1
|
Duricy E, Durisko C, Fiez JA. The role of the intraparietal sulcus in numeracy: A review of parietal lesion cases. Behav Brain Res 2025; 482:115453. [PMID: 39892656 DOI: 10.1016/j.bbr.2025.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Prominent theories of numeracy link the intraparietal sulcus (IPS) to approximate representations of quantity that undergird basic math abilities. The goal of this review is to better understand the neural basis of mathematical cognition through the lens of acalculia, by identifying numeracy-focused single case studies of patients with parietal lesions and testing for causal relationships between numeracy impairments and the locus of parietal damage. A systematic literature review identified 27 single case studies with left parietal lesions and categorized administered tasks across four numeracy domains: Approximation, Calculation, Ordinality/Cardinality, and Transcoding. We compared published lesion images by drawing a sphere at the inferred center-of-mass and assigning each case to an anatomical group (IPS or Other Parietal damage) based on overlap with left IPS and original anatomical description. We performed Fisher's Exact Test to compare behavioral performance on each numeracy domain between the two groups. As an exploratory follow-up, we used Activation Likelihood Estimation (ALE) to identify sites of damage within parietal cortex preferentially associated with impairments in each domain. We found that Approximation impairments were significantly more frequent in the IPS group (p = .003). The exploratory ALE analysis revealed that only Approximation impairment cases significantly overlapped with the IPS, while impairments in other domains were localized to different regions of the parietal lobe. Based on the pattern of impairments shown across these cases, we conclude that damage to the left IPS is linked to impairments in approximation ability specifically. Our findings support theoretical claims linking IPS to magnitude representation, but do not provide evidence that IPS critically underpins performance across all numeracy tasks. Instead, our findings are more compatible with models of dissociable circuits of numerical processing within the parietal lobe.
Collapse
Affiliation(s)
- Erin Duricy
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Corrine Durisko
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Julie A Fiez
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychology, and, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Loenneker HD, Artemenko C, Willmes K, Liepelt-Scarfone I, Nuerk HC. Deficits in or Preservation of Basic Number Processing in Parkinson's Disease? A Registered Report. J Neurosci Res 2024; 102:e25397. [PMID: 39548739 DOI: 10.1002/jnr.25397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/18/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) have a huge impact on patients, caregivers, and the health care system. Until now, diagnosis of mild cognitive impairments in PD has been established based on domain-general functions such as executive functions, attention, or working memory. However, specific numerical deficits observed in clinical practice have not yet been systematically investigated. PD-immanent deterioration of domain-general functions and domain-specific numerical areas suggests mechanisms of both primary and secondary dyscalculia. The current study systematically investigated basic number processing performance in PD patients for the first time, targeting domain-specific cognitive representations of numerosity and the influence of domain-general factors. The overall sample consisted of patients with a diagnosis of PD, according to consensus guidelines, and healthy controls. PD patients were stratified into patients with normal cognition (PD-NC) or mild cognitive impairment (level I-PD-MCI based on cognitive screening). Basic number processing was assessed using transcoding, number line estimation, and (non-) symbolic number magnitude comparison tasks. Discriminant analysis was employed to assess whether basic number processing tasks can differentiate between a healthy control group and both PD groups. All participants were subjected to a comprehensive numerical and a neuropsychological test battery, as well as sociodemographic and clinical measures. Results indicate a profile of preserved (verbal representation) and impaired (magnitude representation, place × value activation) function in PD-MCI, hinting at basal ganglia dysfunction affecting numerical cognition in PD. Numerical deficits could not be explained by domain-general cognitive impairments, so that future research needs to incorporate domain-specific tasks of sufficient difficulty.
Collapse
Affiliation(s)
| | - Christina Artemenko
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
| | - Klaus Willmes
- Department of Neurology, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Inga Liepelt-Scarfone
- Department of Clinical Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Centre for Neurodegenerative Diseases, Tuebingen, Germany
- IB-Hochschule für Gesundheit und Soziales, Stuttgart, Germany
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- German Center for Mental Health, Tübingen, Germany
| |
Collapse
|
3
|
Marlair C, Lochy A, Crollen V. Frequency-tagging EEG reveals the effect of attentional focus on abstract magnitude processing. Psychon Bull Rev 2024; 31:2266-2274. [PMID: 38467991 DOI: 10.3758/s13423-024-02480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/13/2024]
Abstract
While humans can readily access the common magnitude of various codes such as digits, number words, or dot sets, it remains unclear whether this process occurs automatically, or only when explicitly attending to magnitude information. We addressed this question by examining the neural distance effect, a robust marker of magnitude processing, with a frequency-tagging approach. Electrophysiological responses were recorded while participants viewed rapid sequences of a base numerosity presented at 6 Hz (e.g., "2") in randomly mixed codes: digits, number words, canonical dot, and finger configurations. A deviant numerosity either close (e.g., "3") or distant (e.g., "8") from the base was inserted every five items. Participants were instructed to focus their attention either on the magnitude number feature (from a previous study), the parity number feature, a nonnumerical color feature or no specific feature. In the four attentional conditions, we found clear discrimination responses of the deviant numerosity despite its code variation. Critically, the distance effect (larger responses when base/deviant are distant than close) was present when participants were explicitly attending to magnitude and parity, but it faded with color and simple viewing instructions. Taken together, these results suggest automatic access to an abstract number representation but highlight the role of selective attention in processing the underlying magnitude information. This study therefore provides insights into how attention can modulate the neural activity supporting abstract magnitude processing.
Collapse
Affiliation(s)
- Cathy Marlair
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium.
| | - Aliette Lochy
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
- Institute of Cognitive Science and Assessment, Department of Behavioral and Cognitive Sciences, Faculty of Humanities, Social and Educational Sciences, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Virginie Crollen
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Ren X, Libertus ME. (Dis)similarities between non-symbolic and symbolic number representations: Insights from vector space models. Acta Psychol (Amst) 2024; 248:104374. [PMID: 38908226 DOI: 10.1016/j.actpsy.2024.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024] Open
Abstract
Empirical evidence in support of a shared system for non-symbolic and symbolic number processing has been inconclusive. The current study aims to address this question in a novel way, specifically by testing whether the efficient coding principle based on co-occurrence of number symbols in natural language holds for both non-symbolic and symbolic number processing. The efficient coding principle postulates that perception is optimized when stimuli frequently co-occur in a natural environment. We hypothesized that both numerical ratios and co-occurrence frequencies of symbolic numbers would significantly influence participants' performance on a non-symbolic and symbolic number comparison task. To test this hypothesis, we employed latent semantic analysis on a TASA corpus to quantify number co-occurrence in natural language and calculate language similarity estimates. We engaged 73 native English speakers (mean age = 19.36, standard deviation = 1.83) with normal or corrected vision and no learning disorders in a number comparison task involving non-symbolic (dot arrays) and symbolic stimuli (Arabic numerals and English number words). Results showed that numerical ratios significantly predicted participants' performances across all number formats (ps < 0.001). Language similarity estimates derived from everyday language also predicted performance on the non-symbolic task and the symbolic task involving number words (ps < 0.007). Our results highlight the complex nature of numerical processing, pointing to the co-occurrence of number symbols in natural language as an auxiliary factor in understanding the shared characteristics between non-symbolic and symbolic number representations. Given that our study focused on a limited number range (5 to 16) and a specific task type, future studies should explore a wider range of tasks and numbers to further test the role of the efficient coding principle in number processing.
Collapse
Affiliation(s)
- Xueying Ren
- Department of Psychology, University of Pittsburgh, Pittsburgh 15260, PA, USA; Learning Research and Development Center, University of Pittsburgh, Pittsburgh 15260, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh 15260, PA, USA.
| | - Melissa E Libertus
- Department of Psychology, University of Pittsburgh, Pittsburgh 15260, PA, USA; Learning Research and Development Center, University of Pittsburgh, Pittsburgh 15260, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh 15260, PA, USA
| |
Collapse
|
5
|
Zang Z, Chi X, Luan M, Hu S, Zhou K, Liu J. Inter-individual, hemispheric and sex variability of brain activations during numerosity processing. Brain Struct Funct 2024; 229:459-475. [PMID: 38197958 PMCID: PMC10917853 DOI: 10.1007/s00429-023-02747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Numerosity perception is a fundamental and innate cognitive function shared by both humans and many animal species. Previous research has primarily focused on exploring the spatial and functional consistency of neural activations that were associated with the processing of numerosity information. However, the inter-individual variability of brain activations of numerosity perception remains unclear. In the present study, with a large-sample functional magnetic resonance imaging (fMRI) dataset (n = 460), we aimed to localize the functional regions related to numerosity perceptions and explore the inter-individual, hemispheric, and sex differences within these brain regions. Fifteen subject-specific activated regions, including the anterior intraparietal sulcus (aIPS), posterior intraparietal sulcus (pIPS), insula, inferior frontal gyrus (IFG), inferior temporal gyrus (ITG), premotor area (PM), middle occipital gyrus (MOG) and anterior cingulate cortex (ACC), were delineated in each individual and then used to create a functional probabilistic atlas to quantify individual variability in brain activations of numerosity processing. Though the activation percentages of most regions were higher than 60%, the intersections of most regions across individuals were considerably lower, falling below 50%, indicating substantial variations in brain activations related to numerosity processing among individuals. Furthermore, significant hemispheric and sex differences in activation location, extent, and magnitude were also found in these regions. Most activated regions in the right hemisphere had larger activation volumes and activation magnitudes, and were located more lateral and anterior than their counterparts in the left hemisphere. In addition, in most of these regions, males displayed stronger activations than females. Our findings demonstrate large inter-individual, hemispheric, and sex differences in brain activations related to numerosity processing, and our probabilistic atlas can serve as a robust functional and spatial reference for mapping the numerosity-related neural networks.
