1
|
Padmasola GP, Friscourt F, Rigoni I, Vulliémoz S, Schaller K, Michel CM, Sheybani L, Quairiaux C. Involvement of the contralateral hippocampus in ictal-like but not interictal epileptic activities in the kainate mouse model of temporal lobe epilepsy. Epilepsia 2024; 65:2082-2098. [PMID: 38758110 DOI: 10.1111/epi.17970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Animal and human studies have shown that the seizure-generating region is vastly dependent on distant neuronal hubs that can decrease duration and propagation of ongoing seizures. However, we still lack a comprehensive understanding of the impact of distant brain areas on specific interictal and ictal epileptic activities (e.g., isolated spikes, spike trains, seizures). Such knowledge is critically needed, because all kinds of epileptic activities are not equivalent in terms of clinical expression and impact on the progression of the disease. METHODS We used surface high-density electroencephalography and multisite intracortical recordings, combined with pharmacological silencing of specific brain regions in the well-known kainate mouse model of temporal lobe epilepsy. We tested the impact of selective regional silencing on the generation of epileptic activities within a continuum ranging from very transient to more sustained and long-lasting discharges reminiscent of seizures. RESULTS Silencing the contralateral hippocampus completely suppresses sustained ictal activities in the focus, as efficiently as silencing the focus itself, but whereas focus silencing abolishes all focus activities, contralateral silencing fails to control transient spikes. In parallel, we observed that sustained focus epileptiform discharges in the focus are preceded by contralateral firing and more strongly phase-locked to bihippocampal delta/theta oscillations than transient spiking activities, reinforcing the presumed dominant role of the contralateral hippocampus in promoting long-lasting, but not transient, epileptic activities. SIGNIFICANCE Altogether, our work provides suggestive evidence that the contralateral hippocampus is necessary for the interictal to ictal state transition and proposes that crosstalk between contralateral neuronal activity and ipsilateral delta/theta oscillation could be a candidate mechanism underlying the progression from short- to long-lasting epileptic activities.
Collapse
Affiliation(s)
- Guru Prasad Padmasola
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Fabien Friscourt
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
- Neurosurgery Clinic, Department of Clinical Neuroscience, University Hospital Geneva, Geneva, Switzerland
| | - Isotta Rigoni
- EEG and Epilepsy Unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Karl Schaller
- Neurosurgery Clinic, Department of Clinical Neuroscience, University Hospital Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Laurent Sheybani
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, Geneva, Switzerland
- Department of Clinical and Experimental Epilepsy, Queen's Square Institute of Neurology, London, UK
| | - Charles Quairiaux
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Tarailis P, Koenig T, Michel CM, Griškova-Bulanova I. The Functional Aspects of Resting EEG Microstates: A Systematic Review. Brain Topogr 2024; 37:181-217. [PMID: 37162601 DOI: 10.1007/s10548-023-00958-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
A growing body of clinical and cognitive neuroscience studies have adapted a broadband EEG microstate approach to evaluate the electrical activity of large-scale cortical networks. However, the functional aspects of these microstates have not yet been systematically reviewed. Here, we present an overview of the existing literature and systematize the results to provide hints on the functional role of electrical brain microstates. Studies that evaluated and manipulated the temporal properties of resting-state microstates and utilized questionnaires, task-initiated thoughts, specific tasks before or between EEG session(s), pharmacological interventions, neuromodulation approaches, or localized sources of the extracted microstates were selected. Fifty studies that met the inclusion criteria were included. A new microstate labeling system has been proposed for a comprehensible comparison between the studies, where four classical microstates are referred to as A-D, and the others are labeled by the frequency of their appearance. Microstate A was associated with both auditory and visual processing and links to subjects' arousal/arousability. Microstate B showed associations with visual processing related to self, self-visualization, and autobiographical memory. Microstate C was related to processing personally significant information, self-reflection, and self-referential internal mentation rather than autonomic information processing. In contrast, microstate E was related to processing interoceptive and emotional information and to the salience network. Microstate D was associated with executive functioning. Microstate F is suggested to be a part of the Default Mode Network and plays a role in personally significant information processing, mental simulations, and theory of mind. Microstate G is potentially linked to the somatosensory network.
Collapse
Affiliation(s)
- Povilas Tarailis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | | |
Collapse
|
3
|
Rigoni I, Padmasola GP, Sheybani L, Schaller K, Quairiaux C, Vulliemoz S. Reproducible network changes occur in a mouse model of temporal lobe epilepsy but do not correlate with disease severity. Neurobiol Dis 2024; 190:106382. [PMID: 38114050 DOI: 10.1016/j.nbd.2023.106382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Studying the development of brain network disruptions in epilepsy is challenged by the paucity of data before epilepsy onset. Here, we used the unilateral, kainate mouse model of hippocampal epilepsy to investigate brain network changes before and after epilepsy onset and their stability across time. Using 32 epicranial electrodes distributed over the mouse hemispheres, we analyzed EEG epochs free from epileptic activity in 15 animals before and 28 days after hippocampal injection (group 1) and in 20 animals on two consecutive days (d28 and d29, group 2). Statistical dependencies between electrodes were characterized with the debiased-weighted phase lag index. We analyzed: a) graph metric changes from baseline to chronic stage (d28) in group 1; b) their reliability across d28 and d29, in group 2; c) their correlation with epileptic activity (EA: seizure, spike and fast-ripple rates), averaged over d28 and d29, in group 2. During the chronic stage, intra-hemispheric connections of the non-injected hemisphere strengthened, yielding an asymmetrical network in low (4-8 Hz) and high theta (8-12 Hz) bands. The contralateral hemisphere also became more integrated and segregated within the high theta band. Both network topology and EEG markers of EA were stable over consecutive days but not correlated with each other. Altogether, we show reproducible large-scale network modifications after the development of focal epilepsy. These modifications are mostly specific to the non-injected hemisphere. The absence of correlation with epileptic activity does not allow to specifically ascribe these network changes to mechanisms supporting EA or rather compensatory inhibition but supports the notion that epilepsy extends beyond the sole repetition of EA and impacts network that might not be involved in EA generation.
Collapse
Affiliation(s)
- Isotta Rigoni
- EEG and Epilepsy unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland.
| | - Guru Prasad Padmasola
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Laurent Sheybani
- EEG and Epilepsy unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Karl Schaller
- Department of Neurosurgery, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Charles Quairiaux
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Ginsberg H, Singh R, Bharadwaj HM, Heinz MG. A multi-channel EEG mini-cap can improve reliability for recording auditory brainstem responses in chinchillas. J Neurosci Methods 2023; 398:109954. [PMID: 37625650 PMCID: PMC10560491 DOI: 10.1016/j.jneumeth.2023.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Disabling hearing loss affects nearly 466 million people worldwide (World Health Organization). The auditory brainstem response (ABR) is the most common non-invasive clinical measure of evoked potentials, e.g., as an objective measure for universal newborn hearing screening. In research, the ABR is widely used for estimating hearing thresholds and cochlear synaptopathy in animal models of hearing loss. The ABR contains multiple waves representing neural activity across different peripheral auditory pathway stages, which arise within the first 10 ms after stimulus onset. Multi-channel (e.g., 32 or higher) caps provide robust measures for a wide variety of EEG applications for the study of human hearing. However, translational studies using preclinical animal models typically rely on only a few subdermal electrodes. NEW METHOD We evaluated the feasibility of a 32-channel rodent EEG mini-cap for improving the reliability of ABR measures in chinchillas, a common model of human hearing. RESULTS After confirming initial feasibility, a systematic experimental design tested five potential sources of variability inherent to the mini-cap methodology. We found each source of variance minimally affected mini-cap ABR waveform morphology, thresholds, and wave-1 amplitudes. COMPARISON WITH EXISTING METHOD The mini-cap methodology was statistically more robust and less variable than the conventional subdermal-needle methodology, most notably when analyzing ABR thresholds. Additionally, fewer repetitions were required to produce a robust ABR response when using the mini-cap. CONCLUSIONS These results suggest the EEG mini-cap can improve translational studies of peripheral auditory evoked responses. Future work will evaluate the potential of the mini-cap to improve the reliability of more centrally evoked (e.g., cortical) EEG responses.
