1
|
Chen F, Wang XM, Huang X. Abnormal topological organization of functional brain networks in the patients with anterior segment ischemic optic neuropathy. Front Neurosci 2024; 18:1458897. [PMID: 39649661 PMCID: PMC11621095 DOI: 10.3389/fnins.2024.1458897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Objective An increasing amount of neuroimaging evidence indicates that patients with anterior segment ischemic optic neuropathy (AION) exhibit abnormal brain function and structural architecture. Some studies have shown that there are abnormal functional and structural changes in the brain visual area of AION patients. Nevertheless, the alterations in the topological properties of brain functional connectivity among patients with AION remain unclear. This study aimed to investigate the topological organization of brain functional connectivity in a group of AION patients using graph theory methods. Methods Resting-state magnetic resonance imaging was conducted on 30 AION patients and 24 healthy controls (HCs) matched for age, gender, and education level. For each participant, a high-resolution brain functional network was constructed using time series correlation and quantified through graph theory analysis. Results Both the AION and HC groups presented high-efficiency small-world networks in their brain functional networks. In comparison to the HCs, the AION group exhibited notable reductions in clustering coefficient (Cp) and local efficiency (Eloc). Specifically, significant decreases in Nodal local efficiency were observed in the right Amygdala of the AION group. Moreover, the NBS method detected a significantly modified network (15 nodes, 15 connections) in the AION group compared to the HCs (p < 0.05). Conclusion Patients with AION exhibited topological abnormalities in the human brain connectivity group. Particularly, there was a decrease in Cp and Eloc in the AION group compared to the HC group. The anomalous node centers and functional connections in AION patients were predominantly situated in the prefrontal lobe, temporal lobe, and parietal lobe. These discoveries offer valuable perspectives into the neural mechanisms associated with visual loss, disrupted emotion regulation, and cognitive impairments in individuals with AION.
Collapse
Affiliation(s)
- Fei Chen
- Department of Opthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin-Miao Wang
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Chatterjee I, Baumgärtner L. Unveiling Functional Biomarkers in Schizophrenia: Insights from Region of Interest Analysis Using Machine Learning. J Integr Neurosci 2024; 23:179. [PMID: 39344241 DOI: 10.31083/j.jin2309179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Schizophrenia is a complex and disabling mental disorder that represents one of the most important challenges for neuroimaging research. There were many attempts to understand these basic mechanisms behind the disorder, yet we know very little. By employing machine learning techniques with age-matched samples from the auditory oddball task using multi-site functional magnetic resonance imaging (fMRI) data, this study aims to address these challenges. METHODS The study employed a three-stage model to gain a better understanding of the neurobiology underlying schizophrenia and techniques that could be applied for diagnosis. At first, we constructed four-level hierarchical sets from each fMRI volume of 34 schizophrenia patients (SZ) and healthy controls (HC) individually in terms of hemisphere, gyrus, lobes, and Brodmann areas. Second, we employed statistical methods, namely, t-tests and Pearson's correlation, to assess the group differences in cortical activation. Finally, we assessed the predictive power of the brain regions for machine learning algorithms using K-nearest Neighbor (KNN), Naive Bayes, Decision Tree (DT), Random Forest (RF), Support Vector Machines (SVMs), and Extreme Learning Machine (ELM). RESULTS Our investigation depicts promising results, obtaining an accuracy of up to 84% when applying Pearson's correlation-selected features at lobes and Brodmann region level (81% for Gyrus), as well as Hemispheres involving different stages. Thus, the results of our study were consistent with previous studies that have revealed some functional abnormalities in several brain regions. We also discovered the involvement of other brain regions which were never sufficiently studied in previous literature, such as the posterior lobe (posterior cerebellum), Pyramis, and Brodmann Area 34. CONCLUSIONS We present a unique and comprehensive approach to investigating the neurological basis of schizophrenia in this study. By bridging the gap between neuroimaging and computable analysis, we aim to improve diagnostic accuracy in patients with schizophrenia and identify potential prognostic markers for disease progression.
