1
|
Wuyts FL, Deblieck C, Vandevoorde C, Durante M. Brains in space: impact of microgravity and cosmic radiation on the CNS during space exploration. Nat Rev Neurosci 2025; 26:354-371. [PMID: 40247135 DOI: 10.1038/s41583-025-00923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/19/2025]
Abstract
Solar system exploration is a grand endeavour of humankind. Space agencies have been planning crewed missions to the Moon and Mars for several decades. However, several environmental stress factors in space, such as microgravity and cosmic radiation, confer health risks for human explorers. This Review examines the effects of microgravity and exposure to cosmic radiation on the CNS. Microgravity presents challenges for the brain, necessitating the development of adaptive movement and orientation strategies to cope with alterations in sensory information. Exposure to microgravity also affects cognitive function to a certain extent. Recent MRI results show that microgravity affects brain structure and function. Post-flight recovery from these changes is gradual, with some lasting up to a year. Regarding cosmic radiation, animal experiments suggest that the brain could be much more sensitive to this stressor than may be expected from experiences on Earth. This may be due to the presence of energetic heavy ions in space that have an impact on cognitive function, even at low doses. However, all data about space radiation risk stem from rodent experiments, and extrapolation of these data to humans carries a high degree of uncertainty. Here, after presenting an overview of current knowledge in the above areas, we provide a concise description of possible counter-measures to protect the brain against microgravity and cosmic radiation during future space missions.
Collapse
Affiliation(s)
- Floris L Wuyts
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - Choi Deblieck
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
- Institute for Condensed Matter of Physics, Technische Universität Darmstadt, Darmstadt, Germany.
- Department of Physics 'Ettore Pancini', University Federico II, Naples, Italy.
| |
Collapse
|
2
|
Chen W, Wang J, Wang L, Hu W, Chen X, Jin L. Effect of patient position on the EEG bispectral index and entropy index under general anaesthesia. Technol Health Care 2025; 33:311-319. [PMID: 39302400 DOI: 10.3233/thc-241026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Perioperative depth monitoring techniques, such as electroencephalography bispectral index (BIS), entropy index, and auditory evoked potential, are commonly used to assess anesthesia depth. However, the influence of patient positioning changes, particularly in gynecological surgeries where a head-down position is often required, on the accuracy of these monitoring indices remains unexplored. OBJECTIVE The aim of the our study was to observe the impact of patient position changes on the monitoring value of entropy and BIS to identify a more sensitive method of anaesthesia depth monitoring for gynaecological surgery patients. METHODS We conducted a study involving 40 women undergoing general anesthesia, during which routine monitoring of vital signs, including electrocardiogram (ECG), heart rate (HR), noninvasive arterial blood pressure (NIBP), oxyhemoglobin saturation (SpO2), and end-expiratory carbon dioxide (PetCO2), was initiated. Entropy and BIS devices were affixed to the patients' foreheads after alcohol sterilization to record brain activity. Tracheal intubation was performed following anesthesia induction. Throughout anesthesia maintenance, the value of BIS and response entropy (RE) were monitored and maintained between 40 and 50 by adjusting the infusion rate of propofol and remifentanil with Target Controlled Infusion (TCI, Mintopharmacokinetics model). Dosing for infusion control utilized corrected weight (height-105). Data were recorded before and after position changes, including tilting the operating table to head-down positions of 15 and 25 degrees, returning to a supine position, and elevating the head to 15 and 25-degree angles. BIS and entropy values at different time points were compared between the groups. RESULTS Both BIS and entropy values increased from supine to head-down position and decreased from supine to head-up position, with entropy changes preceding those of BIS. Heart rate increased after head-up and decreased after head-down, while mean blood pressure (MBP) exhibited the opposite effect on heart rate. Significant correlations were found between heart rate and BIS (correlation coefficient: -0.43) and RE (correlation coefficient: -0.416), as well as between MBP and BIS (correlation coefficient: 0.346) and RE (correlation coefficient: 0.384). CONCLUSION Changes in patient position can significantly affect the value of RE and BIS, as changes in entropy occur earlier than changes in the BIS.
Collapse
|
3
|
Kokkinos V, Koupparis AM, Fekete T, Privman E, Avin O, Almagor O, Shriki O, Hadanny A. The Posterior Dominant Rhythm Remains Within Normal Limits in the Microgravity Environment. Brain Sci 2024; 14:1194. [PMID: 39766393 PMCID: PMC11674868 DOI: 10.3390/brainsci14121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Electroencephalogram (EEG) biomarkers with adequate sensitivity and specificity to reflect the brain's health status can become indispensable for health monitoring during prolonged missions in space. The objective of our study was to assess whether the basic features of the posterior dominant rhythm (PDR) change under microgravity conditions compared to earth-based scalp EEG recordings. METHODS Three crew members during the 16-day AXIOM-1 mission to the International Space Station (ISS), underwent scalp EEG recordings before, during, and after the mission by means of a dry-electrode self-donning headgear designed to support long-term EEG recordings in space. Resting-state recordings were performed with eyes open and closed during relaxed wakefulness. The electrodes representative of EEG activity in each occipital lobe were used, and consecutive PDR oscillations were identified during periods of eye closure. In turn, cursor-based markers were placed at the negative peak of each sinusoidal wave of the PDR. Waveform averaging and time-frequency analysis were performed for all PDR samples for the respective pre-mission, mission, and post-mission EEGs. RESULTS No significant differences were found in the mean frequency of the PDR in any of the crew subjects between their EEG on the ISS and their pre- or post-mission EEG on ground level. The PDR oscillations varied over a ±1Hz standard deviation range. Similarly, no significant differences were found in PDR's power spectral density. CONCLUSIONS Our study shows that the spectral features of the PDR remain within normal limits in a short exposure to the microgravity environment, with its frequency manifesting within an acceptable ±1 Hz variation from the pre-mission mean. Further investigations for EEG features and markers reflecting the human brain neurophysiology during space missions are required.
Collapse
Affiliation(s)
- Vasileios Kokkinos
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Comprehensive Epilepsy Center, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | | | - Tomer Fekete
- Brain.Space, Tel Aviv 58855, Israel; (T.F.); (E.P.); (A.H.)
| | - Eran Privman
- Brain.Space, Tel Aviv 58855, Israel; (T.F.); (E.P.); (A.H.)
| | - Ofer Avin
- Department of Cognitive and Brain Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel; (O.A.); (O.A.); (O.S.)
| | - Ophir Almagor
- Department of Cognitive and Brain Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel; (O.A.); (O.A.); (O.S.)
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel; (O.A.); (O.A.); (O.S.)
| | - Amir Hadanny
- Brain.Space, Tel Aviv 58855, Israel; (T.F.); (E.P.); (A.H.)
| |
Collapse
|
4
|
Faerman A, Buchanan DM, Williams NR. Transcranial magnetic stimulation as a countermeasure for behavioral and neuropsychological risks of long-duration and deep-space missions. NPJ Microgravity 2024; 10:58. [PMID: 38806522 PMCID: PMC11133369 DOI: 10.1038/s41526-024-00401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Affiliation(s)
- Afik Faerman
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Derrick M Buchanan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Nolan R Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Novak P. Head-down tilt reduces the heart rate in postural tachycardia syndrome in acute setting: a pilot study. Neurol Sci 2024; 45:1719-1723. [PMID: 37919442 DOI: 10.1007/s10072-023-07153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Reduced preload and thoracic blood volume accompany postural tachycardia syndrome (POTS). Head-down tilt (HDT) increases both preload and intrathoracic blood volume. The objective of this study was to assess the safety and efficacy of HDT in POTS in acute settings. METHODS This retrospective study evaluated POTS patients. Analyzed data included heart rate, blood pressure, cerebral blood flow velocity (CBFv) in the middle cerebral artery, and capnography. The baseline supine hemodynamic data were compared with the data obtained at the second minute of the -10° HDT. A linear mixed-effects model was used to assess the effect of HDT on hemodynamic variables. RESULTS The HDT was explored in seven POTS patients and an additional seven POTS patients without HDT served as controls. In the HDT arm, four POTS patients had overlapping diagnoses of myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) and one patient had comorbidity of post-acute sequelae of SARS-CoV-2 infection (PASC). HDT lowered heart rate by 10% and increased end-tidal CO2 by 8%. There was no change in other cardiovascular variables. CONCLUSIONS In the acute setting, HDT is safe. HDT reduces the heart rate presumably by modulating baroreflex by enhancing preload and stroke volume, which in turn increases thoracic blood volume with a net effect of parasympathetic cardiovagal activation and/or sympathetic withdrawal. This pilot study provides a foundation to proceed with longitudinal studies exploring the long-term effect of repetitive HDT in conditions associated with preload failure such as POTS, ME/CSF, and PASC.
Collapse
Affiliation(s)
- Peter Novak
- Autonomic Laboratory, Department of Neurology, Brigham and Women's Faulkner Hospital, Harvard Medical School, 1153 Centre Street, Boston, MA, 02130, USA.
| |
Collapse
|
6
|
Li Z, Wu J, Zhao T, Wei Y, Xu Y, Liu Z, Li X, Chen X. Microglial activation in spaceflight and microgravity: potential risk of cognitive dysfunction and poor neural health. Front Cell Neurosci 2024; 18:1296205. [PMID: 38425432 PMCID: PMC10902453 DOI: 10.3389/fncel.2024.1296205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Due to the increased crewed spaceflights in recent years, it is vital to understand how the space environment affects human health. A lack of gravitational force is known to risk multiple physiological functions of astronauts, particularly damage to the central nervous system (CNS). As innate immune cells of the CNS, microglia can transition from a quiescent state to a pathological state, releasing pro-inflammatory cytokines that contribute to neuroinflammation. There are reports indicating that microglia can be activated by simulating microgravity or exposure to galactic cosmic rays (GCR). Consequently, microglia may play a role in the development of neuroinflammation during spaceflight. Prolonged spaceflight sessions raise concerns about the chronic activation of microglia, which could give rise to various neurological disorders, posing concealed risks to the neural health of astronauts. This review summarizes the risks associated with neural health owing to microglial activation and explores the stressors that trigger microglial activation in the space environment. These stressors include GCR, microgravity, and exposure to isolation and stress. Of particular focus is the activation of microglia under microgravity conditions, along with the proposal of a potential mechanism.
