD response was highly dependent on velocity, with the greatest amplitude of BOLD signal change recorded during the 5cm/s presentation in the contralateral hemisphere. Temporal analysis of BOLD response by velocity indicated rapid adaptation via a scalability of networks processing changing pneumotactile velocity cues.
Collapse
Affiliation(s)
- Rebecca Custead
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Yingying Wang
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Steven Barlow
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
31
|
Gundlach C, Müller MM, Nierhaus T, Villringer A, Sehm B. Modulation of Somatosensory Alpha Rhythm by Transcranial Alternating Current Stimulation at Mu-Frequency. Front Hum Neurosci 2017; 11:432. [PMID: 28890693 PMCID: PMC5575435 DOI: 10.3389/fnhum.2017.00432] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
Introduction: Transcranial alternating current stimulation (tACS) is emerging as an interventional tool to modulate different functions of the brain, potentially by interacting with intrinsic ongoing neuronal oscillations. Functionally different intrinsic alpha oscillations are found throughout the cortex. Yet it remains unclear whether tACS is capable of specifically modulating the somatosensory mu-rhythm in amplitude. Objectives: We used tACS to modulate mu-alpha oscillations in amplitude. When compared to sham stimulation we expected a modulation of mu-alpha oscillations but not visual alpha oscillations by tACS. Methods: Individual mu-alpha frequencies were determined in 25 participants. Subsequently, blocks of tACS with individual mu-alpha frequency and sham stimulation were applied over primary somatosensory cortex (SI). Electroencephalogram (EEG) was recorded before and after either stimulation or sham. Modulations of mu-alpha and, for control, visual alpha amplitudes were then compared between tACS and sham. Results: Somatosensory mu-alpha oscillations decreased in amplitude after tACS was applied at participants' individual mu-alpha frequency. No changes in amplitude were observed for sham stimulation. Furthermore, visual alpha oscillations were not affected by tACS or sham, respectively. Conclusion: Our results demonstrate the capability of tACS to specifically modulate the targeted somatosensory mu-rhythm when the tACS frequency is tuned to the individual endogenous rhythm and applied over somatosensory areas. Our results are in contrast to previously reported amplitude increases of visual alpha oscillations induced by tACS applied over visual cortex. Our results may point to a specific interaction between our stimulation protocol and the functional architecture of the somatosensory system.
Collapse
Affiliation(s)
- Christopher Gundlach
- Department for Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
- Institute of Psychology, University of LeipzigLeipzig, Germany
| | | | - Till Nierhaus
- Department for Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
- Center for Cognitive Neuroscience Berlin, Freie UniversitätBerlin, Germany
| | - Arno Villringer
- Department for Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Charité Universitätsmedizin Berlin, Humboldt University of BerlinBerlin, Germany
- Clinic for Cognitive Neurology, University of LeipzigLeipzig, Germany
| | - Bernhard Sehm
- Department for Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
- Clinic for Cognitive Neurology, University of LeipzigLeipzig, Germany
| |
Collapse
|
32
|
Bürki CN, Bridenbaugh SA, Reinhardt J, Stippich C, Kressig RW, Blatow M. Imaging gait analysis: An fMRI dual task study. Brain Behav 2017; 7:e00724. [PMID: 28828204 PMCID: PMC5561304 DOI: 10.1002/brb3.724] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION In geriatric clinical diagnostics, gait analysis with cognitive-motor dual tasking is used to predict fall risk and cognitive decline. To date, the neural correlates of cognitive-motor dual tasking processes are not fully understood. To investigate these underlying neural mechanisms, we designed an fMRI paradigm to reproduce the gait analysis. METHODS We tested the fMRI paradigm's feasibility in a substudy with fifteen young adults and assessed 31 healthy older adults in the main study. First, gait speed and variability were quantified using the GAITRite© electronic walkway. Then, participants lying in the MRI-scanner were stepping on pedals of an MRI-compatible stepping device used to imitate gait during functional imaging. In each session, participants performed cognitive and motor single tasks as well as cognitive-motor dual tasks. RESULTS Behavioral results showed that the parameters of both gait analyses, GAITRite© and fMRI, were significantly positively correlated. FMRI results revealed significantly reduced brain activation during dual task compared to single task conditions. Functional ROI analysis showed that activation in the superior parietal lobe (SPL) decreased less from single to dual task condition than activation in primary motor cortex and in supplementary motor areas. Moreover, SPL activation was increased during dual tasks in subjects exhibiting lower stepping speed and lower executive control. CONCLUSION We were able to simulate walking during functional imaging with valid results that reproduce those from the GAITRite© gait analysis. On the neural level, SPL seems to play a crucial role in cognitive-motor dual tasking and to be linked to divided attention processes, particularly when motor activity is involved.