Collapse
Affiliation(s)
- Indranath Chatterjee
- Department of Computing and Mathematics, Manchester Metropolitan University, M1 5GD Manchester, UK
- School of Technology, Woxsen University, 502345 Hyderabad, India
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, 140401 Punjab, India
| | - Lea Baumgärtner
- Department of Media, Hochschule der Medien, University of Applied Science, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Alshehri A, Koussis N, Al-Iedani O, Khormi I, Lea R, Ramadan S, Lechner-Scott J. Improvement of the thalamocortical white matter network in people with stable treated relapsing-remitting multiple sclerosis over time. NMR IN BIOMEDICINE 2024; 37:e5119. [PMID: 38383137 DOI: 10.1002/nbm.5119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/28/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Advanced imaging techniques (tractography) enable the mapping of white matter (WM) pathways and the understanding of brain connectivity patterns. We combined tractography with a network-based approach to examine WM microstructure on a network level in people with relapsing-remitting multiple sclerosis (pw-RRMS) and healthy controls (HCs) over 2 years. Seventy-six pw-RRMS matched with 43 HCs underwent clinical assessments and 3T MRI scans at baseline (BL) and 2-year follow-up (2-YFU). Probabilistic tractography was performed, accounting for the effect of lesions, producing connectomes of 25 million streamlines. Network differences in fibre density across pw-RRMS and HCs at BL and 2-YFU were quantified using network-based statistics (NBS). Longitudinal network differences in fibre density were quantified using NBS in pw-RRMS, and were tested for correlations with disability, cognition and fatigue scores. Widespread network reductions in fibre density were found in pw-RRMS compared with HCs at BL in cortical regions, with more reductions detected at 2-YFU. Pw-RRMS had reduced fibre density at BL in the thalamocortical network compared to 2-YFU. This effect appeared after correction for age, was robust across different thresholds, and did not correlate with lesion volume or disease duration. Pw-RRMS demonstrated a robust and long-distance improvement in the thalamocortical WM network, regardless of age, disease burden, duration or therapy, suggesting a potential locus of neuroplasticity in MS. This network's role over the disease's lifespan and its potential implications in prognosis and treatment warrants further investigation.
Collapse
Affiliation(s)
- Abdulaziz Alshehri
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Radiology, King Fahd University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nikitas Koussis
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Psychological Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Oun Al-Iedani
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ibrahim Khormi
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- College of Applied Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Rodney Lea
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Saadallah Ramadan
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
4
|
Zanoaga MD, Friligkou E, He J, Pathak GA, Koller D, Cabrera-Mendoza B, Stein MB, Polimanti R. Brainwide Mendelian Randomization Study of Anxiety Disorders and Symptoms. Biol Psychiatry 2024; 95:810-817. [PMID: 37967698 PMCID: PMC10978301 DOI: 10.1016/j.biopsych.2023.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND To gain insights into the role of brain structure and function on anxiety (ANX), we conducted a genetically informed investigation leveraging information from ANX genome-wide association studies available from the UK Biobank (n = 380,379), the FinnGen Program (n = 290,361), and the Million Veteran Program (n = 175,163) together with UK Biobank genome-wide data (n = 33,224) related to 3935 brain imaging-derived phenotypes (IDPs). METHODS A genetic correlation analysis between ANX and brain IDPs was performed using linkage disequilibrium score regression. To investigate ANX-brain associations, a 2-sample Mendelian randomization was performed considering multiple methods and sensitivity analyses. A subsequent multivariable Mendelian randomization was conducted to distinguish between direct and indirect effects. Finally, a generalized linear model was used to explore the associations of brain IDPs with ANX symptoms. RESULTS After false discovery rate correction (q < .05), we identified 41 brain IDPs genetically correlated with ANX without heterogeneity among the datasets investigated (i.e., UK Biobank, FinnGen, and Million Veteran Program). Six of these IDPs showed genetically inferred causal effects on ANX. In the subsequent multivariable Mendelian randomization analysis, reduced area of the right posterior middle cingulate gyrus (β = -0.09, p = 8.01 × 10-4) and reduced gray matter volume of the right anterior superior temporal gyrus (β = -0.09, p = 1.55 × 10-3) had direct effects on ANX. In the ANX symptom-level analysis, the right posterior middle cingulate gyrus was negatively associated with "tense, sore, or aching muscles during the worst period of anxiety" (β = -0.13, p = 8.26 × 10-6). CONCLUSIONS This study identified genetically inferred effects that are generalizable across large cohorts, thereby contributing to our understanding of how changes in brain structure and function can lead to ANX.