Collapse
Affiliation(s)
- Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Jiarui Wu
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Tianyuan Zhao
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yiyun Wei
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yajing Xu
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xiaoqiong Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| |
Collapse
|
7
|
Lecoq PE, Dupuis C, Mousset X, Benoit-Gonnin X, Peyrin JM, Aider JL. Influence of microgravity on spontaneous calcium activity of primary hippocampal neurons grown in microfluidic chips. NPJ Microgravity 2024; 10:15. [PMID: 38321051 PMCID: PMC10847089 DOI: 10.1038/s41526-024-00355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
The influence of variations of gravity, either hypergravity or microgravity, on the brain of astronauts is a major concern for long journeys in space, to the Moon or to Mars, or simply long-duration missions on the ISS (International Space Station). Monitoring brain activity, before and after ISS missions already demonstrated important and long term effects on the brains of astronauts. In this study, we focus on the influence of gravity variations at the cellular level on primary hippocampal neurons. A dedicated setup has been designed and built to perform live calcium imaging during parabolic flights. During a CNES (Centre National d'Etudes Spatiales) parabolic flight campaign, we were able to observe and monitor the calcium activity of 2D networks of neurons inside microfluidic devices during gravity changes over different parabolas. Our preliminary results clearly indicate a modification of the calcium activity associated to variations of gravity.
Collapse
Affiliation(s)
- Pierre-Ewen Lecoq
- PMMH, ESPCI Paris - PSL, Paris, 75005, France.
- Neurosciences Paris Seine IBPS, UMR8246, Inserm U1130, Sorbonne University, 4 Place Jussieu, Paris, 75005, France.
| | - Chloé Dupuis
- PMMH, ESPCI Paris - PSL, Paris, 75005, France
- Neurosciences Paris Seine IBPS, UMR8246, Inserm U1130, Sorbonne University, 4 Place Jussieu, Paris, 75005, France
| | - Xavier Mousset
- PMMH, ESPCI Paris - PSL, Paris, 75005, France
- Neurosciences Paris Seine IBPS, UMR8246, Inserm U1130, Sorbonne University, 4 Place Jussieu, Paris, 75005, France
| | | | - Jean-Michel Peyrin
- Neurosciences Paris Seine IBPS, UMR8246, Inserm U1130, Sorbonne University, 4 Place Jussieu, Paris, 75005, France.
| | | |
Collapse
|
8
|
Gammeri R, Salatino A, Pyasik M, Cirillo E, Zavattaro C, Serra H, Pia L, Roberts DR, Berti A, Ricci R. Modulation of vestibular input by short-term head-down bed rest affects somatosensory perception: implications for space missions. Front Neural Circuits 2023; 17:1197278. [PMID: 37529715 PMCID: PMC10390228 DOI: 10.3389/fncir.2023.1197278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction On Earth, self-produced somatosensory stimuli are typically perceived as less intense than externally generated stimuli of the same intensity, a phenomenon referred to as somatosensory attenuation (SA). Although this phenomenon arises from the integration of multisensory signals, the specific contribution of the vestibular system and the sense of gravity to somatosensory cognition underlying distinction between self-generated and externally generated sensations remains largely unknown. Here, we investigated whether temporary modulation of the gravitational input by head-down tilt bed rest (HDBR)-a well-known Earth-based analog of microgravity-might significantly affect somatosensory perception of self- and externally generated stimuli. Methods In this study, 40 healthy participants were tested using short-term HDBR. Participants received a total of 40 non-painful self- and others generated electrical stimuli (20 self- and 20 other-generated stimuli) in an upright and HDBR position while blindfolded. After each stimulus, they were asked to rate the perceived intensity of the stimulation on a Likert scale. Results Somatosensory stimulations were perceived as significantly less intense during HDBR compared to upright position, regardless of the agent administering the stimulus. In addition, the magnitude of SA in upright position was negatively correlated with the participants' somatosensory threshold. Based on the direction of SA in the upright position, participants were divided in two subgroups. In the subgroup experiencing SA, the intensity rating of stimulations generated by others decreased significantly during HDBR, leading to the disappearance of the phenomenon of SA. In the second subgroup, on the other hand, reversed SA was not affected by HDBR. Conclusion Modulation of the gravitational input by HDBR produced underestimation of somatosensory stimuli. Furthermore, in participants experiencing SA, the reduction of vestibular inputs by HDBR led to the disappearance of the SA phenomenon. These findings provide new insights into the role of the gravitational input in somatosensory perception and have important implications for astronauts who are exposed to weightlessness during space missions.
Collapse
Affiliation(s)
- Roberto Gammeri
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Adriana Salatino
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Maria Pyasik
- SpAtial, Motor and Bodily Awareness (SAMBA) Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Emanuele Cirillo
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Claudio Zavattaro
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Hilary Serra
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Lorenzo Pia
- SpAtial, Motor and Bodily Awareness (SAMBA) Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Donna R. Roberts
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| | - Anna Berti
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
- SpAtial, Motor and Bodily Awareness (SAMBA) Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Raffaella Ricci
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Farjoud Kouhanjani M, Akbarialiabad H, Asadi-Pooya AA. Science or fiction; living in extremes of the universe (space and under the sea) even with epilepsy: A systematic review. Epilepsy Behav 2023; 144:109261. [PMID: 37267844 DOI: 10.1016/j.yebeh.2023.109261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023]
Abstract
PURPOSE The current systematic review aimed to investigate whether living under the sea or in space is detrimental for patients with epilepsy (PWE). We hypothesized that living under such conditions may predispose PWE to experience seizure recurrence by altering their brain function in a way that predisposes them to seizures. METHODS This systematic review is reported according to the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. On October 26, 2022, we systematically searched PubMed, Scopus, and Embase for relevant articles. RESULTS Our endeavor yielded six papers. One study provided level 2 of evidence, while the rest of the publications provided level 4 or 5 of evidence. Five publications were about the effects of space missions (or simulations), and one manuscript discussed the impacts of underwater experience. CONCLUSION Currently, there is no evidence to make any recommendations about living in extremes of the universe (space and under the sea) with epilepsy. The scientific community should invest more time and effort in comprehensively investigating the potential risks associated with missions and living in such conditions.
Collapse
Affiliation(s)
| | - Hossein Akbarialiabad
- Trauma Research Center, Rajaee Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Faculty, NVH Global Health Academy, Nuvance Health, and the University of Vermont Larner College of Medicine, USA.
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
10
|
Neuromechanical Consequences of Eccentric Load Reduction During the Performance of Weighted Jump Squats. Int J Sports Physiol Perform 2023; 18:255-261. [PMID: 36657466 DOI: 10.1123/ijspp.2022-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE To quantify the acute effects of a spectrum of eccentric load reductions on neuromechanical adjustments during the performance of weighted jump squats (WJSs). METHODS On separate days, 16 well-trained participants performed WJS trials with various eccentric load reductions (0% [body mass only], 25%, 50%, 75%, and 100% [standard WJS] of concentric load) with a mechanical braking unit, while concentric load was set at 30% of peak isometric squat force in all trials. A force platform and a motion-capture system were used to assess neuromuscular performance. RESULTS Peak power output was 6.2% (4.7%) higher when load was reduced by 50% versus 0% (55.4 [7.8] vs 51.9 [7.6] W/kg; P = .001). Compared with no braking (0.326 [0.059] m), jump height was ∼13% to 17% higher for all eccentric load reduction conditions (all P < .001). Vertical ground reaction forces were progressively lower for 25%, 50%, 75%, and 100% loading conditions (-22.1% [14.6%], -32.3% [10.8%], -42.0% [13.2%], and -46.1% [14.7%]; all P ≤ .001) in reference to body mass only. CONCLUSION Eccentric load reduction is advantageous compared with traditional isoinertial loading for improving both jump height and peak power output during the concentric portion of maximal-effort WJS. This practice also decreases mechanical constraints in the lower extremities, which may become beneficial for load-compromised individuals.
Collapse
|
11
|
Saveko A, Bekreneva M, Ponomarev I, Zelenskaya I, Riabova A, Shigueva T, Kitov V, Abu Sheli N, Nosikova I, Rukavishnikov I, Sayenko D, Tomilovskaya E. Impact of different ground-based microgravity models on human sensorimotor system. Front Physiol 2023; 14:1085545. [PMID: 36875039 PMCID: PMC9974674 DOI: 10.3389/fphys.2023.1085545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
This review includes current and updated information about various ground-based microgravity models and their impact on the human sensorimotor system. All known models of microgravity are imperfect in a simulation of the physiological effects of microgravity but have their advantages and disadvantages. This review points out that understanding the role of gravity in motion control requires consideration of data from different environments and in various contexts. The compiled information can be helpful to researchers to effectively plan experiments using ground-based models of the effects of space flight, depending on the problem posed.