Collapse
Affiliation(s)
- Zhongyao Zang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Xiaoyue Chi
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Mengkai Luan
- Department of Psychology, Shanghai University of Sport, 650 Qing Yuan Huan Road, Shanghai, 200438, People's Republic of China
| | - Siyuan Hu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| | - Jia Liu
- Tsinghua Laboratory of Brain and Intelligence, Department of Psychology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Yeo DJ, Pollack C, Conrad BN, Price GR. Functional and representational differences between bilateral inferior temporal numeral areas. Cortex 2024; 171:113-135. [PMID: 37992508 DOI: 10.1016/j.cortex.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/15/2022] [Accepted: 08/09/2023] [Indexed: 11/24/2023]
Abstract
The processing of numerals as visual objects is supported by an "Inferior Temporal Numeral Area" (ITNA) in the bilateral inferior temporal gyri (ITG). Extant findings suggest some degree of hemispheric asymmetry in how the bilateral ITNAs process numerals. Pollack and Price (2019) reported such a hemispheric asymmetry by which a region in the left ITG was sensitive to digits during a visual search for a digit among letters, and a homologous region in the right ITG that showed greater digit sensitivity in individuals with higher calculation skills. However, the ITG regions were localized with separate analyses without directly contrasting their digit sensitivities and relation to calculation skills. So, the extent of and reasons for these functional asymmetries remain unclear. Here we probe whether the functional and representational properties of the ITNAs are asymmetric by applying both univariate and multivariate region-of-interest analyses to Pollack and Price's (2019) data. Contrary to the implications of the original findings, digit sensitivity did not differ between ITNAs, and digit sensitivity in both left and right ITNAs was associated with calculation skills. Representational similarity analyses revealed that the overall representational geometries of digits in the ITNAs were also correlated, albeit weakly, but the representational contents of the ITNAs were largely inconclusive. Nonetheless, we found a right lateralization in engagement in alphanumeric categorization, and that the right ITNA showed greater discriminability between digits and letters. Greater right lateralization of digit sensitivity and digit discriminability in the left ITNA were also related to higher calculation skills. Our findings thus suggest that the ITNAs may not be functionally identical and should be directly contrasted in future work. Our study also highlights the importance of within-individual comparisons for understanding hemispheric asymmetries, and analyses of individual differences and multivariate features to uncover effects that would otherwise be obscured by averages.
Collapse
Affiliation(s)
- Darren J Yeo
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA; Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore
| | - Courtney Pollack
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA
| | - Benjamin N Conrad
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA
| | - Gavin R Price
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA; Department of Psychology, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
7
|
Czajko S, Vignaud A, Eger E. Human brain representations of internally generated outcomes of approximate calculation revealed by ultra-high-field brain imaging. Nat Commun 2024; 15:572. [PMID: 38233387 PMCID: PMC10794709 DOI: 10.1038/s41467-024-44810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Much of human culture's advanced technology owes its existence to the ability to mentally manipulate quantities. Neuroscience has described the brain regions overall recruited by numerical tasks and the neuronal codes representing individual quantities during perceptual tasks. Nevertheless, it remains unknown how quantity representations are combined or transformed during mental computations and how specific quantities are coded in the brain when generated as the result of internal computations rather than evoked by a stimulus. Here, we imaged the brains of adult human subjects at 7 Tesla during an approximate calculation task designed to disentangle in- and outputs of the computation from the operation itself. While physically presented sample numerosities were distinguished in activity patterns along the dorsal visual pathway and within frontal and occipito-temporal regions, a representation of the internally generated result was most prominently detected in higher order regions such as angular gyrus and lateral prefrontal cortex. Behavioral precision in the task was related to cross-decoding performance between sample and result representations in medial IPS regions. This suggests the transformation of sample into result may be carried out within dorsal stream sensory-motor integration regions, and resulting outputs maintained for task purposes in higher-level regions in a format possibly detached from sensory-evoked inputs.
Collapse
Affiliation(s)
- Sébastien Czajko
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France
- EDUWELL team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Alexandre Vignaud
- UNIRS, CEA, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France
| | - Evelyn Eger
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Bahreini N, Artemenko C, Plewnia C, Nuerk HC. tDCS effects in basic symbolic number magnitude processing are not significantly lateralized. Sci Rep 2023; 13:21515. [PMID: 38057342 PMCID: PMC10700326 DOI: 10.1038/s41598-023-48189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
Functional lateralization was previously established for various cognitive domains-but not for number processing. Although numbers are considered to be bilaterally represented in the intraparietal sulcus (IPS), there are some indications of different functional roles of the left vs. right IPS in processing number pairs with small vs. large distance, respectively. This raises the question whether number size plays a distinct role in the lateralization within the IPS. In our preregistered study, we applied anodal transcranial direct current stimulation (tDCS) over the left vs. right IPS to investigate the effect of stimulation as compared to sham on small vs. large distance, in both single-digit and two-digit number comparison. We expected that anodal tDCS over the left IPS facilitates number comparison with small distance, while anodal tDCS over the right IPS facilitates number comparison with large distance. Results indicated no effect of stimulation; however, exploratory analyses revealed that tDCS over the right IPS slowed down single-digit number processing after controlling for the training effect. In conclusion, number magnitude processing might be bilaterally represented in the IPS, however, our exploratory analyses emphasise the need for further investigation on functional lateralization of number processing.
Collapse
Affiliation(s)
- Narjes Bahreini
- Department of Psychology, University of Tuebingen, Tuebingen, Germany.
| | | | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology and Interventional Neuropsychiatry, University Hospital of Tuebingen, Tuebingen, Germany
- German Centre for Mental Health (DZPG), Jena, Germany
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- German Centre for Mental Health (DZPG), Jena, Germany
| |
Collapse
|
9
|
Petrizzo I, Pellegrino M, Anobile G, Doricchi F, Arrighi R. Top-down determinants of the numerosity-time interaction. Sci Rep 2023; 13:21098. [PMID: 38036544 PMCID: PMC10689472 DOI: 10.1038/s41598-023-47507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Previous studies have reported that larger visual stimuli are perceived as lasting longer than smaller ones. However, this effect disappears when participants provide a qualitative judgment, by stating whether two stimuli have the "same or different" duration, instead of providing an explicit quantitative judgment (which stimulus lasts longer). Here, we extended these observations to the interaction between the numerosity of visual stimuli, i.e. clouds of dots, and their duration. With "longer vs shorter" responses, participants judged larger numerosities as lasting longer than smaller ones, both when the responses were related to the order (Experiment 1) or color (Experiment 4) of stimuli. In contrast, no similar effect was found with "same vs different" responses (Experiment 2) and in a time motor reproduction task (Experiment 3). The numerosity-time interference in Experiment 1 and Experiment 4 was not due to task difficulty, as sensory precision was equivalent to that of Experiment 2. We conclude that in humans the functional interaction between numerosity and time is not guided, in the main, by a shared bottom-up mechanism of magnitude coding. Rather, high-level and top-down processes involved in decision-making and guided by the use of "magnitude-related" response codes play a crucial role in triggering interference among different magnitude domains.
Collapse
Affiliation(s)
- Irene Petrizzo
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - Michele Pellegrino
- Dipartimento di Psicologia 39, Università degli Studi di Roma "La Sapienza", Rome, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - Fabrizio Doricchi
- Dipartimento di Psicologia 39, Università degli Studi di Roma "La Sapienza", Rome, Italy.
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy.
| |
Collapse
|
10
|
Ayyıldız N, Beyer F, Üstün S, Kale EH, Mançe Çalışır Ö, Uran P, Öner Ö, Olkun S, Anwander A, Witte AV, Villringer A, Çiçek M. Changes in the superior longitudinal fasciculus and anterior thalamic radiation in the left brain are associated with developmental dyscalculia. Front Hum Neurosci 2023; 17:1147352. [PMID: 37868699 PMCID: PMC10586317 DOI: 10.3389/fnhum.2023.1147352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Developmental dyscalculia is a neurodevelopmental disorder specific to arithmetic learning even with normal intelligence and age-appropriate education. Difficulties often persist from childhood through adulthood lowering the individual's quality of life. However, the neural correlates of developmental dyscalculia are poorly understood. This study aimed to identify brain structural connectivity alterations in developmental dyscalculia. All participants were recruited from a large scale, non-referred population sample in a longitudinal design. We studied 10 children with developmental dyscalculia (11.3 ± 0.7 years) and 16 typically developing peers (11.2 ± 0.6 years) using diffusion-weighted magnetic resonance imaging. We assessed white matter microstructure with tract-based spatial statistics in regions-of-interest tracts that had previously been related to math ability in children. Then we used global probabilistic tractography for the first time to measure and compare tract length between developmental dyscalculia and typically developing groups. The high angular resolution diffusion-weighted magnetic resonance imaging and crossing-fiber probabilistic tractography allowed us to evaluate the length of the pathways compared to previous studies. The major findings of our study were reduced white matter coherence and shorter tract length of the left superior longitudinal/arcuate fasciculus and left anterior thalamic radiation in the developmental dyscalculia group. Furthermore, the lower white matter coherence and shorter pathways tended to be associated with the lower math performance. These results from the regional analyses indicate that learning, memory and language-related pathways in the left hemisphere might be related to developmental dyscalculia in children.
Collapse
Affiliation(s)
- Nazife Ayyıldız
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Interdisciplinary Neuroscience, Health Sciences Institute and Brain Research Center, Ankara University, Ankara, Türkiye
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Subproject A1, CRC 1052 “Obesity Mechanisms”, University of Leipzig, Leipzig, Germany
| | - Sertaç Üstün
- Department of Interdisciplinary Neuroscience, Health Sciences Institute and Brain Research Center, Ankara University, Ankara, Türkiye
- Department of Physiology, School of Medicine, Ankara University, Ankara, Türkiye
- Neuroscience and Neurotechnology Center of Excellence, Ankara, Türkiye
| | - Emre H. Kale
- Department of Interdisciplinary Neuroscience, Health Sciences Institute and Brain Research Center, Ankara University, Ankara, Türkiye
| | - Öykü Mançe Çalışır
- Department of Interdisciplinary Neuroscience, Health Sciences Institute and Brain Research Center, Ankara University, Ankara, Türkiye
- Program of Counseling and Guidance, Department of Educational Sciences, Faculty of Educational Sciences, Ankara University, Ankara, Türkiye
| | - Pınar Uran
- Department of Child and Adolescent Psychiatry, School of Medicine, Izmir Democracy University, Izmir, Türkiye
| | - Özgür Öner
- Department of Child and Adolescence Psychiatry, School of Medicine, Bahçeşehir University, Istanbul, Türkiye
| | - Sinan Olkun
- Department of Elementary Education, Faculty of Educational Sciences, Ankara University, Ankara, Türkiye
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - A. Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Charité and Humboldt University, Berlin, Germany
| | - Metehan Çiçek
- Department of Interdisciplinary Neuroscience, Health Sciences Institute and Brain Research Center, Ankara University, Ankara, Türkiye
- Department of Physiology, School of Medicine, Ankara University, Ankara, Türkiye
- Neuroscience and Neurotechnology Center of Excellence, Ankara, Türkiye
| |
Collapse
|
11
|
Lai YY, Sakai H, Makuuchi M. Neural underpinnings of processing combinatorial unstated meaning and the influence of individual cognitive style. Cereb Cortex 2023; 33:10013-10027. [PMID: 37557907 PMCID: PMC10502793 DOI: 10.1093/cercor/bhad261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
We investigated the neurocognitive mechanisms underlying the processing of combinatorial unstated meaning. Sentences like "Charles jumped for 5 minutes." engender an iterative meaning that is not explicitly stated but enriched by comprehenders beyond simple composition. Comprehending unstated meaning involves meaning contextualization-integrative meaning search in sentential-discourse context. Meanwhile, people differ in how they process information with varying context sensitivity. We hypothesized that unstated meaning processing would vary with individual socio-cognitive propensity indexed by the Autism-Spectrum Quotient (AQ), accompanied by differential cortical engagements. Using functional magnetic resonance imaging, we examined the processing of sentences with unstated iterative meaning in typically-developed individuals and found an engagement of the fronto-parietal network, including the left pars triangularis (L.PT), right intraparietal (R.IPS), and parieto-occipital sulcus (R.POS). We suggest that the L.PT subserves a contextual meaning search, while the R.IPS/POS supports enriching unstated iteration in consideration of event durations and interval lengths. Moreover, the activation level of these regions negatively correlated with AQ. Higher AQ ties to lower L.PT activation, likely reflecting weaker context sensitivity, along with lower IPS activation, likely reflecting weaker computation of events' numerical-temporal specifications. These suggest that the L.PT and R.IPS/POS support the processing of combinatorial unstated meaning, with the activation level modulated by individual cognitive styles.