Collapse
Affiliation(s)
- Hannah Ginsberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA.
| | - Ravinderjit Singh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Hari M Bharadwaj
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, 15260, PA, USA; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, 47907, IN, USA
| | - Michael G Heinz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, 47907, IN, USA
| |
Collapse
|
5
|
Boyce R, Dard RF, Cossart R. Cortical neuronal assemblies coordinate with EEG microstate dynamics during resting wakefulness. Cell Rep 2023; 42:112053. [PMID: 36716148 PMCID: PMC9989822 DOI: 10.1016/j.celrep.2023.112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/26/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
The disruption of cortical assembly activity has been associated with anesthesia-induced loss of consciousness. However, the relationship between cortical assembly activity and the variations in consciousness associated with natural vigilance states remains unclear. Here, we address this by performing vigilance state-specific clustering analysis on 2-photon calcium imaging data from the sensorimotor cortex in combination with global electroencephalogram (EEG) microstate analysis derived from multi-EEG signals obtained over widespread cortical locations. We report no difference in the structure of assembly activity during quiet wakefulness (QW), non-rapid eye movement sleep (NREMs), or REMs, despite the latter two vigilance states being associated with significantly reduced levels of consciousness relative to QW. However, we describe a significant coordination between global EEG microstate dynamics and general local cortical assembly activity during periods of QW, but not sleep. These results suggest that the coordination of cortical assembly activity with global brain dynamics could be a key factor of sustained conscious experience.
Collapse
Affiliation(s)
- Richard Boyce
- INMED, INSERM, Aix Marseille University, 13273 Marseille, France.
| | - Robin F Dard
- INMED, INSERM, Aix Marseille University, 13273 Marseille, France
| | - Rosa Cossart
- INMED, INSERM, Aix Marseille University, 13273 Marseille, France
| |
Collapse
|
6
|
Vasciaveo V, Iadarola A, Casile A, Dante D, Morello G, Minotta L, Tamagno E, Cicolin A, Guglielmotto M. Sleep fragmentation affects glymphatic system through the different expression of AQP4 in wild type and 5xFAD mouse models. Acta Neuropathol Commun 2023; 11:16. [PMID: 36653878 PMCID: PMC9850555 DOI: 10.1186/s40478-022-01498-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/18/2022] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by genetic and multifactorial risk factors. Many studies correlate AD to sleep disorders. In this study, we performed and validated a mouse model of AD and sleep fragmentation, which properly mimics a real condition of intermittent awakening. We noticed that sleep fragmentation induces a general acceleration of AD progression in 5xFAD mice, while in wild type mice it affects cognitive behaviors in particular learning and memory. Both these events may be correlated to aquaporin-4 (AQP4) modulation, a crucial player of the glymphatic system activity. In particular, sleep fragmentation differentially affects aquaporin-4 channel (AQP4) expression according to the stage of the disease, with an up-regulation in younger animals, while such change cannot be detected in older ones. Moreover, in wild type mice sleep fragmentation affects cognitive behaviors, in particular learning and memory, by compromising the glymphatic system through the decrease of AQP4. Nevertheless, an in-depth study is needed to better understand the mechanism by which AQP4 is modulated and whether it could be considered a risk factor for the disease development in wild type mice. If our hypotheses are going to be confirmed, AQP4 modulation may represent the convergence point between AD and sleep disorder pathogenic mechanisms.
Collapse
Affiliation(s)
- Valeria Vasciaveo
- grid.7605.40000 0001 2336 6580Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10126 Turin, Italy ,grid.7605.40000 0001 2336 6580Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Antonella Iadarola
- grid.432329.d0000 0004 1789 4477Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza, Corso Bramante 88, 10126 Turin, Italy
| | - Antonino Casile
- grid.5602.10000 0000 9745 6549School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, MC Italy
| | - Davide Dante
- grid.7605.40000 0001 2336 6580Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Giulia Morello
- grid.7605.40000 0001 2336 6580Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10126 Turin, Italy ,grid.7605.40000 0001 2336 6580Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Lorenzo Minotta
- grid.7605.40000 0001 2336 6580Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Elena Tamagno
- grid.7605.40000 0001 2336 6580Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10126 Turin, Italy ,grid.7605.40000 0001 2336 6580Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Alessandro Cicolin
- grid.7605.40000 0001 2336 6580Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10126 Turin, Italy
| | - Michela Guglielmotto
- grid.7605.40000 0001 2336 6580Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10126 Turin, Italy ,grid.7605.40000 0001 2336 6580Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| |
Collapse
|
7
|
Toi PT, Jang HJ, Min K, Kim SP, Lee SK, Lee J, Kwag J, Park JY. In vivo direct imaging of neuronal activity at high temporospatial resolution. Science 2022; 378:160-168. [PMID: 36227975 DOI: 10.1126/science.abh4340] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There has been a long-standing demand for noninvasive neuroimaging methods that can detect neuronal activity at both high temporal and high spatial resolution. We present a two-dimensional fast line-scan approach that enables direct imaging of neuronal activity with millisecond precision while retaining the high spatial resolution of magnetic resonance imaging (MRI). This approach was demonstrated through in vivo mouse brain imaging at 9.4 tesla during electrical whisker-pad stimulation. In vivo spike recording and optogenetics confirmed the high correlation of the observed MRI signal with neural activity. It also captured the sequential and laminar-specific propagation of neuronal activity along the thalamocortical pathway. This high-resolution, direct imaging of neuronal activity will open up new avenues in brain science by providing a deeper understanding of the brain's functional organization, including the temporospatial dynamics of neural networks.
Collapse
Affiliation(s)
- Phan Tan Toi
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jae Jang
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
- Division of Computer Engineering, Baekseok University, Cheonan 31065, Republic of Korea
| | - Kyeongseon Min
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seung-Kyun Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeehyun Kwag
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jang-Yeon Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
De La Rossa A, Laporte MH, Astori S, Marissal T, Montessuit S, Sheshadri P, Ramos-Fernández E, Mendez P, Khani A, Quairiaux C, Taylor EB, Rutter J, Nunes JM, Carleton A, Duchen MR, Sandi C, Martinou JC. Paradoxical neuronal hyperexcitability in a mouse model of mitochondrial pyruvate import deficiency. eLife 2022; 11:72595. [PMID: 35188099 PMCID: PMC8860443 DOI: 10.7554/elife.72595] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal excitation imposes a high demand of ATP in neurons. Most of the ATP derives primarily from pyruvate-mediated oxidative phosphorylation, a process that relies on import of pyruvate into mitochondria occuring exclusively via the mitochondrial pyruvate carrier (MPC). To investigate whether deficient oxidative phosphorylation impacts neuron excitability, we generated a mouse strain carrying a conditional deletion of MPC1, an essential subunit of the MPC, specifically in adult glutamatergic neurons. We found that, despite decreased levels of oxidative phosphorylation and decreased mitochondrial membrane potential in these excitatory neurons, mice were normal at rest. Surprisingly, in response to mild inhibition of GABA mediated synaptic activity, they rapidly developed severe seizures and died, whereas under similar conditions the behavior of control mice remained unchanged. We report that neurons with a deficient MPC were intrinsically hyperexcitable as a consequence of impaired calcium homeostasis, which reduced M-type potassium channel activity. Provision of ketone bodies restored energy status, calcium homeostasis and M-channel activity and attenuated seizures in animals fed a ketogenic diet. Our results provide an explanation for the seizures that frequently accompany a large number of neuropathologies, including cerebral ischemia and diverse mitochondriopathies, in which neurons experience an energy deficit.
Collapse
Affiliation(s)
| | | | - Simone Astori
- Laboratory of Behavioral Genetics, Ecole Polytechnique Fédérale de Lausanne
| | - Thomas Marissal
- Institut de Neurobiologie de la Méditerranée (INMED), Université d'Aix- Marseille
- Department of Basic Neuroscience, University of Geneva
| | | | - Preethi Sheshadri
- Department of Cell and Developmental Biology, University College London
| | | | | | - Abbas Khani
- Department of Basic Neuroscience, University of Geneva
| | | | - Eric B Taylor
- Department of Biochemistry and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa
| | - Jared Rutter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Utah School of Medicine
| | | | - Alan Carleton
- Department of Basic Neuroscience, University of Geneva
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Ecole Polytechnique Fédérale de Lausanne
| | | |
Collapse
|
9
|
General Anesthesia Disrupts Complex Cortical Dynamics in Response to Intracranial Electrical Stimulation in Rats. eNeuro 2021; 8:ENEURO.0343-20.2021. [PMID: 34301724 PMCID: PMC8354715 DOI: 10.1523/eneuro.0343-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
The capacity of human brain to sustain complex cortical dynamics appears to be strongly associated with conscious experience and consistently drops when consciousness fades. For example, several recent studies in humans found a remarkable reduction of the spatiotemporal complexity of cortical responses to local stimulation during dreamless sleep, general anesthesia, and coma. However, this perturbational complexity has never been directly estimated in non-human animals in vivo previously, and the mechanisms that prevent neocortical neurons to engage in complex interactions are still unclear. Here, we quantify the complexity of electroencephalographic (EEG) responses to intracranial electrical stimulation in rats, comparing wakefulness to propofol, sevoflurane, and ketamine anesthesia. The evoked activity changed from highly complex in wakefulness to far simpler with propofol and sevoflurane. The reduced complexity was associated with a suppression of high frequencies that preceded a reduced phase-locking, and disruption of functional connectivity and pattern diversity. We then showed how these parameters dissociate with ketamine and depend on intensity and site of stimulation. Our results support the idea that brief periods of activity-dependent neuronal silence can interrupt complex interactions in neocortical circuits, and open the way for further mechanistic investigations of the neuronal basis for consciousness and loss of consciousness across species.