Collapse
Affiliation(s)
- Alina Saveko
- Russian Federation State Scientific Center—Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kolev OI, Clement G, Reschke MF. Astronauts eye-head coordination dysfunction over the course of twenty space shuttle flights. J Vestib Res 2023; 33:313-324. [PMID: 37248929 DOI: 10.3233/ves-220127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Coordination of motor activity is adapted to Earth's gravity (1 g). However, during space flight the gravity level changes from Earth gravity to hypergravity during launch, and to microgravity (0 g) in orbit. This transition between gravity levels may alter the coordination between eye and head movements in gaze performance. OBJECTIVE We explored how weightlessness during space flight altered the astronauts' eye-head coordination (EHC) with respect to flight day and target eccentricity. METHODS Thirty-four astronauts of 20 Space Shuttle missions had to acquire visual targets with angular offsets of 20°, 30°, and 49°. RESULTS Measurements of eye, head, and gaze positions collected before and during flight days 1 to 15 indicated changes during target acquisition that varied as a function of flight days and target eccentricity. CONCLUSIONS The in-flight alterations in EHC were presumably the result of a combination of several factors, including a transfer from allocentric to egocentric reference for spatial orientation in absence of a gravitational reference, the generation of slower head movements to attenuate motion sickness, and a decrease in smooth pursuit and vestibulo-ocular reflex performance. These results confirm that humans have several strategies for gaze behavior, between which they switch depending on the environmental conditions.
Collapse
Affiliation(s)
- Ognyan I Kolev
- Neuroscience Laboratories, NASA Johnson Space Center, Houston, TX, USA
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Gilles Clement
- COMETE, INSERM & University of Caen Normandy, Caen, France
- KBRwyle, Houston, TX, USA
| | - Millard F Reschke
- Neuroscience Laboratories, NASA Johnson Space Center, Houston, TX, USA
| |
Collapse
|
13
|
Kumar S, Balyan R, Nair A, Tope R, Kumar V, Shrivastava T, . A, Kalia R, Kaur J. Effect of Change of Position (Supine vs. Steep Trendelenburg) on Bispectral Index Value During Robotic Surgery. Cureus 2022; 14:e29180. [PMID: 36282982 PMCID: PMC9568695 DOI: 10.7759/cureus.29180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/12/2022] Open
Abstract
Background: Bispectral Index (BIS) is used to monitor anesthetic depth and is a useful instrument to keep a check on intraoperative awareness. But there are various situations in which it shows false readings. Our aim of the study was to observe the changes in BIS value with steep Trendelenburg position, which is usually done, in robotic pelvic surgeries. Methods: We included 100 patients in our study who underwent robotic prostatectomies and hysterectomies. After anesthetizing the patient, the patient's heart rate, systolic blood pressure, mean arterial pressure, end-tidal desflurane, end-tidal CO2, and BISwere recorded at three min. intervals, for 15 minutes before and 15 minutes after the Trendelenburg position without surgical stimulus. Results: We found a significant increase in BIS values (p <0.05) after the change of position from supine to steep Trendelenburg. Heart rate, systolic blood pressure, and mean arterial pressure were almost constant. Conclusion: Our study concluded that the BIS value increases when patients were shifted from the supine to Trendelenburg position, which might raise the concern of a decrease in anesthetic depth.
Collapse
|
14
|
Marfia G, Navone SE, Guarnaccia L, Campanella R, Locatelli M, Miozzo M, Perelli P, Della Morte G, Catamo L, Tondo P, Campanella C, Lucertini M, Ciniglio Appiani G, Landolfi A, Garzia E. Space flight and central nervous system: Friends or enemies? Challenges and opportunities for neuroscience and neuro-oncology. J Neurosci Res 2022; 100:1649-1663. [PMID: 35678198 PMCID: PMC9544848 DOI: 10.1002/jnr.25066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Space environment provides many challenges to pilots, astronauts, and space scientists, which are constantly subjected to unique conditions, including microgravity, radiations, hypoxic condition, absence of the day and night cycle, etc. These stressful stimuli have the potential to affect many human physiological systems, triggering physical and biological adaptive changes to re‐establish the homeostatic state. A particular concern regards the risks for the effects of spaceflight on the central nervous system (CNS), as several lines of evidence reported a great impact on neuroplasticity, cognitive functions, neurovestibular system, short‐term memory, cephalic fluid shift, reduction in motor function, and psychological disturbances, especially during long‐term missions. Aside these potential detrimental effects, the other side of the coin reflects the potential benefit of applicating space‐related conditions on Earth‐based life sciences, as cancer research. Here, we focused on examining the effect of real and simulated microgravity on CNS functions, both in humans and in cellular models, browsing the different techniques to experience or mime microgravity on‐ground. Increasing evidence demonstrate that cancer cells, and brain cancer cells in particular, are negatively affected by microgravity, in terms of alteration in cell morphology, proliferation, invasion, migration, and apoptosis, representing an advancing novel side of space‐based investigations. Overall, deeper understandings about the mechanisms by which space environment influences CNS and tumor biology may be promisingly translated into many clinical fields, ranging from aerospace medicine to neuroscience and oncology, representing an enormous pool of knowledge for the implementation of countermeasures and therapeutic applications.
Collapse
Affiliation(s)
- Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Aldo Ravelli' Research Center, Milan, Italy.,Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Aldo Ravelli' Research Center, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Aldo Ravelli' Research Center, Milan, Italy.,Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Monica Miozzo
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Unit of Medical Genetics, ASST Santi Paolo e Carlo, Milan, Italy
| | - Pietro Perelli
- Istituto di Medicina Aerospaziale "Aldo Di Loreto", Aeronautica Militare, Rome, Italy
| | - Giulio Della Morte
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Leonardo Catamo
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Pietro Tondo
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Carmelo Campanella
- Istituto di Medicina Aerospaziale "Aldo Di Loreto", Aeronautica Militare, Roma, Italy
| | | | | | | | - Emanuele Garzia
- Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| |
Collapse
|
15
|
Desai RI, Limoli CL, Stark CEL, Stark SM. Impact of spaceflight stressors on behavior and cognition: A molecular, neurochemical, and neurobiological perspective. Neurosci Biobehav Rev 2022; 138:104676. [PMID: 35461987 DOI: 10.1016/j.neubiorev.2022.104676] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022]
Abstract
The response of the human body to multiple spaceflight stressors is complex, but mounting evidence implicate risks to CNS functionality as significant, able to threaten metrics of mission success and longer-term behavioral and neurocognitive health. Prolonged exposure to microgravity, sleep disruption, social isolation, fluid shifts, and ionizing radiation have been shown to disrupt mechanisms of homeostasis and neurobiological well-being. The overarching goal of this review is to document the existing evidence of how the major spaceflight stressors, including radiation, microgravity, isolation/confinement, and sleep deprivation, alone or in combination alter molecular, neurochemical, neurobiological, and plasma metabolite/lipid signatures that may be linked to operationally-relevant behavioral and cognitive performance. While certain brain region-specific and/or systemic alterations titrated in part with neurobiological outcome, variations across model systems, study design, and the conspicuous absence of targeted studies implementing combinations of spaceflight stressors, confounded the identification of specific signatures having direct relevance to human activities in space. Summaries are provided for formulating new research directives and more predictive readouts of portending change in neurobiological function.
Collapse
Affiliation(s)
- Rajeev I Desai
- Harvard Medical School, McLean Hospital, Behavioral Biology Program, Belmont, MA 02478, USA.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, B146B, Irvine, CA 92697, USA
| | - Craig E L Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| | - Shauna M Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| |
Collapse
|
16
|
EEG as a marker of brain plasticity in clinical applications. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:91-104. [PMID: 35034760 DOI: 10.1016/b978-0-12-819410-2.00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neural networks are dynamic, and the brain has the capacity to reorganize itself. This capacity is named neuroplasticity and is fundamental for many processes ranging from learning and adaptation to new environments to the response to brain injuries. Measures of brain plasticity involve several techniques, including neuroimaging and neurophysiology. Electroencephalography, often used together with other techniques, is a common tool for prognostic and diagnostic purposes, and cortical reorganization is reflected by EEG measurements. Changes of power bands in different cortical areas occur with fatigue and in response to training stimuli leading to learning processes. Sleep has a fundamental role in brain plasticity, restoring EEG bands alterations and promoting consolidation of learning. Exercise and physical inactivity have been extensively studied as both strongly impact brain plasticity. Indeed, EEG studies showed the importance of the physical activity to promote learning and the effects of inactivity or microgravity on cortical reorganization to cope with absent or altered sensorimotor stimuli. Finally, this chapter will describe some of the EEG changes as markers of neural plasticity in neurologic conditions, focusing on cerebrovascular and neurodegenerative diseases. In conclusion, neuroplasticity is the fundamental mechanism necessary to ensure adaptation to new stimuli and situations, as part of the dynamicity of life.
Collapse
|
17
|
Desai RI, Kangas BD, Limoli CL. Nonhuman primate models in the study of spaceflight stressors: Past contributions and future directions. LIFE SCIENCES IN SPACE RESEARCH 2021; 30:9-23. [PMID: 34281669 DOI: 10.1016/j.lssr.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 06/13/2023]
Abstract
Studies in rodents suggest that exposure to distinct spaceflight stressors (e.g., space radiation, isolation/confinement, microgravity) may have a profound impact on an astronaut's ability to perform both simple and complex tasks related to neurocognitive performance, central nervous system (CNS) and vestibular/sensorimotor function. However, limited information is currently available on how combined exposure to the spaceflight stressors will impact CNS-related neurocognitive and neurobiological function in-flight and, as well, terrestrial risk of manifesting neurodegenerative conditions when astronauts return to earth. This information gap has significantly hindered our ability to realistically estimate spaceflight hazard risk to the CNS associated with deep space exploration. Notwithstanding a significant body of work with rodents, there have been very few direct investigations of the impact of these spaceflight stressors in combination and, to our knowledge, no such investigations using nonhuman primate (NHP) animal models. In view of the widely-recognized translational value of NHP data in advancing biomedical discoveries, this research deficiency limits our understanding regarding the impact of individual and combined spaceflight stressors on CNS-related neurobiological function. In this review, we address this knowledge gap by conducting a systematic and comprehensive evaluation of existing research on the impact of exposure to spaceflight stressors on NHP CNS-related function. This review is structured to: a) provide an overarching view of the past contributions of NHPs to spaceflight research as well as the strengths, limitations, and translational value of NHP research in its own right and within the existing context of NASA-relevant rodent research; b) highlight specific conclusions based on the published literature and areas needed for future endeavors; c) describe critical research gaps and priorities in NHP research to facilitate NASA's efforts to bridge the key knowledge gaps that currently exist in translating rodent data to humans; and d) provide a roadmap of recommendations for NASA regarding the availability, validity, strengths, and limitations of various NHP models for future targeted research.