Collapse
Affiliation(s)
- Mihaela-Diana Zanoaga
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Eleni Friligkou
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jun He
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Dora Koller
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, La Jolla, California; Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, California; Veteran Affairs San Diego Healthcare System, San Diego, California
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
5
|
Proverbio AM, Cesati F. Neural correlates of recalled sadness, joy, and fear states: a source reconstruction EEG study. Front Psychiatry 2024; 15:1357770. [PMID: 38638416 PMCID: PMC11024723 DOI: 10.3389/fpsyt.2024.1357770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction The capacity to understand the others' emotional states, particularly if negative (e.g. sadness or fear), underpins the empathic and social brain. Patients who cannot express their emotional states experience social isolation and loneliness, exacerbating distress. We investigated the feasibility of detecting non-invasive scalp-recorded electrophysiological signals that correspond to recalled emotional states of sadness, fear, and joy for potential classification. Methods The neural activation patterns of 20 healthy and right-handed participants were studied using an electrophysiological technique. Analyses were focused on the N400 component of Event-related potentials (ERPs) recorded during silent recall of subjective emotional states; Standardized weighted Low-resolution Electro-magnetic Tomography (swLORETA) was employed for source reconstruction. The study classified individual patterns of brain activation linked to the recollection of three distinct emotional states into seven regions of interest (ROIs). Results Statistical analysis (ANOVA) of the individual magnitude values revealed the existence of a common emotional circuit, as well as distinct brain areas that were specifically active during recalled sad, happy and fearful states. In particular, the right temporal and left superior frontal areas were more active for sadness, the left limbic region for fear, and the right orbitofrontal cortex for happy affective states. Discussion In conclusion, this study successfully demonstrated the feasibility of detecting scalp-recorded electrophysiological signals corresponding to internal and subjective affective states. These findings contribute to our understanding of the emotional brain, and have potential applications for future BCI classification and identification of emotional states in LIS patients who may be unable to express their emotions, thus helping to alleviate social isolation and sense of loneliness.
Collapse
Affiliation(s)
- Alice Mado Proverbio
- Cognitive Electrophysiology Lab, Department of Psychology, University of Milano-Bicocca, Milan, Italy
- NEURO-MI Milan Center for Neuroscience, Milan, Italy
| | - Federico Cesati
- Cognitive Electrophysiology Lab, Department of Psychology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
6
|
Lee DY, Kim N, Park C, Gan S, Son SJ, Park RW, Park B. Explainable multimodal prediction of treatment-resistance in patients with depression leveraging brain morphometry and natural language processing. Psychiatry Res 2024; 334:115817. [PMID: 38430816 DOI: 10.1016/j.psychres.2024.115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Although 20 % of patients with depression receiving treatment do not achieve remission, predicting treatment-resistant depression (TRD) remains challenging. In this study, we aimed to develop an explainable multimodal prediction model for TRD using structured electronic medical record data, brain morphometry, and natural language processing. In total, 247 patients with a new depressive episode were included. TRD-predictive models were developed based on the combination of following parameters: selected tabular dataset features, independent components-map weightings from brain T1-weighted magnetic resonance imaging (MRI), and topic probabilities from clinical notes. All models applied the extreme gradient boosting (XGBoost) algorithm via five-fold cross-validation. The model using all data sources showed the highest area under the receiver operating characteristic of 0.794, followed by models that used combined brain MRI and structured data, brain MRI and clinical notes, clinical notes and structured data, brain MRI only, structured data only, and clinical notes only (0.770, 0.762, 0.728, 0.703, 0.684, and 0.569, respectively). Classifications of TRD were driven by several predictors, such as previous exposure to antidepressants and antihypertensive medications, sensorimotor network, default mode network, and somatic symptoms. Our findings suggest that a combination of clinical data with neuroimaging and natural language processing variables improves the prediction of TRD.