Collapse
|
10
|
Jiricek S, Koudelka V, Lacik J, Vejmola C, Kuratko D, Wójcik DK, Raida Z, Hlinka J, Palenicek T. Electrical Source Imaging in Freely Moving Rats: Evaluation of a 12-Electrode Cortical Electroencephalography System. Front Neuroinform 2021; 14:589228. [PMID: 33568980 PMCID: PMC7868391 DOI: 10.3389/fninf.2020.589228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022] Open
Abstract
This work presents and evaluates a 12-electrode intracranial electroencephalography system developed at the National Institute of Mental Health (Klecany, Czech Republic) in terms of an electrical source imaging (ESI) technique in rats. The electrode system was originally designed for translational research purposes. This study demonstrates that it is also possible to use this well-established system for ESI, and estimates its precision, accuracy, and limitations. Furthermore, this paper sets a methodological basis for future implants. Source localization quality is evaluated using three approaches based on surrogate data, physical phantom measurements, and in vivo experiments. The forward model for source localization is obtained from the FieldTrip-SimBio pipeline using the finite-element method. Rat brain tissue extracted from a magnetic resonance imaging template is approximated by a single-compartment homogeneous tetrahedral head model. Four inverse solvers were tested: standardized low-resolution brain electromagnetic tomography, exact low-resolution brain electromagnetic tomography (eLORETA), linear constrained minimum variance (LCMV), and dynamic imaging of coherent sources. Based on surrogate data, this paper evaluates the accuracy and precision of all solvers within the brain volume using error distance and reliability maps. The mean error distance over the whole brain was found to be the lowest in the eLORETA solution through signal to noise ratios (SNRs) (0.2 mm for 25 dB SNR). The LCMV outperformed eLORETA under higher SNR conditions, and exhibiting higher spatial precision. Both of these inverse solvers provided accurate results in a phantom experiment (1.6 mm mean error distance across shallow and 2.6 mm across subcortical testing dipoles). Utilizing the developed technique in freely moving rats, an auditory steady-state response experiment provided results in line with previously reported findings. The obtained results support the idea of utilizing a 12-electrode system for ESI and using it as a solid basis for the development of future ESI dedicated implants.
Collapse
Affiliation(s)
- Stanislav Jiricek
- National Institute of Mental Health, Klecany, Czechia
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | | | - Jaroslav Lacik
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Cestmir Vejmola
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - David Kuratko
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Daniel K. Wójcik
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Zbynek Raida
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Jaroslav Hlinka
- National Institute of Mental Health, Klecany, Czechia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Palenicek
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
11
|
Andreoli E, Petrenko V, Constanthin PE, Contestabile A, Bocchi R, Egervari K, Quairiaux C, Salmon P, Kiss JZ. Transplanted Embryonic Neurons Improve Functional Recovery by Increasing Activity in Injured Cortical Circuits. Cereb Cortex 2020; 30:4708-4725. [PMID: 32266929 DOI: 10.1093/cercor/bhaa075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/07/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Transplantation of appropriate neuronal precursors after injury is a promising strategy to reconstruct cortical circuits, but the efficiency of these approaches remains limited. Here, we applied targeted apoptosis to selectively ablate layer II/III pyramidal neurons in the rat juvenile cerebral cortex and attempted to replace lost neurons with their appropriate embryonic precursors by transplantation. We demonstrate that grafted precursors do not migrate to replace lost neurons but form vascularized clusters establishing reciprocal synaptic contacts with host networks and show functional integration. These heterotopic neuronal clusters significantly enhance the activity of the host circuits without causing epileptic seizures and attenuate the apoptotic injury-induced functional deficits in electrophysiological and behavioral tests. Chemogenetic activation of grafted neurons further improved functional recovery, and the persistence of the graft was necessary for maintaining restored functions in adult animals. Thus, implanting neuronal precursors capable to form synaptically integrated neuronal clusters combined with activation-based approaches represents a useful strategy for helping long-term functional recovery following brain injury.
Collapse
Affiliation(s)
- Evgenia Andreoli
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Volodymyr Petrenko
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Paul Eugène Constanthin
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Alessandro Contestabile
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Riccardo Bocchi
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Kristof Egervari
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Charles Quairiaux
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Patrick Salmon
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Jozsef Zoltan Kiss
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
12
|
Large-Scale Networks for Auditory Sensory Gating in the Awake Mouse. eNeuro 2019; 6:ENEURO.0207-19.2019. [PMID: 31444224 PMCID: PMC6734044 DOI: 10.1523/eneuro.0207-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/03/2022] Open
Abstract
The amplitude of the brain response to a repeated auditory stimulus is diminished as compared to the response to the first tone (T1) for interstimulus intervals (ISI) lasting up to hundreds of milliseconds. This adaptation process, called auditory sensory gating (ASG), is altered in various psychiatric diseases including schizophrenia and is classically studied by focusing on early evoked cortical responses to the second tone (T2) using 500-ms ISI. However, mechanisms underlying ASG are still not well-understood. We investigated ASG in awake mice from the brainstem to cortex at variable ISIs (125–2000 ms) using high-density EEG and intracerebral recordings. While ASG decreases at longer ISIs, it is still present at durations (500–2000 ms) far beyond the time during which brain responses to T1 could still be detected. T1 induces a sequence of specific stable scalp EEG topographies that correspond to the successive activation of distinct neural networks lasting about 350 ms. These brain states remain unaltered if T2 is presented during this period, although T2 is processed by the brain, suggesting that ongoing networks of brain activity are active for longer than early evoked-potentials and are not overwritten by an upcoming new stimulus. Intracerebral recordings demonstrate that ASG is already present at the level of ventral cochlear nucleus (vCN) and inferior colliculus and is amplified across the hierarchy in bottom-up direction. This study uncovers the extended stability of sensory-evoked brain states and long duration of ASG, and sheds light on generators of ASG and possible interactions between bottom-up and top-down mechanisms.
Collapse
|
13
|
Valdés-Hernández PA, Bae J, Song Y, Sumiyoshi A, Aubert-Vázquez E, Riera JJ. Validating Non-invasive EEG Source Imaging Using Optimal Electrode Configurations on a Representative Rat Head Model. Brain Topogr 2019; 32:599-624. [PMID: 27026168 DOI: 10.1007/s10548-016-0484-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/05/2016] [Indexed: 12/20/2022]
Abstract
The curtain of technical limitations impeding rat multichannel non-invasive electroencephalography (EEG) has risen. Given the importance of this preclinical model, development and validation of EEG source imaging (ESI) is essential. We investigate the validity of well-known human ESI methodologies in rats which individual tissue geometries have been approximated by those extracted from an MRI template, leading also to imprecision in electrode localizations. With the half and fifth sensitivity volumes we determine both the theoretical minimum electrode separation for non-redundant scalp EEG measurements and the electrode sensitivity resolution, which vary over the scalp because of the head geometry. According to our results, electrodes should be at least ~3 to 3.5 mm apart for an optimal configuration. The sensitivity resolution is generally worse for electrodes at the boundaries of the scalp measured region, though, by analogy with human montages, concentrates the sensitivity enough to localize sources. Cramér-Rao lower bounds of source localization errors indicate it is theoretically possible to achieve ESI accuracy at the level of anatomical structures, such as the stimulus-specific somatosensory areas, using the template. More validation for this approximation is provided through the comparison between the template and the individual lead field matrices, for several rats. Finally, using well-accepted inverse methods, we demonstrate that somatosensory ESI is not only expected but also allows exploring unknown phenomena related to global sensory integration. Inheriting the advantages and pitfalls of human ESI, rat ESI will boost the understanding of brain pathophysiological mechanisms and the evaluation of ESI methodologies, new pharmacological treatments and ESI-based biomarkers.