Collapse
Affiliation(s)
- Rajeev I Desai
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| |
Collapse
|
18
|
Brauns K, Friedl-Werner A, Maggioni MA, Gunga HC, Stahn AC. Head-Down Tilt Position, but Not the Duration of Bed Rest Affects Resting State Electrocortical Activity. Front Physiol 2021; 12:638669. [PMID: 33716785 PMCID: PMC7951060 DOI: 10.3389/fphys.2021.638669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Adverse cognitive and behavioral conditions and psychiatric disorders are considered a critical and unmitigated risk during future long-duration space missions (LDSM). Monitoring and mitigating crew health and performance risks during these missions will require tools and technologies that allow to reliably assess cognitive performance and mental well-being. Electroencephalography (EEG) has the potential to meet the technical requirements for the non-invasive and objective monitoring of neurobehavioral conditions during LDSM. Weightlessness is associated with fluid and brain shifts, and these effects could potentially challenge the interpretation of resting state EEG recordings. Head-down tilt bed rest (HDBR) provides a unique spaceflight analog to study these effects on Earth. Here, we present data from two long-duration HDBR experiments, which were used to systematically investigate the time course of resting state electrocortical activity during prolonged HDBR. EEG spectral power significantly reduced within the delta, theta, alpha, and beta frequency bands. Likewise, EEG source localization revealed significantly lower activity in a broad range of centroparietal and occipital areas within the alpha and beta frequency domains. These changes were observed shortly after the onset of HDBR, did not change throughout HDBR, and returned to baseline after the cessation of bed rest. EEG resting state functional connectivity was not affected by HDBR. The results provide evidence for a postural effect on resting state brain activity that persists throughout long-duration HDBR, indicating that immobilization and inactivity per se do not affect resting state electrocortical activity during HDBR. Our findings raise an important issue on the validity of EEG to identify the time course of changes in brain function during prolonged HBDR, and highlight the importance to maintain a consistent body posture during all testing sessions, including data collections at baseline and recovery.
Collapse
Affiliation(s)
- Katharina Brauns
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | - Anika Friedl-Werner
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany.,INSERM U 1075 COMETE, Université de Normandie, Caen, France
| | - Martina A Maggioni
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Hanns-Christian Gunga
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | - Alexander C Stahn
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Yin F, Ni D, Xu C, Yan X, Ma K, Zhang X, Gao R, Zhang G. Auras in intractable frontal lobe epilepsy: Clinical characteristics, values, and limitations. Epilepsy Behav 2021; 115:107724. [PMID: 33423014 DOI: 10.1016/j.yebeh.2020.107724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Auras are essential in preoperative evaluation and can provide valuable information for delineating seizure onset zones. Frontal lobe epilepsy (FLE) is the second most common focal epilepsy, while a few studies have focused on auras in FLE. To better understand FLE, we analyzed the clinical characteristics, values, and limitations of auras in FLE. The incidence rate of aura in FLE was 37.9% in our study. We included 54 patients and 76 auras in 11 categories were reported. The rate of auras in the decreasing order are as follows: autonomic aura; emotional aura; somatosensory aura; psychic aura; cephalic aura; abdominal aura; whole-body sensory aura, visual aura; auditory aura; and vestibular and unclassified aura. A significant number of aura types can be reported by FLE patients; autonomic aura was the most frequent category and somatosensory auras are most likely associated with the contralateral motor areas.
Collapse
Affiliation(s)
- Fangzhao Yin
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Kai Ma
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
20
|
Buoite Stella A, Ajčević M, Furlanis G, Manganotti P. Neurophysiological adaptations to spaceflight and simulated microgravity. Clin Neurophysiol 2020; 132:498-504. [PMID: 33450569 DOI: 10.1016/j.clinph.2020.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 01/03/2023]
Abstract
Changes in physiological functions after spaceflight and simulated spaceflight involve several mechanisms. Microgravity is one of them and it can be partially reproduced with models, such as head down bed rest (HDBR). Yet, only a few studies have investigated in detail the complexity of neurophysiological systems and their integration to maintain homeostasis. Central nervous system changes have been studied both in their structural and functional component with advanced techniques, such as functional magnetic resonance (fMRI), showing the main involvement of the cerebellum, cortical sensorimotor, and somatosensory areas, as well as vestibular-related pathways. Analysis of electroencephalography (EEG) led to contrasting results, mainly due to the different factors affecting brain activity. The study of corticospinal excitability may enable a deeper understanding of countermeasures' effect, since greater excitability has been shown being correlated with better preservation of functions. Less is known about somatosensory evoked potentials and peripheral nerve function, yet they may be involved in a homeostatic mechanism fundamental to thermoregulation. Extending the knowledge of such alterations during simulated microgravity may be useful not only for space exploration, but for its application in clinical conditions and for life on Earth, as well.
Collapse
Affiliation(s)
- Alex Buoite Stella
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Miloš Ajčević
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy; Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Giovanni Furlanis
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy.
| |
Collapse
|
21
|
Romanella SM, Sprugnoli G, Ruffini G, Seyedmadani K, Rossi S, Santarnecchi E. Noninvasive Brain Stimulation & Space Exploration: Opportunities and Challenges. Neurosci Biobehav Rev 2020; 119:294-319. [PMID: 32937115 PMCID: PMC8361862 DOI: 10.1016/j.neubiorev.2020.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/22/2020] [Accepted: 09/03/2020] [Indexed: 01/11/2023]
Abstract
As NASA prepares for longer space missions aiming for the Moon and Mars, astronauts' health and performance are becoming a central concern due to the threats associated with galactic cosmic radiation, unnatural gravity fields, and life in extreme environments. In space, the human brain undergoes functional and structural changes related to fluid shift and changes in intracranial pressure. Behavioral abnormalities, such as cognitive deficits, sleep disruption, and visuomotor difficulties, as well as psychological effects, are also an issue. We discuss opportunities and challenges of noninvasive brain stimulation (NiBS) methods - including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) - to support space exploration in several ways. NiBS includes safe and portable techniques already applied in a wide range of cognitive and motor domains, as well as therapeutically. NiBS could be used to enhance in-flight performance, supporting astronauts during pre-flight Earth-based training, as well as to identify biomarkers of post-flight brain changes for optimization of rehabilitation/compensatory strategies. We review these NiBS techniques and their effects on brain physiology, psychology, and cognition.
Collapse
Affiliation(s)
- S M Romanella
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - G Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - G Ruffini
- Neuroelectrics Corporation, Cambridge, MA, USA
| | - K Seyedmadani
- University Space Research Association NASA Johnson Space Center, Houston, TX, USA; Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA
| | - S Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - E Santarnecchi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Jung JY, Cho HY, Kang CK. Brain activity during a working memory task in different postures: an EEG study. ERGONOMICS 2020; 63:1359-1370. [PMID: 32552557 DOI: 10.1080/00140139.2020.1784467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
While working is more comfortable in a supine position and healthier in a standing, most people work in a sitting. However, it is unclear whether there are differences in brain activity efficiency in different postures. Here, we, therefore, compared changes in brain activity across three different postures to determine the optimal posture for performing working memory tasks. Their effect on brain activity was examined using EEG signals together with the information of accuracy and reaction times during 2-back task in 24 subjects. Substantial differences in brain waves were observed at sitting and standing positions compared to the supine, especially in delta waves and frontal lobe, where is known to improve the modulation of brain activity efficiently. Brain efficiency was higher during standing and sitting than in a supine. These findings show that postural changes may affect the efficiency of brain activity during working memory tasks. Practitioner summary: Differences in brain efficiency between different postures during working memory tasks have not been explored. This study suggests that efficiency in several brain areas is higher during sitting and standing than in a supine position. This finding has important implications regarding workplace environments. Furthermore, this result would be useful to improve accomplishment and reduce negative effects of work posture. Abbreviations: EEG: electroencephalogram; PSQI: Pittsburgh sleep quality index; KSS: Karolinska sleepiness scale; FFT: fast fourier transform; ROI: region of interest; ANS: autonomic nervous system; Fp: prefrontal; AF: anterior frontal; frontal; Fz: midline frontal; temporal; central; Cz: midline central; P: parietal; Pz: midline parietal; O: occipital; Oz: midline occipital.