Collapse
Affiliation(s)
- Yao-Ying Lai
- Graduate Institute of Linguistics, National Chengchi University, Taipei, Taiwan
| | - Hiromu Sakai
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Michiru Makuuchi
- Section of Neuropsychology, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
12
|
Morin TM, Moore KN, Isenburg K, Ma W, Stern CE. Functional reconfiguration of task-active frontoparietal control network facilitates abstract reasoning. Cereb Cortex 2023; 33:5761-5773. [PMID: 36420534 DOI: 10.1093/cercor/bhac457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
While the brain's functional network architecture is largely conserved between resting and task states, small but significant changes in functional connectivity support complex cognition. In this study, we used a modified Raven's Progressive Matrices Task to examine symbolic and perceptual reasoning in human participants undergoing fMRI scanning. Previously, studies have focused predominantly on discrete symbolic versions of matrix reasoning, even though the first few trials of the Raven's Advanced Progressive Matrices task consist of continuous perceptual stimuli. Our analysis examined the activation patterns and functional reconfiguration of brain networks associated with resting state and both symbolic and perceptual reasoning. We found that frontoparietal networks, including the cognitive control and dorsal attention networks, were significantly activated during abstract reasoning. We determined that these same task-active regions exhibited flexibly-reconfigured functional connectivity when transitioning from resting state to the abstract reasoning task. Conversely, we showed that a stable network core of regions in default and somatomotor networks was maintained across both resting and task states. We propose that these regionally-specific changes in the functional connectivity of frontoparietal networks puts the brain in a "task-ready" state, facilitating efficient task-based activation.
Collapse
Affiliation(s)
- Thomas M Morin
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Kylie N Moore
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Kylie Isenburg
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Weida Ma
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Chantal E Stern
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
- Department of Psychological and Brain Sciences, 64 Cummington Mall, Boston University, Boston, MA 02215, United States
| |
Collapse
|
13
|
Li M, Lu Y, Zhou X. The involvement of the semantic neural network in rule identification of mathematical processing. Cortex 2023; 164:11-20. [PMID: 37148824 DOI: 10.1016/j.cortex.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/15/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
The role of the visuospatial network in mathematical processing has been established, but the involvement of the semantic network in mathematical processing is still poorly understood. The current study utilized a number series completion paradigm with the event-related potential (ERP) technique to examine whether the semantic network supports mathematical processing and to find the corresponding spatiotemporal neural marker. In total, 32 right-handed undergraduate students were recruited and asked to complete the number series completion as well as the arithmetical computation task in which numbers were presented in sequence. The event-related potential and multi-voxel pattern analysis showed that the rule identification process involves more semantic processing when compared with the arithmetical computation processes, and it elicited higher amplitudes for the late negative component (LNC) in left frontal and temporal lobes. These results demonstrated that the semantic network supports the rule identification in mathematical processing, with the LNC acting as the neural marker.
Collapse
Affiliation(s)
- Mengyi Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Research Association for Brain and Mathematical Learning, Beijing Normal University, Beijing, China
| | - Yujie Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Research Association for Brain and Mathematical Learning, Beijing Normal University, Beijing, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Research Association for Brain and Mathematical Learning, Beijing Normal University, Beijing, China.
| |
Collapse
|
14
|
Sokolowski HM, Matejko AA, Ansari D. The role of the angular gyrus in arithmetic processing: a literature review. Brain Struct Funct 2023; 228:293-304. [PMID: 36376522 DOI: 10.1007/s00429-022-02594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022]
Abstract
Since the pioneering work of the early 20th century neuropsychologists, the angular gyrus (AG), particularly in the left hemisphere, has been associated with numerical and mathematical processing. The association between the AG and numerical and mathematical processing has been substantiated by neuroimaging research. In the present review article, we will examine what is currently known about the role of the AG in numerical and mathematical processing with a particular focus on arithmetic. Specifically, we will examine the role of the AG in the retrieval of arithmetic facts in both typically developing children and adults. The review article will consider alternative accounts that posit that the involvement of the AG is not specific to arithmetic processing and will consider how numerical and mathematical processing and their association with the AG overlap with other neurocognitive processes. The review closes with a discussion of future directions to further characterize the relationship between the angular gyrus and arithmetic processing.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Rotman Research Institute, Baycrest Hospital, North York, ON, M6A 2E1, Canada.,Numerical Cognition Laboratory, Department of Psychology & Brain and Mind Institute, University of Western Ontario, London, ON, N6A 3K, Canada
| | - Anna A Matejko
- Department of Psychology, Durham University, Durham, DH1 3LE, UK
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology & Brain and Mind Institute, University of Western Ontario, London, ON, N6A 3K, Canada.
| |
Collapse
|
15
|
Sokolowski HM, Hawes Z, Ansari D. The neural correlates of retrieval and procedural strategies in mental arithmetic: A functional neuroimaging meta-analysis. Hum Brain Mapp 2022; 44:229-244. [PMID: 36121072 PMCID: PMC9783428 DOI: 10.1002/hbm.26082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
Mental arithmetic is a complex skill of great importance for later academic and life success. Many neuroimaging studies and several meta-analyses have aimed to identify the neural correlates of mental arithmetic. Previous meta-analyses of arithmetic grouped all problem types into a single meta-analytic map, despite evidence suggesting that different types of arithmetic problems are solved using different strategies. We used activation likelihood estimation (ALE) to conduct quantitative meta-analyses of mental arithmetic neuroimaging (n = 31) studies, and subsequently grouped contrasts from the 31 studies into problems that are typically solved using retrieval strategies (retrieval problems) (n = 18) and problems that are typically solved using procedural strategies (procedural problems) (n = 19). Foci were compiled to generate probabilistic maps of activation for mental arithmetic (i.e., all problem types), retrieval problems, and procedural problems. Conjunction and contrast analyses were conducted to examine overlapping and distinct activation for retrieval and procedural problems. The conjunction analysis revealed overlapping activation for retrieval and procedural problems in the bilateral inferior parietal lobules, regions typically associated with magnitude processing. Contrast analyses revealed specific activation in the left angular gyrus for retrieval problems and specific activation in the inferior frontal gyrus and cingulate gyrus for procedural problems. These findings indicate that the neural bases of arithmetic systematically differs according to problem type, providing new insights into the dynamic and task-dependent neural underpinnings of the calculating brain.
Collapse
Affiliation(s)
- H. Moriah Sokolowski
- Rotman Research InstituteBaycrest HospitalNorth YorkOntarioCanada,Numerical Cognition Laboratory, Department of Psychology and Brain and Mind InstituteUniversity of Western OntarioLondonOntarioCanada
| | - Zachary Hawes
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind InstituteUniversity of Western OntarioLondonOntarioCanada,Ontario Institute for Studies in EducationUniversity of TorontoTorontoOntarioCanada
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind InstituteUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
16
|
Marlair C, Crollen V, Lochy A. A shared numerical magnitude representation evidenced by the distance effect in frequency-tagging EEG. Sci Rep 2022; 12:14559. [PMID: 36028649 PMCID: PMC9418351 DOI: 10.1038/s41598-022-18811-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Humans can effortlessly abstract numerical information from various codes and contexts. However, whether the access to the underlying magnitude information relies on common or distinct brain representations remains highly debated. Here, we recorded electrophysiological responses to periodic variation of numerosity (every five items) occurring in rapid streams of numbers presented at 6 Hz in randomly varying codes—Arabic digits, number words, canonical dot patterns and finger configurations. Results demonstrated that numerical information was abstracted and generalized over the different representation codes by revealing clear discrimination responses (at 1.2 Hz) of the deviant numerosity from the base numerosity, recorded over parieto-occipital electrodes. Crucially, and supporting the claim that discrimination responses reflected magnitude processing, the presentation of a deviant numerosity distant from the base (e.g., base “2” and deviant “8”) elicited larger right-hemispheric responses than the presentation of a close deviant numerosity (e.g., base “2” and deviant “3”). This finding nicely represents the neural signature of the distance effect, an interpretation further reinforced by the clear correlation with individuals’ behavioral performance in an independent numerical comparison task. Our results therefore provide for the first time unambiguously a reliable and specific neural marker of a magnitude representation that is shared among several numerical codes.