Collapse
Affiliation(s)
- Pedro A Valdés-Hernández
- Neuroimaging Department, Cuban Neuroscience Center, Havana, Cuba
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Jihye Bae
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Yinchen Song
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Jorge J Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA.
| |
Collapse
|
14
|
Li Z, Yuan W, Zhao S, Yu Z, Kang Y, Chen CLP. Brain-Actuated Control of Dual-Arm Robot Manipulation With Relative Motion. IEEE Trans Cogn Dev Syst 2019. [DOI: 10.1109/tcds.2017.2770168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Sheybani L, Birot G, Contestabile A, Seeck M, Kiss JZ, Schaller K, Michel CM, Quairiaux C. Electrophysiological Evidence for the Development of a Self-Sustained Large-Scale Epileptic Network in the Kainate Mouse Model of Temporal Lobe Epilepsy. J Neurosci 2018; 38:3776-3791. [PMID: 29555850 PMCID: PMC6705908 DOI: 10.1523/jneurosci.2193-17.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 11/21/2022] Open
Abstract
Most research on focal epilepsy focuses on mechanisms of seizure generation in the primary epileptic focus (EF). However, neurological deficits that are not directly linked to seizure activity and that may persist after focus removal are frequent. The recruitment of remote brain regions of an epileptic network (EN) is recognized as a possible cause, but a profound lack of experimental evidence exists concerning their recruitment and the type of pathological activities they exhibit. We studied the development of epileptic activities at the large-scale in male mice of the kainate model of unilateral temporal lobe epilepsy using high-density surface EEG and multiple-site intracortical recordings. We show that, along with focal spikes and fast ripples that remain localized to the injected hippocampus (i.e., the EF), a subpopulation of spikes that propagate across the brain progressively emerges even before the expression of seizures. The spatiotemporal propagation of these generalized spikes (GSs) is highly stable within and across animals, defining a large-scale EN comprising both hippocampal regions and frontal cortices. Interestingly, GSs are often concomitant with muscular twitches. In addition, while fast ripples are, as expected, highly frequent in the EF, they also emerge in remote cortical regions and in particular in frontal regions where GSs propagate. Finally, we demonstrate that these remote interictal activities are dependent on the focus in the early phase of the disease but continue to be expressed after focus silencing at later stages. Our results provide evidence that neuronal networks outside the initial focus are progressively altered during epileptogenesis.SIGNIFICANCE STATEMENT It has long been held that the epileptic focus is responsible for triggering seizures and driving interictal activities. However, focal epilepsies are associated with heterogeneous symptoms, calling into question the concept of a strictly focal disease. Using the mouse model of hippocampal sclerosis, this work demonstrates that focal epilepsy leads to the development of pathological activities specific to the epileptic condition, notably fast ripples, that appear outside of the primary epileptic focus. Whereas these activities are dependent on the focus early in the disease, focus silencing fails to control them in the chronic stage. Thus, dynamical changes specific to the epileptic condition are built up outside of the epileptic focus along with disease progression, which provides supporting evidence for network alterations in focal epilepsy.
Collapse
Affiliation(s)
- Laurent Sheybani
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, Campus Biotech, University of Geneva, 1202 Geneva, Switzerland
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland
| | - Gwenaël Birot
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland
| | | | - Margitta Seeck
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland
| | - Jozsef Zoltan Kiss
- Department of Fundamental Neuroscience, Faculty of Medicine, 1206 Geneva, Switzerland
| | - Karl Schaller
- Neurosurgery Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland, and
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, Campus Biotech, University of Geneva, 1202 Geneva, Switzerland
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland
- Center for Biomedical Imaging, Lausanne and Geneva, 1015 Lausanne, Switzerland
| | - Charles Quairiaux
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, Campus Biotech, University of Geneva, 1202 Geneva, Switzerland,
- Department of Fundamental Neuroscience, Faculty of Medicine, 1206 Geneva, Switzerland
| |
Collapse
|
16
|
Yeon C, Kim D, Kim K, Chung E. Visual Evoked Potential Recordings in Mice Using a Dry Non-invasive Multi-channel Scalp EEG Sensor. J Vis Exp 2018. [PMID: 29364268 DOI: 10.3791/56927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
For scalp EEG research environments with laboratory mice, we designed a dry-type 16 channel EEG sensor which is non-invasive, deformable, and re-usable because of the plunger-spring-barrel structural facet and mechanical strengths resulting from metal materials. The whole process for acquiring the VEP responses in vivo from a mouse consists of four steps: (1) sensor assembly, (2) animal preparation, (3) VEP measurement, and (4) signal processing. This paper presents representative measurements of VEP responses from multiple mice with a submicro-voltage signal resolution and sub-hundred millisecond temporal resolution. Although the proposed method is safer and more convenient compared to other previously reported animal EEG acquiring methods, there are remaining issues including how to enhance the signal-to-noise ratio and how to apply this technique with freely moving animals. The proposed method utilizes easily available resources and shows a repetitive VEP response with a satisfactory signal quality. Therefore, this method could be utilized for longitudinal experimental studies and reliable translational research exploiting non-invasive paradigms.
Collapse
Affiliation(s)
- Chanmi Yeon
- Department of Biomedical Science and Engineering (BMSE), Gwangju Institute of Science and Technology (GIST)
| | - Donghyeon Kim
- School of Electrical Engineering and Computer Science (EECS), Gwangju Institute of Science and Technology (GIST)
| | - Kiseon Kim
- School of Electrical Engineering and Computer Science (EECS), Gwangju Institute of Science and Technology (GIST)
| | - Euiheon Chung
- Department of Biomedical Science and Engineering (BMSE), Gwangju Institute of Science and Technology (GIST); School of Mechanical Engineering (SME), Gwangju Institute of Science and Technology (GIST);
| |
Collapse
|
17
|
Systematic population spike delays across cortical layers within and between primary sensory areas. Sci Rep 2017; 7:15267. [PMID: 29127394 PMCID: PMC5681572 DOI: 10.1038/s41598-017-15611-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022] Open
Abstract
The coordinated propagation of activity across cortical layers enables simultaneous local computation and inter-areal interactions. A pattern of upward propagation from deeper to more superficial layers, which has been repeatedly demonstrated in spontaneous activity, would allow these functions to occur in parallel. But it remains unclear whether upward propagation also occurs for stimulus evoked activity, and how it relates to activity in other cortical areas. Here we used a new method to analyze relative delays between spikes obtained from simultaneous laminar recordings in primary sensory cortex (S1) of both hemispheres. The results identified systematic spike delays across cortical layers that showed a general upward propagation of activity in evoked and spontaneous activity. Systematic spike delays were also observed between hemispheres. After spikes in one S1 the delays in the other S1 were shortest at infragranular layers and increased in the upward direction. Model comparisons furthermore showed that upward propagation was better explained as a step-wise progression over cortical layers than as a traveling wave. The results are in line with the notion that upward propagation functionally integrates activity into local processing at superficial layers, while efficiently allowing for simultaneous inter-areal interactions.
Collapse
|
18
|
Takemi M, Castagnola E, Ansaldo A, Ricci D, Fadiga L, Taoka M, Iriki A, Ushiba J. Rapid Identification of Cortical Motor Areas in Rodents by High-Frequency Automatic Cortical Stimulation and Novel Motor Threshold Algorithm. Front Neurosci 2017; 11:580. [PMID: 29089866 PMCID: PMC5651028 DOI: 10.3389/fnins.2017.00580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/03/2017] [Indexed: 12/03/2022] Open
Abstract
Cortical stimulation mapping is a valuable tool to test the functional organization of the motor cortex in both basic neurophysiology (e.g., elucidating the process of motor plasticity) and clinical practice (e.g., before resecting brain tumors involving the motor cortex). However, compilation of motor maps based on the motor threshold (MT) requires a large number of cortical stimulations and is therefore time consuming. Shortening the time for mapping may reduce stress on the subjects and unveil short-term plasticity mechanisms. In this study, we aimed to establish a cortical stimulation mapping procedure in which the time needed to identify a motor area is reduced to the order of minutes without compromising reliability. We developed an automatic motor mapping system that applies epidural cortical surface stimulations (CSSs) through one-by-one of 32 micro-electrocorticographic electrodes while examining the muscles represented in a cortical region. The next stimulus intensity was selected according to previously evoked electromyographic responses in a closed-loop fashion. CSS was repeated at 4 Hz and electromyographic responses were submitted to a newly proposed algorithm estimating the MT with smaller number of stimuli with respect to traditional approaches. The results showed that in all tested rats (n = 12) the motor area maps identified by our novel mapping procedure (novel MT algorithm and 4-Hz CSS) significantly correlated with the maps achieved by the conventional MT algorithm with 1-Hz CSS. The reliability of the both mapping methods was very high (intraclass correlation coefficients ≧0.8), while the time needed for the mapping was one-twelfth shorter with the novel method. Furthermore, the motor maps assessed by intracortical microstimulation and the novel CSS mapping procedure in two rats were compared and were also significantly correlated. Our novel mapping procedure that determined a cortical motor area within a few minutes could help to study the functional significance of short-term plasticity in motor learning and recovery from brain injuries. Besides this advantage, particularly in the case of human patients or experimental animals that are less trained to remain at rest, shorter mapping time is physically and mentally less demanding and might allow the evaluation of motor maps in awake individuals as well.