Collapse
Affiliation(s)
- Ju-Yeon Jung
- Department of Health Science, Gachon University Graduate School, Incheon, Republic of Korea
| | - Hwi-Young Cho
- Department of Health Science, Gachon University Graduate School, Incheon, Republic of Korea
- Department of Physical Therapy, Gachon University, Incheon, Republic of Korea
| | - Chang-Ki Kang
- Department of Health Science, Gachon University Graduate School, Incheon, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
- Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, Republic of Korea
- Department of Radiological Science, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
23
|
Badran BW, Caulfield KA, Cox C, Lopez JW, Borckardt JJ, DeVries WH, Summers P, Kerns S, Hanlon CA, McTeague LM, George MS, Roberts DR. Brain stimulation in zero gravity: transcranial magnetic stimulation (TMS) motor threshold decreases during zero gravity induced by parabolic flight. NPJ Microgravity 2020; 6:26. [PMID: 33024819 PMCID: PMC7505837 DOI: 10.1038/s41526-020-00116-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023] Open
Abstract
We are just beginning to understand how spaceflight may impact brain function. As NASA proceeds with plans to send astronauts to the Moon and commercial space travel interest increases, it is critical to understand how the human brain and peripheral nervous system respond to zero gravity. Here, we developed and refined head-worn transcranial magnetic stimulation (TMS) systems capable of reliably and quickly determining the amount of electromagnetism each individual needs to detect electromyographic (EMG) threshold levels in the thumb (called the resting motor threshold (rMT)). We then collected rMTs in 10 healthy adult participants in the laboratory at baseline, and subsequently at three time points onboard an airplane: (T1) pre-flight at Earth gravity, (T2) during zero gravity periods induced by parabolic flight and (T3) post-flight at Earth gravity. Overall, the subjects required 12.6% less electromagnetism applied to the brain to cause thumb muscle activation during weightlessness compared to Earth gravity, suggesting neurophysiological changes occur during brief periods of zero gravity. We discuss several candidate explanations for this finding, including upward shift of the brain within the skull, acute increases in cortical excitability, changes in intracranial pressure, and diffuse spinal or neuromuscular system effects. All of these possible explanations warrant further study. In summary, we documented neurophysiological changes during brief episodes of zero gravity and thus highlighting the need for further studies of human brain function in altered gravity conditions to optimally prepare for prolonged microgravity exposure during spaceflight.
Collapse
Affiliation(s)
- Bashar W Badran
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Kevin A Caulfield
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Claire Cox
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - James W Lopez
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Jeffrey J Borckardt
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA.,Ralph H. Johnson VA Medical Center, Charleston, SC 29401 USA.,Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425 USA
| | - William H DeVries
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Philipp Summers
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Suzanne Kerns
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Colleen A Hanlon
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Lisa M McTeague
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA.,Ralph H. Johnson VA Medical Center, Charleston, SC 29401 USA
| | - Mark S George
- Brain Stimulation Division, Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA.,Ralph H. Johnson VA Medical Center, Charleston, SC 29401 USA
| | - Donna R Roberts
- Department of Radiology, Medical University of South Carolina, Charleston, SC 29425 USA
| |
Collapse
|
24
|
Stahn AC, Riemer M, Wolbers T, Werner A, Brauns K, Besnard S, Denise P, Kühn S, Gunga HC. Spatial Updating Depends on Gravity. Front Neural Circuits 2020; 14:20. [PMID: 32581724 PMCID: PMC7291770 DOI: 10.3389/fncir.2020.00020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
As we move through an environment the positions of surrounding objects relative to our body constantly change. Maintaining orientation requires spatial updating, the continuous monitoring of self-motion cues to update external locations. This ability critically depends on the integration of visual, proprioceptive, kinesthetic, and vestibular information. During weightlessness gravity no longer acts as an essential reference, creating a discrepancy between vestibular, visual and sensorimotor signals. Here, we explore the effects of repeated bouts of microgravity and hypergravity on spatial updating performance during parabolic flight. Ten healthy participants (four women, six men) took part in a parabolic flight campaign that comprised a total of 31 parabolas. Each parabola created about 20–25 s of 0 g, preceded and followed by about 20 s of hypergravity (1.8 g). Participants performed a visual-spatial updating task in seated position during 15 parabolas. The task included two updating conditions simulating virtual forward movements of different lengths (short and long), and a static condition with no movement that served as a control condition. Two trials were performed during each phase of the parabola, i.e., at 1 g before the start of the parabola, at 1.8 g during the acceleration phase of the parabola, and during 0 g. Our data demonstrate that 0 g and 1.8 g impaired pointing performance for long updating trials as indicated by increased variability of pointing errors compared to 1 g. In contrast, we found no support for any changes for short updating and static conditions, suggesting that a certain degree of task complexity is required to affect pointing errors. These findings are important for operational requirements during spaceflight because spatial updating is pivotal for navigation when vision is poor or unreliable and objects go out of sight, for example during extravehicular activities in space or the exploration of unfamiliar environments. Future studies should compare the effects on spatial updating during seated and free-floating conditions, and determine at which g-threshold decrements in spatial updating performance emerge.
Collapse
Affiliation(s)
- Alexander Christoph Stahn
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | - Martin Riemer
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Thomas Wolbers
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anika Werner
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany.,Normandie Université, UNICAEN, INSERM, COMETE, Caen, France
| | - Katharina Brauns
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | | | - Pierre Denise
- Normandie Université, UNICAEN, INSERM, COMETE, Caen, France
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Hanns-Christian Gunga
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| |
Collapse
|
25
|
Electrophysiological experiments in microgravity: lessons learned and future challenges. NPJ Microgravity 2018; 4:7. [PMID: 29619409 PMCID: PMC5876337 DOI: 10.1038/s41526-018-0042-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 02/08/2023] Open
Abstract
Advances in electrophysiological experiments have led to the discovery of mechanosensitive ion channels (MSCs) and the identification of the physiological function of specific MSCs. They are believed to play important roles in mechanosensitive pathways by allowing for cells to sense their mechanical environment. However, the physiological function of many MSCs has not been conclusively identified. Therefore, experiments have been developed that expose cells to various mechanical loads, such as shear flow, membrane indentation, osmotic challenges and hydrostatic pressure. In line with these experiments, mechanical unloading, as experienced in microgravity, represents an interesting alternative condition, since exposure to microgravity leads to a series of physiological adaption processes. As outlined in this review, electrophysiological experiments performed in microgravity have shown an influence of gravity on biological functions depending on ion channels at all hierarchical levels, from the cellular level to organs. In this context, calcium signaling represents an interesting cellular pathway, as it involves the direct action of calcium-permeable ion channels, and specific gravitatic cells have linked graviperception to this pathway. Multiple key proteins in the graviperception pathways have been identified. However, measurements on vertebrae cells have revealed controversial results. In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes are altered in mechanically unloaded conditions. Future experiments may provide a better understanding of the underlying mechanisms.
Collapse
|
26
|
Wang Y, Zhou Y, Rao LL, Zheng R, Liang ZY, Chen XP, Tan C, Tian ZQ, Wang CH, Bai YQ, Chen SG, Li S. Effect of 45-Day −6° Head-Down Bed Rest on Cooperation and Aggression. APPLIED COGNITIVE PSYCHOLOGY 2017. [DOI: 10.1002/acp.3346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yun Wang
- Key Laboratory of Behavioral Science, Institute of Psychology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Yuan Zhou
- Key Laboratory of Behavioral Science, Institute of Psychology; Chinese Academy of Sciences; Beijing China
| | - Li-Lin Rao
- Key Laboratory of Behavioral Science, Institute of Psychology; Chinese Academy of Sciences; Beijing China
| | - Rui Zheng
- Key Laboratory of Behavioral Science, Institute of Psychology; Chinese Academy of Sciences; Beijing China
| | - Zhu-Yuan Liang
- Key Laboratory of Behavioral Science, Institute of Psychology; Chinese Academy of Sciences; Beijing China
| | - Xiao-Ping Chen
- National Key Laboratory of Human Factors Engineering; China Astronaut Research and Training Center; Beijing China
| | - Cheng Tan
- National Key Laboratory of Human Factors Engineering; China Astronaut Research and Training Center; Beijing China
| | - Zhi-Qiang Tian
- National Key Laboratory of Human Factors Engineering; China Astronaut Research and Training Center; Beijing China
| | - Chun-Hui Wang
- National Key Laboratory of Human Factors Engineering; China Astronaut Research and Training Center; Beijing China
| | - Yan-Qiang Bai
- National Key Laboratory of Human Factors Engineering; China Astronaut Research and Training Center; Beijing China
| | - Shan-Guang Chen
- National Key Laboratory of Human Factors Engineering; China Astronaut Research and Training Center; Beijing China
| | - Shu Li
- Key Laboratory of Behavioral Science, Institute of Psychology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
27
|
Abstract
Microgravity, confinement, isolation, and immobilization are just some of the features astronauts have to cope with during space missions. Consequently, long-duration space travel can have detrimental effects on human physiology. Although research has focused on the cardiovascular and musculoskeletal system in particular, the exact impact of spaceflight on the human central nervous system remains to be determined. Previous studies have reported psychological problems, cephalic fluid shifts, neurovestibular problems, and cognitive alterations, but there is paucity in the knowledge of the underlying neural substrates. Previous space analogue studies and preliminary spaceflight studies have shown an involvement of the cerebellum, cortical sensorimotor, and somatosensory areas and the vestibular pathways. Extending this knowledge is crucial, especially in view of long-duration interplanetary missions (e.g., Mars missions) and space tourism. In addition, the acquired insight could be relevant for vestibular patients, patients with neurodegenerative disorders, as well as the elderly population, coping with multisensory deficit syndromes, immobilization, and inactivity.