Collapse
Affiliation(s)
- Cathy Marlair
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium.
| | - Virginie Crollen
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
| | - Aliette Lochy
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium.,Department of Behavioral and Cognitive Sciences, Faculty of Humanities, Social and Educational Sciences, Institute of Cognitive Science and Assessment, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
17
|
Number symbols are processed more automatically than nonsymbolic numerical magnitudes: Findings from a Symbolic-Nonsymbolic Stroop task. Acta Psychol (Amst) 2022; 228:103644. [PMID: 35749820 DOI: 10.1016/j.actpsy.2022.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Are number symbols (e.g., 3) and numerically equivalent quantities (e.g., •••) processed similarly or distinctly? If symbols and quantities are processed similarly then processing one format should activate the processing of the other. To experimentally probe this prediction, we assessed the processing of symbols and quantities using a Stroop-like paradigm. Participants (NStudy1 = 80, NStudy2 = 63) compared adjacent arrays of symbols (e.g., 4444 vs 333) and were instructed to indicate the side containing either the greater quantity of symbols (nonsymbolic task) or the numerically larger symbol (symbolic task). The tasks included congruent trials, where the greater symbol and quantity appeared on the same side (e.g. 333 vs. 4444), incongruent trials, where the greater symbol and quantity appeared on opposite sides (e.g. 3333 vs. 444), and neutral trials, where the irrelevant dimension was the same across both sides (e.g. 3333 vs. 333 for nonsymbolic; 333 vs. 444 for symbolic). The numerical distance between stimuli was systematically varied, and quantities in the subitizing and counting range were analyzed together and independently. Participants were more efficient comparing symbols and ignoring quantities, than comparing quantities and ignoring symbols. Similarly, while both symbols and quantities influenced each other as the irrelevant dimension, symbols influenced the processing of quantities more than quantities influenced the processing of symbols, especially for quantities in the counting rage. Additionally, symbols were less influenced by numerical distance than quantities, when acting as the relevant and irrelevant dimension. These findings suggest that symbols are processed differently and more automatically than quantities.
Collapse
|
18
|
Amalric M, Cantlon JF. Common Neural Functions during Children's Learning from Naturalistic and Controlled Mathematics Paradigms. J Cogn Neurosci 2022; 34:1164-1182. [PMID: 35303098 DOI: 10.1162/jocn_a_01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Two major goals of human neuroscience are to understand how the brain functions in the real world and to measure neural processes under conditions that are ecologically valid. A critical step toward these goals is understanding how brain activity during naturalistic tasks that mimic the real world relates to brain activity in more traditional laboratory tasks. In this study, we used intersubject correlations to locate reliable stimulus-driven cerebral processes among children and adults in a naturalistic video lesson and a laboratory forced-choice task that shared the same arithmetic concept. We show that relative to a control condition with grammatical content, naturalistic and laboratory arithmetic tasks evoked overlapping activation within brain regions previously associated with math semantics. The regions of specific functional overlap between the naturalistic mathematics lesson and laboratory mathematics task included bilateral intraparietal cortex, which confirms that this region processes mathematical content independently of differences in task mode. These findings suggest that regions of the intraparietal cortex process mathematical content when children are learning about mathematics in a naturalistic setting.
Collapse
|
19
|
Chalas N, Karagiorgis A, Bamidis P, Paraskevopoulos E. The impact of musical training in symbolic and non-symbolic audiovisual judgements of magnitude. PLoS One 2022; 17:e0266165. [PMID: 35511806 PMCID: PMC9070945 DOI: 10.1371/journal.pone.0266165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
Quantity estimation can be represented in either an analog or symbolic manner and recent evidence now suggests that analog and symbolic representation of quantities interact. Nonetheless, those two representational forms of quantities may be enhanced by convergent multisensory information. Here, we elucidate those interactions using high-density electroencephalography (EEG) and an audiovisual oddball paradigm. Participants were presented simultaneous audiovisual tokens in which the co-varying pitch of tones was combined with the embedded cardinality of dot patterns. Incongruencies were elicited independently from symbolic and non-symbolic modality within the audio-visual percept, violating the newly acquired rule that “the higher the pitch of the tone, the larger the cardinality of the figure.” The effect of neural plasticity in symbolic and non-symbolic numerical representations of quantities was investigated through a cross-sectional design, comparing musicians to musically naïve controls. Individual’s cortical activity was reconstructed and statistically modeled for a predefined time-window of the evoked response (130–170 ms). To summarize, we show that symbolic and non-symbolic processing of magnitudes is re-organized in cortical space, with professional musicians showing altered activity in motor and temporal areas. Thus, we argue that the symbolic representation of quantities is altered through musical training.
Collapse
Affiliation(s)
- Nikos Chalas
- Institute for Biomagnetism and Biosignal analysis, University of Münster, Münster, Germany
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Karagiorgis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Bamidis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Paraskevopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
20
|
Magariño DE, Turel O, He Q. Bilateral intraparietal activation for number tasks in studies using an adaptation paradigm: A meta-analysis. Neuroscience 2022; 490:296-308. [PMID: 35276305 DOI: 10.1016/j.neuroscience.2022.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/20/2022] [Indexed: 01/29/2023]
Abstract
Mathematical processing is important for professional successes. The Adaptation Paradigm has been widely used to study the brain underpinnings of mathematical processing. In this study, we aim at shedding light on an important component of mathematical processing, namely numerical cognition. To do so, we performed a meta-analysis using the Activation Likelihood Estimation method on studies that have employed the Adaptation Paradigm for examining numerical cognition. We found a bilateral Intraparietal Sulcus (IPS) activation in studies using both symbolic and non-symbolic stimuli formats. We also found a right lateralized brain activation for the non-symbolic condition and a left lateralized brain activation for the symbolic condition. These results imply that the Adaptation Paradigm likely targets numeric magnitude processing and confirms the potency of this paradigm to activate the Intraparietal Sulcus.
Collapse
Affiliation(s)
- Daniela Escobar Magariño
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China; Faculty of Psychology, Havana University, Havana, Cuba
| | - Ofir Turel
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Qinghua He
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University, Chongqing, China.
| |
Collapse
|
21
|
Canonical finger-numeral configurations facilitate the processing of Arabic numerals in adults: An Event-Related Potential study. Neuropsychologia 2022; 170:108214. [DOI: 10.1016/j.neuropsychologia.2022.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
|
22
|
Liu W, Zhao Y, Wang C, Wang L, Fu Y, Zhang Z. Distinct Mechanisms in Number Comparison of Random and Regular Dots: An ERP Study. Front Behav Neurosci 2022; 15:791289. [PMID: 35095437 PMCID: PMC8789750 DOI: 10.3389/fnbeh.2021.791289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Numerosity comparison for regular patterns shows different features compared with that for random ones in previous studies, suggesting an underlying mechanism distinct from numerosity. In this study, we went further to compare the event-related potentials (ERP) components in numerosity processing of random and regular patterns, which are identical in all aspects of texture features except for the distribution. ERP components were recorded and analyzed while participants compared which of the two successively presented sets was more numerous. P2p amplitude was revealed to be significantly weaker for regular patterns compared with that for random patterns over right occipital-parietal cites, whereas no difference was found for P1 or N1 components. The difference in P2p amplitude, which is consistent with the behavior dissociation revealed in our previous studies, suggests that regular distribution can trigger distinct processing in numeral comparison tasks. Processing of continuous magnitudes or configuration cannot explain the decrease in P2p amplitude for regular distributed patterns. Therefore, this study further supports that P2p is mediated by numerosity processing.
Collapse
Affiliation(s)
- Wei Liu
- College of Education, Dali University, Dali, China
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
- School of Education, Yunnan Minzu University, Kunming, China
| | - Yajun Zhao
- School of Education and Psychology, Southwest Minzu University, Chengdu, China
| | - Chunhui Wang
- School of Education, Yunnan Minzu University, Kunming, China
| | - Lu Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Ying Fu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Zhijun Zhang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Zhijun Zhang,
| |
Collapse
|
23
|
Maldonado Moscoso PA, Greenlee MW, Anobile G, Arrighi R, Burr DC, Castaldi E. Groupitizing modifies neural coding of numerosity. Hum Brain Mapp 2021; 43:915-928. [PMID: 34877718 PMCID: PMC8764479 DOI: 10.1002/hbm.25694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/10/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Numerical estimation of arrays of objects is faster and more accurate when items can be clustered into groups, a phenomenon termed “groupitizing.” Grouping can facilitate segregation into subitizable “chunks,” each easily estimated, then summed. The current study investigates whether spatial grouping of arrays drives specific neural responses during numerical estimation, reflecting strategies such as exact calculation and fact retrieval. Fourteen adults were scanned with fMRI while estimating either the numerosity or shape of arrays of items, either randomly distributed or spatially grouped. Numerosity estimation of both classes of stimuli elicited common activation of a right lateralized frontoparietal network. Grouped stimuli additionally recruited regions in the left hemisphere and bilaterally in the angular gyrus. Multivariate pattern analysis showed that classifiers trained with the pattern of neural activations read out from parietal regions, but not from the primary visual areas, can decode different numerosities both within and across spatial arrangements. The behavioral numerical acuity correlated with the decoding performance of the parietal but not with occipital regions. Overall, this experiment suggests that the estimation of grouped stimuli relies on the approximate number system for numerosity estimation, but additionally recruits regions involved in calculation.
Collapse
Affiliation(s)
- Paula A Maldonado Moscoso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.,Institut für Psychologie, Universität Regensburg, Regensburg, Germany
| | - Mark W Greenlee
- Institut für Psychologie, Universität Regensburg, Regensburg, Germany
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - David C Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Sokolowski HM, Hawes Z, Peters L, Ansari D. Symbols Are Special: An fMRI Adaptation Study of Symbolic, Nonsymbolic, and Non-Numerical Magnitude Processing in the Human Brain. Cereb Cortex Commun 2021; 2:tgab048. [PMID: 34447935 PMCID: PMC8382912 DOI: 10.1093/texcom/tgab048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/03/2022] Open
Abstract
How are different formats of magnitudes represented in the human brain? We used functional magnetic resonance imaging adaptation to isolate representations of symbols, quantities, and physical size in 45 adults. Results indicate that the neural correlates supporting the passive processing of number symbols are largely dissociable from those supporting quantities and physical size, anatomically and representationally. Anatomically, passive processing of quantities and size correlate with activation in the right intraparietal sulcus, whereas symbolic number processing, compared with quantity processing, correlates with activation in the left inferior parietal lobule. Representationally, neural patterns of activation supporting symbols are dissimilar from neural activation patterns supporting quantity and size in the bilateral parietal lobes. These findings challenge the longstanding notion that the culturally acquired ability to conceptualize symbolic numbers is represented using entirely the same brain systems that support the evolutionarily ancient system used to process quantities. Moreover, these data reveal that regions that support numerical magnitude processing are also important for the processing of non-numerical magnitudes. This discovery compels future investigations of the neural consequences of acquiring knowledge of symbolic numbers.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Rotman Research Institute, Baycrest Hospital, North York, ON M6A 2E1, Canada
| | - Zachary Hawes
- Ontario Institute for Studies in Education, University of Toronto, Toronto, ON M5S1V6, Canada
| | - Lien Peters
- Numerical Cognition Laboratory, Department of Psychology & Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology & Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
25
|
|
26
|
Üstün S, Ayyıldız N, Kale EH, Mançe Çalışır Ö, Uran P, Öner Ö, Olkun S, Çiçek M. Children With Dyscalculia Show Hippocampal Hyperactivity During Symbolic Number Perception. Front Hum Neurosci 2021; 15:687476. [PMID: 34354576 PMCID: PMC8330842 DOI: 10.3389/fnhum.2021.687476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Dyscalculia is a learning disability affecting the acquisition of arithmetical skills in children with normal intelligence and age-appropriate education. Two hypotheses attempt to explain the main cause of dyscalculia. The first hypothesis suggests that a problem with the core mechanisms of perceiving (non-symbolic) quantities is the cause of dyscalculia (core deficit hypothesis), while the alternative hypothesis suggests that dyscalculics have problems only with the processing of numerical symbols (access deficit hypothesis). In the present study, the symbolic and non-symbolic numerosity processing of typically developing children and children with dyscalculia were examined with functional magnetic resonance imaging (fMRI). Control (n = 15, mean age: 11.26) and dyscalculia (n = 12, mean age: 11.25) groups were determined using a wide-scale screening process. Participants performed a quantity comparison paradigm in the fMRI with two number conditions (dot and symbol comparison) and two difficulty levels (0.5 and 0.7 ratio). The results showed that the bilateral intraparietal sulcus (IPS), left dorsolateral prefrontal cortex (DLPFC) and left fusiform gyrus (so-called “number form area”) were activated for number perception as well as bilateral occipital and supplementary motor areas. The task difficulty engaged bilateral insular cortex, anterior cingulate cortex, IPS, and DLPFC activation. The dyscalculia group showed more activation in the left orbitofrontal cortex, left medial prefrontal cortex, and right anterior cingulate cortex than the control group. The dyscalculia group showed left hippocampus activation specifically for the symbolic condition. Increased left hippocampal and left-lateralized frontal network activation suggest increased executive and memory-based compensation mechanisms during symbolic processing for dyscalculics. Overall, our findings support the access deficit hypothesis as a neural basis for dyscalculia.