Collapse
Affiliation(s)
- Céline N Bürki
- Division of Diagnostic and Interventional Neuroradiology Department of Radiology University of Basel Hospital and University of Basel Basel Switzerland.,Felix Platter-Hospital University Center for Medicine of Aging and University of Basel Basel Switzerland
| | - Stephanie A Bridenbaugh
- Felix Platter-Hospital University Center for Medicine of Aging and University of Basel Basel Switzerland
| | - Julia Reinhardt
- Division of Diagnostic and Interventional Neuroradiology Department of Radiology University of Basel Hospital and University of Basel Basel Switzerland
| | - Christoph Stippich
- Division of Diagnostic and Interventional Neuroradiology Department of Radiology University of Basel Hospital and University of Basel Basel Switzerland
| | - Reto W Kressig
- Felix Platter-Hospital University Center for Medicine of Aging and University of Basel Basel Switzerland
| | - Maria Blatow
- Division of Diagnostic and Interventional Neuroradiology Department of Radiology University of Basel Hospital and University of Basel Basel Switzerland
| |
Collapse
|
33
|
Cortical Representation of Pain and Touch: Evidence from Combined Functional Neuroimaging and Electrophysiology in Non-human Primates. Neurosci Bull 2017; 34:165-177. [PMID: 28466257 DOI: 10.1007/s12264-017-0133-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
Human functional MRI studies in acute and various chronic pain conditions have revolutionized how we view pain, and have led to a new theory that complex multi-dimensional pain experience (sensory-discriminative, affective/motivational, and cognitive) is represented by concurrent activity in widely-distributed brain regions (termed a network or pain matrix). Despite these breakthrough discoveries, the specific functions proposed for these regions remain elusive, because detailed electrophysiological characterizations of these regions in the primate brain are lacking. To fill in this knowledge gap, we have studied the cortical areas around the central and lateral sulci of the non-human primate brain with combined submillimeter resolution functional imaging (optical imaging and fMRI) and intracranial electrophysiological recording. In this mini-review, I summarize and present data showing that the cortical circuitry engaged in nociceptive processing is much more complex than previously recognized. Electrophysiological evidence supports the engagement of a distinct nociceptive-processing network within SI (i.e., areas 3a, 3b, 1 and 2), SII, and other areas along the lateral sulcus. Deafferentation caused by spinal cord injury profoundly alters the relationships between fMRI and electrophysiological signals. This finding has significant implications for using fMRI to study chronic pain conditions involving deafferentation in humans.