Collapse
|
28
|
Van Ombergen A, Laureys S, Sunaert S, Tomilovskaya E, Parizel PM, Wuyts FL. Spaceflight-induced neuroplasticity in humans as measured by MRI: what do we know so far? NPJ Microgravity 2017. [PMID: 28649624 PMCID: PMC5445591 DOI: 10.1038/s41526-016-0010-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Space travel poses an enormous challenge on the human body; microgravity, ionizing radiation, absence of circadian rhythm, confinement and isolation are just some of the features associated with it. Obviously, all of the latter can have an impact on human physiology and even induce detrimental changes. Some organ systems have been studied thoroughly under space conditions, however, not much is known on the functional and morphological effects of spaceflight on the human central nervous system. Previous studies have already shown that central nervous system changes occur during and after spaceflight in the form of neurovestibular problems, alterations in cognitive function and sensory perception, cephalic fluid shifts and psychological disturbances. However, little is known about the underlying neural substrates. In this review, we discuss the current limited knowledge on neuroplastic changes in the human central nervous system associated with spaceflight (actual or simulated) as measured by magnetic resonance imaging-based techniques. Furthermore, we discuss these findings as well as their future perspectives, since this can encourage future research into this delicate and intriguing aspect of spaceflight. Currently, the literature suffers from heterogeneous experimental set-ups and therefore, the lack of comparability of findings among studies. However, the cerebellum, cortical sensorimotor and somatosensory areas and vestibular-related pathways seem to be involved across different studies, suggesting that these brain regions are most affected by (simulated) spaceflight. Extending this knowledge is crucial, especially with the eye on long-duration interplanetary missions (e.g. Mars) and space tourism.
Collapse
Affiliation(s)
- Angelique Van Ombergen
- Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020 Belgium.,Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk (Antwerp), 2610 Belgium.,Faculty of Sciences, Department of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020 Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Research & Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Stefan Sunaert
- KU Leuven-University of Leuven, Department of Imaging & Pathology, Translational MRI, Leuven, Belgium
| | - Elena Tomilovskaya
- SSC RF-Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Paul M Parizel
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Floris L Wuyts
- Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020 Belgium.,Faculty of Sciences, Department of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020 Belgium
| |
Collapse
|
29
|
Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats. Neuroreport 2016; 27:1202-5. [PMID: 27607230 DOI: 10.1097/wnr.0000000000000675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.
Collapse
|
30
|
Thibault RT, Raz A. Imaging Posture Veils Neural Signals. Front Hum Neurosci 2016; 10:520. [PMID: 27818629 PMCID: PMC5073137 DOI: 10.3389/fnhum.2016.00520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/30/2016] [Indexed: 01/19/2023] Open
Abstract
Whereas modern brain imaging often demands holding body positions incongruent with everyday life, posture governs both neural activity and cognitive performance. Humans commonly perform while upright; yet, many neuroimaging methodologies require participants to remain motionless and adhere to non-ecological comportments within a confined space. This inconsistency between ecological postures and imaging constraints undermines the transferability and generalizability of many a neuroimaging assay. Here we highlight the influence of posture on brain function and behavior. Specifically, we challenge the tacit assumption that brain processes and cognitive performance are comparable across a spectrum of positions. We provide an integrative synthesis regarding the increasingly prominent influence of imaging postures on autonomic function, mental capacity, sensory thresholds, and neural activity. Arguing that neuroimagers and cognitive scientists could benefit from considering the influence posture wields on both general functioning and brain activity, we examine existing imaging technologies and the potential of portable and versatile imaging devices (e.g., functional near infrared spectroscopy). Finally, we discuss ways that accounting for posture may help unveil the complex brain processes of everyday cognition.
Collapse
Affiliation(s)
- Robert T Thibault
- Integrated Program in Neuroscience, Department of Neurology and Neurosurgery, McGill University Montreal, QC, Canada
| | - Amir Raz
- Integrated Program in Neuroscience, Department of Neurology and Neurosurgery, McGill UniversityMontreal, QC, Canada; The Lady Davis Institute for Medical Research at the Jewish General HospitalMontreal, QC, Canada; Department of Psychiatry, Institute for Community and Family Psychiatry, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
31
|
Toward Psychoinformatics: Computer Science Meets Psychology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:2983685. [PMID: 27403204 PMCID: PMC4923556 DOI: 10.1155/2016/2983685] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/08/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
The present paper provides insight into an emerging research discipline called Psychoinformatics. In the context of Psychoinformatics, we emphasize the cooperation between the disciplines of psychology and computer science in handling large data sets derived from heavily used devices, such as smartphones or online social network sites, in order to shed light on a large number of psychological traits, including personality and mood. New challenges await psychologists in light of the resulting "Big Data" sets, because classic psychological methods will only in part be able to analyze this data derived from ubiquitous mobile devices, as well as other everyday technologies. As a consequence, psychologists must enrich their scientific methods through the inclusion of methods from informatics. The paper provides a brief review of one area of this research field, dealing mainly with social networks and smartphones. Moreover, we highlight how data derived from Psychoinformatics can be combined in a meaningful way with data from human neuroscience. We close the paper with some observations of areas for future research and problems that require consideration within this new discipline.
Collapse
|
32
|
Liao Y, Lei M, Huang H, Wang C, Duan J, Li H, Liu X. The time course of altered brain activity during 7-day simulated microgravity. Front Behav Neurosci 2015; 9:124. [PMID: 26029071 PMCID: PMC4428138 DOI: 10.3389/fnbeh.2015.00124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/29/2015] [Indexed: 11/21/2022] Open
Abstract
Microgravity causes multiple changes in physical and mental levels in humans, which can induce performance deficiency among astronauts. Studying the variations in brain activity that occur during microgravity would help astronauts to deal with these changes. In the current study, resting-state functional magnetic resonance imaging (rs-fMRI) was used to observe the variations in brain activity during a 7-day head down tilt (HDT) bed rest, which is a common and reliable model for simulated microgravity. The amplitudes of low frequency fluctuation (ALFF) of twenty subjects were recorded pre-head down tilt (pre-HDT), during a bed rest period (HDT0), and then each day in the HDT period (HDT1–HDT7). One-way analysis of variance (ANOVA) of the ALFF values over these 8 days was used to test the variation across time period (p < 0.05, corrected). Compared to HDT0, subjects presented lower ALFF values in the posterior cingulate cortex (PCC) and higher ALFF values in the anterior cingulate cortex (ACC) during the HDT period, which may partially account for the lack of cognitive flexibility and alterations in autonomic nervous system seen among astronauts in microgravity. Additionally, the observed improvement in function in CPL during the HDT period may play a compensatory role to the functional decline in the paracentral lobule to sustain normal levels of fine motor control for astronauts in a microgravity environment. Above all, those floating brain activities during 7 days of simulated microgravity may indicate that the brain self-adapts to help astronauts adjust to the multiple negative stressors encountered in a microgravity environment.
Collapse
Affiliation(s)
- Yang Liao
- Department of Medical Psychology, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Meiying Lei
- Mental Health Center, 303 Hospital of PLA Nanning, Guangxi, China
| | - Haibo Huang
- Department of Radiology, 303 Hospital of PLA Nanning, Guangxi, China
| | - Chuang Wang
- Mental Health Center, 303 Hospital of PLA Nanning, Guangxi, China
| | - Jiaobo Duan
- Department of Medical Psychology, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Hongzheng Li
- Mental Health Center, 303 Hospital of PLA Nanning, Guangxi, China
| | - Xufeng Liu
- Department of Medical Psychology, Fourth Military Medical University Xi'an, Shaanxi, China
| |
Collapse
|
33
|
Catherwood D, Edgar GK, Nikolla D, Alford C, Brookes D, Baker S, White S. Mapping brain activity during loss of situation awareness: an EEG investigation of a basis for top-down influence on perception. HUMAN FACTORS 2014; 56:1428-1452. [PMID: 25509823 DOI: 10.1177/0018720814537070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVE The objective was to map brain activity during early intervals in loss of situation awareness (SA) to examine any co-activity in visual and high-order regions, reflecting grounds for top-down influences on Level I SA. BACKGROUND Behavioral and neuroscience evidence indicates that high-order brain areas can engage before perception is complete. Inappropriate top-down messages may distort perception during loss of SA. Evidence of co-activity of perceptual and high-order regions would not confirm such influence but may reflect a basis for it. METHOD SA and bias were measured using Quantitative Analysis of Situation Awareness and brain activity recorded with 128-channel EEG (electroencephalography) during loss of SA. One task (15 participants) required identification of a target pattern, and another task (10 participants) identification of "threat" in urban scenes. In both, the target was changed without warning, enforcing loss of SA. Key regions of brain activity were identified using source localization with standardized low-resolution electrical tomography (sLORETA) 150 to 160 ms post-stimulus onset in both tasks and also 100 to 110 ms in the second task. RESULTS In both tasks, there was significant loss of SA and bias shift (p < .02), associated at both 150- and 100-ms intervals with co-activity of visual regions and prefrontal, anterior cingulate and parietal regions linked to cognition under uncertainty. CONCLUSION There was early co-activity in high- order and visual perception regions that may provide a basis for top-down influence on perception. APPLICATION Co-activity in high- and low-order brain regions may explain either beneficial or disruptive top-down influence on perception affecting Level I SA in real-world operations.
Collapse
|
34
|
Lee SW, Choi SE, Han JH, Park SW, Kang WJ, Choi YK. Effect of beach chair position on bispectral index values during arthroscopic shoulder surgery. Korean J Anesthesiol 2014; 67:235-9. [PMID: 25368780 PMCID: PMC4216784 DOI: 10.4097/kjae.2014.67.4.235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/03/2022] Open
Abstract
Background Bispectral index (BIS) monitoring reduces the cases of intraoperative awareness. Several factors can alter BIS readings without affecting the depth of anesthesia. We conducted a study to assess the impact of beach chair position (sitting position) on BIS readings. Methods General anesthesia was administered to 30 patients undergoing arthroscopic shoulder surgery. Patients were kept in neutral position (supine) for 10 minutes and BIS readings, mean arterial blood pressure, heart rate, end-tidal carbon dioxide, and end-tidal sevoflurane were recorded. Patients were then shifted to beach chair position. After 15 minutes, data were recorded. Results A significant decrease in BIS values (P < 0.01) associated with a position change from neutral position to beach chair position was evident. Conclusions BIS values are significantly decreased in the beach chair position compared with the neutral position and might affect interpretation of the depth of anesthesia.
