1
|
Biggio M, Iester C, Cattaneo D, Cutini S, Bisio A, Pedullà L, Torchio A, Bove M, Bonzano L. Should you hold onto the treadmill handrails or not? Cortical evidence at different walking speeds. J Neuroeng Rehabil 2025; 22:5. [PMID: 39815334 PMCID: PMC11736955 DOI: 10.1186/s12984-025-01543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Treadmill-based gait training is part of rehabilitation programs focused on walking abilities. The use of handrails embedded in treadmill systems is debated, and current literature only explores the issue from a behavioral perspective. METHODS We examined the cortical correlates of treadmill walking in healthy participants using functional near-infrared spectroscopy. We investigated whether the utilization of treadmill handrails at varying walking speeds could affect cortical activation associated with the task, and we evaluated potential differences in task-based functional connectivity across the various walking conditions. RESULTS Significant differences in cortical activation were found between the two walking speeds (3 and 5 km/h) in the unsupported condition; these differences were reduced when using the handrails. Specifically, cortical activation was significantly higher when the participants swung their arms freely while walking at a speed of 5 compared to 3 km/h in several Brodmann's Areas (BA): left BA10, BA3 and BA39, and right BA10, BA9, BA8, BA3, and BA40. No significant differences were found when participants were holding onto the handrails. A significant difference was found in the left BA40 between the two speeds, regardless of whether the participants were holding onto the handrails. Furthermore, at the higher speed and without the use of handrails, a wider pattern of task-based functional connectivity was observed, with significantly stronger connectivity between the left BA10 and BA40. CONCLUSIONS We suggest that speed and handrails use play a role in walking cortical activity patterns, therefore they are key ingredients to take into account when planning a rehabilitation program.
Collapse
Affiliation(s)
- Monica Biggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Costanza Iester
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Davide Cattaneo
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Simone Cutini
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Ludovico Pedullà
- Italian Multiple Sclerosis Foundation, Scientific Research Area, Genoa, Italy
| | | | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
2
|
Xu S, Zhu S, Li M, Zhang T, Wang Q, Sui Y, Shen Y, Chaojie K, Zhuang R, Guo C, Wang T, Zhu L. Altered cortical activation patterns in post-stroke patients during walking with two-channel functional electrical stimulation: a functional near-infrared spectroscopy observational study. Front Neurol 2025; 15:1449667. [PMID: 39871991 PMCID: PMC11769814 DOI: 10.3389/fneur.2024.1449667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025] Open
Abstract
Restoration of independent walking ability is the primary objective of stroke rehabilitation; however, not all patients achieve this goal due to diverse impairments in the paretic lower limb and compensatory mechanisms that lead to an asymmetrical and mechanically inefficient gait. This investigation aimed to examine alterations in cortical activation in post-stroke patients while walking with a wearable two-channel functional electrical stimulation (FES) in comparison to walking without FES. This observational study was conducted to discern distinct activation patterns in 19 stroke patients during sessions with and without FES, while using functional near-infrared spectroscopy (fNIRS) to monitor changes in blood oxygen levels. Our findings revealed only a significant reduction in ΔOxy-Hb in the contralesional pre-motor cortex (z = -2.803, p = 0.005) during the FES-on walking sessions compared to the FES-off sessions. Furthermore, all regions in the FES-on session exhibited lower ΔOxy-Hb. Conversely, no significant differences were observed in ΔDeoxy-Hb. Moreover, a significant correlation was found between decrease in cPMC and the reduced cost time of walking under FES-on condition. The fNIRS analysis revealed diminished activation in the contralesional pre-motor cortex when walking with FES, implying that FES may facilitate a more automatic gait pattern while reducing a patient's reliance on contralesional cortical resources. The findings of this study lay the groundwork for long-term neural rehabilitation.
Collapse
Affiliation(s)
- Sheng Xu
- Department of Rehabilitation Medicine, Changzhou Dean Hospital, Changzhou, China
| | - Shizhe Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Minyao Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianjiao Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinglei Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Youxin Sui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Shen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kan Chaojie
- Department of Rehabilitation Medicine, Changzhou Dean Hospital, Changzhou, China
| | - Ren Zhuang
- Department of Rehabilitation Medicine, Changzhou Dean Hospital, Changzhou, China
| | - Chuan Guo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lan Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Qixia District Hospital, Nanjing, China
| |
Collapse
|
3
|
Lee H, Choi BJ, Kang N. Non-invasive brain stimulation enhances motor and cognitive performances during dual tasks in patients with Parkinson's disease: a systematic review and meta-analysis. J Neuroeng Rehabil 2024; 21:205. [PMID: 39581969 PMCID: PMC11587594 DOI: 10.1186/s12984-024-01505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) induces progressive deficits in motor and cognitive functions as well as impaired dual-task performance requiring both motor and cognitive functions. This systematic review and meta-analysis evaluated the effects of non-invasive brain stimulation (NIBS) on dual-task performance in patients with PD. METHODS 11 studies met the following inclusion criteria: (a) patients with PD, (b) NIBS intervention, (c) comparison with the sham stimulation group, (d) motor and cognitive performance outcomes during dual tasks, and (e) randomized controlled trials with parallel or crossover designs. Individual effect size (i.e., comparison) was quantified by comparing motor and cognitive performances changes during dual tasks between active NIBS and sham stimulation conditions. Thus, higher values of the overall effect size indicate more improvements in either motor or cognitive performances after NIBS. Moreover, moderator variable analyses determined whether NIBS effects on dual-task performances differed depending on targeted brain regions. Finally, meta-regression analyses determined whether NIBS effects on dual-task performances were associated with demographic characteristics. RESULTS The random-effects model meta-analysis revealed that NIBS significantly improved motor (73 comparisons from 11 studies) and cognitive (12 comparisons from four studies) performances during dual tasks in patients with PD. Specifically, anodal transcranial direct current stimulation protocols on the dorsolateral prefrontal cortex were effective. Moreover, greater improvements in motor performance during dual tasks significantly correlated with decreased age and increased proportion of females, respectively. CONCLUSION This meta-analysis suggests that excitatory stimulation on the dorsolateral prefrontal cortex may be effective for improving dual-task performance in patients with PD.
Collapse
Affiliation(s)
- Hajun Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
| | - Beom Jin Choi
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
- Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, South Korea.
- Neuromechanical Rehabilitation Research Laboratory, Division of Sport Science & Sport Science Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, South Korea.
| |
Collapse
|
4
|
Grosboillot N, Gallou-Guyot M, Lamontagne A, Bonnyaud C, Perrot A, Allali G, Perrochon A. Towards a comprehensive framework for complex walking tasks: Characterization, behavioral adaptations, and clinical implications in ageing and neurological populations. Ageing Res Rev 2024; 101:102458. [PMID: 39153599 DOI: 10.1016/j.arr.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Complex walking tasks, including change of direction, patterns and rhythms, require more attentional resources than simple walking and significantly impact walking performance, especially among ageing and neurological populations. More studies have been focusing on complex walking situations, with or without the addition of cognitive tasks, creating a multitude of walking situations. Given the lack of a clear and extensive definition of complex walking, this narrative review aims to identify and more precisely characterize situations and related tests, improve understanding of behavioral adaptations in ageing and neurological populations, and report the clinical applications of complex walking. Based on the studies collected, we are proposing a framework that categorizes the different forms of complex walking, considering whether a cognitive task is added or not, as well as the number of distinct objectives within a given situation. We observed that combining complex walking tasks with a cognitive assignment places even greater strain on attentional resources, resulting in a more pronounced decline in walking and/or cognitive performance. This work highlights the relevance of complex walking as a simple tool for early detection of cognitive impairments and risk of falls, and its potential value in cognitive-motor rehabilitation. Future studies should explore various complex walking tasks in ageing and neurological populations, under varied conditions in real-life or in extended virtual environments.
Collapse
Affiliation(s)
- N Grosboillot
- Université de Limoges, HAVAE, UR 20217, Limoges F-87000, France
| | - M Gallou-Guyot
- Université de Limoges, HAVAE, UR 20217, Limoges F-87000, France; Department of Human Life and Environmental Sciences, Ochanomizu University, Tokyo, Japan; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - A Lamontagne
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada; Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Site-CISSS Laval, Laval, Canada
| | - C Bonnyaud
- Laboratoire d'analyse du mouvement, Explorations fonctionnelles, Hôpital Raymond Poincaré Garches, GHU Paris Saclay APHP, France; Université Paris-Saclay, UVSQ, Erphan Research unit, Versailles 78000, France
| | - A Perrot
- CIAMS, Université Paris Saclay, Orsay, France
| | - G Allali
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Perrochon
- Université de Limoges, HAVAE, UR 20217, Limoges F-87000, France.
| |
Collapse
|
5
|
Silva-Batista C, Liu W, Vitorio R, Stuart S, Quinn JF, Mancini M. The Time Course of Changes in Prefrontal Cortex Activity During Walking in People With Parkinson's Disease. Neurorehabil Neural Repair 2024; 38:635-645. [PMID: 39075890 DOI: 10.1177/15459683241265935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
BACKGROUND Walking abnormalities in people with Parkinson's disease (PD) are characterized by a shift in locomotor control from healthy automaticity to compensatory, executive control, mainly located in the prefrontal cortex (PFC). Although PFC activity during walking increases in people with PD, the time course of PFC activity during walking and its relationship to clinical or gait characteristics is unknown. OBJECTIVE To identify the time course of PFC activity during walking in people with PD. To investigate whether clinical or gait variables would explain the PFC activity changes. METHODS Thirty-eight people with PD tested OFF medication wore a portable, functional near-infrared spectroscopy (fNIRS) system to record relative PFC activity while walking. Wearable inertial sensors recorded spatiotemporal gait characteristics. Based on the PFC activity (fNIRS) in the late phase of the walking task (final 40 seconds), compared to the early phase (initial 40 seconds), participants were separated into 2 groups: reduced or sustained PFC activity. RESULTS People with PD who reduced PFC activity during walking had less impaired gait (eg, faster gait speed) than those who had a sustained increase in PFC activity (P < .05). Cognitive set-shifting ability explained 18% of the PFC activation in the group with a sustained increase in PFC activity (P = .033). CONCLUSIONS The time course of reduction in PFC activity corresponds to less impaired gait performance in people with PD, while a sustained increase in PFC activity is related to worse cognitive flexibility. Reduction in PFC activity while walking may indicate a less impaired, automatic control of walking.
Collapse
Affiliation(s)
- Carla Silva-Batista
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - William Liu
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Rodrigo Vitorio
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Samuel Stuart
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, Veterans Affairs Portland Health Care System (VAPORHCS), Portland, OR, USA
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Luo X, Huang B, Huang Y, Li M, Niu W, Wang T. Central imaging based on near-infrared functional imaging technology can be useful to plan management in patients with chronic lateral ankle instability. J Orthop Surg Res 2024; 19:361. [PMID: 38890731 PMCID: PMC11184706 DOI: 10.1186/s13018-024-04790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Near infrared brain functional imaging (FNIRS) has been used for the evaluation of brain functional areas, the imaging differences of central activation of cognitive-motor dual tasks between patients with chronic lateral ankle instability (CLAI) and healthy population remain unclear. This study aimed to evaluated the role of central imaging based on FNIRS technology on the plan management in patients with CLAI, to provide insights to the clinical treatment of CLAI. METHODS CLAI patients treated in our hospital from January 1, 2021 to June 31, 2022 were selected. Both CLAI patients and health controls were intervened with simple task and cognitive-motor dual task under sitting and walking conditions, and the changes of oxygenated hemoglobin concentration in bilateral prefrontal cortex (PFC), premotor cortex (PMC) and auxiliary motor area (SMA) were collected and compared. RESULTS A total of 23 participants were enrolled. There were significant differences in the fNIRS ΔHbO2 of barefoot subtractive walking PFC-R and barefoot subtractive walking SMA-R between experimental and control group (all P < 0.05). There was no significant difference in ΔHbO2 between the experimental group and the control group in other states (P > 0.05). There was no significant difference in ΔHbO2 between the experimental group and the control group in each state of the brain PMC region. CONCLUSION Adaptive alterations may occur within the relevant brain functional regions of individuals with CLAI. The differential activation observed between the PFC and the SMA could represent a compensatory mechanism emerging from proprioceptive afferent disruptions following an initial ankle sprain.
Collapse
Affiliation(s)
- Xiaoming Luo
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Ben Huang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Yonglei Huang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Ming Li
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Wenxin Niu
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Taoli Wang
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| |
Collapse
|
7
|
Konosu A, Matsuki Y, Fukuhara K, Funato T, Yanagihara D. Roles of the cerebellar vermis in predictive postural controls against external disturbances. Sci Rep 2024; 14:3162. [PMID: 38326369 PMCID: PMC10850480 DOI: 10.1038/s41598-024-53186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
The central nervous system predictively controls posture against external disturbances; however, the detailed mechanisms remain unclear. We tested the hypothesis that the cerebellar vermis plays a substantial role in acquiring predictive postural control by using a standing task with floor disturbances in rats. The intact, lesioned, and sham groups of rats sequentially underwent 70 conditioned floor-tilting trials, and kinematics were recorded. Six days before these recordings, only the lesion group underwent focal suction surgery targeting vermal lobules IV-VIII. In the naïve stage of the sequential trials, the upright postures and fluctuations due to the disturbance were mostly consistent among the groups. Although the pattern of decrease in postural fluctuation due to learning corresponded among the groups, the learning rate estimated from the lumbar displacement was significantly lower in the lesion group than in the intact and sham groups. These results suggest that the cerebellar vermis contributes to predictive postural controls.