Collapse
|
34
|
Benner J, Wengenroth M, Reinhardt J, Stippich C, Schneider P, Blatow M. Prevalence and function of Heschl's gyrus morphotypes in musicians. Brain Struct Funct 2017; 222:3587-3603. [PMID: 28397108 DOI: 10.1007/s00429-017-1419-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/31/2017] [Indexed: 12/29/2022]
Abstract
Morphological variations of the first transverse Heschl's gyrus (HG) in the human auditory cortex (AC) are common, yet little is known about their functional implication. We investigated individual morphology and function of HG variations in the AC of 41 musicians, using structural and functional magnetic resonance imaging (fMRI) as well as magnetoencephalography (MEG). Four main morphotypes of HG were (i) single HG, (ii) common stem duplication (CSD), (iii) complete posterior duplication (CPD), and (iv) multiple duplications (MD). The vast majority of musicians (90%) exhibited HG multiplications (type ii-iv) in either one (39%) or both (51%) hemispheres. In 27% of musicians, MD with up to four gyri were found. To probe the functional contribution of HG multiplications to auditory processing we performed fMRI and MEG with auditory stimulation using analogous instrumental tone paradigms. Both methods pointed to the recruitment of all parts of HG during auditory stimulation, including multiplications if present. FMRI activations extended with the degree of HG gyrification. MEG source waveform patterns were distinct for the different types of HG: (i) hemispheres with single HG and (ii) CSD exhibited dominant N1 responses, whereas hemispheres with (iii) CPD and (iv) MD exhibited dominant P1 responses. N1 dipole amplitudes correlated with the localization of the first complete Heschl's sulcus (cHS), designating the most posterior anatomical border of HG. P2 amplitudes were significantly higher in professional as compared to amateur musicians. The results suggest that HG multiplications occur much more frequently in musicians than in the general population and constitute a functional unit with HG.
Collapse
Affiliation(s)
- Jan Benner
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland.,Department of Neuroradiology, University of Heidelberg Medical School, INF 400, 69120, Heidelberg, Germany
| | - Martina Wengenroth
- Department of Neuroradiology, University of Heidelberg Medical School, INF 400, 69120, Heidelberg, Germany.,Department of Neurology, Institute of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Julia Reinhardt
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Christoph Stippich
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Peter Schneider
- Department of Neuroradiology, University of Heidelberg Medical School, INF 400, 69120, Heidelberg, Germany.,Section of Biomagnetism, Department of Neurology, University of Heidelberg Medical School, INF 400, 69120, Heidelberg, Germany
| | - Maria Blatow
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
35
|
Abstract
Cerebral vasculitis can have a variety of origins. Furthermore, there are no vasculitis-specific symptoms or imaging signs and vasculitis of the CNS can mimic many other neurological diseases, which require different treatment approaches. Thus, the clinical and radiological diagnosis of cerebral vasculitis is challenging. Magnetic resonance imaging (MRI) and MR angiography (MRA) should be the radiological imaging methods of choice to assess the degree of parenchymal damage and to detect vessel wall changes. If the results are unclear digital subtraction angiography (DSA) should be pursued in order to also detect changes in medium sized vessels. Vasculitis of small vessels cannot be detected by vascular imaging and requires brain or leptomeningeal biopsy. In this review we present the current diagnostic approach and a variety of imaging findings in cerebral vasculitis and discuss the main radiological differential diagnoses.
Collapse
|
36
|
Debowska W, Wolak T, Nowicka A, Kozak A, Szwed M, Kossut M. Functional and Structural Neuroplasticity Induced by Short-Term Tactile Training Based on Braille Reading. Front Neurosci 2016; 10:460. [PMID: 27790087 PMCID: PMC5061995 DOI: 10.3389/fnins.2016.00460] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/26/2016] [Indexed: 11/30/2022] Open
Abstract
Neuroplastic changes induced by sensory learning have been recognized within the cortices of specific modalities as well as within higher ordered multimodal areas. The interplay between these areas is not fully understood, particularly in the case of somatosensory learning. Here we examined functional and structural changes induced by short-term tactile training based of Braille reading, a task that requires both significant tactile expertise and mapping of tactile input onto multimodal representations. Subjects with normal vision were trained for 3 weeks to read Braille exclusively by touch and scanned before and after training, while performing a same-different discrimination task on Braille characters and meaningless characters. Functional and diffusion-weighted magnetic resonance imaging sequences were used to assess resulting changes. The strongest training-induced effect was found in the primary somatosensory cortex (SI), where we observed bilateral augmentation in activity accompanied by an increase in fractional anisotropy (FA) within the contralateral SI. Increases of white matter fractional anisotropy were also observed in the secondary somatosensory area (SII) and the thalamus. Outside of somatosensory system, changes in both structure and function were found in i.e., the fusiform gyrus, the medial frontal gyri and the inferior parietal lobule. Our results provide evidence for functional remodeling of the somatosensory pathway and higher ordered multimodal brain areas occurring as a result of short-lasting tactile learning, and add to them a novel picture of extensive white matter plasticity.