Collapse
Affiliation(s)
- Sertaç Üstün
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey.,Neuroscience and Neurotechnology Center of Excellence, Ankara, Turkey.,Department of Interdisciplinary Neuroscience, Health Science Institute, Ankara University, Ankara, Turkey
| | - Nazife Ayyıldız
- Neuroscience and Neurotechnology Center of Excellence, Ankara, Turkey.,Department of Interdisciplinary Neuroscience, Health Science Institute, Ankara University, Ankara, Turkey.,Brain Research Center, Ankara University, Ankara, Turkey
| | - Emre H Kale
- Brain Research Center, Ankara University, Ankara, Turkey
| | - Öykü Mançe Çalışır
- Brain Research Center, Ankara University, Ankara, Turkey.,Program of Counseling and Guidance, Department of Educational Sciences, Ankara University Faculty of Educational Sciences, Ankara, Turkey
| | - Pınar Uran
- Department of Child and Adolescent Psychiatry, Ankara University School of Medicine, Ankara, Turkey
| | - Özgür Öner
- Department of Child and Adolescent Psychiatry, Bahçeşehir University School of Medicine, İstanbul, Turkey
| | - Sinan Olkun
- Department of Mathematics Education, Final International University, Kyrenia, Cyprus
| | - Metehan Çiçek
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey.,Neuroscience and Neurotechnology Center of Excellence, Ankara, Turkey.,Department of Interdisciplinary Neuroscience, Health Science Institute, Ankara University, Ankara, Turkey.,Brain Research Center, Ankara University, Ankara, Turkey
| |
Collapse
|
27
|
Loenneker HD, Artemenko C, Willmes K, Liepelt-Scarfone I, Nuerk HC. Deficits in or preservation of basic number processing in Parkinson's disease? A registered report. J Neurosci Res 2021; 99:2390-2405. [PMID: 34184307 DOI: 10.1002/jnr.24907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 11/10/2022]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) have a huge impact on patients, caregivers, and the health-care system. To date, the diagnosis of mild cognitive impairments in PD has been established based on domain-general functions such as executive functions, attention, or working memory. However, specific numerical deficits observed in clinical practice have not yet been systematically investigated. PD-immanent deterioration of domain-general functions and domain-specific numerical areas suggests the mechanisms of both primary and secondary dyscalculia. The current study will systematically investigate basic number processing performance in PD patients for the first time, targeting domain-specific cognitive representations of numerosity and the influence of domain-general factors. The overall sample consists of patients with a diagnosis of PD, according to consensus guidelines, and healthy controls. PD patients will be stratified into patients with normal cognition or mild cognitive impairment (level I-PD-MCI based on cognitive screening). Basic number processing will be assessed using transcoding, number line estimation, and (non)symbolic number magnitude comparison tasks. Discriminant analysis will be employed to assess whether basic number processing tasks can differentiate between a healthy control group and both PD groups. All participants will be subjected to a comprehensive numerical and a neuropsychological test battery, as well as sociodemographic and clinical measures. Study results will give the first broad insight into the extent of basic numerical deficits in different PD patient groups and will help us to understand the underlying mechanisms of the numerical deficits faced by PD patients in daily life.
Collapse
Affiliation(s)
| | - Christina Artemenko
- Department of Psychology, University of Tuebingen, Tuebingen, Germany.,LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
| | - Klaus Willmes
- Department of Neurology, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Inga Liepelt-Scarfone
- Department of Clinical Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany.,German Centre for Neurodegenerative Diseases, Tuebingen, Germany.,IB-Hochschule für Gesundheit und Soziales, Stuttgart, Germany
| | | |
Collapse
|
28
|
Electrophysiological evidence for internalized representations of canonical finger-number gestures and their facilitating effects on adults' math verification performance. Sci Rep 2021; 11:11776. [PMID: 34083708 PMCID: PMC8175394 DOI: 10.1038/s41598-021-91303-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 05/21/2021] [Indexed: 11/09/2022] Open
Abstract
Fingers facilitate number learning and arithmetic processing in early childhood. The current study investigated whether images of early-learned, culturally-typical (canonical), finger montring patterns presenting smaller (2,3,4) or larger (7,8,9) quantities still facilitate adults' performance and neural processing in a math verification task. Twenty-eight adults verified solutions to simple addition problems that were shown in the form of canonical or non-canonical finger-number montring patterns while measuring Event Related Potentials (ERPs). Results showed more accurate and faster sum verification when sum solutions were shown by canonical (versus non-canonical) finger patterns. Canonical finger montring patterns 2-4 led to faster responses independent of whether they presented correct or incorrect sum solutions and elicited an enhanced early right-parietal P2p response, whereas canonical configurations 7-9 only facilitated performance in correct sum solution trials without evoking P2p effects. The later central-parietal P3 was enhanced to all canonical finger patterns irrespective of numerical range. These combined results provide behavioral and brain evidence for canonical cardinal finger patterns still having facilitating effects on adults' number processing. They further suggest that finger montring configurations of numbers 2-4 have stronger internalized associations with other magnitude representations, possibly established through their mediating role in the developmental phase in which children acquire the numerical meaning of the first four number symbols.
Collapse
|
29
|
Canonical representations of fingers and dots trigger an automatic activation of number semantics: an EEG study on 10-year-old children. Neuropsychologia 2021; 157:107874. [PMID: 33930386 DOI: 10.1016/j.neuropsychologia.2021.107874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023]
Abstract
Over the course of development, children must learn to map a non-symbolic representation of magnitude to a more precise symbolic system. There is solid evidence that finger and dot representations can facilitate or even predict the acquisition of this mapping skill. While several behavioral studies demonstrated that canonical representations of fingers and dots automatically activate number semantics, no study so far has investigated their cerebral basis. To examine these questions, 10-year-old children were presented a behavioral naming task and a Fast Periodic Visual Stimulation EEG paradigm. In the behavioral task, children had to name as fast and as accurately as possible the numbers of dots and fingers presented in canonical and non-canonical configurations. In the EEG experiment, one category of stimuli (e.g., canonical representation of fingers or dots) was periodically inserted (1/5) in streams of another category (e.g., non-canonical representation of fingers or dots) presented at a fast rate (4 Hz). Results demonstrated an automatic access to number semantics and bilateral categorical responses at 4 Hz/5 for canonical representations of fingers and dots. Some differences between finger and dot configuration's processing were nevertheless observed and are discussed in light of an effortful-automatic continuum hypothesis.
Collapse
|
30
|
Measuring spontaneous and automatic processing of magnitude and parity information of Arabic digits by frequency-tagging EEG. Sci Rep 2020; 10:22254. [PMID: 33335293 PMCID: PMC7747728 DOI: 10.1038/s41598-020-79404-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Arabic digits (1–9) are everywhere in our daily lives. These symbols convey various semantic information, and numerate adults can easily extract from them several numerical features such as magnitude and parity. Nonetheless, since most studies used active processing tasks to assess these properties, it remains unclear whether and to what degree the access to magnitude and especially to parity is automatic. Here we investigated with EEG whether spontaneous processing of magnitude or parity can be recorded in a frequency-tagging approach, in which participants are passively stimulated by fast visual sequences of Arabic digits. We assessed automatic magnitude processing by presenting a stream of frequent small digit numbers mixed with deviant large digits (and the reverse) with a sinusoidal contrast modulation at the frequency of 10 Hz. We used the same paradigm to investigate numerical parity processing, contrasting odd digits to even digits. We found significant brain responses at the frequency of the fluctuating change and its harmonics, recorded on electrodes encompassing right occipitoparietal regions, in both conditions. Our findings indicate that both magnitude and parity are spontaneously and unintentionally extracted from Arabic digits, which supports that they are salient semantic features deeply associated to digit symbols in long-term memory.
Collapse
|
31
|
Castaldi E, Vignaud A, Eger E. Mapping subcomponents of numerical cognition in relation to functional and anatomical landmarks of human parietal cortex. Neuroimage 2020; 221:117210. [DOI: 10.1016/j.neuroimage.2020.117210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/06/2020] [Accepted: 07/27/2020] [Indexed: 01/26/2023] Open
|
32
|
Conrad BN, Wilkey ED, Yeo DJ, Price GR. Network topology of symbolic and nonsymbolic number comparison. Netw Neurosci 2020; 4:714-745. [PMID: 32885123 PMCID: PMC7462424 DOI: 10.1162/netn_a_00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Studies of brain activity during number processing suggest symbolic and nonsymbolic numerical stimuli (e.g., Arabic digits and dot arrays) engage both shared and distinct neural mechanisms. However, the extent to which number format influences large-scale functional network organization is unknown. In this study, using 7 Tesla MRI, we adopted a network neuroscience approach to characterize the whole-brain functional architecture supporting symbolic and nonsymbolic number comparison in 33 adults. Results showed the degree of global modularity was similar for both formats. The symbolic format, however, elicited stronger community membership among auditory regions, whereas for nonsymbolic, stronger membership was observed within and between cingulo-opercular/salience network and basal ganglia communities. The right posterior inferior temporal gyrus, left intraparietal sulcus, and two regions in the right ventromedial occipital cortex demonstrated robust differences between formats in terms of their community membership, supporting prior findings that these areas are differentially engaged based on number format. Furthermore, a unified fronto-parietal/dorsal attention community in the nonsymbolic condition was fractionated into two components in the symbolic condition. Taken together, these results reveal a pattern of overlapping and distinct network architectures for symbolic and nonsymbolic number processing.