Collapse
Affiliation(s)
- Akira Konosu
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| | - Yuma Matsuki
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Kaito Fukuhara
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Dai Yanagihara
- Department of Life Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
8
|
Le DT, Tsuyuhara M, Kuwamura H, Kitano K, Nguyen TD, Duc Nguyen T, Fujita N, Watanabe T, Nishijo H, Mihara M, Urakawa S. Regional activity and effective connectivity within the frontoparietal network during precision walking with visual cueing: an fNIRS study. Cereb Cortex 2023; 33:11157-11169. [PMID: 37757479 DOI: 10.1093/cercor/bhad354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Precision walking (PW) incorporates precise step adjustments into regular walking patterns to navigate challenging surroundings. However, the brain processes involved in PW control, which encompass cortical regions and interregional interactions, are not fully understood. This study aimed to investigate the changes in regional activity and effective connectivity within the frontoparietal network associated with PW. Functional near-infrared spectroscopy data were recorded from adult subjects during treadmill walking tasks, including normal walking (NOR) and PW with visual cues, wherein the intercue distance was either fixed (FIX) or randomly varied (VAR) across steps. The superior parietal lobule (SPL), dorsal premotor area (PMd), supplementary motor area (SMA), and dorsolateral prefrontal cortex (dlPFC) were specifically targeted. The results revealed higher activities in SMA and left PMd, as well as left-to-right SPL connectivity, in VAR than in FIX. Activities in SMA and right dlPFC, along with dlPFC-to-SPL connectivity, were higher in VAR than in NOR. Overall, these findings provide insights into the roles of different brain regions and connectivity patterns within the frontoparietal network in facilitating gait control during PW, providing a useful baseline for further investigations into brain networks involved in locomotion.
Collapse
Affiliation(s)
- Duc Trung Le
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
- Department of Neurology, Vietnam Military Medical University, No. 261 Phung Hung Street, Ha Dong District, Hanoi 12108, Vietnam
| | - Masato Tsuyuhara
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hiroki Kuwamura
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Kento Kitano
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Thu Dang Nguyen
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Thuan Duc Nguyen
- Department of Neurology, Vietnam Military Medical University, No. 261 Phung Hung Street, Ha Dong District, Hanoi 12108, Vietnam
| | - Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Tatsunori Watanabe
- Faculty of Health Sciences, Aomori University of Health and Welfare, 58-1 Mase, Hamadate, Aomori-city, Aomori 030-8505, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
- Faculty of Human Sciences, University of East Asia, 2-12-1 Ichinomiya Gakuen-cho, Shimonoseki City, Yamaguchi 751-8503, Japan
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| |
Collapse
|
9
|
Grijalva C, Hale D, Wu L, Toosizadeh N, Laksari K. Hyper-acute effects of sub-concussive soccer headers on brain function and hemodynamics. Front Hum Neurosci 2023; 17:1191284. [PMID: 37780960 PMCID: PMC10538631 DOI: 10.3389/fnhum.2023.1191284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Sub-concussive head impacts in soccer are drawing increasing research attention regarding their acute and long-term effects as players may experience thousands of headers in a single season. During these impacts, the head experiences rapid acceleration similar to what occurs during a concussion, but without the clinical implications. The physical mechanism and response to repetitive impacts are not completely understood. The objective of this work was to examine the immediate functional outcomes of sub-concussive level impacts from soccer heading in a natural, non-laboratory environment. Methods Twenty university level soccer athletes were instrumented with sensor-mounted bite bars to record impacts from 10 consecutive soccer headers. Pre- and post-header measurements were collected to determine hyper-acute changes, i.e., within minutes after exposure. This included measuring blood flow velocity using transcranial Doppler (TCD) ultrasound, oxyhemoglobin concentration using functional near infrared spectroscopy imaging (fNIRS), and upper extremity dual-task (UEF) neurocognitive testing. Results On average, the athletes experienced 30.7 ± 8.9 g peak linear acceleration and 7.2 ± 3.1 rad/s peak angular velocity, respectively. Results from fNIRS measurements showed an increase in the brain oxygenation for the left prefrontal cortex (PC) (p = 0.002), and the left motor cortex (MC) (p = 0.007) following the soccer headers. Additional analysis of the fNIRS time series demonstrates increased sample entropy of the signal after the headers in the right PC (p = 0.02), right MC (p = 0.004), and left MC (p = 0.04). Discussion These combined results reveal some variations in brain oxygenation immediately detected after repetitive headers. Significant changes in balance and neurocognitive function were not observed in this study, indicating a mild level of head impacts. This is the first study to observe hemodynamic changes immediately after sub-concussive impacts using non-invasive portable imaging technology. In combination with head kinematic measurements, this information can give new insights and a framework for immediate monitoring of sub-concussive impacts on the head.
Collapse
Affiliation(s)
- Carissa Grijalva
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Dallin Hale
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Lyndia Wu
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Nima Toosizadeh
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Arizona Center for Aging, Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Noioso CM, Bevilacqua L, Acerra GM, Della Valle P, Serio M, Vinciguerra C, Piscosquito G, Toriello A, Barone P, Iovino A. Miller Fisher syndrome: an updated narrative review. Front Neurol 2023; 14:1250774. [PMID: 37693761 PMCID: PMC10484709 DOI: 10.3389/fneur.2023.1250774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Miller Fisher syndrome (MFS) is considered a rare variant of Guillain-Barré syndrome (GBS), a group of acute-onset immune-mediated neuropathies characterized by the classic triad of ataxia, areflexia, and ophthalmoparesis. The present review aimed to provide a detailed and updated profile of all aspects of the syndrome through a collection of published articles on the subject, ranging from the initial description to recent developments related to COVID-19. Methods We searched PubMed, Scopus, EMBASE, and Web of Science databases and gray literature, including references from the identified studies, review studies, and conference abstracts on this topic. We used all MeSH terms pertaining to "Miller Fisher syndrome," "Miller Fisher," "Fisher syndrome," and "anti-GQ1b antibody." Results An extensive bibliography was researched and summarized in the review from an initial profile of MFS since its description to the recent accounts of diagnosis in COVID-19 patients. MFS is an immune-mediated disease with onset most frequently following infection. Anti-ganglioside GQ1b antibodies, detected in ~85% of patients, play a role in the pathogenesis of the syndrome. There are usually no abnormalities in MFS through routine neuroimaging. In rare cases, neuroimaging shows nerve root enhancement and signs of the involvement of the central nervous system. The most consistent electrophysiological findings in MFS are reduced sensory nerve action potentials and absent H reflexes. Although MFS is generally self-limited and has excellent prognosis, rare recurrent forms have been documented. Conclusion This article gives an updated narrative review of MFS with special emphasis on clinical characteristics, neurophysiology, treatment, and prognosis of MFS patients.
Collapse
Affiliation(s)
- Ciro Maria Noioso
- Neurology Unit, University Hospital “San Giovanni di Dio e Ruggi d'Aragona”, University of Salerno, Salerno, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yozu A, Katsuhira J, Oka H, Matsudaira K. Effect of Trunk Solution ® on hemodynamics in the supplementary motor area during walking. J Phys Ther Sci 2023; 35:502-506. [PMID: 37405183 PMCID: PMC10315207 DOI: 10.1589/jpts.35.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/03/2023] [Indexed: 07/06/2023] Open
Abstract
[Purpose] Humans keep their trunks vertical while walking. This defining characteristic is known as upright bipedalism. Research on the neural control of locomotion indicates that not only subcortical structures, but also the cerebral cortex, especially the supplementary motor area (SMA), is involved in locomotion. A previous study suggested that SMA may contribute to truncal upright posture-control during walking. Trunk Solution® (TS) is a trunk orthosis designed to support the trunk in decreasing the low back load. We hypothesized that the trunk orthosis might reduce the burden of truncal control on the SMA. The objective of this study was, therefore, to determine the effect of trunk orthosis on the SMA during walking. [Participants and Methods] Thirteen healthy participants were enrolled in the study. We measured the hemodynamics of the SMA during walking with functional near-infrared spectroscopy (fNIRS). The participants performed two gait tasks on a treadmill: (A) independent gait (usual gait) and (B) supported gait while wearing the TS. [Results] During (A) independent gait, the hemodynamics of the SMA exhibited no significant changes. During (B) gait with truncal support, the SMA hemodynamics decreased significantly. [Conclusion] TS may reduce the burden of truncal control on the SMA during walking.
Collapse
Affiliation(s)
- Arito Yozu
- Department of Precision Engineering, School of Engineering,
The University of Tokyo: 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junji Katsuhira
- Department of Medical Research and Management for
Musculoskeletal Pain, 22nd Century Medical and Research Center, The University of Tokyo
Hospital, Japan
- Department of Human Environment Design, Faculty of Human
Life Design, Toyo University, Japan
- Department of Prosthetics and Orthotics and Assistive
Technology, Faculty of Medical Technology, Niigata University of Health and Welfare,
Japan
| | - Hiroyuki Oka
- Department of Medical Research and Management for
Musculoskeletal Pain, 22nd Century Medical and Research Center, The University of Tokyo
Hospital, Japan
| | - Ko Matsudaira
- Department of Medical Research and Management for
Musculoskeletal Pain, 22nd Century Medical and Research Center, The University of Tokyo
Hospital, Japan
| |
Collapse
|
12
|
Wang D, Wang J, Zhao H, Liang Y, Zhang W, Li M, Liu H, Hu D, Zhang S, Xing E, Su Y, Yu W, Sun J, Yang A. The relationship between the prefrontal cortex and limb motor function in stroke: A study based on resting-state functional near-infrared spectroscopy. Brain Res 2023; 1805:148269. [PMID: 36736871 DOI: 10.1016/j.brainres.2023.148269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND With the ageing of the world population, the incidence of stroke has been increasing annually, becoming a public health problem affecting adult health. Limb motor dysfunction is one of the common complications of stroke and an important factor in disability. Therefore, restoring limb function is an important task in current rehabilitation. Accurate assessment of motor function in stroke patients is the basis for formulating effective rehabilitation strategies. With the development of neuroimaging technology, scholars have begun to study objective evaluation methods for limb motor dysfunction in stroke to determine reliable neural biomarkers to accurately identify brain functional activity and its relationship with limb motor function. The prefrontal cortex (PFC) plays an important role in motor control and in response to motor state changes. Our previous study found that the PFC network characteristics of stroke patients are related to their motor function status and the topological properties of the PFC network under resting state can predict the motor function of stroke patients to some extent. Therefore, this study used functional near-infrared spectroscopy (fNIRS) to evaluate prefrontal neuroplasticity markers and the relationships between such neural markers and limb motor function in stroke patients with limb motor dysfunction, which could be helpful to further clarify the relationship between brain neuroplasticity and cerebral haemodynamics. At the same time, through accurate and objective means of evaluation, it could be helpful for clinicians to formulate and optimize individualized rehabilitation treatment plans and accurately determine the rehabilitation efficacy and prognosis. METHODS This study recruited 17 S patients with limb motor dysfunction and 9 healthy subjects. fNIRS was used to collect 22 channels of cerebral blood oxygen signals in the PFC in the resting state. The differences in prefrontal oxygenated haemoglobin (HbO) and deoxygenated haemoglobin (HbR) concentrations were analysed between stroke patients and healthy subjects, and the lateralization index (LI) of HbO in stroke patients was also calculated. Pearson's correlation analysis was performed between the LI and the scores of the Fugl-Meyer Assessment Scale (FMA) of motor function in stroke patients. RESULTS The results found that the prefrontal HbO concentration was significantly decreased in stroke patients with limb motor dysfunction compared with healthy subjects, and there was a significant, positive correlation between the LI of the PFC and FMA scores in stroke patients. CONCLUSION These study results showed that stroke can cause cerebral haemodynamic changes in the PFC, and the functional imbalance of the left and right PFC in the resting state is correlated with the severity of limb motor dysfunction. Furthermore, we emphasize that the cerebral haemodynamic activity reflected by fNIRS could be used as a reliable neural biomarker for assessing limb motor dysfunction in stroke.
Collapse
Affiliation(s)
- Dan Wang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Jie Wang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Hongbo Zhao
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Yahui Liang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Wenyue Zhang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Mingxi Li
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Hua Liu
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Di Hu
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Sibin Zhang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Enlong Xing
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Ying Su
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Wanchen Yu
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Jinyan Sun
- School of Medicine, Foshan University, Foshan, China.
| | - Aoran Yang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Wu Y, Dong Y, Tang Y, Wang W, Bo Y, Zhang C. Relationship between motor performance and cortical activity of older neurological disorder patients with dyskinesia using fNIRS: A systematic review. Front Physiol 2023; 14:1153469. [PMID: 37051020 PMCID: PMC10083370 DOI: 10.3389/fphys.2023.1153469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Neurological disorders with dyskinesia would seriously affect older people’s daily activities, which is not only associated with the degeneration or injury of the musculoskeletal or the nervous system but also associated with complex linkage between them. This study aims to review the relationship between motor performance and cortical activity of typical older neurological disorder patients with dyskinesia during walking and balance tasks.Methods: Scopus, PubMed, and Web of Science databases were searched. Articles that described gait or balance performance and cortical activity of older Parkinson’s disease (PD), multiple sclerosis, and stroke patients using functional near-infrared spectroscopy were screened by the reviewers. A total of 23 full-text articles were included for review, following an initial yield of 377 studies.Results: Participants were mostly PD patients, the prefrontal cortex was the favorite region of interest, and walking was the most popular test motor task, interventional studies were four. Seven studies used statistical methods to interpret the relationship between motor performance and cortical activation. The motor performance and cortical activation were simultaneously affected under difficult walking and balance task conditions. The concurrent changes of motor performance and cortical activation in reviewed studies contained the same direction change and different direction change.Conclusion: Most of the reviewed studies reported poor motor performance and increased cortical activation of PD, stroke and multiple sclerosis older patients. The external motor performance such as step speed were analyzed only. The design and results were not comprehensive and profound. More than 5 weeks walking training or physiotherapy can contribute to motor function promotion as well as cortices activation of PD and stroke patients. Thus, further study is needed for more statistical analysis on the relationship between motor performance and activation of the motor-related cortex. More different type and program sports training intervention studies are needed to perform.