Collapse
Affiliation(s)
- Weronika Debowska
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsaw, Poland; CNS Lab, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of SciencesWarsaw, Poland
| | - Tomasz Wolak
- Bioimaging Research Center, World Hearing Center, The Institute of Physiology and Pathology of Hearing Warsaw, Poland
| | - Anna Nowicka
- Laboratory of Psychophysiology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Anna Kozak
- Department of Psychology, University of Social Sciences and Humanities Warsaw, Poland
| | - Marcin Szwed
- Department of Psychology, Jagiellonian University Cracow, Poland
| | - Malgorzata Kossut
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsaw, Poland; Department of Psychology, University of Social Sciences and HumanitiesWarsaw, Poland
| |
Collapse
|
37
|
Daulatzai MA. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer’s Disease. Neurotox Res 2016; 30:295-337. [DOI: 10.1007/s12640-016-9643-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
|
38
|
Muret D, Daligault S, Dinse HR, Delpuech C, Mattout J, Reilly KT, Farnè A. Neuromagnetic correlates of adaptive plasticity across the hand-face border in human primary somatosensory cortex. J Neurophysiol 2016; 115:2095-104. [PMID: 26888099 DOI: 10.1152/jn.00628.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
It is well established that permanent or transient reduction of somatosensory inputs, following hand deafferentation or anesthesia, induces plastic changes across the hand-face border, supposedly responsible for some altered perceptual phenomena such as tactile sensations being referred from the face to the phantom hand. It is also known that transient increase of hand somatosensory inputs, via repetitive somatosensory stimulation (RSS) at a fingertip, induces local somatosensory discriminative improvement accompanied by cortical representational changes in the primary somatosensory cortex (SI). We recently demonstrated that RSS at the tip of the right index finger induces similar training-independent perceptual learning across the hand-face border, improving somatosensory perception at the lips (Muret D, Dinse HR, Macchione S, Urquizar C, Farnè A, Reilly KT.Curr Biol24: R736-R737, 2014). Whether neural plastic changes across the hand-face border accompany such remote and adaptive perceptual plasticity remains unknown. Here we used magnetoencephalography to investigate the electrophysiological correlates underlying RSS-induced behavioral changes across the hand-face border. The results highlight significant changes in dipole location after RSS both for the stimulated finger and for the lips. These findings reveal plastic changes that cross the hand-face border after an increase, instead of a decrease, in somatosensory inputs.
Collapse
Affiliation(s)
- Dollyane Muret
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France;
| | | | - Hubert R Dinse
- Neural Plasticity Laboratory, Institute of Neuroinformatics, Ruhr University, Bochum, Germany; Clinic of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany; and
| | | | - Jérémie Mattout
- University Claude Bernard Lyon I, Lyon, France; Dycog Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France
| | - Karen T Reilly
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| | - Alessandro Farnè
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
39
|
Allievi AG, Arichi T, Tusor N, Kimpton J, Arulkumaran S, Counsell SJ, Edwards AD, Burdet E. Maturation of Sensori-Motor Functional Responses in the Preterm Brain. Cereb Cortex 2015; 26:402-413. [PMID: 26491066 PMCID: PMC4677983 DOI: 10.1093/cercor/bhv203] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level–dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults.