Collapse
Affiliation(s)
- Benjamin N. Conrad
- Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Eric D. Wilkey
- Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Brain & Mind Institute, Western University, London, ON, Canada
| | - Darren J. Yeo
- Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore
| | - Gavin R. Price
- Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
33
|
Jang S, Hyde DC. Hemispheric asymmetries in processing numerical meaning in arithmetic. Neuropsychologia 2020; 146:107524. [PMID: 32535131 DOI: 10.1016/j.neuropsychologia.2020.107524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/29/2023]
Abstract
Hemispheric asymmetries in arithmetic have been hypothesized based on neuropsychological, developmental, and neuroimaging work. However, it has been challenging to separate asymmetries related to arithmetic specifically, from those associated general cognitive or linguistic processes. Here we attempt to experimentally isolate the processing of numerical meaning in arithmetic problems from language and memory retrieval by employing novel non-symbolic addition problems, where participants estimated the sum of two dot arrays and judged whether a probe dot array was the correct sum of the first two arrays. Furthermore, we experimentally manipulated which hemisphere receive the probe array first using a visual half-field paradigm while recording event-related potentials (ERP). We find that neural sensitivity to numerical meaning in arithmetic arises under left but not right visual field presentation during early and middle portions of the late positive complex (LPC, 400-800 ms). Furthermore, we find that subsequent accuracy for judgements of whether the probe is the correct sum is better under right visual field presentation than left, suggesting a left hemisphere advantage for integrating information for categorization or decision making related to arithmetic. Finally, neural signatures of operational momentum, or differential sensitivity to whether the probe was greater or less than the sum, occurred at a later portion of the LPC (800-1000 ms) and regardless of visual field of presentation, suggesting a temporal and functional dissociation between magnitude and ordinal processing in arithmetic. Together these results provide novel evidence for differences in timing and hemispheric lateralization for several cognitive processes involved in arithmetic thinking.
Collapse
Affiliation(s)
- Selim Jang
- Department of Psychology, University of Illinois at Urbana-Champaign, USA.
| | - Daniel C Hyde
- Department of Psychology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
34
|
A brain connectivity characterization of children with different levels of mathematical achievement based on graph metrics. PLoS One 2020; 15:e0227613. [PMID: 31951604 PMCID: PMC6968862 DOI: 10.1371/journal.pone.0227613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 12/21/2019] [Indexed: 11/30/2022] Open
Abstract
Recent studies aiming to facilitate mathematical skill development in primary school children have explored the electrophysiological characteristics associated with different levels of arithmetic achievement. The present work introduces an alternative EEG signal characterization using graph metrics and, based on such features, a classification analysis using a decision tree model. This proposal aims to identify group differences in brain connectivity networks with respect to mathematical skills in elementary school children. The methods of analysis utilized were signal-processing (EEG artifact removal, Laplacian filtering, and magnitude square coherence measurement) and the characterization (Graph metrics) and classification (Decision Tree) of EEG signals recorded during performance of a numerical comparison task. Our results suggest that the analysis of quantitative EEG frequency-band parameters can be used successfully to discriminate several levels of arithmetic achievement. Specifically, the most significant results showed an accuracy of 80.00% (α band), 78.33% (δ band), and 76.67% (θ band) in differentiating high-skilled participants from low-skilled ones, averaged-skilled subjects from all others, and averaged-skilled participants from low-skilled ones, respectively. The use of a decision tree tool during the classification stage allows the identification of several brain areas that seem to be more specialized in numerical processing.
Collapse
|
35
|
Goffin C, Vogel SE, Slipenkyj M, Ansari D. A comes before B, like 1 comes before 2. Is the parietal cortex sensitive to ordinal relationships in both numbers and letters? An fMRI-adaptation study. Hum Brain Mapp 2019; 41:1591-1610. [PMID: 31854024 PMCID: PMC7268023 DOI: 10.1002/hbm.24897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/13/2019] [Accepted: 12/03/2019] [Indexed: 12/02/2022] Open
Abstract
How are number symbols (e.g., Arabic digits) represented in the brain? Functional resonance imaging adaptation (fMRI‐A) research has indicated that the intraparietal sulcus (IPS) exhibits a decrease in activation with the repeated presentation of the same number, that is followed by a rebound effect with the presentation of a new number. This rebound effect is modulated by the numerical ratio or difference between presented numbers. It has been suggested that this ratio‐dependent rebound effect is reflective of a link between the symbolic numerical representation system and an approximate magnitude system. Experiment 1 used fMRI‐A to investigate an alternative hypothesis: that the rebound effect observed in the IPS is related to the ordinal relationships between symbols (e.g., 3 comes before 4; C after B). In Experiment 1, adult participants exhibited the predicted distance‐dependent parametric rebound effect bilaterally in the IPS for number symbols during a number adaptation task, however, the same effect was not found anywhere in the brain in response to letters. When numbers were contrasted with letters (numbers > letters), the left intraparietal lobule remained significant. Experiment 2 demonstrated that letter stimuli used in Experiment 1 generated a behavioral distance effect during an active ordinality task, despite the lack of a neural distance effect using fMRI‐A. The current study does not support the hypothesis that general ordinal mechanisms underpin the neural parametric recovery effect in the IPS in response to number symbols. Additional research is needed to further our understanding of mechanisms underlying symbolic numerical representation in the brain.
Collapse
Affiliation(s)
- Celia Goffin
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Stephan E Vogel
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Michael Slipenkyj
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
36
|
Faye A, Jacquin-Courtois S, Reynaud E, Lesourd M, Besnard J, Osiurak F. Numerical cognition: A meta-analysis of neuroimaging, transcranial magnetic stimulation and brain-damaged patients studies. NEUROIMAGE-CLINICAL 2019; 24:102053. [PMID: 31795045 PMCID: PMC6978218 DOI: 10.1016/j.nicl.2019.102053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 01/29/2023]
Abstract
We review neuroimaging, TMS, and patients studies on numerical cognition. We focused on the predictions derived from the Triple Code Model (TCM). Our findings generally agree with TCM predictions. Our results open avenues for the study of the neural bases of numerical cognition.
This article offers the first comprehensive review examining the neurocognitive bases of numerical cognition from neuroimaging, Transcranial Magnetic Stimulation (TMS) and brain-damaged patients studies. We focused on the predictions derived from the Triple Code Model (TCM), particularly the assumption that the representation of numerical quantities rests on a single format-independent representation (i.e., the analogical code) involving both intraparietal sulci (IPS). To do so, we conducted a meta-analysis based on 28 neuroimaging, 12 TMS and 12 brain-damaged patients studies, including arithmetic and magnitude tasks in symbolic and non-symbolic formats. Our findings generally agree with the TCM predictions indicating that both IPS are engaged in all tasks. Nonetheless, the results of brain-damaged patients studies conflicted with neuroimaging and TMS studies, suggesting a right hemisphere lateralization for non-symbolic formats. Our findings also led us to discuss the involvement of brain regions other than IPS in the processing of the analogical code as well as the neural substrate of other codes underlying numerical cognition (i.e., the auditory-verbal code).
Collapse
Affiliation(s)
- Alexandrine Faye
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France.
| | - Sophie Jacquin-Courtois
- Integrative, Multisensory, Perception, Action, & Cognition Team (INSERM-CNRS-UMR 5292), Université de Lyon, France; Mouvement et Handicap, Hospices Civils de Lyon et Centre de Recherche en Neurosciences de Lyon, Hôpital Henry Gabrielle, St Genis Laval, France
| | - Emanuelle Reynaud
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France
| | - Mathieu Lesourd
- Aix Marseille Université, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France; Aix Marseille Université, CNRS, Fédération 3C, Marseille, France
| | - Jérémy Besnard
- Laboratoire de Psychologie des Pays de la Loire (EA 4638), Université de Nantes et d'Angers, France
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
37
|
Liu D, Zhou D, Li M, Li M, Dong W, Verguts T, Chen Q. The Neural Mechanism of Number Line Bisection: A fMRI study. Neuropsychologia 2019; 129:37-46. [DOI: 10.1016/j.neuropsychologia.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 11/24/2022]
|
38
|
Developmental specialization of the left intraparietal sulcus for symbolic ordinal processing. Cortex 2019; 114:41-53. [DOI: 10.1016/j.cortex.2018.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022]
|
39
|
Lin JFL, Imada T, Kuhl PK. Neuroplasticity, bilingualism, and mental mathematics: A behavior-MEG study. Brain Cogn 2019; 134:122-134. [PMID: 30975509 DOI: 10.1016/j.bandc.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/22/2018] [Accepted: 03/28/2019] [Indexed: 01/29/2023]
Abstract
Bilingual experience alters brain structure and enhances certain cognitive functions. Bilingualism can also affect mathematical processing. Reduced accuracy is commonly reported when arithmetic problems are presented in bilinguals' second (L2) vs. first (L1) language. We used MEG brain imaging during mental addition to characterize spatiotemporal dynamics during mental addition in bilingual adults. Numbers were presented auditorally and sequentially in bilinguals' L1 and L2, and brain and behavioral data were collected simultaneously. Behaviorally, bilinguals showed lower accuracy for two-digit addition in L2 compared to L1. Brain data showed stronger response magnitude in L2 versus L1 prior to calculation, especially when two-digit numbers were involved. Brain and behavioral data were significantly correlated. Taken together, our results suggest that differences between languages emerge prior to mathematical calculation, with implications for the role of language in mathematics.