Collapse
Affiliation(s)
- Yunzhi Wu
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Yuqi Dong
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Yunqi Tang
- College of Art and Design, Shaanxi University of Science and Technology, Xi’an, Shaanxi, China
| | - Weiran Wang
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Yulong Bo
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Cui Zhang
- Graduate School, Shandong Sport University, Jinan, Shandong, China
- Laboratory of Sports Biomechanics, Shandong Institute of Sport Science, Jinan, Shandong, China
- *Correspondence: Cui Zhang,
| |
Collapse
|
14
|
Cathomen A, Meier F, Lerch I, Killeen T, Zörner B, Curt A, Bolliger M. Corticospinal control of a challenging ankle task in incomplete spinal cord injury. J Neurotrauma 2022; 40:952-964. [PMID: 36029211 DOI: 10.1089/neu.2022.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
After incomplete spinal cord injury (iSCI), the control of lower extremity movements may be affected by impairments in descending corticospinal tract function. Previous iSCI studies demonstrated relatively well-preserved movement control during simple alternating dorsi- and plantarflexions albeit with severely reduced motor strength and range of motion. However, this task required comparably limited fine motor control, impeding the sensitivity to assess the modulatory capacity of corticospinal control. Therefore, we introduced a more challenging ankle motor task requiring complex and dynamic feedback-based movement adjustments to modulate corticospinal drive. Nineteen individuals with iSCI and 22 control subjects performed two different ankle movement tasks: i) a regular, auditory-guided ankle movement task at a constant frequency as baseline assessment, and ii) an irregular, visually-guided ankle movement task following a predefined trajectory as a more challenging motor task. Both tasks were performed separately and in a randomised order. Electromyography (EMG) and kinematic data were recorded. EMG frequency characteristics were investigated using wavelet transformations. Control participants exhibited a shift of relative EMG intensity from higher (>100Hz) to lower frequencies (20-60Hz) comparing the regular with the irregular movement task. There is evidence that EMG activity within these lower frequencies comprise information on corticospinal drive. The EMG frequency shift was less pronounced for the less impaired leg and absent for the more impaired leg of individuals with iSCI. The precision error during the irregular task was significantly higher for individuals with iSCI (more impaired leg: 12.34±11.14%; less impaired leg: 6.93±2.74%) compared to control participants (4.10±0.84%). These results, along with the walking performance, correlated well with the delta frequency shift between the regular and irregular movement task in the 38Hz band (corticospinal drive frequency) in the iSCI group, suggesting that task performance is related to the capacity to modulate corticospinal control. The irregular movement task holds promise as a tool for revealing further insights into corticospinal control of single-joint movements. It may serve as a surrogate marker for the assessment of modulatory capacity and the integrity of corticospinal control in individuals with iSCI early after injury and throughout rehabilitation.
Collapse
Affiliation(s)
- Adrian Cathomen
- Balgrist University Hospital, Spinal Cord Injury Center, Zurich, Zurich, Switzerland;
| | - Franziska Meier
- Balgrist University Hospital, Spinal Cord Injury Center, Zurich, Zurich, Switzerland;
| | - Irina Lerch
- Balgrist University Hospital, Spinal Cord Injury Center, Zurich, Zurich, Switzerland;
| | - Tim Killeen
- Balgrist University Hospital, Spinal Cord Injury Center, Zurich, Zurich, Switzerland;
| | - Björn Zörner
- Balgrist University Hospital, Spinal Cord Injury Center, Zurich, Zurich, Switzerland;
| | - Armin Curt
- Balgrist University Hospital, Spinal Cord Injury Center, Zurich, Zurich, Switzerland;
| | - Marc Bolliger
- Balgrist University Hospital, Spinal Cord Injury Center, Zurich, Zurich, Switzerland;
| |
Collapse
|
15
|
Lim SB, Yang CL, Peters S, Liu-Ambrose T, Boyd LA, Eng JJ. Phase-dependent Brain Activation of the Frontal and Parietal Regions During Walking After Stroke - An fNIRS Study. Front Neurol 2022; 13:904722. [PMID: 35928123 PMCID: PMC9343616 DOI: 10.3389/fneur.2022.904722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background Recovery of walking post-stroke is highly variable. Accurately measuring and documenting functional brain activation characteristics during walking can help guide rehabilitation. Previous work in this area has been limited to investigations of frontal brain regions and have not utilized recent technological and analytical advances for more accurate measurements. There were three aims for this study: to characterize the hemodynamic profile during walking post-stroke, to investigate regional changes in brain activation during different phases of walking, and to related brain changes to clinical measures. Methods Functional near-infrared spectroscopy (fNIRS) along the pre-frontal, premotor, sensorimotor, and posterior parietal cortices was used on twenty individuals greater than six months post-stroke. Individual fNIRS optodes were digitized and used to estimate channel locations on each participant and short separation channels were used to control for extracerebral hemodynamic changes. Participants walked at their comfortable pace several times along a hallway while brain activation was recorded. Exploratory cluster analysis was conducted to determine if there was a link between brain activation and clinical measures. Results Sustained activation was observed in the pre-frontal cortex with the ipsilesional hemisphere showing greater activation compared to the contralesional side. Sensorimotor cortex was active during the early, acceleration stage of walking only. Posterior parietal cortex showed changes in activation during the later, steady-state stage of walking. Faster gait speeds also related to increased activation in contralesional sensorimotor and posterior parietal cortices. Exploratory analysis clustered participants into two distinct groups based on their brain activation profiles and generally showed that individuals with greater activation tended to have better physical outcomes. Conclusions These findings can guide future research for obtaining adequate power and determining factors that can be used as effect modifiers to reduce inter-subject variability. Overall, this is the first study to report specific oxygenated and deoxygenated hemoglobin changes in frontal to parietal regions during walking in the stroke population. Our results shed light on the importance of measuring brain activation across the cortex and show the importance of pre-frontal, sensorimotor, and posterior parietal cortices in walking after a stroke.
Collapse
Affiliation(s)
- Shannon B. Lim
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
| | - Chieh-ling Yang
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Sue Peters
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
- School of Physical Therapy, Western University, London, ON, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- The David Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Lara A. Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- The David Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Janice J. Eng
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- *Correspondence: Janice J. Eng
| |
Collapse
|
16
|
Le DT, Ogawa H, Tsuyuhara M, Watanabe K, Watanabe T, Ochi R, Nishijo H, Mihara M, Fujita N, Urakawa S. Coupled versus decoupled visuomotor feedback: Differential frontoparietal activity during curved reach planning on simultaneous functional near-infrared spectroscopy and electroencephalography. Brain Behav 2022; 12:e2681. [PMID: 35701382 PMCID: PMC9304848 DOI: 10.1002/brb3.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Interacting with the environment requires the planning and execution of reach-to-target movements along given reach trajectory paths. Human neural mechanisms for the motor planning of linear, or point-to-point, reaching movements are relatively well studied. However, the corresponding representations for curved and more complex reaching movements require further investigation. Additionally, the visual and proprioceptive feedback of hand positioning can be spatially and sequentially coupled in alignment (e.g., directly reaching for an object), termed coupled visuomotor feedback, or spatially decoupled (e.g., dragging the computer mouse forward to move the cursor upward), termed decoupled visuomotor feedback. During reach planning, visuomotor processing routes may differ across feedback types. METHODS We investigated the involvement of the frontoparietal regions, including the superior parietal lobule (SPL), dorsal premotor cortex (PMd), and dorsolateral prefrontal cortex (dlPFC), in curved reach planning under different feedback conditions. Participants engaged in two delayed-response reaching tasks with identical starting and target position sets but different reach trajectory paths (linear or curved) under two feedback conditions (coupled or decoupled). Neural responses in frontoparietal regions were analyzed using a combination of functional near-infrared spectroscopy and electroencephalography. RESULTS The results revealed that, regarding the cue period, curved reach planning had a higher hemodynamic response in the left SPL and bilateral PMd and a smaller high-beta power in the left parietal regions than linear reach planning. Regarding the delay period, higher hemodynamic responses during curved reach planning were observed in the right dlPFC for decoupled feedback than those for coupled feedback. CONCLUSION These findings suggest the crucial involvement of both SPL and PMd activities in trajectory-path processing for curved reach planning. Moreover, the dlPFC may be especially involved in the planning of curved reaching movements under decoupled feedback conditions. Thus, this study provides insight into the neural mechanisms underlying reaching function via different feedback conditions.
Collapse
Affiliation(s)
- Duc Trung Le
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroki Ogawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masato Tsuyuhara
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuki Watanabe
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Ochi
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, Okayama, Japan
| | - Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Nguyen VT, Lu YH, Wu CW, Sung PS, Lin CCK, Lin PY, Wang SMS, Chen FY, Chen JJJ. Evaluating Interhemispheric Synchronization and Cortical Activity in Acute Stroke Patients Using Optical Hemodynamic Oscillations. J Neural Eng 2022; 19. [PMID: 35617937 DOI: 10.1088/1741-2552/ac73b4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE An understanding of functional interhemispheric asymmetry in ischemic stroke patients is a crucial factor in the designs of efficient programs for post-stroke rehabilitation. This study evaluates interhemispheric synchronization and cortical activities in acute stroke patients with various degrees of severity and at different post-stroke stages. APPROACH Twenty-three patients were recruited to participate in the experiments, including resting-state and speed finger-tapping tasks at week-1 and week-3 post-stroke. Multichannel near-infrared spectroscopy (NIRS) was used to measure the changes in hemodynamics in the bilateral prefrontal cortex (PFC), the supplementary motor area (SMA), and the sensorimotor cortex (SMC). The interhemispheric correlation coefficient (IHCC) measuring the synchronized activities in time and the wavelet phase coherence (WPCO) measuring the phasic activity in time-frequency were used to reflect the symmetry between the two hemispheres within a region. The changes in oxyhemoglobin during the finger-tapping tasks were used to present cortical activation. MAIN RESULTS IHCC and WPCO values in the severe-stroke were significantly lower than those in the minor-stroke at low frequency intervals during week-3 post-stroke. Cortical activation in all regions in the affected hemisphere was significantly lower than that in the unaffected hemisphere in the moderate-severe stroke measured in week-1, however, the SMC activation on the affected hemisphere was significantly enhanced in week-3 post-stroke. SIGNIFICANCE In this study, non-invasive NIRS was used to observe dynamic synchronization in the resting-state based on the IHCC and WPCO results as well as hemodynamic changes in a motor task in acute stroke patients. The findings suggest that NIRS could be used as a tool for early stroke assessment and evaluation of the efficacy of post-stroke rehabilitation.
Collapse
Affiliation(s)
- Van Truong Nguyen
- Department of Biomedical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, Tainan, 70101, TAIWAN
| | - Yi-Hsuan Lu
- Department of Biomedical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, Tainan, 70101, TAIWAN
| | - Chun-Wei Wu
- School of Biomedical Engineering, Taipei Medical University College of Biomedical Engineering, 250 Wu-Hsing Street, Taipei city, Taiwan 11031, Taipei, 11031, TAIWAN
| | - Pi-Shan Sung
- Department of Neurology, National Cheng Kung University Hospital, No.138,Sheng Li Road,Tainan, Taiwan 704, R.O.C, Tainan, 70403, TAIWAN
| | - Chou-Ching K Lin
- Department of Neurology, National Cheng Kung University, Medical Centre, National Cheng Kung University, Tainan, Taiwan 701, tainan, 70103, TAIWAN
| | - Pei-Yi Lin
- Pediatrics, Boston Children's Hospital, Harvard U, 300 Longwood Ave., Boston, Massachusetts, 02115, UNITED STATES
| | - Shun-Min Samuel Wang
- Department of Biomedical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, Tainan, 70101, TAIWAN
| | - Fu-Yu Chen
- Department of Biomedical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City, Taoyuan City, 32023, TAIWAN
| | - Jia-Jin Jason Chen
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan 70101, ROC, Tainan, 70101, TAIWAN
| |
Collapse
|
18
|
Le DT, Watanabe K, Ogawa H, Matsushita K, Imada N, Taki S, Iwamoto Y, Imura T, Araki H, Araki O, Ono T, Nishijo H, Fujita N, Urakawa S. Involvement of the Rostromedial Prefrontal Cortex in Human-Robot Interaction: fNIRS Evidence From a Robot-Assisted Motor Task. Front Neurorobot 2022; 16:795079. [PMID: 35370598 PMCID: PMC8970051 DOI: 10.3389/fnbot.2022.795079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
Assistive exoskeleton robots are being widely applied in neurorehabilitation to improve upper-limb motor and somatosensory functions. During robot-assisted exercises, the central nervous system appears to highly attend to external information-processing (IP) to efficiently interact with robotic assistance. However, the neural mechanisms underlying this process remain unclear. The rostromedial prefrontal cortex (rmPFC) may be the core of the executive resource allocation that generates biases in the allocation of processing resources toward an external IP according to current behavioral demands. Here, we used functional near-infrared spectroscopy to investigate the cortical activation associated with executive resource allocation during a robot-assisted motor task. During data acquisition, participants performed a right-arm motor task using elbow flexion-extension movements in three different loading conditions: robotic assistive loading (ROB), resistive loading (RES), and non-loading (NON). Participants were asked to strive for kinematic consistency in their movements. A one-way repeated measures analysis of variance and general linear model-based methods were employed to examine task-related activity. We demonstrated that hemodynamic responses in the ventral and dorsal rmPFC were higher during ROB than during NON. Moreover, greater hemodynamic responses in the ventral rmPFC were observed during ROB than during RES. Increased activation in ventral and dorsal rmPFC subregions may be involved in the executive resource allocation that prioritizes external IP during human-robot interactions. In conclusion, these findings provide novel insights regarding the involvement of executive control during a robot-assisted motor task.