Collapse
Affiliation(s)
| | - Tomoki Arichi
- Department of Bioengineering.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK
| | - Nora Tusor
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, LondonSE1 7EH, UK
| | - Jessica Kimpton
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, LondonSE1 7EH, UK
| | - Sophie Arulkumaran
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, LondonSE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, LondonSE1 7EH, UK
| | - A David Edwards
- Department of Bioengineering.,Division of Brain Sciences, Department of Medicine, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK
| | | |
Collapse
|
40
|
Zlatkina V, Amiez C, Petrides M. The postcentral sulcal complex and the transverse postcentral sulcus and their relation to sensorimotor functional organization. Eur J Neurosci 2015; 43:1268-83. [PMID: 26296305 DOI: 10.1111/ejn.13049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 12/19/2022]
Abstract
It has been demonstrated that the postcentral sulcus, which forms the posterior boundary of the sensorimotor region, is a complex of distinct sulcal segments. Although the general somatotopic arrangement in the human sensorimotor cortex is relatively well known, we do not know whether the different segments of the postcentral sulcus relate in a systematic way to the sensorimotor functional representations. Participants were scanned with functional magnetic resonance imaging while they made movements of different body parts and the location of functional activity was examined on a subject-by-subject basis with respect to the morphological features of the postcentral sulcus. The findings demonstrate that the postcentral sulcus of each subject may be divided into five segments and there is a tight relationship between sensorimotor representations of different body parts and specific segments of the postcentral sulcus. The results also addressed the issue of the transverse postcentral sulcus, a short sulcus that is present within the ventral part of the postcentral gyrus in some brains. It was shown that, when present, this sulcus is functionally related to the oral (mouth and tongue) sensorimotor representation. When this sulcus is not present, the inferior postcentral sulcus which is also related to the oral representation is longer. Thus, the sulcal morphology provides an improved framework for functional assignments in individual subjects.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Céline Amiez
- Stem Cell and Brain Research Institute, INSERM U846, Bron, France
| | - Michael Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
41
|
Agarwal M, Ulmer JL, Klein AP, Mark LP. Cortical and Subcortical Substrates of Cranial Nerve Function. Semin Ultrasound CT MR 2015; 36:275-90. [PMID: 26233861 DOI: 10.1053/j.sult.2015.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pivotal role of cranial nerves in a wholesome life experience cannot be overemphasized. Research has opened new avenues to understand cranial nerve function. Classical concept of strict bilateral cortical control of cranial nerves has given way to concepts of hemispheric dominance and hemispheric lateralization. An astute Neuroradiologist should keep abreast of these concepts and help patients and referring physicians by applying this knowledge in reading images. This chapter provides an overview of cranial nerve function and latest concepts pertaining to their cortical and subcortical control.
Collapse
Affiliation(s)
- Mohit Agarwal
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI.
| | - John L Ulmer
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Andrew P Klein
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Leighton P Mark
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
42
|
Ulmer JL, Klein AP, Mark LP, Tuna I, Agarwal M, DeYoe E. Functional and Dysfunctional Sensorimotor Anatomy and Imaging. Semin Ultrasound CT MR 2015; 36:220-33. [PMID: 26233857 DOI: 10.1053/j.sult.2015.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The sensorimotor system of the human brain and body is fundamental only in its central role in our daily lives. On further examination, it is a system with intricate and complex anatomical, physiological, and functional relationships. Sensorimotor areas including primary sensorimotor, premotor, supplementary motor, and higher order somatosensory cortices are critical for function and can be localized at routine neuroimaging with a familiarity of sulcal and gyral landmarks. Likewise, a thorough understanding of the functions and dysfunctions of these areas can empower the neuroradiologist and lead to superior imaging search patterns, diagnostic considerations, and patient care recommendations in daily clinical practice. Presurgical functional brain mapping of the sensorimotor system may be necessary in scenarios with distortion of anatomical landmarks, multiplanar localization, homunculus localization, congenital brain anomalies, informing diffusion tensor imaging interpretations, and localizing nonvisible targets.