Collapse
Affiliation(s)
- Mitsuaki Takemi
- School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, Kanagawa, Japan.,Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan
| | - Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Alberto Ansaldo
- Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy.,Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Miki Taoka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.,Keio Institute of Pure and Applied Sciences, Keio University, Kanagawa, Japan
| |
Collapse
|
19
|
Ni J, Chen JL. Long-range cortical dynamics: a perspective from the mouse sensorimotor whisker system. Eur J Neurosci 2017; 46:2315-2324. [PMID: 28921729 DOI: 10.1111/ejn.13698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 01/28/2023]
Abstract
In the mammalian neocortex, the capacity to dynamically route and coordinate the exchange of information between areas is a critical feature of cognitive function, enabling processes such as higher-level sensory processing and sensorimotor integration. Despite the importance attributed to long-range connections between cortical areas, their exact operations and role in cortical function remain an open question. In recent years, progress has been made in understanding long-range cortical circuits through work focused on the mouse sensorimotor whisker system. In this review, we examine recent studies dissecting long-range circuits involved in whisker sensorimotor processing as an entry point for understanding the rules that govern long-range cortical circuit function.
Collapse
Affiliation(s)
- Jianguang Ni
- Department of Biology, Boston University, Boston, MA, 02215, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Jerry L Chen
- Department of Biology, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
20
|
Urban A, Golgher L, Brunner C, Gdalyahu A, Har-Gil H, Kain D, Montaldo G, Sironi L, Blinder P. Understanding the neurovascular unit at multiple scales: Advantages and limitations of multi-photon and functional ultrasound imaging. Adv Drug Deliv Rev 2017; 119:73-100. [PMID: 28778714 DOI: 10.1016/j.addr.2017.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Developing efficient brain imaging technologies by combining a high spatiotemporal resolution and a large penetration depth is a key step for better understanding the neurovascular interface that emerges as a main pathway to neurodegeneration in many pathologies such as dementia. This review focuses on the advances in two complementary techniques: multi-photon laser scanning microscopy (MPLSM) and functional ultrasound imaging (fUSi). MPLSM has become the gold standard for in vivo imaging of cellular dynamics and morphology, together with cerebral blood flow. fUSi is an innovative imaging modality based on Doppler ultrasound, capable of recording vascular brain activity over large scales (i.e., tens of cubic millimeters) at unprecedented spatial and temporal resolution for such volumes (up to 10μm pixel size at 10kHz). By merging these two technologies, researchers may have access to a more detailed view of the various processes taking place at the neurovascular interface. MPLSM and fUSi are also good candidates for addressing the major challenge of real-time delivery, monitoring, and in vivo evaluation of drugs in neuronal tissue.
Collapse
Affiliation(s)
- Alan Urban
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Golgher
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Clément Brunner
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Amos Gdalyahu
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hagai Har-Gil
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - David Kain
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Montaldo
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Laura Sironi
- Physics Dept., Universita degli Studi di Milano Bicocca, Italy
| | - Pablo Blinder
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
21
|
The EEG microstate topography is predominantly determined by intracortical sources in the alpha band. Neuroimage 2017; 162:353-361. [PMID: 28847493 DOI: 10.1016/j.neuroimage.2017.08.058] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/04/2017] [Accepted: 08/23/2017] [Indexed: 01/29/2023] Open
Abstract
Human brain electric activity can be measured at high temporal and fairly good spatial resolution via electroencephalography (EEG). The EEG microstate analysis is an increasingly popular method used to investigate this activity at a millisecond resolution by segmenting it into quasi-stable states of approximately 100 ms duration. These so-called EEG microstates were postulated to represent atoms of thoughts and emotions and can be classified into four classes of topographies A through D, which explain up to 90% of the variance of continuous EEG. The present study investigated whether these topographies are primarily driven by alpha activity originating from the posterior cingulate cortex (all topographies), left and right posterior cortices, and the anterior cingulate cortex (topographies A, B, and C, respectively). We analyzed two 64-channel resting state EEG datasets (N = 61 and N = 78) of healthy participants. Sources of head-surface signals were determined via exact low resolution electromagnetic tomography (eLORETA). The Hilbert transformation was applied to identify instantaneous source strength of four EEG frequency bands (delta through beta). These source strength values were averaged for each participant across time periods belonging to a particular microstate. For each dataset, these averages of the different microstate classes were compared for each voxel. Consistent differences across datasets were identified via a conjunction analysis. The intracortical strength and spatial distribution of alpha band activity mainly determined whether a head-surface topography of EEG microstate class A, B, C, or D was induced. EEG microstate class C was characterized by stronger alpha activity compared to all other classes in large portions of the cortex. Class A was associated with stronger left posterior alpha activity than classes B and D, and class B was associated with stronger right posterior alpha activity than A and D. Previous results indicated that EEG microstate dynamics reflect a fundamental mechanism of the human brain that is altered in different mental states in health and disease. They are characterized by systematic transitions between four head-surface topographies, the EEG microstate classes. Our results show that intra-cortical alpha oscillations, which likely reflect decreased cortical excitability, primarily account for the emergence of these classes. We suggest that microstate class dynamics reflect transitions between four global attractor states that are characterized by selective inhibition of specific intra-cortical regions.
Collapse
|
22
|
Kim D, Yeon C, Kim K. Development and Experimental Validation of a Dry Non-Invasive Multi-Channel Mouse Scalp EEG Sensor through Visual Evoked Potential Recordings. SENSORS 2017; 17:s17020326. [PMID: 28208777 PMCID: PMC5335932 DOI: 10.3390/s17020326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/30/2016] [Accepted: 02/04/2017] [Indexed: 11/16/2022]
Abstract
In this paper, we introduce a dry non-invasive multi-channel sensor for measuring brainwaves on the scalps of mice. The research on laboratory animals provide insights to various practical applications involving human beings and other animals such as working animals, pets, and livestock. An experimental framework targeting the laboratory animals has the potential to lead to successful translational research when it closely resembles the environment of real applications. To serve scalp electroencephalography (EEG) research environments for the laboratory mice, the dry non-invasive scalp EEG sensor with sixteen electrodes is proposed to measure brainwaves over the entire brain area without any surgical procedures. We validated the proposed sensor system with visual evoked potential (VEP) experiments elicited by flash stimulations. The VEP responses obtained from experiments are compared with the existing literature, and analyzed in temporal and spatial perspectives. We further interpret the experimental results using time-frequency distribution (TFD) and distance measurements. The developed sensor guarantees stable operations for in vivo experiments in a non-invasive manner without surgical procedures, therefore exhibiting a high potential to strengthen longitudinal experimental studies and reliable translational research exploiting non-invasive paradigms.
Collapse
Affiliation(s)
- Donghyeon Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| | - Chanmi Yeon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| | - Kiseon Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| |
Collapse
|
23
|
Wasilczuk AZ, Proekt A, Kelz MB, McKinstry-Wu AR. High-density Electroencephalographic Acquisition in a Rodent Model Using Low-cost and Open-source Resources. J Vis Exp 2016. [PMID: 27929470 PMCID: PMC5226321 DOI: 10.3791/54908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Advanced electroencephalographic analysis techniques requiring high spatial resolution, including electrical source imaging and measures of network connectivity, are applicable to an expanding variety of questions in neuroscience. Performing these kinds of analyses in a rodent model requires higher electrode density than traditional screw electrodes can accomplish. While higher-density electroencephalographic montages for rodents exist, they are of limited availability to most researchers, are not robust enough for repeated experiments over an extended period of time, or are limited to use in anesthetized rodents.1-3 A proposed low-cost method for constructing a durable, high-count, transcranial electrode array, consisting of bilaterally implantable headpieces is investigated as a means to perform advanced electroencephalogram analyses in mice or rats. Procedures for headpiece fabrication and surgical implantation necessary to produce high signal to noise, low-impedance electroencephalographic and electromyographic signals are presented. While the methodology is useful in both rats and mice, this manuscript focuses on the more challenging implementation for the smaller mouse skull. Freely moving mice are only tethered to cables via a common adapter during recording. One version of this electrode system that includes 26 electroencephalographic channels and 4 electromyographic channels is described below.