Collapse
Affiliation(s)
- Duc Trung Le
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Neurology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Kazuki Watanabe
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroki Ogawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kojiro Matsushita
- Department of Mechanical Engineering, Facility of Engineering, Gifu University, Gifu, Japan
| | - Naoki Imada
- Department of Rehabilitation, Araki Neurosurgical Hospital, Hiroshima, Japan
| | - Shingo Taki
- Department of Rehabilitation, Araki Neurosurgical Hospital, Hiroshima, Japan
| | - Yuji Iwamoto
- Department of Rehabilitation, Araki Neurosurgical Hospital, Hiroshima, Japan
| | - Takeshi Imura
- Department of Rehabilitation, Faculty of Health Sciences, Hiroshima Cosmopolitan University, Hiroshima, Japan
| | - Hayato Araki
- Department of Neurosurgery, Araki Neurosurgical Hospital, Hiroshima, Japan
| | - Osamu Araki
- Department of Neurosurgery, Araki Neurosurgical Hospital, Hiroshima, Japan
| | - Taketoshi Ono
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- *Correspondence: Susumu Urakawa
| |
Collapse
|
19
|
Yang C, Zhang T, Huang K, Xiong M, Liu H, Wang P, Zhang Y. Increased both cortical activation and functional connectivity after transcranial direct current stimulation in patients with post-stroke: A functional near-infrared spectroscopy study. Front Psychiatry 2022; 13:1046849. [PMID: 36569623 PMCID: PMC9784914 DOI: 10.3389/fpsyt.2022.1046849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous studies have shown that cognitive impairment is common after stroke. Transcranial direct current stimulation (tDCS) is a promising tool for rehabilitating cognitive impairment. This study aimed to investigate the effects of tDCS on the rehabilitation of cognitive impairment in patients with stroke. METHODS Twenty-two mild-moderate post-stroke patients with cognitive impairments were treated with 14 tDCS sessions. A total of 14 healthy individuals were included in the control group. Cognitive function was assessed using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). Cortical activation was assessed using functional near-infrared spectroscopy (fNIRS) during the verbal fluency task (VFT). RESULTS The cognitive function of patients with stroke, as assessed by the MMSE and MoCA scores, was lower than that of healthy individuals but improved after tDCS. The cortical activation of patients with stroke was lower than that of healthy individuals in the left superior temporal cortex (lSTC), right superior temporal cortex (rSTC), right dorsolateral prefrontal cortex (rDLPFC), right ventrolateral prefrontal cortex (rVLPFC), and left ventrolateral prefrontal cortex (lVLPFC) cortical regions. Cortical activation increased in the lSTC cortex after tDCS. The functional connectivity (FC) between the cerebral hemispheres of patients with stroke was lower than that of healthy individuals but increased after tDCS. CONCLUSION The cognitive and brain functions of patients with mild-to-moderate stroke were damaged but recovered to a degree after tDCS. Increased cortical activation and increased FC between the bilateral cerebral hemispheres measured by fNIRS are promising biomarkers to assess the effectiveness of tDCS in stroke.
Collapse
Affiliation(s)
- Caihong Yang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,School of Psychology, Central China Normal University, Wuhan, Hubei, China
| | - Tingyu Zhang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kaiqi Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Menghui Xiong
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huiyu Liu
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,Department of Rehabilitation Medicine, Tianyang District People's Hospital, Baise, Guangxi, China
| | - Yan Zhang
- School of Educational Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Revisiting the acute effects of resistance exercise on motor imagery ability. Behav Brain Res 2021; 412:113441. [PMID: 34216646 DOI: 10.1016/j.bbr.2021.113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022]
Abstract
Motor imagery (MI) shares psychological and physiological similarities with the physical practice of the same action. Yet, it remains unclear whether fatigue elicited by exercise impairs MI ability. Fourteen participants performed MI of a self-paced walking sequence of 22 m before and after a resistance exercise eliciting muscle fatigue from upper and lower limbs, selectively. We indexed MI ability using psychometric and behavioral methods. Electromyography of the quadriceps was also recorded during physical practice trials of the walking sequence. For both experimental conditions, we recorded improved temporal congruence between MI and physical practice of the walking sequence (9.89 %, 95 % CI [7.03, 12.75], p < 0.01). Vividness decreased immediately after the fatiguing exercise (6.35 %, 95 % CI [5.18, 7.51], p < 0.05), before rapidly returning to pre-fatigue values during recovery trials. The results challenge the hypothesis of an effect of acute fatigue elicited by a resistance exercise on MI ability, i.e. restricted to MI tasks focusing fatigued effectors. The beneficial effects of fatigue conditions on the psychometric and behavioral indexes of MI ability are discussed in the broader context of psychobiological fatigue models linking perceived exertion with the reallocation of attentional resources. The general perception of fatigue, rather than local muscle fatigue, appeared linked to the acute effects of resistance exercise on MI ability.
Collapse
|
21
|
Lim SB, Louie DR, Peters S, Liu-Ambrose T, Boyd LA, Eng JJ. Brain activity during real-time walking and with walking interventions after stroke: a systematic review. J Neuroeng Rehabil 2021; 18:8. [PMID: 33451346 PMCID: PMC7811232 DOI: 10.1186/s12984-020-00797-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Investigations of real-time brain activations during walking have become increasingly important to aid in recovery of walking after a stroke. Individual brain activation patterns can be a valuable biomarker of neuroplasticity during the rehabilitation process and can result in improved personalized medicine for rehabilitation. The purpose of this systematic review is to explore the brain activation characteristics during walking post-stroke by determining: (1) if different components of gait (i.e., initiation/acceleration, steady-state, complex) result in different brain activations, (2) whether brain activations differ from healthy individuals. Six databases were searched resulting in 22 studies. Initiation/acceleration showed bilateral activation in frontal areas; steady-state and complex walking showed broad activations with the majority exploring and finding increases in frontal regions and some studies also showing increases in parietal activation. Asymmetrical activations were often related to performance asymmetry and were more common in studies with slower gait speed. Hyperactivations and asymmetrical activations commonly decreased with walking interventions and as walking performance improved. Hyperactivations often persisted in individuals who had experienced severe strokes. Only a third of the studies included comparisons to a healthy group: individuals post-stroke employed greater brain activation compared to young adults, while comparisons to older adults were less clear and limited. Current literature suggests some indicators of walking recovery however future studies investigating more brain regions and comparisons with healthy age-matched adults are needed to further understand the effect of stroke on walking-related brain activation.
Collapse
Affiliation(s)
- Shannon B Lim
- Graduate Studies in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,Rehabiliation Research Program, GF Strong Rehabilitation Centre, 4255 Laurel St, Vancouver, BC, V5Z 2G9, Canada
| | - Dennis R Louie
- Graduate Studies in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,Rehabiliation Research Program, GF Strong Rehabilitation Centre, 4255 Laurel St, Vancouver, BC, V5Z 2G9, Canada
| | - Sue Peters
- Rehabiliation Research Program, GF Strong Rehabilitation Centre, 4255 Laurel St, Vancouver, BC, V5Z 2G9, Canada.,Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,The Djavad Mowafaghian Centre for Brain Health, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,Centre for Hip Health and Mobility, Vancouver, Canada
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,The Djavad Mowafaghian Centre for Brain Health, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Janice J Eng
- Rehabiliation Research Program, GF Strong Rehabilitation Centre, 4255 Laurel St, Vancouver, BC, V5Z 2G9, Canada. .,Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
22
|
HU XINHUA, XIAO GANG, ZHU KEXIN, HU SHUYI, CHEN JIU, YU YUN. APPLICATION OF FUNCTIONAL NEAR-INFRARED SPECTROSCOPY IN NEUROLOGICAL DISEASES: EPILEPSY, STROKE AND PARKINSON. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519420400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The functional near-infrared spectroscopy (fNIRS) technology is an optical imaging technology that applies near-infrared light to measure the oxygenated and deoxygenated hemoglobin concentration alteration in cortical brain structures. It has the ability to directly measure changes in the blood oxygen level of the high temporal resolution associated with neural activation. Thus, it has been utilized in different neurological diseases, such as epilepsy, stroke, and Parkinson. The work of this paper will focus on the application of the fNIRS in the three neurological diseases and the principle of fNIRS. Moreover, the difficulties and challenges that the technology is currently experiencing have been discussed.
Collapse
Affiliation(s)
- XINHUA HU
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - GANG XIAO
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology, Fudan University, Shanghai, 200032, P. R. China
| | - KEXIN ZHU
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - SHUYI HU
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - JIU CHEN
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - YUN YU
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| |
Collapse
|
23
|
Hinton DC, Conradsson DM, Paquette C. Understanding Human Neural Control of Short-term Gait Adaptation to the Split-belt Treadmill. Neuroscience 2020; 451:36-50. [DOI: 10.1016/j.neuroscience.2020.09.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
|
24
|
Vitorio R, Stuart S, Mancini M. Executive Control of Walking in People With Parkinson's Disease With Freezing of Gait. Neurorehabil Neural Repair 2020; 34:1138-1149. [PMID: 33155506 DOI: 10.1177/1545968320969940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Walking abnormalities in people with Parkinson's disease (PD) are characterized by a shift in locomotor control from healthy automaticity to compensatory prefrontal executive control. Indirect measures of automaticity of walking (eg, step-to-step variability and dual-task cost) suggest that freezing of gait (FoG) may be associated with reduced automaticity of walking. However, the influence of FoG status on actual prefrontal cortex (PFC) activity during walking remains unclear. OBJECTIVE To investigate the influence of FoG status on automaticity of walking in people with PD. METHODS Forty-seven people with PD were distributed into 2 groups based on FoG status, which was assessed by the New Freezing of Gait Questionnaire: PD-FoG (n = 23; UPDRS-III = 35) and PD+FoG (n = 24; UPDRS-III = 43.1). Participants walked over a 9-m straight path (with a 180° turn at each end) for 80 seconds. Two conditions were tested off medication: single- and dual-task walking (ie, with a concomitant cognitive task). A portable functional near-infrared spectroscopy system recorded PFC activity while walking (including turns). Wearable inertial sensors were used to calculate spatiotemporal gait parameters. RESULTS PD+FoG had greater PFC activation during both single and dual-task walking than PD-FoG (P = .031). There were no differences in gait between PD-FoG and PD+FoG. Both groups decreased gait speed (P = .029) and stride length (P < .001) during dual-task walking compared with single-task walking. CONCLUSIONS These findings suggest that PD+FoG have reduced automaticity of walking, even in absence of FoG episodes. PFC activity while walking seems to be more sensitive than gait measures in identifying reduction in automaticity of walking in PD+FoG.
Collapse
Affiliation(s)
| | - Samuel Stuart
- Oregon Health & Science University, Portland, OR, USA.,Northumbria University, Newcastle upon Tyne, UK
| | | |
Collapse
|
25
|
Meyer C, Filli L, Stalder SA, Awai Easthope C, Killeen T, von Tscharner V, Curt A, Zörner B, Bolliger M. Targeted Walking in Incomplete Spinal Cord Injury: Role of Corticospinal Control. J Neurotrauma 2020; 37:2302-2314. [PMID: 32552335 DOI: 10.1089/neu.2020.7030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Locomotor recovery after incomplete spinal cord injury (iSCI) is influenced by spinal and supraspinal networks. Conventional clinical gait analysis fails to differentiate between these components. There is evidence that corticospinal control is enhanced during targeted walking, where each foot must be continuously placed on visual targets in randomized order. This study investigates the potential of targeted walking in the functional assessment of corticospinal integrity. Twenty-one controls and 16 individuals with chronic iSCI performed normal and targeted walking on a treadmill while electromyograms (EMGs) and kinematics were recorded. Precision (% of accurate foot placements) in targeted walking was significantly lower in individuals with iSCI (82.9 ± 14.7%, controls: 94.9 ± 4.0%). Although the overall kinematic pattern was comparable between walking conditions, controls showed significantly higher semitendinosus (ST) activity before heel-strike during targeted walking. This was accompanied by a shift of relative EMG intensity from 90-120 Hz to lower frequencies of 20-60 Hz, previously associated with corticospinal control of muscle activity. Targeted walking in individuals with iSCI evoked smaller EMG changes, suggesting that the switch to more corticospinal control is impaired. Accordingly, mildly impaired iSCI individuals revealed higher adaptations to the targeted walking task than more-impaired individuals. Recording of EMGs during targeted walking holds potential as a research tool to reveal further insights into the neuromuscular control of locomotion. It also complements findings of pre-clinical studies and is a promising novel surrogate marker of integrity of corticospinal control in individuals with iSCI and other neurological impairments. Future studies should investigate its potential for diagnosis or tracking recovery during rehabilitation.