Collapse
Affiliation(s)
- John L Ulmer
- Department of Radiology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226.
| | - Andrew P Klein
- Department of Radiology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226
| | - Leighton P Mark
- Department of Radiology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226
| | - Ibrahim Tuna
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Mohit Agarwal
- Department of Radiology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226
| | - Edgar DeYoe
- Department of Radiology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226
| |
Collapse
|
43
|
Granger causal time-dependent source connectivity in the somatosensory network. Sci Rep 2015; 5:10399. [PMID: 25997414 PMCID: PMC4441010 DOI: 10.1038/srep10399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/13/2015] [Indexed: 12/29/2022] Open
Abstract
Exploration of transient Granger causal interactions in neural sources of electrophysiological activities provides deeper insights into brain information processing mechanisms. However, the underlying neural patterns are confounded by time-dependent dynamics, non-stationarity and observational noise contamination. Here we investigate transient Granger causal interactions using source time-series of somatosensory evoked magnetoencephalographic (MEG) elicited by air puff stimulation of right index finger and recorded using 306-channel MEG from 21 healthy subjects. A new time-varying connectivity approach, combining renormalised partial directed coherence with state space modelling, is employed to estimate fast changing information flow among the sources. Source analysis confirmed that somatosensory evoked MEG was mainly generated from the contralateral primary somatosensory cortex (SI) and bilateral secondary somatosensory cortices (SII). Transient Granger causality shows a serial processing of somatosensory information, 1) from contralateral SI to contralateral SII, 2) from contralateral SI to ipsilateral SII, 3) from contralateral SII to contralateral SI, and 4) from contralateral SII to ipsilateral SII. These results are consistent with established anatomical connectivity between somatosensory regions and previous source modeling results, thereby providing empirical validation of the time-varying connectivity analysis. We argue that the suggested approach provides novel information regarding transient cortical dynamic connectivity, which previous approaches could not assess.
Collapse
|
44
|
On the bimanual integration of proprioceptive information. Exp Brain Res 2015; 233:1273-88. [PMID: 25618007 DOI: 10.1007/s00221-015-4205-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 01/14/2015] [Indexed: 12/24/2022]
Abstract
Proprioception can be defined as the sense for body movement and position. While most sensory information can be successfully integrated across hemispheres, little is known about the bilateral integration of proprioceptive information. In two behavioural experiments, we investigated whether estimates of the position of one hand are influenced by simultaneous proprioceptive information from the other hand. We further investigated whether such putative bimanual proprioceptive integration would differ between expert dancers and non-dancer controls. Either one hand or both hands were passively moved to novel positions, and participants indicated the perceived location of the index finger tip of the designated target hand, by orienting a visible laser beam mounted on a cap. Synchronized bimanual movements compared to unimanual movements significantly improved proprioceptive position sense. In particular, we found a bias reduction to perceive the target hand's index finger tip as shifted away from the midline in the bimanual condition, compared to the unimanual condition. Expert dancers, in contrast, did not show this change in proprioceptive position sense after bimanual movements. We suggest that bimanual movements may improve proprioception due to interhemispheric integration in controls, but not in expert dancers.