Collapse
Affiliation(s)
- Andrzej Z Wasilczuk
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| | - Alexander Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania;
| | - Andrew R McKinstry-Wu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
24
|
Drinkenburg WHIM, Ahnaou A, Ruigt GSF. Pharmaco-EEG Studies in Animals: A History-Based Introduction to Contemporary Translational Applications. Neuropsychobiology 2016; 72:139-50. [PMID: 26901675 DOI: 10.1159/000443175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Current research on the effects of pharmacological agents on human neurophysiology finds its roots in animal research, which is also reflected in contemporary animal pharmaco-electroencephalography (p-EEG) applications. The contributions, present value and translational appreciation of animal p-EEG-based applications are strongly interlinked with progress in recording and neuroscience analysis methodology. After the pioneering years in the late 19th and early 20th century, animal p-EEG research flourished in the pharmaceutical industry in the early 1980s. However, around the turn of the millennium the emergence of structurally and functionally revealing imaging techniques and the increasing application of molecular biology caused a temporary reduction in the use of EEG as a window into the brain for the prediction of drug efficacy. Today, animal p-EEG is applied again for its biomarker potential - extensive databases of p-EEG and polysomnography studies in rats and mice hold EEG signatures of a broad collection of psychoactive reference and test compounds. A multitude of functional EEG measures has been investigated, ranging from simple spectral power and sleep-wake parameters to advanced neuronal connectivity and plasticity parameters. Compared to clinical p-EEG studies, where the level of vigilance can be well controlled, changes in sleep-waking behaviour are generally a prominent confounding variable in animal p-EEG studies and need to be dealt with. Contributions of rodent pharmaco-sleep EEG research are outlined to illustrate the value and limitations of such preclinical p-EEG data for pharmacodynamic and chronopharmacological drug profiling. Contemporary applications of p-EEG and pharmaco-sleep EEG recordings in animals provide a common and relatively inexpensive window into the functional brain early in the preclinical and clinical development of psychoactive drugs in comparison to other brain imaging techniques. They provide information on the impact of drugs on arousal and sleep architecture, assessing their neuropharmacological characteristics in vivo, including central exposure and information on kinetics. In view of the clear disadvantages as well as advantages of animal p-EEG as compared to clinical p-EEG, general statements about the usefulness of EEG as a biomarker to demonstrate the translatability of p-EEG effects should be made with caution, however, because they depend on the particular EEG or sleep parameter that is being studied. The contribution of animal p-EEG studies to the translational characterisation of centrally active drugs can be furthered by adherence to guidelines for methodological standardisation, which are presently under construction by the International Pharmaco-EEG Society (IPEG).
Collapse
|
25
|
Park AH, Lee SH, Lee C, Kim J, Lee HE, Paik SB, Lee KJ, Kim D. Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull. ACS NANO 2016; 10:2791-802. [PMID: 26735496 DOI: 10.1021/acsnano.5b07889] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Spatiotemporal mapping of neural interactions through electrocorticography (ECoG) is the key to understanding brain functions and disorders. For the entire brain cortical areas, this approach has been challenging, especially in freely moving states, owing to the need for extensive craniotomy. Here, we introduce a flexible microelectrode array system, termed iWEBS, which can be inserted through a small cranial slit and stably wrap onto the curved cortical surface. Using iWEBS, we measured dynamic changes of signals across major cortical domains, namely, somatosensory, motor, visual and retrosplenial areas, in freely moving mice. iWEBS robustly displayed somatosensory evoked potentials (SEPs) in corresponding cortical areas to specific somatosensory stimuli. We also used iWEBS for mapping functional interactions between cortical areas in the propagation of spike-and-wave discharges (SWDs), the neurological marker of absence seizures, triggered by optogenetic inhibition of a specific thalamic nucleus. This demonstrates that iWEBS represents a significant improvement over conventional ECoG recording methodologies and, therefore, is a competitive recording system for mapping wide-range brain connectivity under various behavioral conditions.
Collapse
Affiliation(s)
- Ah Hyung Park
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung Hyun Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Changju Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongjin Kim
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Han Eol Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Modulation of food consumption and sleep-wake cycle in mice by the neutral CB1 antagonist ABD459. Behav Pharmacol 2015; 26:289-303. [PMID: 25356730 DOI: 10.1097/fbp.0000000000000108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The brain endocannabinoid system is a potential target for the treatment of psychiatric and metabolic conditions. Here, a novel CB1 receptor antagonist (ABD459) was synthesized and assayed for pharmacological efficacy in vitro and for modulation of food consumption, vigilance staging and cortical electroencephalography in the mouse. ABD459 completely displaced the CB1 agonist CP99540 at a Ki of 8.6 nmol/l, and did not affect basal, but antagonized CP55940-induced GTPγS binding with a KB of 7.7 nmol/l. Acute ABD459 (3-20 mg/kg) reliably inhibited food consumption in nonfasted mice, without affecting motor activity. Active food seeking was reduced for 5-6 h postdrug, with no rebound after washout. Epidural recording of electroencephalogram confirmed that ABD459 (3 mg/kg) robustly reduced rapid eye movement (REM) sleep, with no alterations of wakefulness or non-REM sleep. Effects were strongest during 3 h postdrug, followed by a progressive washout period. The CB1 antagonist AM251 (3 mg/kg) and agonist WIN-55,212-2 (WIN-2: 3 mg/kg) also reduced REM, but variously affected other vigilance stages. WIN-2 caused a global suppression of normalized spectral power. AM251 and ABD459 lowered delta power and increased power in the theta band in the hippocampus, but not the prefrontal cortex. The neutral antagonist ABD459 thus showed a specific role of endocannabinoid release in attention and arousal, possibly through modulation of cholinergic activity.
Collapse
|
27
|
Wang X, Pinto-Duarte A, Behrens MM, Zhou X, Sejnowski TJ. Characterization of spatio-temporal epidural event-related potentials for mouse models of psychiatric disorders. Sci Rep 2015; 5:14964. [PMID: 26459883 PMCID: PMC4602219 DOI: 10.1038/srep14964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/11/2015] [Indexed: 11/30/2022] Open
Abstract
Distinctive features in sensory event-related potentials (ERPs) are endophenotypic biomarkers of psychiatric disorders, widely studied using electroencephalographic (EEG) methods in humans and model animals. Despite the popularity and unique significance of the mouse as a model species in basic research, existing EEG methods applicable to mice are far less powerful than those available for humans and large animals. We developed a new method for multi-channel epidural ERP characterization in behaving mice with high precision, reliability and convenience and report an application to time-domain ERP feature characterization of the Sp4 hypomorphic mouse model for schizophrenia. Compared to previous methods, our spatio-temporal ERP measurement robustly improved the resolving power of key signatures characteristic of the disease model. The high performance and low cost of this technique makes it suitable for high-throughput behavioral and pharmacological studies.
Collapse
Affiliation(s)
- Xin Wang
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - António Pinto-Duarte
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - M Margarita Behrens
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xianjin Zhou
- Department of Psychiatry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
28
|
Lee C, Oostenveld R, Lee SH, Kim LH, Sung H, Choi JH. Cortical source localization of mouse extracranial electroencephalogram using the FieldTrip toolbox. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:3307-10. [PMID: 24110435 DOI: 10.1109/embc.2013.6610248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuronal source estimation is a general tool for analyzing spatiotemporal dynamics in human EEG. Despite rapidly-evolving interest in human brain, there are few EEG based source estimation tools in rodent brain. Therefore, we implemented source estimation tool in a mouse model, using the FieldTrip open-source software. High resolution EEGs with a known cortical source were recorded with a recently developed 40-channel polyimide-based microelectrode under optical stimulation on optogenetially engineered mice. To obtain realistic mouse head models, the volume conduction model was extracted from in vitro mouse brain MRIs. Segmented compartments (skin and outer/inner skull) were used to form triangular meshes and then applied to the boundary element method. The high-resolution EEGs recorded during various optogenetic stimulation of the mouse brain were inversely source reconstructed using minimum-norm estimate. Estimated source locations and strengths were reconstructed, and their error was calculated to evaluate FieldTrip-based source localization algorithm. In summary, source localization imaging of the mouse brain was successfully achieved, using freely-available open source software. This will be useful to investigate the functional dynamics of mouse brain in noninvasive measure.
Collapse
|
29
|
Pittau F, Mégevand P, Sheybani L, Abela E, Grouiller F, Spinelli L, Michel CM, Seeck M, Vulliemoz S. Mapping epileptic activity: sources or networks for the clinicians? Front Neurol 2014; 5:218. [PMID: 25414692 PMCID: PMC4220689 DOI: 10.3389/fneur.2014.00218] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/08/2014] [Indexed: 01/03/2023] Open
Abstract
Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.
Collapse
Affiliation(s)
- Francesca Pittau
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Pierre Mégevand
- Laboratory for Multimodal Human Brain Mapping, Hofstra North Shore LIJ School of Medicine , Manhasset, NY , USA
| | - Laurent Sheybani
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Eugenio Abela
- Support Center of Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital , Bern , Switzerland
| | - Frédéric Grouiller
- Radiology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| |
Collapse
|
30
|
von Ellenrieder N, Beltrachini L, Muravchik CH, Gotman J. Extent of cortical generators visible on the scalp: Effect of a subdural grid. Neuroimage 2014; 101:787-95. [DOI: 10.1016/j.neuroimage.2014.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 11/28/2022] Open
|
31
|
Plomp G, Quairiaux C, Kiss JZ, Astolfi L, Michel CM. Dynamic connectivity among cortical layers in local and large-scale sensory processing. Eur J Neurosci 2014; 40:3215-23. [PMID: 25145779 DOI: 10.1111/ejn.12687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 11/29/2022]
Abstract
Cortical processing of sensory stimuli typically recruits multiple areas, but how each area dynamically incorporates activity from other areas is not well understood. We investigated interactions between cortical columns of bilateral primary sensory regions (S1s) in rats by recording local field potentials and multi-unit activity simultaneously in both S1s with electrodes positioned at each cortical layer. Using dynamic connectivity analysis based on Granger-causal modeling, we found that, shortly after whisker stimulation (< 10 ms), contralateral S1 (cS1) already relays activity to granular and infragranular layers of S1 in the other hemisphere, after which cS1 shows a pattern of within-column interactions that directs activity upwards toward superficial layers. This pattern of predominant upward driving was also observed in S1 ipsilateral to stimulation, but at longer latencies. In addition, we found that interactions between the two S1s most strongly target granular and infragranular layers. Taken together, the results suggest a possible mechanism for how cortical columns integrate local and large-scale neocortical computation by relaying information from deeper layers to local processing in superficial layers.