Collapse
Affiliation(s)
- Sang Wook Lee
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Soo Eun Choi
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Jin Hee Han
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Sung-Wook Park
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Wha Ja Kang
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Young Kyoo Choi
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Medical Center, Seoul, Korea
| |
Collapse
|
35
|
Cognitive neuroscience in space. Life (Basel) 2014; 4:281-94. [PMID: 25370373 PMCID: PMC4206847 DOI: 10.3390/life4030281] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/11/2014] [Accepted: 06/23/2014] [Indexed: 11/28/2022] Open
Abstract
Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.
Collapse
|
36
|
When neuroscience gets wet and hardcore: neurocognitive markers obtained during whole body water immersion. Exp Brain Res 2014; 232:3325-31. [DOI: 10.1007/s00221-014-4019-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/12/2014] [Indexed: 11/27/2022]
|
37
|
Thibault RT, Lifshitz M, Jones JM, Raz A. Posture alters human resting-state. Cortex 2014; 58:199-205. [PMID: 25041937 DOI: 10.1016/j.cortex.2014.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/24/2014] [Accepted: 06/13/2014] [Indexed: 12/19/2022]
Abstract
Neuroimaging is ubiquitous; however, neuroimagers seldom investigate the putative impact of posture on brain activity. Whereas participants in most psychological experiments sit upright, many prominent neuroimaging techniques (e.g., functional magnetic resonance imaging (fMRI)) require participants to lie supine. Such postural discrepancies may hold important implications for brain function in general and for fMRI in particular. We directly investigated the effect of posture on spontaneous brain dynamics by recording scalp electrical activity in four orthostatic conditions (lying supine, inclined at 45°, sitting upright, and standing erect). Here we show that upright versus supine posture increases widespread high-frequency oscillatory activity. Our electroencephalographic findings highlight the importance of posture as a determinant in neuroimaging. When generalizing supine imaging results to ecological human cognition, therefore, cognitive neuroscientists would benefit from considering the influence of posture on brain dynamics.
Collapse
Affiliation(s)
| | - Michael Lifshitz
- McGill University, 3775 University, Montreal, QC, H3A 2B4, Canada
| | - Jennifer M Jones
- McGill University, 3775 University, Montreal, QC, H3A 2B4, Canada
| | - Amir Raz
- McGill University, 3775 University, Montreal, QC, H3A 2B4, Canada; The Lady Davis Institute for Medical Research & Institute for Family and Community Psychiatry, Jewish General Hospital, Montreal, QC, H3T 1E4, Canada.
| |
Collapse
|
38
|
Psychophysiological responses of artificial gravity exposure to humans. Eur J Appl Physiol 2014; 114:2061-71. [DOI: 10.1007/s00421-014-2927-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
|
39
|
Zhou Y, Wang Y, Rao LL, Liang ZY, Chen XP, Zheng D, Tan C, Tian ZQ, Wang CH, Bai YQ, Chen SG, Li S. Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity. Front Behav Neurosci 2014; 8:200. [PMID: 24926242 PMCID: PMC4046318 DOI: 10.3389/fnbeh.2014.00200] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/18/2014] [Indexed: 01/01/2023] Open
Abstract
Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Yun Wang
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Li-Lin Rao
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Zhu-Yuan Liang
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Xiao-Ping Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center Beijing, China
| | - Dang Zheng
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Cheng Tan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center Beijing, China
| | - Zhi-Qiang Tian
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center Beijing, China
| | - Chun-Hui Wang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center Beijing, China
| | - Yan-Qiang Bai
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center Beijing, China
| | - Shan-Guang Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center Beijing, China
| | - Shu Li
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
40
|
Marušič U, Meeusen R, Pišot R, Kavcic V. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity. Eur J Sport Sci 2014; 14:813-22. [PMID: 24734884 DOI: 10.1080/17461391.2014.908959] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Understanding the effects of increased and decreased gravity on central nervous system is essential for developing proper physical and cognitive countermeasures to assure safe and effective space missions and human survival in space. This short review covers the available literature on the brain electrocortical activity effects of decreased and increased gravitational force comparing to the 1g Earth conditions. Among all neuroimaging methods such as functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), diffusion tensor imaging (DTI), the electroencephalography (EEG) was found to be suitable method to monitor brain electrocortical activity in the extreme environments. Due to complexity and high cost of space flight missions, ground-based models have been employed to simulate microgravity effects on human body. Surprisingly, there is very limited number of publications reporting gravity-dependent EEG spectral changes. With increased gravity there are initially increased EEG activity in higher frequencies and at around 4 g appears loss of consciousness with accompanying slowing of EEG due to hypoxia. In microgravity, the most prevalent changes in EEG are faster frequencies such as alpha and beta. The results from simulated microgravity (bed rest) are pointing to changes in theta and alpha, representing signs of cortical inhibition. The changes in EEG activity in space flight are attributed to a decreased sensorimotor input while in parabolic flights short and fast transitions from hyper to microgravity presumably reflect lower arousal levels and emotional processes in microgravity. Thus, based on limited research about gravity-related changes in EEG from different environments it is difficult to draw any unequivocal conclusions. Additional systematic studies about electrocortical activity in space and parabolic flights, as well as longer bed rest studies are needed in order to advance knowledge about brain functioning in extreme conditions such as space flights.
Collapse
Affiliation(s)
- Uroš Marušič
- a Science and Research Centre, Institute for Kinesiology Research , University of Primorska , Koper , Slovenia
| | | | | | | |
Collapse
|
41
|
Nuzzo JL, McBride JM. The Effect of Loading and Unloading on Muscle Activity During the Jump Squat. J Strength Cond Res 2013; 27:1758-64. [DOI: 10.1519/jsc.0b013e318291b8b2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Smith C, Goswami N, Robinson R, von der Wiesche M, Schneider S. The relationship between brain cortical activity and brain oxygenation in the prefrontal cortex during hypergravity exposure. J Appl Physiol (1985) 2013; 114:905-10. [PMID: 23372141 DOI: 10.1152/japplphysiol.01426.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Artificial gravity has been proposed as a method to counteract the physiological deconditioning of long-duration spaceflight; however, the effects of hypergravity on the central nervous system has had little study. The study aims to investigate whether there is a relationship between prefrontal cortex brain activity and prefrontal cortex oxygenation during exposure to hypergravity. Twelve healthy participants were selected to undergo hypergravity exposure aboard a short-arm human centrifuge. Participants were exposed to hypergravity in the +Gz axis, starting from 0.6 +Gz for women, and 0.8 +Gz for men, and gradually increasing by 0.1 +Gz until the participant showed signs of syncope. Brain cortical activity was measured using electroencephalography (EEG) and localized to the prefrontal cortex using standard low-resolution brain electromagnetic tomography (LORETA). Prefrontal cortex oxygenation was measured using near-infrared spectroscopy (NIRS). A significant increase in prefrontal cortex activity (P < 0.05) was observed during hypergravity exposure compared with baseline. Prefrontal cortex oxygenation was significantly decreased during hypergravity exposure, with a decrease in oxyhemoglobin levels (P < 0.05) compared with baseline and an increase in deoxyhemoglobin levels (P < 0.05) with increasing +Gz level. No significant correlation was found between prefrontal cortex activity and oxy-/deoxyhemoglobin. It is concluded that the increase in prefrontal cortex activity observed during hypergravity was most likely not the result of increased +Gz values resulting in a decreased oxygenation produced through hypergravity exposure. No significant relationship between prefrontal cortex activity and oxygenation measured by NIRS concludes that brain activity during exposure to hypergravity may be difficult to measure using NIRS. Instead, the increase in prefrontal cortex activity might be attributable to psychological stress, which could pose a problem for the use of a short-arm human centrifuge as a countermeasure.
Collapse
Affiliation(s)
- Craig Smith
- Centre of Human & Aerospace Physiological Sciences, King's College London, Great Britain
| | | | | | | | | |
Collapse
|
43
|
Liao Y, Zhang J, Huang Z, Xi Y, Zhang Q, Zhu T, Liu X. Altered baseline brain activity with 72 h of simulated microgravity--initial evidence from resting-state fMRI. PLoS One 2012; 7:e52558. [PMID: 23285086 PMCID: PMC3528642 DOI: 10.1371/journal.pone.0052558] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/15/2012] [Indexed: 11/19/2022] Open
Abstract
To provide the basis and reference to further insights into the neural activity of the human brain in a microgravity environment, we discuss the amplitude changes of low-frequency brain activity fluctuations using a simulated microgravity model. Twelve male participants between 24 and 31 years old received resting-state fMRI scans in both a normal condition and after 72 hours in a -6° head down tilt (HDT). A paired sample t-test was used to test the amplitude differences of low-frequency brain activity fluctuations between these two conditions. With 72 hours in a -6° HDT, the participants showed a decreased amplitude of low-frequency fluctuations in the left thalamus compared with the normal condition (a combined threshold of P<0.005 and a minimum cluster size of 351 mm(3) (13 voxels), which corresponded with the corrected threshold of P<0.05 determined by AlphaSim). Our findings indicate that a gravity change-induced redistribution of body fluid may disrupt the function of the left thalamus in the resting state, which may contribute to reduced motor control abilities and multiple executive functions in astronauts in a microgravity environment.