Collapse
Affiliation(s)
- Dong Yun Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea; Department of Medical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Narae Kim
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - ChulHyoung Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea; Department of Medical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Sujin Gan
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon, South Korea
| | - Rae Woong Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea.
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea; Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, South Korea.
| |
Collapse
|
7
|
Wang W, Qiu D, Mei Y, Bai X, Yuan Z, Zhang X, Xiong Z, Tang H, Zhang P, Zhang Y, Yu X, Wang Z, Ge Z, Sui B, Wang Y. Altered functional connectivity of brainstem nuclei in new daily persistent headache: Evidence from resting-state functional magnetic resonance imaging. CNS Neurosci Ther 2024; 30:e14686. [PMID: 38516817 PMCID: PMC10958407 DOI: 10.1111/cns.14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVES The new daily persistent headache (NDPH) is a rare primary headache disorder. However, the underlying mechanisms of NDPH remain incompletely understood. This study aims to apply seed-based analysis to explore the functional connectivity (FC) of brainstem nuclei in patients with NDPH using resting-state functional magnetic resonance imaging (MRI). METHODS The FC analysis from the region of interest (ROI) to whole brain voxels was used to investigate 29 patients with NDPH and 37 well-matched healthy controls (HCs) with 3.0 Tesla MRI. The 76 nuclei in the brainstem atlas were defined as ROIs. Furthermore, we explored the correlations between FC and patients' clinical characteristics and neuropsychological evaluations. RESULTS Patients with NDPH exhibited reduced FC in multiple brainstem nuclei compared to HCs (including right inferior medullary reticular formation, right mesencephalic reticular formation, bilateral locus coeruleus, bilateral laterodorsal tegmental nucleus-central gray of the rhombencephalon, median raphe, left medial parabrachial nucleus, periaqueductal gray, and bilateral ventral tegmental area-parabrachial pigmented nucleus complex) and increased FC in periaqueductal gray. No significant correlations were found between the FC of these brain regions and clinical characteristics or neuropsychological evaluations after Bonferroni correction (p > 0.00016). CONCLUSIONS Our results demonstrated that patients with NDPH have abnormal FC of brainstem nuclei involved in the perception and regulation of pain and emotions.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Dong Qiu
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yanliang Mei
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of ExcellenceChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Radiology, Beijing Neurosurgical Institute, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ziyu Yuan
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xue Zhang
- Tiantan Neuroimaging Center of ExcellenceChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Radiology, Beijing Neurosurgical Institute, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhonghua Xiong
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hefei Tang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Peng Zhang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yaqing Zhang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xueying Yu
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhe Wang
- Department of NeurologyThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Zhaoli Ge
- Department of NeurologyShenzhen Second People's HospitalShenzhenGuangdongChina
| | - Binbin Sui
- Tiantan Neuroimaging Center of ExcellenceChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yonggang Wang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
8
|
Chi S, Mok YE, Lee JH, Suh SI, Han C, Lee MS. Functional connectivity and network analysis in adolescents with major depressive disorder showing suicidal behavior. J Affect Disord 2023; 343:42-49. [PMID: 37741467 DOI: 10.1016/j.jad.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND This study aimed to gather a homogeneous sample of adolescent patients to analyze the differences in functional connectivity and brain network parameters between suicidal and non-suicidal major depressive disorder (MDD) patients using a data-driven whole-brain approach. METHODS Patients recruited at the psychiatry department of Korea University Guro Hospital from November 2014 to March 2020 were diagnosed with MDD, were 13-18 years old, had IQ scores >80, had no family history of psychotic or personality disorders, had no smoking or alcohol consumption history, and were drug-naïve to psychotropic medication. Depressive symptoms were assessed using the Hamilton Depression Rating Scale and the Children's Depression Inventory. Structural and functional MRI scans were conducted and analyzed using the CONN toolbox. RESULTS Of 74 enrolled patients, 62 were analyzed. Regions of interest (ROIs) showing higher betweenness centrality in non-suicidal patients were the left superior temporal gyrus and left supramarginal gyrus. ROIs showing higher betweenness centrality in suicidal patients were the right hippocampus, left intracalcarine cortex, right inferior temporal gyrus, and the lateral visual network. Suicidal patients also showed different resting state functional connectivity profiles from non-suicidal patients. LIMITATIONS Small sample size. CONCLUSION Suicidal patients may overthink and overvalue future risks while having a more negatively biased autobiographical memory. Social cognition and the ability to overcome egocentricity bias seem to weaken. Such features can disrupt cognitive recovery and resilience, leading to more suicidal behaviors. Therefore, increased suicidality is not acquired, but is an innate trait.