Collapse
Affiliation(s)
- Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Linard Filli
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Stephanie A Stalder
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | | | - Tim Killeen
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | | | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Björn Zörner
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
26
|
Menant JC, Maidan I, Alcock L, Al-Yahya E, Cerasa A, Clark DJ, de Bruin ED, Fraser S, Gramigna V, Hamacher D, Herold F, Holtzer R, Izzetoglu M, Lim S, Pantall A, Pelicioni P, Peters S, Rosso AL, St George R, Stuart S, Vasta R, Vitorio R, Mirelman A. A consensus guide to using functional near-infrared spectroscopy in posture and gait research. Gait Posture 2020; 82:254-265. [PMID: 32987345 DOI: 10.1016/j.gaitpost.2020.09.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Functional near-infrared spectroscopy (fNIRS) is increasingly used in the field of posture and gait to investigate patterns of cortical brain activation while people move freely. fNIRS methods, analysis and reporting of data vary greatly across studies which in turn can limit the replication of research, interpretation of findings and comparison across works. RESEARCH QUESTION AND METHODS Considering these issues, we propose a set of practical recommendations for the conduct and reporting of fNIRS studies in posture and gait, acknowledging specific challenges related to clinical groups with posture and gait disorders. RESULTS Our paper is organized around three main sections: 1) hardware set up and study protocols, 2) artefact removal and data processing and, 3) outcome measures, validity and reliability; it is supplemented with a detailed checklist. SIGNIFICANCE This paper was written by a core group of members of the International Society for Posture and Gait Research and posture and gait researchers, all experienced in fNIRS research, with the intent of assisting the research community to lead innovative and impactful fNIRS studies in the field of posture and gait, whilst ensuring standardization of research.
Collapse
Affiliation(s)
- Jasmine C Menant
- Neuroscience Research Australia, University of New South Wales, New South Wales, Australia; School of Population Health, University of New South Wales, New South Wales, Australia.
| | - Inbal Maidan
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lisa Alcock
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emad Al-Yahya
- Department of Physiotherapy, School of Rehabilitation Sciences, The University of Jordan, Amman, Jordan; Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Antonio Cerasa
- IRIB, National Research Council, Mangone, CS, Italy; S. Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy
| | - David J Clark
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Eling D de Bruin
- Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland; Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Huddinge, Sweden
| | - Sarah Fraser
- École interdisciplinaire des sciences de la santé (Interdisciplinary School of Health sciences), University of Ottawa, Ottawa, Ontario, Canada
| | - Vera Gramigna
- Neuroscience Research Center, "Magna Graecia" University, Catanzaro, Italy
| | - Dennis Hamacher
- German University for Health and Sports, (DHGS), Berlin, Germany
| | - Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Department of Neurology, Medical Faculty, Otto Von Guericke University, Magdeburg, Germany
| | - Roee Holtzer
- Yeshiva University, Ferkauf Graduate School of Psychology, The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering Department, Villanova, PA, USA
| | - Shannon Lim
- Graduate Program in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Annette Pantall
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paulo Pelicioni
- Neuroscience Research Australia, University of New South Wales, New South Wales, Australia; School of Population Health, University of New South Wales, New South Wales, Australia
| | - Sue Peters
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Andrea L Rosso
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Rebecca St George
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Roberta Vasta
- Neuroscience Research Center, "Magna Graecia" University, Catanzaro, Italy
| | - Rodrigo Vitorio
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Anat Mirelman
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Rahman MA, Siddik AB, Ghosh TK, Khanam F, Ahmad M. A Narrative Review on Clinical Applications of fNIRS. J Digit Imaging 2020; 33:1167-1184. [PMID: 32989620 PMCID: PMC7573058 DOI: 10.1007/s10278-020-00387-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/06/2020] [Accepted: 09/14/2020] [Indexed: 01/08/2023] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a relatively new imaging modality in the functional neuroimaging research arena. The fNIRS modality non-invasively investigates the change of blood oxygenation level in the human brain utilizing the transillumination technique. In the last two decades, the interest in this modality is gradually evolving for its real-time monitoring, relatively low-cost, radiation-less environment, portability, patient-friendliness, etc. Including brain-computer interface and functional neuroimaging research, this technique has some important application of clinical perspectives such as Alzheimer's disease, schizophrenia, dyslexia, Parkinson's disease, childhood disorders, post-neurosurgery dysfunction, attention, functional connectivity, and many more can be diagnosed as well as in some form of assistive modality in clinical approaches. Regarding the issue, this review article presents the current scopes of fNIRS in medical assistance, clinical decision making, and future perspectives. This article also covers a short history of fNIRS, fundamental theories, and significant outcomes reported by a number of scholarly articles. Since this review article is hopefully the first one that comprehensively explores the potential scopes of the fNIRS in a clinical perspective, we hope it will be helpful for the researchers, physicians, practitioners, current students of the functional neuroimaging field, and the related personnel for their further studies and applications.
Collapse
Affiliation(s)
- Md. Asadur Rahman
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216 Bangladesh
| | - Abu Bakar Siddik
- Department of Biomedical Engineering, Khulna University of Engineering & Technology (KUET), Khulna, 9203 Bangladesh
| | - Tarun Kanti Ghosh
- Department of Biomedical Engineering, Khulna University of Engineering & Technology (KUET), Khulna, 9203 Bangladesh
| | - Farzana Khanam
- Department of Biomedical Engineering, Jashore University of Science and Technology (JUST), Jashore, 7408 Bangladesh
| | - Mohiuddin Ahmad
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology (KUET), Khulna, 9203 Bangladesh
| |
Collapse
|
28
|
Chatterjee SA, Seidler RD, Skinner JW, Lysne PE, Sumonthee C, Wu SS, Cohen RA, Rose DK, Woods AJ, Clark DJ. Obstacle Negotiation in Older Adults: Prefrontal Activation Interpreted Through Conceptual Models of Brain Aging. Innov Aging 2020; 4:igaa034. [PMID: 32995566 DOI: 10.1093/geroni/igaa034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 11/14/2022] Open
Abstract
Background and Objectives The influence of interindividual differences on brain activation during obstacle negotiation and the implications for walking performance are poorly understood in older adults. This study investigated the extent to which prefrontal recruitment during obstacle negotiation is explained by differences in age, executive function, and sex. These data were interpreted according to the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) framework of brain aging. We also tested the association between prefrontal recruitment and walking performance. Research Design and Methods Prefrontal oxygenated hemoglobin concentration (O2Hb) was measured during typical walking (Typical) and obstacle negotiation (Obstacles) tasks in 50 adults aged 65 years and older using functional near-infrared spectroscopy. The primary outcome was the change in prefrontal recruitment (∆PFR), measured as Obstacles ∆O2Hb minus Typical ∆O2Hb. Multiple regression was used to test the relationship between ∆PFR and age, executive function measured by the Trail Making Test, and sex. Pearson's correlation coefficient was used to investigate the association between ∆PFR and the cost of Obstacles walking speed relative to Typical walking. Results Age, executive function, and their interaction significantly predicted greater ∆PFR (R 2 = 0.34, p = .01). Participants were subgrouped according to age and executive function to examine the interaction effects. Adults of lower age and with lower executive function exhibited greater ∆PFR during Obstacles compared to their peers with higher executive function (p = .03). Adults of advanced age exhibited a ceiling of prefrontal recruitment during obstacle negotiation, regardless of executive function level (p = .87). Greater ∆PFR was significantly associated with a smaller cost of Obstacles (r = 0.3, p = .03). Discussion and Implications These findings are consistent with the CRUNCH framework: neural inefficiency where a greater amount of brain activation is needed for task performance at a similar level, compensatory overactivation to prevent a steeper decline in task performance, and capacity limitation with a recruitment ceiling effect.
Collapse
Affiliation(s)
- Sudeshna A Chatterjee
- Department of Physical Therapy, University of Florida, Gainesville.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville
| | - Jared W Skinner
- Geriatric Research, Education, and Clinical Center, Malcom Randall VA Medical Center, Gainesville, Florida
| | - Paige E Lysne
- Department of Aging and Geriatric Research, University of Florida, Gainesville
| | - Chanoan Sumonthee
- College of Public Health and Health Professions, University of Florida, Gainesville
| | - Samuel S Wu
- Department of Biostatistics, University of Florida, Gainesville
| | - Ronald A Cohen
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville
| | - Dorian K Rose
- Department of Physical Therapy, University of Florida, Gainesville.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville
| | - David J Clark
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida.,Department of Aging and Geriatric Research, University of Florida, Gainesville
| |
Collapse
|
29
|
Reimann H, Ramadan R, Fettrow T, Hafer JF, Geyer H, Jeka JJ. Interactions Between Different Age-Related Factors Affecting Balance Control in Walking. Front Sports Act Living 2020; 2:94. [PMID: 33345085 PMCID: PMC7739654 DOI: 10.3389/fspor.2020.00094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/12/2020] [Indexed: 12/30/2022] Open
Abstract
Maintaining balance during walking is a continuous sensorimotor control problem. Throughout the movement, the central nervous system has to collect sensory data about the current state of the body in space, use this information to detect possible threats to balance and adapt the movement pattern to ensure stability. Failure of this sensorimotor loop can lead to dire consequences in the form of falls, injury and death. Such failures tend to become more prevalent as people get older. While research has established a number of factors associated with higher risk of falls, we know relatively little about age-related changes of the underlying sensorimotor control loop and how such changes are related to empirically established risk factors. This paper approaches the problem of age-related fall risk from a neural control perspective. We begin by summarizing recent empirical findings about the neural control laws mapping sensory input to motor output for balance control during walking. These findings were established in young, neurotypical study populations and establish a baseline of sensorimotor control of balance. We then review correlates for deteriorating balance control in older adults, of muscle weakness, slow walking, cognitive decline, and increased visual dependency. While empirical associations between these factors and fall risk have been established reasonably well, we know relatively little about the underlying causal relationships. Establishing such causal relationships is hard, because the different factors all co-vary with age and are difficult to isolate empirically. One option to analyze the role of an individual factor for balance control is to use computational models of walking comprising all levels of the sensorimotor control loop. We introduce one such model that generates walking movement patterns from a short list of spinal reflex modules with limited supraspinal modulation for balance. We show how this model can be used to simulate empirical studies, and how comparison between the model and empirical results can indicate gaps in our current understanding of balance control. We also show how different aspects of aging can be added to this model to study their effect on balance control in isolation.
Collapse
Affiliation(s)
- Hendrik Reimann
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Rachid Ramadan
- Institute for Neural Computation, Ruhr University, Bochum, Germany
| | - Tyler Fettrow
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Jocelyn F. Hafer
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Hartmut Geyer
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - John J. Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| |
Collapse
|
30
|
|
31
|
Holtzer R, Izzetoglu M, Chen M, Wang C. Distinct fNIRS-Derived HbO2 Trajectories During the Course and Over Repeated Walking Trials Under Single- and Dual-Task Conditions: Implications for Within Session Learning and Prefrontal Cortex Efficiency in Older Adults. J Gerontol A Biol Sci Med Sci 2020; 74:1076-1083. [PMID: 30107534 DOI: 10.1093/gerona/gly181] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Neural trajectories of gait are not well established. We determined two distinct, clinically relevant neural trajectories, operationalized via functional near-infrared spectroscopy (fNIRS) HbO2 measures in the prefrontal cortex (PFC), under Single-Task-Walk (STW), and Dual-Task-Walk (DTW) conditions. Course trajectory assessed neural activity associated with attention during the course of a walking task; the second trajectory assessed neural activity associated with learning over repeated walking trials. Improved neural efficiency was defined as reduced PFC HbO2 after practice. METHODS Walking was assessed under STW and DTW conditions. fNIRS was utilized to quantify HbO2 in the PFC while walking. Burst measurement included three repeated trials for each experimental condition. The course of each walking task consisted of six consecutive segments. RESULTS Eighty-three nondemented participants (mean age = 78.05 ± 6.37 years; %female = 49.5) were included. Stride velocity (estimate = -0.5259 cm/s, p = <.0001) and the rate of correct letter generation (log estimate of rate ratio = -0.0377, p < .0001) declined during the course of DTW. In contrast, stride velocity (estimate = 1.4577 cm/s, p < .0001) and the rate of correct letter generation (log estimate of rate ratio = 0.0578, p < .0001) improved over repeated DTW trials. Course and trial effects were not significant in STW. HbO2 increased during the course of DTW (estimate = 0.0454 μM, p < .0001) but declined over repeated trials (estimate = -0.1786 μM, p < .0001). HbO2 declined during the course of STW (estimate = -.0542 μM, p < .0001) but did not change significantly over repeated trials. CONCLUSION We provided evidence for distinct attention (course) and learning (repeated trials) trajectories and their corresponding PFC activity. Findings suggest that learning and improved PFC efficiency were demonstrated in one experimental session involving repeated DTW trials.