Collapse
Affiliation(s)
- Jo-Fu Lotus Lin
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA; Institute of Linguistics, National Tsing Hua University, Taiwan
| | - Toshiaki Imada
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
Skagerlund K, Bolt T, Nomi JS, Skagenholt M, Västfjäll D, Träff U, Uddin LQ. Disentangling Mathematics from Executive Functions by Investigating Unique Functional Connectivity Patterns Predictive of Mathematics Ability. J Cogn Neurosci 2019; 31:560-573. [DOI: 10.1162/jocn_a_01367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
What are the underlying neurocognitive mechanisms that give rise to mathematical competence? This study investigated the relationship between tests of mathematical ability completed outside the scanner and resting-state functional connectivity (FC) of cytoarchitectonically defined subdivisions of the parietal cortex in adults. These parietal areas are also involved in executive functions (EFs). Therefore, it remains unclear whether there are unique networks for mathematical processing. We investigate the neural networks for mathematical cognition and three measures of EF using resting-state fMRI data collected from 51 healthy adults. Using 10 ROIs in seed to whole-brain voxel-wise analyses, the results showed that arithmetical ability was correlated with FC between the right anterior intraparietal sulcus (hIP1) and the left supramarginal gyrus and between the right posterior intraparietal sulcus (hIP3) and the left middle frontal gyrus and the right premotor cortex. The connection between the posterior portion of the left angular gyrus and the left inferior frontal gyrus was also correlated with mathematical ability. Covariates of EF eliminated connectivity patterns with nodes in inferior frontal gyrus, angular gyrus, and middle frontal gyrus, suggesting neural overlap. Controlling for EF, we found unique connections correlated with mathematical ability between the right hIP1 and the left supramarginal gyrus and between hIP3 bilaterally to premotor cortex bilaterally. This is partly in line with the “mapping hypothesis” of numerical cognition in which the right intraparietal sulcus subserves nonsymbolic number processing and connects to the left parietal cortex, responsible for calculation procedures. We show that FC within this circuitry is a significant predictor of math ability in adulthood.
Collapse
|
41
|
Mock J, Huber S, Bloechle J, Bahnmueller J, Moeller K, Klein E. Processing symbolic and non-symbolic proportions: Domain-specific numerical and domain-general processes in intraparietal cortex. Brain Res 2019; 1714:133-146. [PMID: 30825420 DOI: 10.1016/j.brainres.2019.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/06/2019] [Accepted: 02/26/2019] [Indexed: 01/27/2023]
Abstract
Previous studies on the processing of fractions and proportions focused mainly on the processing of their overall magnitude information in the intraparietal sulcus (IPS). However, the IPS is also associated with domain-general cognitive functions beyond processing overall magnitude, which may nevertheless be involved in operating on magnitude information of proportions. To pursue this issue, the present study aimed at investigating whether there is a shared neural correlate for proportion processing in the intraparietal cortex beyond overall magnitude processing and how part-whole relations are processed on the neural level. Across four presentation formats (i.e., fractions, decimals, dot patterns, and pie charts) we observed a shared neural substrate in bilateral inferior parietal cortex, slightly anterior and inferior to IPS areas recently found for overall magnitude proportion processing. Nevertheless, when evaluating the neural correlates of part-whole processing (i.e., contrasting fractions, dot patterns, and pie charts vs. decimals), we found wide-spread activation in fronto-parietal brain areas. These results indicate involvement of domain-general cognitive processes in part-whole processing beyond processing the overall magnitude of proportions. The dissociation between proportions involving part-whole relations and decimals was further substantiated by a representational similarity analysis, which revealed common neural processing for fractions, pie charts, and dot patterns, possibly representing their bipartite part-whole structure. In contrast, decimals seemed to be processed differently on the neural level, possibly reflecting missing processes of actual proportion calculation in decimals.
Collapse
Affiliation(s)
- Julia Mock
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076 Tuebingen, Germany.
| | - Stefan Huber
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076 Tuebingen, Germany
| | - Johannes Bloechle
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076 Tuebingen, Germany; Hertie-Institute for Clinical Brain Research, Division of Neuropsychology, Otfried-Müller-Straße 27, 72076 Tuebingen, Germany; Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Germany
| | - Julia Bahnmueller
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076 Tuebingen, Germany; LEAD Graduate School, University of Tuebingen, Geschwister-Scholl-Platz, 72074 Tuebingen, Germany
| | - Korbinian Moeller
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076 Tuebingen, Germany; Department of Psychology, Eberhardt-Karls University Tuebingen, Schleichstraße 4, 72076 Tuebingen, Germany; LEAD Graduate School, University of Tuebingen, Geschwister-Scholl-Platz, 72074 Tuebingen, Germany
| | - Elise Klein
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076 Tuebingen, Germany; LEAD Graduate School, University of Tuebingen, Geschwister-Scholl-Platz, 72074 Tuebingen, Germany
| |
Collapse
|
42
|
Bugden S, Woldorff MG, Brannon EM. Shared and distinct neural circuitry for nonsymbolic and symbolic double-digit addition. Hum Brain Mapp 2018; 40:1328-1343. [PMID: 30548735 DOI: 10.1002/hbm.24452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/03/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022] Open
Abstract
Symbolic arithmetic is a complex, uniquely human ability that is acquired through direct instruction. In contrast, the capacity to mentally add and subtract nonsymbolic quantities such as dot arrays emerges without instruction and can be seen in human infants and nonhuman animals. One possibility is that the mental manipulation of nonsymbolic arrays provides a critical scaffold for developing symbolic arithmetic abilities. To explore this hypothesis, we examined whether there is a shared neural basis for nonsymbolic and symbolic double-digit addition. In parallel, we asked whether there are brain regions that are associated with nonsymbolic and symbolic addition independently. First, relative to visually matched control tasks, we found that both nonsymbolic and symbolic addition elicited greater neural signal in the bilateral intraparietal sulcus (IPS), bilateral inferior temporal gyrus, and the right superior parietal lobule. Subsequent representational similarity analyses revealed that the neural similarity between nonsymbolic and symbolic addition was stronger relative to the similarity between each addition condition and its visually matched control task, but only in the bilateral IPS. These findings suggest that the IPS is involved in arithmetic calculation independent of stimulus format.
Collapse
Affiliation(s)
- Stephanie Bugden
- Psychology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - Elizabeth M Brannon
- Psychology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Kutter EF, Bostroem J, Elger CE, Mormann F, Nieder A. Single Neurons in the Human Brain Encode Numbers. Neuron 2018; 100:753-761.e4. [DOI: 10.1016/j.neuron.2018.08.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/19/2018] [Accepted: 08/24/2018] [Indexed: 01/29/2023]
|
44
|
Li H, Zhang M, Wang X, Ding X, Si J. The Central Executive Mediates the Relationship Between Children's Approximate Number System Acuity and Arithmetic Strategy Utilization in Computational Estimation. Front Psychol 2018; 9:943. [PMID: 30013492 PMCID: PMC6036804 DOI: 10.3389/fpsyg.2018.00943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
Studies investigating the relationship between working memory (WM) and approximate number system (ANS) acuity in the area of arithmetic strategy utilization are scarce. The choice/no choice method paradigm was used in the present study to determine whether and how ANS acuity and WM components affected strategy utilization. The results showed that the central executive (CE) mediated the relationship between ANS acuity and strategy utilization. Furthermore, quantile regression analyses revealed that the association between CE and strategy choice was robust from the first to highest quantile. Notably, the relationship between ANS acuity and strategy choice was significant at the median and higher quantiles (i.e., 0.5, 0.75, and 0.85 quantiles), but not significant at lower quantiles (i.e., 0.15 and 0.25 quantiles). These results suggest that domain-general skills play a crucial role in the relationship between children's ANS acuity and mathematical ability. The impact of ANS acuity and CE on strategy choice was dependent on the distribution of the strategy utilization level. These results provide a further understanding of the utilization of cognitive strategies.
Collapse
Affiliation(s)
- Hongxia Li
- School of Psychology, Shandong Normal University, Jinan, China
| | - Mingliang Zhang
- School of Psychology, Shandong Normal University, Jinan, China
- Shandong Academy of Governance, Jinan, China
| | - Xiangyan Wang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Xiao Ding
- School of Psychology, Shandong Normal University, Jinan, China
| | - Jiwei Si
- School of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
45
|
Young CJ, Levine SC, Mix KS. The Connection Between Spatial and Mathematical Ability Across Development. Front Psychol 2018; 9:755. [PMID: 29915547 PMCID: PMC5994429 DOI: 10.3389/fpsyg.2018.00755] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022] Open
Abstract
In this article, we review approaches to modeling a connection between spatial and mathematical thinking across development. We critically evaluate the strengths and weaknesses of factor analyses, meta-analyses, and experimental literatures. We examine those studies that set out to describe the nature and number of spatial and mathematical skills and specific connections between these abilities, especially those that included children as participants. We also find evidence of strong spatial-mathematical connections and transfer from spatial interventions to mathematical understanding. Finally, we map out the kinds of studies that could enhance our understanding of the mechanisms by which spatial and mathematical processing are connected and the principles by which mathematical outcomes could be enhanced through spatial training in educational settings.
Collapse
Affiliation(s)
| | - Susan C Levine
- Department of Psychology, University of Chicago, Chicago, IL, United States
| | - Kelly S Mix
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, United States
| |
Collapse
|
46
|
Mock J, Huber S, Bloechle J, Dietrich JF, Bahnmueller J, Rennig J, Klein E, Moeller K. Magnitude processing of symbolic and non-symbolic proportions: an fMRI study. Behav Brain Funct 2018; 14:9. [PMID: 29747668 PMCID: PMC5944011 DOI: 10.1186/s12993-018-0141-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 04/28/2018] [Indexed: 11/29/2022] Open
Abstract
Background Recent research indicates that processing proportion magnitude is associated with activation in the intraparietal sulcus. Thus, brain areas associated with the processing of numbers (i.e., absolute magnitude) were activated during processing symbolic fractions as well as non-symbolic proportions. Here, we investigated systematically the cognitive processing of symbolic (e.g., fractions and decimals) and non-symbolic proportions (e.g., dot patterns and pie charts) in a two-stage procedure. First, we investigated relative magnitude-related activations of proportion processing. Second, we evaluated whether symbolic and non-symbolic proportions share common neural substrates. Methods We conducted an fMRI study using magnitude comparison tasks with symbolic and non-symbolic proportions, respectively. As an indicator for magnitude-related processing of proportions, the distance effect was evaluated. Results A conjunction analysis indicated joint activation of specific occipito-parietal areas including right intraparietal sulcus (IPS) during proportion magnitude processing. More specifically, results indicate that the IPS, which is commonly associated with absolute magnitude processing, is involved in processing relative magnitude information as well, irrespective of symbolic or non-symbolic presentation format. However, we also found distinct activation patterns for the magnitude processing of the different presentation formats. Conclusion Our findings suggest that processing for the separate presentation formats is not only associated with magnitude manipulations in the IPS, but also increasing demands on executive functions and strategy use associated with frontal brain regions as well as visual attention and encoding in occipital regions. Thus, the magnitude processing of proportions may not exclusively reflect processing of number magnitude information but also rather domain-general processes.