Collapse
Affiliation(s)
- SuHyuk Chi
- Department of Psychiatry, Korea University Guro Hospital, Seoul, South Korea
| | - Young Eun Mok
- Department of Psychiatry, Korea University Guro Hospital, Seoul, South Korea
| | - Jong-Ha Lee
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, South Korea
| | - Sang-Il Suh
- Department of Radiology, Korea University Guro Hospital, Seoul, South Korea
| | - Changsu Han
- Department of Psychiatry, Korea University Guro Hospital, Seoul, South Korea
| | - Moon-Soo Lee
- Department of Psychiatry, Korea University Guro Hospital, Seoul, South Korea.
| |
Collapse
|
9
|
Dai J, Jorgensen NA, Duell N, Capella J, Maza MT, Kwon SJ, Prinstein MJ, Lindquist KA, Telzer EH. Neural tracking of social hierarchies in adolescents' real-world social networks. Soc Cogn Affect Neurosci 2023; 18:nsad064. [PMID: 37978845 PMCID: PMC10656574 DOI: 10.1093/scan/nsad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
In the current study, we combined sociometric nominations and neuroimaging techniques to examine adolescents' neural tracking of peers from their real-world social network that varied in social preferences and popularity. Adolescent participants from an entire school district (N = 873) completed peer sociometric nominations of their grade at school, and a subset of participants (N = 117, Mage = 13.59 years) completed a neuroimaging task in which they viewed peer faces from their social networks. We revealed two neural processes by which adolescents track social preference: (1) the fusiform face area, an important region for early visual perception and social categorization, simultaneously represented both peers high in social preference and low in social preference; (2) the dorsolateral prefrontal cortex (DLPFC), which was differentially engaged in tracking peers high and low in social preference. No regions specifically tracked peers high in popularity and only the inferior parietal lobe, temporoparietal junction, midcingulate cortex and insula were involved in tracking unpopular peers. This is the first study to examine the neural circuits that support adolescents' perception of peer-based social networks. These findings identify the neural processes that allow youths to spontaneously keep track of peers' social value within their social network.