Collapse
Affiliation(s)
- Gijs Plomp
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Rue Michel-Servet 1, CH-1211, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Gindrat AD, Quairiaux C, Britz J, Brunet D, Lanz F, Michel CM, Rouiller EM. Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys. Brain Struct Funct 2014; 220:2121-42. [PMID: 24791748 PMCID: PMC4495608 DOI: 10.1007/s00429-014-0776-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/07/2014] [Indexed: 11/20/2022]
Abstract
High-density scalp EEG recordings are widely used to study whole-brain neuronal networks in humans non-invasively. Here, we validate EEG mapping of somatosensory evoked potentials (SSEPs) in macaque monkeys (Macaca fascicularis) for the long-term investigation of large-scale neuronal networks and their reorganisation after lesions requiring a craniotomy. SSEPs were acquired from 33 scalp electrodes in five adult anaesthetized animals after electrical median or tibial nerve stimulation. SSEP scalp potential maps were identified by cluster analysis and identified in individual recordings. A distributed, linear inverse solution was used to estimate the intracortical sources of the scalp potentials. SSEPs were characterised by a sequence of components with unique scalp topographies. Source analysis confirmed that median nerve SSEP component maps were in accordance with the somatotopic organisation of the sensorimotor cortex. Most importantly, SSEP recordings were stable both intra- and interindividually. We aim to apply this method to the study of recovery and reorganisation of large-scale neuronal networks following a focal cortical lesion requiring a craniotomy. As a prerequisite, the present study demonstrated that a 300-mm2 unilateral craniotomy over the sensorimotor cortex necessary to induce a cortical lesion, followed by bone flap repositioning, suture and gap plugging with calcium phosphate cement, did not induce major distortions of the SSEPs. In conclusion, SSEPs can be successfully and reproducibly recorded from high-density EEG caps in macaque monkeys before and after a craniotomy, opening new possibilities for the long-term follow-up of the cortical reorganisation of large-scale networks in macaque monkeys after a cortical lesion.
Collapse
Affiliation(s)
- Anne-Dominique Gindrat
- Domain of Physiology, Department of Medicine, Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland,
| | | | | | | | | | | | | |
Collapse
|
33
|
Plomp G, Quairiaux C, Michel CM, Astolfi L. The physiological plausibility of time-varying Granger-causal modeling: normalization and weighting by spectral power. Neuroimage 2014; 97:206-16. [PMID: 24736179 DOI: 10.1016/j.neuroimage.2014.04.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 02/28/2014] [Accepted: 04/04/2014] [Indexed: 11/27/2022] Open
Abstract
Time-varying connectivity methods are increasingly used to study directed interactions between brain regions from electrophysiological signals. These methods often show good results in simulated data but it is unclear to what extent connectivity results obtained from real data are physiologically plausible. Here we introduce a benchmark approach using multichannel somatosensory evoked potentials (SEPs) measured across rat cortex, where the structural and functional connectivity is relatively simple and well-understood. Rat SEPs to whisker stimulation are exclusively initiated by contralateral primary sensory cortex (S1), at known latencies, and with activity spread from S1 to specific cortical regions. This allows for a comparison of time-varying connectivity measures according to fixed criteria. We thus evaluated the performance of time-varying Partial Directed Coherence (PDC) and the Directed Transfer Function (DTF), comparing row- and column-wise normalization and the effect of weighting by the power spectral density (PSD). The benchmark approach revealed clear differences between methods in terms of physiological plausibility, effect size and temporal resolution. The results provide a validation of time-varying directed connectivity methods in an animal model and suggest a driving role for ipsilateral S1 in the later part of the SEP. The benchmark SEP dataset is made freely available.
Collapse
Affiliation(s)
- Gijs Plomp
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.
| | - Charles Quairiaux
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland; Neurology Clinic, University Hospital Geneva, Switzerland
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, University of Rome "Sapienza", Italy; Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
34
|
Dipole source localization of mouse electroencephalogram using the Fieldtrip toolbox. PLoS One 2013; 8:e79442. [PMID: 24244506 PMCID: PMC3828402 DOI: 10.1371/journal.pone.0079442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/24/2013] [Indexed: 11/20/2022] Open
Abstract
The mouse model is an important research tool in neurosciences to examine brain function and diseases with genetic perturbation in different brain regions. However, the limited techniques to map activated brain regions under specific experimental manipulations has been a drawback of the mouse model compared to human functional brain mapping. Here, we present a functional brain mapping method for fast and robust in vivo brain mapping of the mouse brain. The method is based on the acquisition of high density electroencephalography (EEG) with a microarray and EEG source estimation to localize the electrophysiological origins. We adapted the Fieldtrip toolbox for the source estimation, taking advantage of its software openness and flexibility in modeling the EEG volume conduction. Three source estimation techniques were compared: Distribution source modeling with minimum-norm estimation (MNE), scanning with multiple signal classification (MUSIC), and single-dipole fitting. Known sources to evaluate the performance of the localization methods were provided using optogenetic tools. The accuracy was quantified based on the receiver operating characteristic (ROC) analysis. The mean detection accuracy was high, with a false positive rate less than 1.3% and 7% at the sensitivity of 90% plotted with the MNE and MUSIC algorithms, respectively. The mean center-to-center distance was less than 1.2 mm in single dipole fitting algorithm. Mouse microarray EEG source localization using microarray allows a reliable method for functional brain mapping in awake mouse opening an access to cross-species study with human brain.
Collapse
|
35
|
A Tutorial on Data-Driven Methods for Statistically Assessing ERP Topographies. Brain Topogr 2013; 27:72-83. [DOI: 10.1007/s10548-013-0310-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
|
36
|
Lei X, Valdes-Sosa PA, Yao D. EEG/fMRI fusion based on independent component analysis: integration of data-driven and model-driven methods. J Integr Neurosci 2012; 11:313-37. [PMID: 22985350 DOI: 10.1142/s0219635212500203] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provide complementary noninvasive information of brain activity, and EEG/fMRI fusion can achieve higher spatiotemporal resolution than each modality separately. This focuses on independent component analysis (ICA)-based EEG/fMRI fusion. In order to appreciate the issues, we first describe the potential and limitations of the developed fusion approaches: fMRI-constrained EEG imaging, EEG-informed fMRI analysis, and symmetric fusion. We then outline some newly developed hybrid fusion techniques using ICA and the combination of data-/model-driven methods, with special mention of the spatiotemporal EEG/fMRI fusion (STEFF). Finally, we discuss the current trend in methodological development and the existing limitations for extrapolating neural dynamics.
Collapse
Affiliation(s)
- Xu Lei
- Key Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, 400715, PR China.
| | | | | |
Collapse
|
37
|
Riera JJ, Ogawa T, Goto T, Sumiyoshi A, Nonaka H, Evans A, Miyakawa H, Kawashima R. Pitfalls in the dipolar model for the neocortical EEG sources. J Neurophysiol 2012; 108:956-75. [DOI: 10.1152/jn.00098.2011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For about six decades, primary current sources of the electroencephalogram (EEG) have been assumed dipolar in nature. In this study, we used electrophysiological recordings from anesthetized Wistar rats undergoing repeated whisker deflections to revise the biophysical foundations of the EEG dipolar model. In a first experiment, we performed three-dimensional recordings of extracellular potentials from a large portion of the barrel field to estimate intracortical multipolar moments generated either by single spiking neurons (i.e., pyramidal cells, PC; spiny stellate cells, SS) or by populations of them while experiencing synchronized postsynaptic potentials. As expected, backpropagating spikes along PC dendrites caused dipolar field components larger in the direction perpendicular to the cortical surface (49.7 ± 22.0 nA·mm). In agreement with the fact that SS cells have “close-field” configurations, their dipolar moment at any direction was negligible. Surprisingly, monopolar field components were detectable both at the level of single units (i.e., −11.7 ± 3.4 nA for PC) and at the mesoscopic level of mixed neuronal populations receiving extended synaptic inputs within either a cortical column (−0.44 ± 0.20 μA) or a 2.5-m3-voxel volume (−3.32 ± 1.20 μA). To evaluate the relationship between the macroscopically defined EEG equivalent dipole and the mesoscopic intracortical multipolar moments, we performed concurrent recordings of high-resolution skull EEG and laminar local field potentials. From this second experiment, we estimated the time-varying EEG equivalent dipole for the entire barrel field using either a multiple dipole fitting or a distributed type of EEG inverse solution. We demonstrated that mesoscopic multipolar components are altogether absorbed by any equivalent dipole in both types of inverse solutions. We conclude that the primary current sources of the EEG in the neocortex of rodents are not precisely represented by a single equivalent dipole and that the existence of monopolar components must be also considered at the mesoscopic level.