Collapse
Affiliation(s)
- Yang Liao
- Department of Psychology, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhiping Huang
- Department of Psychology, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yibin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qianru Zhang
- Department of Psychology, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Tianli Zhu
- Department of Psychology, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xufeng Liu
- Department of Psychology, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail:
| |
Collapse
|
44
|
Rice JK, Rorden C, Little JS, Parra LC. Subject position affects EEG magnitudes. Neuroimage 2012; 64:476-84. [PMID: 23006805 DOI: 10.1016/j.neuroimage.2012.09.041] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 07/13/2012] [Accepted: 09/14/2012] [Indexed: 11/15/2022] Open
Abstract
EEG (electroencephalography) has been used for decades in thousands of research studies and is today a routine clinical tool despite the small magnitude of measured scalp potentials. It is widely accepted that the currents originating in the brain are strongly influenced by the high resistivity of skull bone, but it is less well known that the thin layer of CSF (cerebrospinal fluid) has perhaps an even more important effect on EEG scalp magnitude by spatially blurring the signals. Here it is shown that brain shift and the resulting small changes in CSF layer thickness, induced by changing the subject's position, have a significant effect on EEG signal magnitudes in several standard visual paradigms. For spatially incoherent high-frequency activity the effect produced by switching from prone to supine can be dramatic, increasing occipital signal power by several times for some subjects (on average 80%). MRI measurements showed that the occipital CSF layer between the brain and skull decreases by approximately 30% in thickness when a subject moves from prone to supine position. A multiple dipole model demonstrated that this can indeed lead to occipital EEG signal power increases in the same direction and order of magnitude as those observed here. These results suggest that future EEG studies should control for subjects' posture, and that some studies may consider placing their subjects into the most favorable position for the experiment. These findings also imply that special consideration should be given to EEG measurements from subjects with brain atrophy due to normal aging or neurodegenerative diseases, since the resulting increase in CSF layer thickness could profoundly decrease scalp potential measurements.
Collapse
Affiliation(s)
- Justin K Rice
- City College of the City University of New York, Room ST-403, 160 Convent Avenue, New York, NY, 10031, USA
| | | | | | | |
Collapse
|
45
|
Lin DC, Sharif A. Integrated central-autonomic multifractal complexity in the heart rate variability of healthy humans. Front Physiol 2012; 2:123. [PMID: 22403548 PMCID: PMC3277279 DOI: 10.3389/fphys.2011.00123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 12/28/2011] [Indexed: 11/25/2022] Open
Abstract
PURPOSE OF STUDY The aim of this study was to characterize the central-autonomic interaction underlying the multifractality in heart rate variability (HRV) of healthy humans. MATERIALS AND METHODS Eleven young healthy subjects participated in two separate ~40 min experimental sessions, one in supine (SUP) and one in, head-up-tilt (HUT), upright (UPR) body positions. Surface scalp electroencephalography (EEG) and electrocardiogram (ECG) were collected and fractal correlation of brain and heart rate data was analyzed based on the idea of relative multifractality. The fractal correlation was further examined with the EEG, HRV spectral measures using linear regression of two variables and principal component analysis (PCA) to find clues for the physiological processing underlying the central influence in fractal HRV. RESULTS We report evidence of a central-autonomic fractal correlation (CAFC) where the HRV multifractal complexity varies significantly with the fractal correlation between the heart rate and brain data (P = 0.003). The linear regression shows significant correlation between CAFC measure and EEG Beta band spectral component (P = 0.01 for SUP and P = 0.002 for UPR positions). There is significant correlation between CAFC measure and HRV LF component in the SUP position (P = 0.04), whereas the correlation with the HRV HF component approaches significance (P = 0.07). The correlation between CAFC measure and HRV spectral measures in the UPR position is weak. The PCA results confirm these findings and further imply multiple physiological processes underlying CAFC, highlighting the importance of the EEG Alpha, Beta band, and the HRV LF, HF spectral measures in the supine position. DISCUSSION AND CONCLUSION The findings of this work can be summarized into three points: (i) Similar fractal characteristics exist in the brain and heart rate fluctuation and the change toward stronger fractal correlation implies the change toward more complex HRV multifractality. (ii) CAFC is likely contributed by multiple physiological mechanisms, with its central elements mainly derived from the EEG Alpha, Beta band dynamics. (iii) The CAFC in SUP and UPR positions is qualitatively different, with a more predominant central influence in the fractal HRV of the UPR position.
Collapse
Affiliation(s)
- D. C. Lin
- Department of Mechanical and Industrial Engineering, Ryerson UniversityToronto, ON, Canada
| | - A. Sharif
- Department of Mechanical and Industrial Engineering, Ryerson UniversityToronto, ON, Canada
| |
Collapse
|
46
|
Spironelli C, Angrilli A. Influence of body position on cortical pain-related somatosensory processing: an ERP study. PLoS One 2011; 6:e24932. [PMID: 21949794 PMCID: PMC3174221 DOI: 10.1371/journal.pone.0024932] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Despite the consistent information available on the physiological changes induced by head down bed rest, a condition which simulates space microgravity, our knowledge on the possible perceptual-cortical alterations is still poor. The present study investigated the effects of 2-h head-down bed rest on subjective and cortical responses elicited by electrical, pain-related somatosensory stimulation. METHODOLOGY/PRINCIPAL FINDINGS Twenty male subjects were randomly assigned to two groups, head-down bed rest (BR) or sitting control condition. Starting from individual electrical thresholds, Somatosensory Evoked Potentials were elicited by electrical stimuli administered randomly to the left wrist and divided into four conditions: control painless condition, electrical pain threshold, 30% above pain threshold, 30% below pain threshold. Subjective pain ratings collected during the EEG session showed significantly reduced pain perception in BR compared to Control group. Statistical analysis on four electrode clusters and sLORETA source analysis revealed, in sitting controls, a P1 component (40-50 ms) in the right somatosensory cortex, whereas it was bilateral and differently located in BR group. Controls' N1 (80-90 ms) had widespread right hemisphere activation, involving also anterior cingulate, whereas BR group showed primary somatosensory cortex activation. The P2 (190-220 ms) was larger in left-central locations of Controls compared with BR group. CONCLUSIONS/SIGNIFICANCE Head-down bed rest was associated to an overall decrease of pain sensitivity and an altered pain network also outside the primary somatosensory cortex. Results have implications not only for astronauts' health and spaceflight risks, but also for the clinical aspects of pain detection in bedridden patients at risk of fatal undetected complications.
Collapse
Affiliation(s)
- Chiara Spironelli
- Department of General Psychology, University of Padova, Padova, Italy
| | - Alessandro Angrilli
- Department of General Psychology, University of Padova, Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
47
|
Brümmer V, Schneider S, Vogt T, Strüder H, Carnahan H, Askew CD, Csuhaj R. Coherence between brain cortical function and neurocognitive performance during changed gravity conditions. J Vis Exp 2011:2670. [PMID: 21654620 DOI: 10.3791/2670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Previous studies of cognitive, mental and/or motor processes during short-, medium- and long-term weightlessness have only been descriptive in nature, and focused on psychological aspects. Until now, objective observation of neurophysiological parameters has not been carried out--undoubtedly because the technical and methodological means have not been available--, investigations into the neurophysiological effects of weightlessness are in their infancy (Schneider et al. 2008). While imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) would be hardly applicable in space, the non-invasive near-infrared spectroscopy (NIRS) technique represents a method of mapping hemodynamic processes in the brain in real time that is both relatively inexpensive and that can be employed even under extreme conditions. The combination with electroencephalography (EEG) opens up the possibility of following the electrocortical processes under changing gravity conditions with a finer temporal resolution as well as with deeper localization, for instance with electrotomography (LORETA). Previous studies showed an increase of beta frequency activity under normal gravity conditions and a decrease under weightlessness conditions during a parabolic flight (Schneider et al. 2008a+b). Tilt studies revealed different changes in brain function, which let suggest, that changes in parabolic flight might reflect emotional processes rather than hemodynamic changes. However, it is still unclear whether these are effects of changed gravity or hemodynamic changes within the brain. Combining EEG/LORETA and NIRS should for the first time make it possible to map the effect of weightlessness and reduced gravity on both hemodynamic and electrophysiological processes in the brain. Initially, this is to be done as part of a feasibility study during a parabolic flight. Afterwards, it is also planned to use both techniques during medium- and long-term space flight. It can be assumed that the long-term redistribution of the blood volume and the associated increase in the supply of oxygen to the brain will lead to changes in the central nervous system that are also responsible for anaemic processes, and which can in turn reduce performance (De Santo et al. 2005), which means that they could be crucial for the success and safety of a mission (Genik et al. 2005, Ellis 2000). Depending on these results, it will be necessary to develop and employ extensive countermeasures. Initial results for the MARS500 study suggest that, in addition to their significance in the context of the cardiovascular and locomotor systems, sport and physical activity can play a part in improving neurocognitive parameters. Before this can be fully established, however, it seems necessary to learn more about the influence of changing gravity conditions on neurophysiological processes and associated neurocognitive impairment.
Collapse
Affiliation(s)
- Vera Brümmer
- Institute of Movement and Neurosciences, German Sport University Cologne.
| | | | | | | | | | | | | |
Collapse
|
48
|
Brümmer V, Schneider S, Strüder H, Askew C. Primary motor cortex activity is elevated with incremental exercise intensity. Neuroscience 2011; 181:150-62. [DOI: 10.1016/j.neuroscience.2011.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 11/17/2022]
|
49
|
Schneider S, Vogt T, Frysch J, Guardiera P, Strüder HK. School sport—A neurophysiological approach. Neurosci Lett 2009; 467:131-4. [DOI: 10.1016/j.neulet.2009.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/30/2009] [Accepted: 10/06/2009] [Indexed: 11/25/2022]
|
50
|
Kaki AM, Almarakbi WA. Does Patient Position Influence the Reading of the Bispectral Index Monitor? Anesth Analg 2009; 109:1843-6. [DOI: 10.1213/ane.0b013e3181bce58d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|