Collapse
Affiliation(s)
- Roee Holtzer
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York.,Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, New York
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, Pennsylvania
| | - Michelle Chen
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, New York
| | - Cuiling Wang
- Department of Epidemiology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
32
|
Naeije G, Wens V, Coquelet N, Sjøgård M, Goldman S, Pandolfo M, De Tiège XP. Age of onset determines intrinsic functional brain architecture in Friedreich ataxia. Ann Clin Transl Neurol 2020; 7:94-104. [PMID: 31854120 PMCID: PMC6952309 DOI: 10.1002/acn3.50966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Friedreich ataxia (FRDA) is the commonest hereditary ataxia in Caucasians. Most patients are homozygous for expanded GAA triplet repeats in the first intron of the frataxin (FXN) gene, involved in mitochondrial iron metabolism. Here, we used magnetoencephalography (MEG) to characterize the main determinants of FRDA-related changes in intrinsic functional brain architecture. METHODS Five minutes of MEG signals were recorded at rest from 18 right-handed FRDA patients (mean age 27 years, 9 females; mean SARA score: 21.4) and matched healthy individuals. The MEG connectome was estimated as resting-state functional connectivity (rsFC) matrices involving 37 nodes from six major resting state networks and the cerebellum. Source-level rsFC maps were computed using leakage-corrected broad-band (3-40 Hz) envelope correlations. Post hoc median-split was used to contrast rsFC in FRDA patients with different clinical characteristics. Nonparametric permutations and Spearman rank correlation test were used for statistics. RESULTS High rank correlation levels were found between rsFC and age of symptoms onset in FRDA mostly between the ventral attention, the default-mode, and the cerebellar networks; patients with higher rsFC developing symptoms at an older age. Increased rsFC was found in FRDA with later age of symptoms onset compared to healthy subjects. No correlations were found between rsFC and other clinical parameters. CONCLUSION Age of symptoms onset is a major determinant of FRDA patients' intrinsic functional brain architecture. Higher rsFC in FRDA patients with later age of symptoms onset supports compensatory mechanisms for FRDA-related neural network dysfunction and position neuromagnetic rsFC as potential marker of FRDA neural reserve.
Collapse
Affiliation(s)
- Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du CerveauULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BrusselsBelgium
- Department of NeurologyCUB Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du CerveauULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BrusselsBelgium
- Department of Functional NeuroimagingService of Nuclear MedicineCUB Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
| | - Nicolas Coquelet
- Laboratoire de Cartographie fonctionnelle du CerveauULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BrusselsBelgium
| | - Martin Sjøgård
- Laboratoire de Cartographie fonctionnelle du CerveauULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BrusselsBelgium
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du CerveauULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BrusselsBelgium
- Department of Functional NeuroimagingService of Nuclear MedicineCUB Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
| | - Massimo Pandolfo
- Department of NeurologyCUB Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
| | - Xavier P. De Tiège
- Laboratoire de Cartographie fonctionnelle du CerveauULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BrusselsBelgium
- Department of Functional NeuroimagingService of Nuclear MedicineCUB Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
| |
Collapse
|
33
|
Chatterjee SA, Fox EJ, Daly JJ, Rose DK, Wu SS, Christou EA, Hawkins KA, Otzel DM, Butera KA, Skinner JW, Clark DJ. Interpreting Prefrontal Recruitment During Walking After Stroke: Influence of Individual Differences in Mobility and Cognitive Function. Front Hum Neurosci 2019; 13:194. [PMID: 31316360 PMCID: PMC6611435 DOI: 10.3389/fnhum.2019.00194] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Functional near-infrared spectroscopy (fNIRS) is a valuable neuroimaging approach for studying cortical contributions to walking function. Recruitment of prefrontal cortex during walking has been a particular area of focus in the literature. The present study investigated whether task-related change in prefrontal recruitment measured by fNIRS is affected by individual differences in people post-stroke. The primary hypotheses were that poor mobility function would contribute to prefrontal over-recruitment during typical walking, and that poor cognitive function would contribute to a ceiling in prefrontal recruitment during dual-task walking (i.e., walking with a cognitive task). Methods: Thirty-three adults with chronic post-stroke hemiparesis performed three tasks: typical walking at preferred speed (Walk), serial-7 subtraction (Serial7), and walking combined with serial-7 subtraction (Dual-Task). Prefrontal recruitment was measured with fNIRS and quantified as the change in oxygenated hemoglobin concentration (ΔO2Hb) between resting and active periods for each task. Spatiotemporal gait parameters were measured on an electronic walkway. Stepwise regression was used to assess how prefrontal recruitment was affected by individual differences including age, sex, stroke region, injured hemisphere, stroke chronicity, 10-meter walking speed, balance confidence measured by Activities-specific Balance Confidence (ABC) Scale, sensorimotor impairment measured by Fugl-Meyer Assessment, and cognitive function measured by Mini-Mental State Examination (MMSE). Results: For Walk, poor balance confidence (ABC Scale score) significantly predicted greater prefrontal recruitment (ΔO2Hb; R 2 = 0.25, p = 0.003). For Dual-Task, poor cognitive function (MMSE score) significantly predicted lower prefrontal recruitment (ΔO2Hb; R 2 = 0.25, p = 0.002). Conclusions: Poor mobility function predicted higher prefrontal recruitment during typical walking, consistent with compensatory over-recruitment. Poor cognitive function predicted lower prefrontal recruitment during dual-task walking, consistent with a recruitment ceiling effect. These findings indicate that interpretation of prefrontal recruitment should carefully consider the characteristics of the person and demands of the task.
Collapse
Affiliation(s)
- Sudeshna A. Chatterjee
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Emily J. Fox
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- Brooks Rehabilitation, Jacksonville, FL, United States
| | - Janis J. Daly
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Dorian K. Rose
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Samuel S. Wu
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Evangelos A. Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Kelly A. Hawkins
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Dana M. Otzel
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States
| | - Katie A. Butera
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Jared W. Skinner
- Geriatric Research, Education and Clinical Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - David J. Clark
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States
| |
Collapse
|
34
|
Tan SYZ, Keong NCH, Selvan RMP, Li H, Ooi LQR, Tan EK, Chan LL. Periventricular White Matter Abnormalities on Diffusion Tensor Imaging of Postural Instability Gait Disorder Parkinsonism. AJNR Am J Neuroradiol 2019; 40:609-613. [PMID: 30872421 DOI: 10.3174/ajnr.a5993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/18/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Postural instability gait disorder is a motor subtype of Parkinson disease associated with predominant gait dysfunction. We investigated the periventricular white matter comprising longitudinal, thalamic, and callosal fibers using diffusion tensor MR Imaging and examined clinical correlates in a cohort of patients with Parkinson disease and postural instability gait disorder and healthy controls. MATERIALS AND METHODS All subjects underwent the Tinetti Gait and Balance Assessment and brain MR imaging. The DTI indices (fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity) from ROIs dropped over the superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculus, anterior thalamic radiation, anterior and posterior limbs of the internal capsule, and the genu and body of corpus callosum were evaluated. RESULTS Our findings showed that the superior longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, anterior thalamic radiation, genu of the corpus callosum, and body of the corpus callosum are more affected in postural instability gait disorder than in those with Parkinson disease or healthy controls, with more group differences among the longitudinal fibers. Only the callosal fibers differentiated the postural instability gait disorder and Parkinson disease groups. DTI measures in the superior longitudinal fasciculus, frontostriatal fibers (anterior thalamic radiation, anterior limb of the internal capsule), and genu of the corpus callosum fibers correlated with clinical gait severity. CONCLUSIONS Findings from this case-control cohort lend further evidence to the role of extranigral pathology and, specifically, the periventricular fibers in the pathophysiology of postural instability gait disorder.
Collapse
Affiliation(s)
- S Y Z Tan
- From the Department of Diagnostic Radiology, Singapore General Hospital, Singhealth (S.Y.Z.T., N.C.H.K., H.L., E.K.T., L.L.C.), Singapore
| | - N C H Keong
- From the Department of Diagnostic Radiology, Singapore General Hospital, Singhealth (S.Y.Z.T., N.C.H.K., H.L., E.K.T., L.L.C.), Singapore
- Departments of Neurosurgery, Research and Neurology, National Neuroscience Institute, Singhealth (N.C.H.K., R.M.P.S., L.Q.R.O., E.K.T.), Singapore
- Duke-NUS Medical School (N.C.H.K., E.K.T., L.L.C.), Singapore
| | - R M P Selvan
- Departments of Neurosurgery, Research and Neurology, National Neuroscience Institute, Singhealth (N.C.H.K., R.M.P.S., L.Q.R.O., E.K.T.), Singapore
| | - H Li
- From the Department of Diagnostic Radiology, Singapore General Hospital, Singhealth (S.Y.Z.T., N.C.H.K., H.L., E.K.T., L.L.C.), Singapore
| | - L Q R Ooi
- Departments of Neurosurgery, Research and Neurology, National Neuroscience Institute, Singhealth (N.C.H.K., R.M.P.S., L.Q.R.O., E.K.T.), Singapore
| | - E K Tan
- From the Department of Diagnostic Radiology, Singapore General Hospital, Singhealth (S.Y.Z.T., N.C.H.K., H.L., E.K.T., L.L.C.), Singapore
- Departments of Neurosurgery, Research and Neurology, National Neuroscience Institute, Singhealth (N.C.H.K., R.M.P.S., L.Q.R.O., E.K.T.), Singapore
- Duke-NUS Medical School (N.C.H.K., E.K.T., L.L.C.), Singapore
| | - L L Chan
- From the Department of Diagnostic Radiology, Singapore General Hospital, Singhealth (S.Y.Z.T., N.C.H.K., H.L., E.K.T., L.L.C.), Singapore
- Duke-NUS Medical School (N.C.H.K., E.K.T., L.L.C.), Singapore
| |
Collapse
|
35
|
Koren Y, Parmet Y, Bar-Haim S. Treading on the unknown increases prefrontal activity: A pilot fNIRS study. Gait Posture 2019; 69:96-100. [PMID: 30690327 DOI: 10.1016/j.gaitpost.2019.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/16/2018] [Accepted: 01/17/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Complex walking conditions (e.g. dual tasking) have been associated with increased prefrontal (PFC) activity. However, most paradigms include a predictable environment, specifically, a predictable walking terrain. In the present study we investigate PFC activity under an unusual walking condition where each foot placement was on unexpected terrain, thus causing a mismatch between visuospatial perception and lower-extremity proprioception. RESEARCH OBJECTIVE To assess whether PFC activity increases under unstable unpredictable conditions compared to unstable but predictable conditions. METHODS This was a prospective study involving twenty healthy adults. Participants walked in two conditions: unstable but predictable, and unstable and unpredictable. To assess walking stability, both stride-time (ST) and stride-time variability (CV) were measured. To assess PFC activity, two wireless near-infrared spectroscopy devices were used. The group hemodynamic response (GHR) was calculated for each condition. For statistical analysis, a linear-mixed-effects model was used. RESULTS Walking with unpredictable perturbations did not change the ST (t = 0.51, p = 0.61) but significantly increased the parameter CV (t = 11.74, p < 0.001). The GHR of both conditions indicated brief per-initiation PFC activity that was similar across conditions. However, when GHRs were calculated relative to normal walking (i.e., the participants' own shoes), continuous activity was evident. Compared to the predictable condition, the unpredictable condition significantly increased this activity during steady-state walking (t = 2.13, p = 0.033). SIGNIFICANCE Observations from the present study suggest that at least two neural components are present in the measured signal-a brief one, occurring per-initiation, and a continuous one, sensitive to the predictability of the terrain. The second component was accompanied by a decrease in walking stability. These results may contribute to our understanding of the control mechanism underlying gait and future planning of rehabilitation protocols.
Collapse
Affiliation(s)
- Yogev Koren
- The Laboratory for Rehabilitation and Motor Control of Walking, Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Yisrael Parmet
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Simona Bar-Haim
- The Laboratory for Rehabilitation and Motor Control of Walking, Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
36
|
Holtzer R, Kraut R, Izzetoglu M, Ye K. The effect of fear of falling on prefrontal cortex activation and efficiency during walking in older adults. GeroScience 2019; 41:89-100. [PMID: 30737727 DOI: 10.1007/s11357-019-00056-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/24/2019] [Indexed: 11/25/2022] Open
Abstract
Neural inefficiency is inferred when higher brain activations are associated with similar or worse performance. Improved neural efficiency is achieved when task-related brain activations are reduced after practice. No information is available on the effect of fear-of-falling (FOF) on brain activation during walking. We hypothesized that the presence of FOF would be associated with neural inefficiency and with a delay in improving neural efficiency during dual-task walking. Task conditions included single-task walk (STW), Alpha (cognitive interference), and dual-task walk (DTW). Functional near-infrared spectroscopy (fNIRS)-derived HbO2 in the prefrontal cortex (PFC) was used to quantify task-related changes in brain activation. Practice included three repeated counterbalanced trials for each task. Participants with FOF (n = 19; mean age = 79.84 ± 6.01 years; %female = 68.42) and without FOF (n = 56; mean age = 76.73 ± 6.39 years; %female = 44.64) were included. The presence of FOF was associated with slower stride velocity (estimate = - 12.354; p = 0.0154) and with greater increases in PFC HbO2 from STW to DTW (estimate = 0.303, p = 0.0009) and from Alpha to DTW (estimate = 0.387, p < 0.0001). Compared to controls, participants reporting FOF demonstrated an attenuated decline in PFC HbO2 from the first to the second DTW trials (estimate = 0.264; p = 0.0173). In contrast, compared to controls, participants with FOF demonstrated greater decline in Alpha PFC HbO2 from trial 1 to trial 2 (estimate = - 0.419, p < 0.0001) and from trial 1 to 3 (estimate = - 0.281, p = 0.0006). The change in PFC HbO2 over repeated STW trials was not significant and was not moderated by FOF status. The presence of FOF was associated with higher and inefficient PFC activation during DTW in older adults.