Collapse
|
45
|
Stippich C, Blatow M, Garcia M. Task-Based Presurgical Functional MRI in Patients with Brain Tumors. CLINICAL FUNCTIONAL MRI 2015. [DOI: 10.1007/978-3-662-45123-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
46
|
Tanosaki M, Ishibashi H, Zhang T, Okada Y. Effective connectivity maps in the swine somatosensory cortex estimated from electrocorticography and validated with intracortical local field potential measurements. Brain Connect 2014; 4:100-11. [PMID: 24467225 DOI: 10.1089/brain.2013.0177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Macroscopic techniques are increasingly being used to estimate functional connectivity in the brain, which provides valuable information about brain networks. In any such endeavors it is important to understand capabilities and limitations of each technique through direct validation, which is often lacking. This study evaluated a multiple dipole source analysis technique based on electrocorticography (ECOG) data in estimating effective connectivity maps and validated the technique with intracortical local field potential (LFP) recordings. The study was carried out in an animal model (swine) with a large brain to avoid complications caused by spreading of the volume current. The evaluation was carried out for the cortical projections from the trigeminal nerve and corticocortical connectivity from the first rostrum area (R1) in the primary somatosensory cortex. Stimulation of the snout and layer IV of the R1 did not activate all projection areas in each animal, although whenever an area was activated in a given animal, its location was consistent with the intracortical LFP. The two types of connectivity maps based on ECOG analysis were consistent with each other and also with those estimated from the intracortical LFP, although there were small discrepancies. The discrepancies in mean latency based on ECOG and LFP were all very small and nonsignificant: snout stimulation, -1.1-2.0 msec (contralateral hemisphere) and 3.9-8.5 msec (ipsilateral hemisphere); R1 stimulation, -1.4-2.2 msec for the ipsilateral and 0.6-1.4 msec for the contralateral hemisphere. Dipole source analysis based on ECOG appears to be quite useful for estimating effective connectivity maps in the brain.
Collapse
Affiliation(s)
- Masato Tanosaki
- 1 Department of Neurology, Hachinohe City Hospital , Hachinohe, Aomori, Japan
| | | | | | | |
Collapse
|
47
|
The emotional homunculus: ERP evidence for independent somatosensory responses during facial emotional processing. J Neurosci 2014; 34:3263-7. [PMID: 24573285 DOI: 10.1523/jneurosci.0106-13.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Current models of face perception propose that initial visual processing is followed by activation of nonvisual somatosensory areas that contributes to emotion recognition. To test whether there is a pure and independent involvement of somatosensory cortex (SCx) during face processing over and above visual responses, we directly measured participants' somatosensory-evoked activity by tactually probing (105 ms postvisual facial stimuli) the state of SCx during an emotion discrimination task while controlling for visual effects. Discrimination of emotional versus neutral expressions enhanced early somatosensory-evoked activity between 40 and 80 ms after stimulus onset, suggesting visual emotion processing in SCx. This effect was source localized within primary, secondary, and associative somatosensory cortex. Emotional face processing influenced somatosensory responses to both face (congruent body part) and finger (control site) tactile stimulation, suggesting a general process that includes nonfacial cortical representations. Gender discrimination of the same facial expressions did not modulate somatosensory-evoked activity. We provide novel evidence that SCx activation is not a byproduct of visual processing but is independently shaped by face emotion processing.
Collapse
|
48
|
Gastl M, Brünner YF, Wiesmann M, Freiherr J. Depicting the inner and outer nose: the representation of the nose and the nasal mucosa on the human primary somatosensory cortex (SI). Hum Brain Mapp 2014; 35:4751-66. [PMID: 24659451 DOI: 10.1002/hbm.22509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/01/2014] [Accepted: 03/05/2014] [Indexed: 11/08/2022] Open
Abstract
The nose is important not only for breathing, filtering air, and perceiving olfactory stimuli. Although the face and hands have been mapped, the representation of the internal and external surface of the nose on the primary somatosensory cortex (SI) is still poorly understood. To fill this gap functional magnetic resonance imaging (fMRI) was used to localize the nose and the nasal mucosa in the Brodman areas (BAs) 3b, 1, and 2 of the human postcentral gyrus (PG). Tactile stimulation during fMRI was applied via a customized pneumatically driven device to six stimulation sites: the alar wing of the nose, the lateral nasal mucosa, and the hand (serving as a reference area) on the left and right side of the body. Individual representations could be discriminated for the left and right hand, for the left nasal mucosa and left alar wing of the nose in BA 3b and BA 1 by comparing mean activation maxima and Euclidean distances. Right-sided nasal conditions and conditions in BA 2 could further be separated by different Euclidean distances. Regarding the alar wing of the nose, the results concurred with the classic sensory homunculus proposed by Penfield and colleagues. The nasal mucosa was not only determined an individual and bilateral representation, its position on the somatosensory cortex is also situated closer to the caudal end of the PG compared to that of the alar wing of the nose and the hand. As SI is commonly activated during the perception of odors, these findings underscore the importance of the knowledge of the representation of the nasal mucosa on the primary somatosensory cortex, especially for interpretation of results of functional imaging studies about the sense of smell.