Collapse
Affiliation(s)
- Julia Mock
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tuebingen, Germany.
| | - Stefan Huber
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tuebingen, Germany
| | - Johannes Bloechle
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tuebingen, Germany.,Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, Otfried-Müller-Straße 27, 72076, Tuebingen, Germany
| | - Julia F Dietrich
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tuebingen, Germany
| | - Julia Bahnmueller
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tuebingen, Germany.,Eberhardt-Karls University Tuebingen, 72074, Tuebingen, Germany
| | - Johannes Rennig
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tuebingen, Germany.,Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, Otfried-Müller-Straße 27, 72076, Tuebingen, Germany
| | - Elise Klein
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tuebingen, Germany
| | - Korbinian Moeller
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tuebingen, Germany.,Eberhardt-Karls University Tuebingen, 72074, Tuebingen, Germany
| |
Collapse
|
47
|
Price GR, Yeo DJ, Wilkey ED, Cutting LE. Prospective relations between resting-state connectivity of parietal subdivisions and arithmetic competence. Dev Cogn Neurosci 2018; 30:280-290. [PMID: 28268177 PMCID: PMC5568461 DOI: 10.1016/j.dcn.2017.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/02/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022] Open
Abstract
The present study investigates the relation between resting-state functional connectivity (rsFC) of cytoarchitectonically defined subdivisions of the parietal cortex at the end of 1st grade and arithmetic performance at the end of 2nd grade. Results revealed a dissociable pattern of relations between rsFC and arithmetic competence among subdivisions of intraparietal sulcus (IPS) and angular gyrus (AG). rsFC between right hemisphere IPS subdivisions and contralateral IPS subdivisions positively correlated with arithmetic competence. In contrast, rsFC between the left hIP1 and the right medial temporal lobe, and rsFC between the left AG and left superior frontal gyrus, were negatively correlated with arithmetic competence. These results suggest that strong inter-hemispheric IPS connectivity is important for math development, reflecting either neurocognitive mechanisms specific to arithmetic processing, domain-general mechanisms that are particularly relevant to arithmetic competence, or structural 'cortical maturity'. Stronger connectivity between IPS, and AG, subdivisions and frontal and temporal cortices, however, appears to be negatively associated with math development, possibly reflecting the ability to disengage suboptimal problem-solving strategies during mathematical processing, or to flexibly reorient task-based networks. Importantly, the reported results pertain even when controlling for reading, spatial attention, and working memory, suggesting that the observed rsFC-behavior relations are specific to arithmetic competence.
Collapse
Affiliation(s)
- Gavin R Price
- Department of Psychology & Human Development, Peabody College, Vanderbilt University,230 Appleton Place, Nashville, TN, 37203, USA
| | - Darren J Yeo
- Department of Psychology & Human Development, Peabody College, Vanderbilt University,230 Appleton Place, Nashville, TN, 37203, USA; Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University,14 Nanyang Avenue, 637332, Singapore, Singapore
| | - Eric D Wilkey
- Department of Psychology & Human Development, Peabody College, Vanderbilt University,230 Appleton Place, Nashville, TN, 37203, USA
| | - Laurie E Cutting
- Department of Special Education, Peabody College, Vanderbilt University,230 Appleton Place, Nashville, TN, 37203, USA.
| |
Collapse
|
48
|
Bloechle J, Huber JF, Klein E, Bahnmueller J, Rennig J, Moeller K, Huber S. Spatial Arrangement and Set Size Influence the Coding of Non-symbolic Quantities in the Intraparietal Sulcus. Front Hum Neurosci 2018; 12:54. [PMID: 29515382 PMCID: PMC5826250 DOI: 10.3389/fnhum.2018.00054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/31/2018] [Indexed: 01/29/2023] Open
Abstract
Performance in visual quantification tasks shows two characteristic patterns as a function of set size. A precise subitizing process for small sets (up to four) was contrasted with an approximate estimation process for larger sets. The spatial arrangement of elements in a set also influences visual quantification performance, with frequently perceived arrangements (e.g., dice patterns) being faster enumerated than random arrangements. Neuropsychological and imaging studies identified the intraparietal sulcus (IPS), as key brain area for quantification, both within and above the subitizing range. However, it is not yet clear if and how set size and spatial arrangement of elements in a set modulate IPS activity during quantification. In an fMRI study, participants enumerated briefly presented dot patterns with random, canonical or dice arrangement within and above the subitizing range. We evaluated how activity amplitude and pattern in the IPS were influenced by size and spatial arrangement of a set. We found a discontinuity in the amplitude of IPS response between subitizing and estimation range, with steep activity increase for sets exceeding four elements. In the estimation range, random dot arrangements elicited stronger IPS response than canonical arrangements which in turn elicited stronger response than dice arrangements. Furthermore, IPS activity patterns differed systematically between arrangements. We found a signature in the IPS response for a transition between subitizing and estimation processes during quantification. Differences in amplitude and pattern of IPS activity for different spatial arrangements indicated a more precise representation of non-symbolic numerical magnitude for dice and canonical than for random arrangements. These findings challenge the idea of an abstract coding of numerosity in the IPS even within a single notation.
Collapse
Affiliation(s)
- Johannes Bloechle
- Neurocognition Lab, Leibniz-Institut für Wissensmedien, Knowledge Media Research Center, Tübingen, Germany
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Julia F. Huber
- Neurocognition Lab, Leibniz-Institut für Wissensmedien, Knowledge Media Research Center, Tübingen, Germany
- Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Elise Klein
- Neurocognition Lab, Leibniz-Institut für Wissensmedien, Knowledge Media Research Center, Tübingen, Germany
| | - Julia Bahnmueller
- Neurocognition Lab, Leibniz-Institut für Wissensmedien, Knowledge Media Research Center, Tübingen, Germany
- Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Johannes Rennig
- Neurocognition Lab, Leibniz-Institut für Wissensmedien, Knowledge Media Research Center, Tübingen, Germany
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Korbinian Moeller
- Neurocognition Lab, Leibniz-Institut für Wissensmedien, Knowledge Media Research Center, Tübingen, Germany
- Department of Psychology, University of Tübingen, Tübingen, Germany
- LEAD Graduiertenschule und Forschungsnetzwerk, Universität Tübingen, Tübingen, Germany
| | - Stefan Huber
- Neurocognition Lab, Leibniz-Institut für Wissensmedien, Knowledge Media Research Center, Tübingen, Germany
| |
Collapse
|
49
|
Woods KJ, Jacobson SW, Molteno CD, Jacobson JL, Meintjes EM. Altered Parietal Activation during Non-symbolic Number Comparison in Children with Prenatal Alcohol Exposure. Front Hum Neurosci 2018; 11:627. [PMID: 29358911 PMCID: PMC5766638 DOI: 10.3389/fnhum.2017.00627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/08/2017] [Indexed: 12/05/2022] Open
Abstract
Number processing is a cognitive domain particularly sensitive to prenatal alcohol exposure, which relies on intact parietal functioning. Alcohol-related alterations in brain activation have been found in the parietal lobe during symbolic number processing. However, the effects of prenatal alcohol exposure on the neural correlates of non-symbolic number comparison and the numerical distance effect have not been investigated. Using functional magnetic resonance imaging (fMRI), we examined differences in brain activation associated with prenatal alcohol exposure in five parietal regions involved in number processing during a non-symbolic number comparison task with varying degrees of difficulty. fMRI results are presented for 27 Cape Colored children (6 fetal alcohol syndome (FAS)/partial FAS, 5 heavily exposed (HE) non-sydromal, 16 controls; mean age ± SD = 11.7 ± 1.1 years). Fetal alcohol exposure was assessed by interviewing mothers using a timeline follow-back approach. Separate subject analyses were performed in each of five regions of interest, bilateral horizontal intraparietal sulci (IPS), bilateral posterior superior parietal lobules (PSPL), and left angular gyrus (left AG), using the general linear model with predictors for number comparison and difficulty level. Mean percent signal change for each predictor was extracted for each subject for each region to examine group differences and associations with continuous measures of alcohol exposure. Although groups did not differ in performance, controls activated the right PSPL more during non-symbolic number comparison than exposed children, but this was not significant after controlling for maternal smoking, and the right IPS more than children with fetal alcohol syndrome (FAS) or partial FAS. More heavily exposed children recruited the left AG to a greater extent as task difficulty increased, possibly to compensate, in part, for impairments in function in the PSPL and IPS. Notably, in non-syndromal heavily exposed children activation was impaired in the right PSPL, but spared in the right IPS. These results extend previous findings of poor right IPS recruitment during symbolic number processing in FAS/PFAS, indicating that mental representation of relative quantity is affected by prenatal alcohol exposure for both symbolic and non-symbolic representations of quantity.
Collapse
Affiliation(s)
- Keri J Woods
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandra W Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Joseph L Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ernesta M Meintjes
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
50
|
Dormal V, Larigaldie N, Lefèvre N, Pesenti M, Andres M. Effect of perceived length on numerosity estimation: Evidence from the Müller-Lyer illusion. Q J Exp Psychol (Hove) 2018; 71:2142-2151. [DOI: 10.1177/1747021817738720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous studies showed that the magnitude information conveyed by sensory cues, such as length or surface, influences the ability to compare the numerosity of sets of objects. However, the perceptual nature of this representation and how it interacts with the processes involved in numerical judgements remain unclear. This study aims to address these issues by studying the interference of length on numerosity under different perceptual and response conditions. The first experiment shows that the influence of length does not depend on the actual length but on subjective values reflecting the way length is perceived in a given visual context. The Müller-Lyer illusion was used to manipulate the perceived length of two dot arrays independently of their actual length. When the length of two dot arrays was equal but perceived as different due to the illusion, participants erroneously reported differences in the number of dots contained in each array, evidencing a similar effect of Müller-Lyer illusion on length and numerosity comparison. This finding was replicated in a second experiment where participants had to give a verbal estimate of the number of dots contained in a given array, thereby eliminating the choice between a small or large response. Compared with a neutral condition, estimations were systematically larger than the actual number of dots as the illusory length increased. These results demonstrate that the illusory-induced experience of length influences numerosity estimation over and beyond objective cues and that this influence is not a response selection bias.
Collapse
Affiliation(s)
- Valérie Dormal
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nathanaël Larigaldie
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nathalie Lefèvre
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute for Multidisciplinary Research in Quantitative Modelling and Analysis, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mauro Pesenti
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Michael Andres
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|