Collapse
Affiliation(s)
- Roee Holtzer
- Albert Einstein College of Medicine Bronx, 1225 Morris Park Avenue, Van Etten Building, Bronx, NY, 10461, USA.
- Yeshiva University Bronx, New York, NY, USA.
| | | | - Meltem Izzetoglu
- Villanova University Electrical and Computer Engineering, Villanova, PA, USA
| | - Kenny Ye
- Albert Einstein College of Medicine Bronx, 1225 Morris Park Avenue, Van Etten Building, Bronx, NY, 10461, USA
| |
Collapse
|
37
|
Yang M, Yang Z, Yuan T, Feng W, Wang P. A Systemic Review of Functional Near-Infrared Spectroscopy for Stroke: Current Application and Future Directions. Front Neurol 2019; 10:58. [PMID: 30804877 PMCID: PMC6371039 DOI: 10.3389/fneur.2019.00058] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/16/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Survivors of stroke often experience significant disability and impaired quality of life. The recovery of motor or cognitive function requires long periods. Neuroimaging could measure changes in the brain and monitor recovery process in order to offer timely treatment and assess the effects of therapy. A non-invasive neuroimaging technique near-infrared spectroscopy (NIRS) with its ambulatory, portable, low-cost nature without fixation of subjects has attracted extensive attention. Methods: We conducted a comprehensive literature review in order to review the use of NIRS in stroke or post-stroke patients in July 2018. NCBI Pubmed database, EMBASE database, Cochrane Library and ScienceDirect database were searched. Results: Overall, we reviewed 66 papers. NIRS has a wide range of application, including in monitoring upper limb, lower limb recovery, motor learning, cortical function recovery, cerebral hemodynamic changes, cerebral oxygenation, as well as in therapeutic method, clinical researches, and evaluation of the risk for stroke. Conclusions: This study provides a preliminary evidence of the application of NIRS in stroke patients as a monitoring, therapeutic, and research tool. Further studies could give more emphasize on the combination of NIRS with other techniques and its utility in the prevention of stroke.
Collapse
Affiliation(s)
- Muyue Yang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Yang
- Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Tifei Yuan
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Pu Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai, China
| |
Collapse
|
38
|
Allali G, Blumen HM, Devanne H, Pirondini E, Delval A, Van De Ville D. Brain imaging of locomotion in neurological conditions. Neurophysiol Clin 2018; 48:337-359. [PMID: 30487063 PMCID: PMC6563601 DOI: 10.1016/j.neucli.2018.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023] Open
Abstract
Impaired locomotion is a frequent and major source of disability in patients with neurological conditions. Different neuroimaging methods have been used to understand the brain substrates of locomotion in various neurological diseases (mainly in Parkinson's disease) during actual walking, and while resting (using mental imagery of gait, or brain-behavior correlation analyses). These studies, using structural (i.e., MRI) or functional (i.e., functional MRI or functional near infra-red spectroscopy) brain imaging, electrophysiology (i.e., EEG), non-invasive brain stimulation (i.e., transcranial magnetic stimulation, or transcranial direct current stimulation) or molecular imaging methods (i.e., PET, or SPECT) reveal extended brain networks involving both grey and white matters in key cortical (i.e., prefrontal cortex) and subcortical (basal ganglia and cerebellum) regions associated with locomotion. However, the specific roles of the various pathophysiological mechanisms encountered in each neurological condition on the phenotype of gait disorders still remains unclear. After reviewing the results of individual brain imaging techniques across the common neurological conditions, such as Parkinson's disease, dementia, stroke, or multiple sclerosis, we will discuss how the development of new imaging techniques and computational analyses that integrate multivariate correlations in "large enough datasets" might help to understand how individual pathophysiological mechanisms express clinically as an abnormal gait. Finally, we will explore how these new analytic methods could drive our rehabilitative strategies.
Collapse
Affiliation(s)
- Gilles Allali
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
| | - Helena M Blumen
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA; Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France; EA 7369, URePSSS, Unité de Recherche Pluridisciplinaire Sport Santé Société, Université du Littoral Côte d'Opale, Calais, France
| | - Elvira Pirondini
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arnaud Delval
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France; Unité Inserm 1171, Faculté de Médecine, Université de Lille, Lille, France
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
39
|
Imbalanced: The Confusing Circular Nature of Falls Research…and a Possible Antidote. Am J Phys Med Rehabil 2018; 96:55-59. [PMID: 27984251 DOI: 10.1097/phm.0000000000000591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Thumm PC, Maidan I, Brozgol M, Shustak S, Gazit E, Shema Shiratzki S, Bernad-Elazari H, Beck Y, Giladi N, Hausdorff JM, Mirelman A. Treadmill walking reduces pre-frontal activation in patients with Parkinson's disease. Gait Posture 2018; 62:384-387. [PMID: 29626840 DOI: 10.1016/j.gaitpost.2018.03.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Among patients with Parkinson's disease (PD), gait is typically disturbed and less automatic. These gait changes are associated with impaired rhythmicity and increased prefrontal activation, presumably in an attempt to compensate for reduced automaticity. RESEARCH QUESTION We investigated whether during treadmill walking, when the pace is determined and fixed, prefrontal activation in patients with PD is lower, as compared to over-ground walking. METHODS Twenty patients with PD (age: 69.8 ± 6.5 yrs.; MoCA: 26.9 ± 2.4; disease duration: 7.9 ± 4.2 yrs) walked at a self-selected walking speed over-ground and on a treadmill. A wireless functional near infrared spectroscopy (fNIRS) system measured prefrontal lobe activation, i.e., oxygenated hemoglobin (Hb02) in the pre-frontal area. Gait was evaluated using 3D-accelerometers attached to the lower back and ankles (Opal™, APDM). Dynamic gait stability was assessed using the maximum Lyapunov exponent to investigate automaticity of the walking pattern. RESULTS Hb02 was lower during treadmill walking than during over-ground walking (p = 0.001). Gait stability was greater on the treadmill, compared to over-ground walking, in both the anteroposterior and medio-lateral axes (p < 0.001). SIGNIFICANCE These findings support the notion that when gait is externally paced, prefrontal lobe activation is reduced in patients with PD, perhaps reflecting a reduced need for compensatory cognitive mechanisms.
Collapse
Affiliation(s)
- Pablo Cornejo Thumm
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Inbal Maidan
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Marina Brozgol
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Shiran Shustak
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Shirley Shema Shiratzki
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Hagar Bernad-Elazari
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Yoav Beck
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Nir Giladi
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel; Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, United States
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel; Laboratory for Early Markers Of Neurodegeneration (LEMON), Tel Aviv Medical Center, Tel Aviv, Israel.
| |
Collapse
|
41
|
Hawkins KA, Fox EJ, Daly JJ, Rose DK, Christou EA, McGuirk TE, Otzel DM, Butera KA, Chatterjee SA, Clark DJ. Prefrontal over-activation during walking in people with mobility deficits: Interpretation and functional implications. Hum Mov Sci 2018; 59:46-55. [PMID: 29604488 DOI: 10.1016/j.humov.2018.03.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Control of walking by the central nervous system includes contributions from executive control mechanisms, such as attention and motor planning resources. Executive control of walking can be estimated objectively by recording prefrontal cortical activity using functional near infrared spectroscopy (fNIRS). OBJECTIVE The primary objective of this study was to investigate group differences in prefrontal/executive control of walking among young adults, older adults, and adults post-stroke. Also assessed was the extent to which walking-related prefrontal activity fits existing cognitive frameworks of prefrontal over-activation. METHODS Participants included 24 adults post-stroke with moderate to severe walking deficits, 15 older adults with mild gait deficits, and 9 young healthy adults. Executive control of walking was quantified as oxygenated hemoglobin concentration in the prefrontal cortex measured by fNIRS. Three walking tasks were assessed: typical walking, walking over obstacles, and walking while performing a verbal fluency task. Walking performance was assessed by walking speed. RESULTS There was a significant effect of group for prefrontal activity (p < 0.001) during typical and obstacles walking tasks, with young adults exhibiting the lowest level of prefrontal activity, followed by older adults, and then adults post-stroke. In young adults the prefrontal activity during typical walking was much lower than for the verbal fluency dual-task, suggesting substantial remaining prefrontal resources during typical walking. However, in older and post-stroke adults these remaining resources were significantly less (p < 0.01). Cumulatively, these results are consistent with prefrontal over-activation in the older and stroke groups, which was accompanied by a steeper drop in walking speed as task complexity increased to include obstacles (p < 0.05). CONCLUSIONS There is a heightened use of prefrontal/executive control resources in older adults and post-stroke adults during walking. The level of prefrontal resource utilization, particularly during complex walking tasks like obstacle crossing, may approach the ceiling of available resources for people who have walking deficits. Prior cognitive research has revealed that prefrontal over-activation combined with limited prefrontal resources can lead to poor cognitive performance. The present study suggests a similar situation influences walking performance. Future research should further investigate the extent to which prefrontal over-activation during walking is linked to adverse mobility outcomes.
Collapse
Affiliation(s)
- Kelly A Hawkins
- Department of Physical Therapy, University of Florida, PO Box 100154, Gainesville, FL 32610, USA.
| | - Emily J Fox
- Department of Physical Therapy, University of Florida, PO Box 100154, Gainesville, FL 32610, USA; Brooks Rehabilitation, 3901 University Blvd S, Jacksonville, FL 32216, USA.
| | - Janis J Daly
- Brain Rehabilitation Research Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville, FL 32608, USA; Department of Neurology, University of Florida, PO Box 100383, Gainesville, FL 32610, USA.
| | - Dorian K Rose
- Brain Rehabilitation Research Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville, FL 32608, USA; Department of Physical Therapy, University of Florida, PO Box 100154, Gainesville, FL 32610, USA.
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118205, Gainesville, FL 32611, USA.
| | - Theresa E McGuirk
- Brain Rehabilitation Research Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville, FL 32608, USA.
| | - Dana M Otzel
- VA Geriatric Research, Education and Clinical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville, FL 32608, USA.
| | - Katie A Butera
- Brain Rehabilitation Research Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville, FL 32608, USA; Department of Physical Therapy, University of Florida, PO Box 100154, Gainesville, FL 32610, USA.
| | - Sudeshna A Chatterjee
- Department of Physical Therapy, University of Florida, PO Box 100154, Gainesville, FL 32610, USA.
| | - David J Clark
- Brain Rehabilitation Research Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville, FL 32608, USA; Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Rd, Gainesville, FL 32603, USA.
| |
Collapse
|
42
|
Vitorio R, Stuart S, Rochester L, Alcock L, Pantall A. fNIRS response during walking — Artefact or cortical activity? A systematic review. Neurosci Biobehav Rev 2017; 83:160-172. [DOI: 10.1016/j.neubiorev.2017.10.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022]
|
43
|
Kassab A, Le Lan J, Tremblay J, Vannasing P, Dehbozorgi M, Pouliot P, Gallagher A, Lesage F, Sawan M, Nguyen DK. Multichannel wearable fNIRS-EEG system for long-term clinical monitoring. Hum Brain Mapp 2017; 39:7-23. [PMID: 29058341 DOI: 10.1002/hbm.23849] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/02/2017] [Accepted: 10/08/2017] [Indexed: 01/27/2023] Open
Abstract
Continuous brain imaging techniques can be beneficial for the monitoring of neurological pathologies (such as epilepsy or stroke) and neuroimaging protocols involving movement. Among existing ones, functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) have the advantage of being noninvasive, nonobstructive, inexpensive, yield portable solutions, and offer complementary monitoring of electrical and local hemodynamic activities. This article presents a novel system with 128 fNIRS channels and 32 EEG channels with the potential to cover a larger fraction of the adult superficial cortex than earlier works, is integrated with 32 EEG channels, is light and battery-powered to improve portability, and can transmit data wirelessly to an interface for real-time display of electrical and hemodynamic activities. A novel fNIRS-EEG stretchable cap, two analog channels for auxiliary data (e.g., electrocardiogram), eight digital triggers for event-related protocols and an internal accelerometer for movement artifacts removal contribute to improve data acquisition quality. The system can run continuously for 24 h. Following instrumentation validation and reliability on a solid phantom, performance was evaluated on (1) 12 healthy participants during either a visual (checkerboard) task at rest or while pedalling on a stationary bicycle or a cognitive (language) task and (2) 4 patients admitted either to the epilepsy (n = 3) or stroke (n = 1) units. Data analysis confirmed expected hemodynamic variations during validation recordings and useful clinical information during in-hospital testing. To the best of our knowledge, this is the first demonstration of a wearable wireless multichannel fNIRS-EEG monitoring system in patients with neurological conditions. Hum Brain Mapp 39:7-23, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ali Kassab
- Research Center, Centre Hospitalier Universitaire de Montréal, Université de Montréal, Montréal, Québec, H2X 0A9, Canada
| | - Jérôme Le Lan
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Julie Tremblay
- Research Center, Hôpital Sainte-Justine, Université de Montréal, Montréal, Québec, H3T 1C4, Canada
| | - Phetsamone Vannasing
- Research Center, Hôpital Sainte-Justine, Université de Montréal, Montréal, Québec, H3T 1C4, Canada
| | - Mahya Dehbozorgi
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Philippe Pouliot
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3T 1J4, Canada.,Research Center, Montreal Heart Institute, Montréal, Québec, H1T 1C8, Canada
| | - Anne Gallagher
- Research Center, Hôpital Sainte-Justine, Université de Montréal, Montréal, Québec, H3T 1C4, Canada
| | - Frédéric Lesage
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Mohamad Sawan
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Dang Khoa Nguyen
- Research Center, Centre Hospitalier Universitaire de Montréal, Université de Montréal, Montréal, Québec, H2X 0A9, Canada.,Department of Neurology, Hôpital Notre-Dame (Centre Hospitalier de l'Université de Montréal), Montréal, Québec, H2L 4M1, Canada
| |
Collapse
|
44
|
Herold F, Wiegel P, Scholkmann F, Thiers A, Hamacher D, Schega L. Functional near-infrared spectroscopy in movement science: a systematic review on cortical activity in postural and walking tasks. NEUROPHOTONICS 2017; 4:041403. [PMID: 28924563 PMCID: PMC5538329 DOI: 10.1117/1.nph.4.4.041403] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/23/2017] [Indexed: 05/07/2023]
Abstract
Safe locomotion is a crucial aspect of human daily living that requires well-functioning motor control processes. The human neuromotor control of daily activities such as walking relies on the complex interaction of subcortical and cortical areas. Technical developments in neuroimaging systems allow the quantification of cortical activation during the execution of motor tasks. Functional near-infrared spectroscopy (fNIRS) seems to be a promising tool to monitor motor control processes in cortical areas in freely moving subjects. However, so far, there is no established standardized protocol regarding the application and data processing of fNIRS signals that limits the comparability among studies. Hence, this systematic review aimed to summarize the current knowledge about application and data processing in fNIRS studies dealing with walking or postural tasks. Fifty-six articles of an initial yield of 1420 publications were reviewed and information about methodology, data processing, and findings were extracted. Based on our results, we outline the recommendations with respect to the design and data processing of fNIRS studies. Future perspectives of measuring fNIRS signals in movement science are discussed.