Collapse
Affiliation(s)
- Mareike Gastl
- Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | | | | | | |
Collapse
|
49
|
Chung YG, Han SW, Kim HS, Chung SC, Park JY, Wallraven C, Kim SP. Intra- and inter-hemispheric effective connectivity in the human somatosensory cortex during pressure stimulation. BMC Neurosci 2014; 15:43. [PMID: 24649878 PMCID: PMC3994419 DOI: 10.1186/1471-2202-15-43] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/13/2014] [Indexed: 01/08/2023] Open
Abstract
Background Slow-adapting type I (SA-I) afferents deliver sensory signals to the somatosensory cortex during low-frequency (or static) mechanical stimulation. It has been reported that the somatosensory projection from SA-I afferents is effective and reliable for object grasping and manipulation. Despite a large number of neuroimaging studies on cortical activation responding to tactile stimuli mediated by SA-I afferents, how sensory information of such tactile stimuli flows over the somatosensory cortex remains poorly understood. In this study, we investigated tactile information processing of pressure stimuli between the primary (SI) and secondary (SII) somatosensory cortices by measuring effective connectivity using dynamic causal modeling (DCM). We applied pressure stimuli for 3 s to the right index fingertip of healthy participants and acquired functional magnetic resonance imaging (fMRI) data using a 3T MRI system. Results DCM analysis revealed intra-hemispheric effective connectivity between the contralateral SI (cSI) and SII (cSII) characterized by both parallel (signal inputs to both cSI and cSII) and serial (signal transmission from cSI to cSII) pathways during pressure stimulation. DCM analysis also revealed inter-hemispheric effective connectivity among cSI, cSII, and the ipsilateral SII (iSII) characterized by serial (from cSI to cSII) and SII-level (from cSII to iSII) pathways during pressure stimulation. Conclusions Our results support a hierarchical somatosensory network that underlies processing of low-frequency tactile information. The network consists of parallel inputs to both cSI and cSII (intra-hemispheric), followed by serial pathways from cSI to cSII (intra-hemispheric) and from cSII to iSII (inter-hemispheric). Importantly, our results suggest that both serial and parallel processing take place in tactile information processing of static mechanical stimuli as well as highlighting the contribution of callosal transfer to bilateral neuronal interactions in SII.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Wallraven
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| | | |
Collapse
|
50
|
Gallace A, Soravia G, Cattaneo Z, Moseley GL, Vallar G. Temporary interference over the posterior parietal cortices disrupts thermoregulatory control in humans. PLoS One 2014; 9:e88209. [PMID: 24622382 PMCID: PMC3951183 DOI: 10.1371/journal.pone.0088209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/10/2014] [Indexed: 11/27/2022] Open
Abstract
The suggestion has recently been made that certain higher-order cortical areas involved in supporting multisensory representations of the body, and of the space around it, might also play a role in controlling thermoregulatory functions. Here we demonstrate that temporary interference with the function of one of these areas, the posterior parietal cortex, by repetitive transcranial magnetic stimulation, results in a decrease in limb temperature. By contrast, interference with the activity of a sensory-specific area (the primary somatosensory cortex) had no effect on temperature. The results of this experiment suggest that associative multisensory brain areas might exert a top-down modulation over basic physiological control. Such a function might be part of a larger neural circuit responsible for maintaining the integrity of the body at both a homeostatic and a psychological level.
Collapse
Affiliation(s)
- Alberto Gallace
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Giovanna Soravia
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - G. Lorimer Moseley
- The Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Giuseppe Vallar
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- IRCCS Istituto Auxologico Italiano, Milano, Italy
| |
Collapse
|