Collapse
Affiliation(s)
- Jorge J. Riera
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takeshi Ogawa
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takakuni Goto
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Alan Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; and
| | - Hiroyoshi Miyakawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
38
|
Abstract
Large-scale neuronal networks integrating several cortical areas mediate the complex functions of the brain such as sensorimotor integration. Little is known about the functional development of these networks and the maturational processes by which distant networks become functionally connected. We addressed this question in the postnatal rat sensorimotor system. Using epicranial multielectrode grids that span most of the cortical surface and intracortical electrodes, we show that sensory evoked cortical responses continuously maturate throughout the first 3 weeks with the strongest developmental changes occurring in a very short time around postnatal day 13 (P13). Before P13, whisker stimulation evokes slow, initially surface-negative activity restricted mostly to the lateral parietal area of the contralateral hemisphere. In a narrow time window of ∼48 h around P13, a new early, sharp surface-positive component emerges that coincides with subsequent propagation of activity to sensory and motor areas of both hemispheres. Our data show that this new component developing at the end of the second week corresponds principally to functional maturation of the supragranular cortical layers and appears to be crucial for the functional associations in the large-scale sensorimotor cortical network. It goes along with the onset of whisking behavior, as well as major synaptic and functional changes within the S1 cortex that are known to develop during this period.
Collapse
|
39
|
Sumiyoshi A, Riera JJ, Ogawa T, Kawashima R. A mini-cap for simultaneous EEG and fMRI recording in rodents. Neuroimage 2011; 54:1951-65. [DOI: 10.1016/j.neuroimage.2010.09.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/17/2010] [Accepted: 09/21/2010] [Indexed: 11/29/2022] Open
|
40
|
Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H, Yang A, Kopell N, Buckner RL, Graybiel AM, Moore CI, Boyden ES. Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 2010; 105:1393-405. [PMID: 21160013 DOI: 10.1152/jn.00828.2010] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Behaviors and brain disorders involve neural circuits that are widely distributed in the brain. The ability to map the functional connectivity of distributed circuits, and to assess how this connectivity evolves over time, will be facilitated by methods for characterizing the network impact of activating a specific subcircuit, cell type, or projection pathway. We describe here an approach using high-resolution blood oxygenation level-dependent (BOLD) functional MRI (fMRI) of the awake mouse brain-to measure the distributed BOLD response evoked by optical activation of a local, defined cell class expressing the light-gated ion channel channelrhodopsin-2 (ChR2). The utility of this opto-fMRI approach was explored by identifying known cortical and subcortical targets of pyramidal cells of the primary somatosensory cortex (SI) and by analyzing how the set of regions recruited by optogenetically driven SI activity differs between the awake and anesthetized states. Results showed positive BOLD responses in a distributed network that included secondary somatosensory cortex (SII), primary motor cortex (MI), caudoputamen (CP), and contralateral SI (c-SI). Measures in awake compared with anesthetized mice (0.7% isoflurane) showed significantly increased BOLD response in the local region (SI) and indirectly stimulated regions (SII, MI, CP, and c-SI), as well as increased BOLD signal temporal correlations between pairs of regions. These collective results suggest opto-fMRI can provide a controlled means for characterizing the distributed network downstream of a defined cell class in the awake brain. Opto-fMRI may find use in examining causal links between defined circuit elements in diverse behaviors and pathologies.
Collapse
Affiliation(s)
- M Desai
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Just N, Petersen C, Gruetter R. BOLD responses to trigeminal nerve stimulation. Magn Reson Imaging 2010; 28:1143-51. [DOI: 10.1016/j.mri.2010.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 02/08/2010] [Indexed: 02/07/2023]
|
42
|
Choi JH, Koch KP, Poppendieck W, Lee M, Shin HS. High resolution electroencephalography in freely moving mice. J Neurophysiol 2010; 104:1825-34. [PMID: 20610789 DOI: 10.1152/jn.00188.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electroencephalography (EEG) is a standard tool for monitoring brain states in humans. Understanding the molecular and cellular mechanisms underlying diverse EEG rhythms can be facilitated by using mouse models under molecular, pharmacological, or electrophysiological manipulations. The small size of the mouse brain, however, poses a severe limitation in the spatial information of EEG. To overcome this limitation, we devised a polyimide based microelectrode array (PBM array) with nanofabrication technologies. The microelectrode contains 32 electrodes, weighs 150 mg, and yields noise-insensitive signals when applied on the mouse skull. The high-density microelectrode allowed both global and focused mapping of high resolution EEG (HR-EEG) in the mouse brain. Mapping and dynamical analysis tools also have been developed to visualize the dynamical changes of spatially resolved mouse EEG. We demonstrated the validity and utility of mouse EEG in localization of the seizure onset in absence seizure model and phase dynamics of abnormal theta rhythm in transgenic mice. Dynamic tracking of the EEG map in genetically modified mice under freely moving conditions should allow study of the molecular and cellular mechanisms underlying the generation and dynamics of diverse EEG rhythms.
Collapse
Affiliation(s)
- Jee Hyun Choi
- Center for Neural Science, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | | | | | | | | |
Collapse
|
43
|
Vulliemoz S, Lemieux L, Daunizeau J, Michel CM, Duncan JS. The combination of EEG Source Imaging and EEG-correlated functional MRI to map epileptic networks. Epilepsia 2010; 51:491-505. [PMID: 19817805 DOI: 10.1111/j.1528-1167.2009.02342.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Serge Vulliemoz
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Quairiaux C, Sizonenko SV, Mégevand P, Michel CM, Kiss JZ. Functional deficit and recovery of developing sensorimotor networks following neonatal hypoxic-ischemic injury in the rat. Cereb Cortex 2010; 20:2080-91. [PMID: 20051355 DOI: 10.1093/cercor/bhp281] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is the most important cause of brain injury in the newborn. Here we studied structural alterations and functional perturbations of developing large-scale sensorimotor cortical networks in a rat model of moderate HI at postnatal day 3 (P3). At the morphological level, HI led to a disorganized barrel pattern in the somatosensory cortex without detectable histological changes in the motor cortex. Functional effects were addressed by means of epicranial mapping of somatosensory-evoked potentials (SEPs) during the postischemic recovery period. At P10, SEPs were immature and evoked activity was almost restricted to the somatosensory and motor cortices of the contralateral hemisphere. Peak and topographic analyses of epicranial potentials revealed that responses were profoundly depressed in both sensory and motor areas of HI-lesioned animals. At the end of the postnatal period at P21, responses involved networks in both hemispheres. SEP amplitude was still depressed in the injured sensory region, but it completely recovered in the motor area. These results suggest a process of large-scale network plasticity in sensorimotor circuits after perinatal ischemic injury. The model provides new perspectives for investigating the temporal and spatial characteristics of the recovery process following HI and eventually developing therapeutic interventions.
Collapse
Affiliation(s)
- Charles Quairiaux
- Faculty of Medicine, Department of Fundamental Neurosciences, University of Geneva, 1211 Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Mice actively explore their environment by rhythmically sweeping their whiskers. As a consequence, neuronal activity in somatosensory pathways is modulated by the frequency of whisker movement. The potential role of rhythmic neuronal activity for the integration and consolidation of sensory signals, however, remains unexplored. Here, we show that a brief period of rhythmic whisker stimulation in anesthetized mice resulted in a frequency-specific long-lasting increase in the amplitude of somatosensory-evoked potentials in the contralateral primary somatosensory (barrel) cortex. Mapping of evoked potentials and intracortical recordings revealed that, in addition to potentiation in layers IV and II/III of the barrel cortex, rhythmic whisker stimulation induced a decrease of somatosensory-evoked responses in the supragranular layers of the motor cortex. To assess whether rhythmic sensory input-based plasticity might arise in natural settings, we exposed mice to environmental enrichment. We found that it resulted in somatosensory-evoked responses of increased amplitude, highlighting the influence of previous sensory experience in shaping sensory responses. Importantly, environmental enrichment-induced plasticity occluded further potentiation by rhythmic stimulation, indicating that both phenomena share common mechanisms. Overall, our results suggest that natural, rhythmic patterns of whisker activity can modify the cerebral processing of sensory information, providing a possible mechanism for learning during sensory perception.
Collapse
|