Collapse
Affiliation(s)
- Fabian Herold
- Otto von Guericke University Magdeburg, Institute III, Department of Sport Science, Magdeburg, Germany
- Address all correspondence to: Fabian Herold, E-mail:
| | - Patrick Wiegel
- University of Freiburg, Department of Sport Science, Freiburg, Germany
| | - Felix Scholkmann
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
| | - Angelina Thiers
- Otto von Guericke University Magdeburg, Institute III, Department of Sport Science, Magdeburg, Germany
| | - Dennis Hamacher
- Otto von Guericke University Magdeburg, Institute III, Department of Sport Science, Magdeburg, Germany
| | - Lutz Schega
- Otto von Guericke University Magdeburg, Institute III, Department of Sport Science, Magdeburg, Germany
| |
Collapse
|
45
|
Artoni F, Fanciullacci C, Bertolucci F, Panarese A, Makeig S, Micera S, Chisari C. Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking. Neuroimage 2017; 159:403-416. [PMID: 28782683 PMCID: PMC6698582 DOI: 10.1016/j.neuroimage.2017.07.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/01/2017] [Accepted: 07/09/2017] [Indexed: 01/20/2023] Open
Abstract
In lower mammals, locomotion seems to be mainly regulated by subcortical and spinal networks. On the contrary, recent evidence suggests that in humans the motor cortex is also significantly engaged during complex locomotion tasks. However, a detailed understanding of cortical contribution to locomotion is still lacking especially during stereotyped activities. Here, we show that cortical motor areas finely control leg muscle activation during treadmill stereotyped walking. Using a novel technique based on a combination of Reliable Independent Component Analysis, source localization and effective connectivity, and by combining electroencephalographic (EEG) and electromyographic (EMG) recordings in able-bodied adults we were able to examine for the first time cortical activation patterns and cortico-muscular connectivity including information flow direction. Results not only provided evidence of cortical activity associated with locomotion, but demonstrated significant causal unidirectional drive from contralateral motor cortex to muscles in the swing leg. These insights overturn the traditional view that human cortex has a limited role in the control of stereotyped locomotion, and suggest useful hypotheses concerning mechanisms underlying gait under other conditions. ONE SENTENCE SUMMARY Motor cortex proactively drives contralateral swing leg muscles during treadmill walking, counter to the traditional view of stereotyped human locomotion.
Collapse
Affiliation(s)
- Fiorenzo Artoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| | - Chiara Fanciullacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Pisa University Hospital, Pisa, Italy
| | | | | | - Scott Makeig
- Swartz Center for Computational Neuroscience, University of California, San Diego, La Jolla, CA, United States
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | | |
Collapse
|
46
|
Kim HY, Seo K, Jeon HJ, Lee U, Lee H. Application of Functional Near-Infrared Spectroscopy to the Study of Brain Function in Humans and Animal Models. Mol Cells 2017; 40:523-532. [PMID: 28835022 PMCID: PMC5582298 DOI: 10.14348/molcells.2017.0153] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/26/2023] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies.
Collapse
Affiliation(s)
- Hak Yeong Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Kain Seo
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul 06351,
Korea
| | - Unjoo Lee
- Department of Electronic Engineering, Hallym University, Kangwon 24252,
Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| |
Collapse
|
47
|
Complex and Simple Clinical Reaction Times Are Associated with Gait, Balance, and Major Fall Injury in Older Subjects with Diabetic Peripheral Neuropathy. Am J Phys Med Rehabil 2017; 96:8-16. [PMID: 27552354 DOI: 10.1097/phm.0000000000000604] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this work was to identify relationships between complex and simple clinical measures of reaction time (RTclin) and indicators of balance in older subjects with and without diabetic peripheral neuropathy (DPN). DESIGN Prospective cohort design. Complex RTclin accuracy, simple RTclin latency, and their ratio were determined using a novel device in 42 subjects (mean ± SD age, 69.1 ± 8.3 yrs), 26 with DPN and 16 without. Dependent variables included unipedal stance time (UST), step width variability and range on an uneven surface, and major fall-related injury over 12 months. RESULTS In the DPN subjects, the ratio of complex RTclin accuracy to simple RTclin latency was strongly associated with longer UST (R/P = 0.653/0.004), and decreased step width variability and range (R/P = -0.696/0.001 and -0.782/<0.001, respectively) on an uneven surface. Additionally, the 2 DPN subjects sustaining major injuries had lower complex RTclin accuracy:simple RTclin latency than those without. CONCLUSIONS The ratio of complex RTclin accuracy:simple RTclin latency is a potent predictor of UST and frontal plane gait variability in response to perturbations and may predict major fall injury in older subjects with DPN. These short latency neurocognitive measures may compensate for lower limb neuromuscular impairments and provide a more comprehensive understanding of balance and fall risk.
Collapse
|
48
|
Wittenberg E, Thompson J, Nam CS, Franz JR. Neuroimaging of Human Balance Control: A Systematic Review. Front Hum Neurosci 2017; 11:170. [PMID: 28443007 PMCID: PMC5385364 DOI: 10.3389/fnhum.2017.00170] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 12/13/2022] Open
Abstract
This review examined 83 articles using neuroimaging modalities to investigate the neural correlates underlying static and dynamic human balance control, with aims to support future mobile neuroimaging research in the balance control domain. Furthermore, this review analyzed the mobility of the neuroimaging hardware and research paradigms as well as the analytical methodology to identify and remove movement artifact in the acquired brain signal. We found that the majority of static balance control tasks utilized mechanical perturbations to invoke feet-in-place responses (27 out of 38 studies), while cognitive dual-task conditions were commonly used to challenge balance in dynamic balance control tasks (20 out of 32 studies). While frequency analysis and event related potential characteristics supported enhanced brain activation during static balance control, that in dynamic balance control studies was supported by spatial and frequency analysis. Twenty-three of the 50 studies utilizing EEG utilized independent component analysis to remove movement artifacts from the acquired brain signals. Lastly, only eight studies used truly mobile neuroimaging hardware systems. This review provides evidence to support an increase in brain activation in balance control tasks, regardless of mechanical, cognitive, or sensory challenges. Furthermore, the current body of literature demonstrates the use of advanced signal processing methodologies to analyze brain activity during movement. However, the static nature of neuroimaging hardware and conventional balance control paradigms prevent full mobility and limit our knowledge of neural mechanisms underlying balance control.
Collapse
Affiliation(s)
- Ellen Wittenberg
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State UniversityRaleigh, NC, USA
| | - Jessica Thompson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State UniversityChapel Hill, NC, USA
| | - Chang S Nam
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State UniversityRaleigh, NC, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State UniversityChapel Hill, NC, USA
| |
Collapse
|
49
|
Gramigna V, Pellegrino G, Cerasa A, Cutini S, Vasta R, Olivadese G, Martino I, Quattrone A. Near-Infrared Spectroscopy in Gait Disorders: Is It Time to Begin? Neurorehabil Neural Repair 2017; 31:402-412. [PMID: 28196453 DOI: 10.1177/1545968317693304] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Walking is a complex motor behavior with a special relevance in clinical neurology. Many neurological diseases, such as Parkinson's disease and stroke, are characterized by gait disorders whose neurofunctional correlates are poorly investigated. Indeed, the analysis of real walking with the standard neuroimaging techniques poses strong challenges, and only a few studies on motor imagery or walking observation have been performed so far. Functional near-infrared spectroscopy (fNIRS) is becoming an important research tool to assess functional activity in neurological populations or for special tasks, such as walking, because it allows investigating brain hemodynamic activity in an ecological setting, without strong immobility constraints. A systematic review following PRISMA guidelines was conducted on the fNIRS-based examination of gait disorders. Twelve of the initial yield of 489 articles have been included in this review. The lesson learnt from these studies suggest that oxy-hemoglobin levels within the prefrontal and premotor cortices are more sensitive to compensation strategies reflecting postural control and restoration of gait disorders. Although this field of study is in its relative infancy, the evidence provided encourages the translation of fNIRS in clinical practice, as it offers a unique opportunity to explore in depth the activity of the cortical motor system during real walking in neurological patients. We also discuss to what extent fNIRS may be applied for assessing the effectiveness of rehabilitation programs.
Collapse
Affiliation(s)
| | | | - Antonio Cerasa
- 1 University Magna Graecia, Catanzaro, Italy.,3 Istituto di Bioimmagini e Fisiologia Molecolare, National Research Council, Catanzaro, Italy
| | - Simone Cutini
- 4 Department of Developmental Psychology, University of Padova, Padova, Italy
| | | | - Giuseppe Olivadese
- 3 Istituto di Bioimmagini e Fisiologia Molecolare, National Research Council, Catanzaro, Italy
| | | | - Aldo Quattrone
- 1 University Magna Graecia, Catanzaro, Italy.,3 Istituto di Bioimmagini e Fisiologia Molecolare, National Research Council, Catanzaro, Italy
| |
Collapse
|
50
|
Holtzer R, Schoen C, Demetriou E, Mahoney JR, Izzetoglu M, Wang C, Verghese J. Stress and gender effects on prefrontal cortex oxygenation levels assessed during single and dual-task walking conditions. Eur J Neurosci 2017; 45:660-670. [PMID: 28028863 DOI: 10.1111/ejn.13518] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/15/2016] [Accepted: 12/14/2016] [Indexed: 01/13/2023]
Abstract
The ability to walk is critical for functional independence and wellbeing. The pre-frontal cortex (PFC) plays a key role in cognitive control of locomotion, notably under attention-demanding conditions. Factors that influence brain responses to cognitive demands of locomotion, however, are poorly understood. Herein, we evaluated the individual and combined effects of gender and perceived stress on stride velocity and PFC Oxygenated Hemoglobin (HbO2 ) assessed during single and dual-task walking conditions. The experimental paradigm included Normal Walk (NW); Cognitive Interference (Alpha); and Walk-While-Talk (WWT) tasks. An instrumented walkway was used to assess stride velocity in NW and WWT conditions. Functional Near-Infrared-Spectroscopy (fNIRS) was used to quantify PFC HbO2 levels during NW, Alpha and WWT. Perceived task-related stress was evaluated with a single 11-point scale item. Participants were community residing older adults (age = 76.8 ± 6.7 years; %female = 56). Results revealed that higher perceived stress was associated with greater decline in stride velocity from single to dual-task conditions among men. Three-way interactions revealed that gender moderated the effect of perceived stress on changes in HbO2 levels comparing WWT to NW and Alpha. Attenuation in the increase in HbO2 levels, in high compared to low perceived stress levels, from the two single task conditions to WWT was observed only in men. Thus, older men may be more vulnerable to the effect of perceived stress on the change in PFC oxygenation levels across walking conditions that vary in terms of cognitive demands. These findings confer important implications for assessment and treatment of individuals at risk of mobility impairments.
Collapse
Affiliation(s)
- Roee Holtzer
- Department of Neurology, 1225 Morris Park Avenue, Van Etten, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Ferkauf Graduate School of Psychology of Yeshiva University, Bronx, NY, USA
| | - Chelsea Schoen
- Ferkauf Graduate School of Psychology of Yeshiva University, Bronx, NY, USA
| | - Eleni Demetriou
- Ferkauf Graduate School of Psychology of Yeshiva University, Bronx, NY, USA
| | - Jeannette R Mahoney
- Department of Neurology, 1225 Morris Park Avenue, Van Etten, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Meltem Izzetoglu
- Drexel University School of Biomedical Engineering, Philadelphia, PA, USA
| | - Cuiling Wang
- Department of Epidemiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joe Verghese
- Department of Neurology, 1225 Morris Park Avenue, Van Etten, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|