Collapse
Affiliation(s)
- Junqiang Dai
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Nathan A Jorgensen
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Natasha Duell
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Jimmy Capella
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Maria T Maza
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Seh-Joo Kwon
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Eva H Telzer
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| |
Collapse
|
10
|
Zhang R, Blair RJR, Blair KS, Dobbertin M, Elowsky J, Bashford-Largo J, Dominguez AJ, Hatch M, Bajaj S. Reduced grey matter volume in adolescents with conduct disorder: a region-of-interest analysis using multivariate generalized linear modeling. DISCOVER MENTAL HEALTH 2023; 3:25. [PMID: 37975932 PMCID: PMC10656392 DOI: 10.1007/s44192-023-00052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Conduct disorder (CD) involves a group of behavioral and emotional problems that usually begins during childhood or adolescence. Structural brain alterations have been observed in CD, including the amygdala, insula, ventrolateral and medial prefrontal cortex, anterior cingulate cortex, and fusiform gyrus. The current study developed a multivariate generalized linear model (GLM) to differentiate adolescents with CD from typically developing (TD) adolescents in terms of grey matter volume (GMV). METHODS The whole-brain structural MRI data were collected from 96 adolescents with CD (mean age = [Formula: see text] years; mean IQ = [Formula: see text]; 63 males) and 90 TD individuals (mean age = [Formula: see text] years; mean IQ = [Formula: see text]; 59 males) matched on age, IQ, and sex. Region-wise GMV was extracted following whole-brain parcellation into 68 cortical and 14 subcortical regions for each participant. A multivariate GLM was developed to predict the GMV of the pre-hypothesized regions-of-interest (ROIs) based on CD diagnosis, with intracranial volume, age, sex, and IQ serving as the covariate. RESULTS A diagnosis of CD was a significant predictor for GMV in the right pars orbitalis, right insula, right superior temporal gyrus, left fusiform gyrus, and left amygdala (F(1, 180) = 5.460-10.317, p < 0.05, partial eta squared = 0.029-0.054). The CD participants had smaller GMV in these regions than the TD participants (MCD-MTD = [- 614.898] mm3-[- 53.461] mm3). CONCLUSIONS Altered GMV within specific regions may serve as a biomarker for the development of CD in adolescents. Clinical work can potentially target these biomarkers to treat adolescents with CD.
Collapse
Affiliation(s)
- Ru Zhang
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - R James R Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Karina S Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Matthew Dobbertin
- Inpatient Psychiatric Care Unit, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jaimie Elowsky
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Ahria J Dominguez
- Clinical Health, Emotion, and Neuroscience (CHEN) Laboratory, Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Melissa Hatch
- Mind and Brain Health Labs (MBHL), Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Sahil Bajaj
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Zhang R, Blair RJR, Blair KS, Dobbertin M, Elowsky J, Bashford-Largo J, Dominguez AJ, Hatch M, Bajaj S. Reduced Grey Matter Volume in Adolescents with Conduct Disorder: A Region-of-Interest Analysis Using Multivariate Generalized Linear Modeling. RESEARCH SQUARE 2023:rs.3.rs-3425545. [PMID: 37961148 PMCID: PMC10635381 DOI: 10.21203/rs.3.rs-3425545/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Conduct disorder (CD) involves a group of behavioral and emotional problems that usually begins during childhood or adolescence. Structural brain alterations have been observed in CD, including the amygdala, insula, ventrolateral and medial prefrontal cortex, anterior cingulate cortex, and fusiform gyrus. The current study developed a multivariate generalized linear model (GLM) to differentiate adolescents with CD from typically developing (TD) adolescents in terms of grey matter volume (GMV). Methods The whole-brain structural MRI data were collected from 96 adolescents with CD (mean age = years; mean IQ = ; 63 males) and 90 TD individuals (mean age = years; mean IQ = ; 59 males) matched on age, IQ, and sex. Region-wise GMV was extracted following whole-brain parcellation into 68 cortical and 14 subcortical regions for each participant. A multivariate GLM was developed to predict the GMV of the pre-hypothesized regions-of-interest (ROIs) based on CD diagnosis, with intracranial volume, age, sex, and IQ serving as the covariate. Results A diagnosis of CD was a significant predictor for GMV in the right pars orbitalis, right insula, right superior temporal gyrus, left fusiform gyrus, and left amygdala (F(1, 180) = 5.460 - 10.317, p < 0.05, partial eta squared = 0.029 - 0.054). The CD participants had smaller GMV in these regions than the TD participants (MCD - MTD = [-614.898] mm3 - [-53.461] mm3). Conclusions Altered GMV within specific regions may serve as a biomarker for the development of CD in adolescents. Clinical work can potentially target these biomarkers to treat adolescents with CD.
Collapse
Affiliation(s)
- Ru Zhang
- University of Southern California
| | | | | | | | | | | | | | | | - Sahil Bajaj
- The University of Texas MD Anderson Cancer Center
| |
Collapse
|
12
|
Alotaibi S, Alsaleh A, Wuerger S, Meyer G. Rapid neural changes during novel speech-sound learning: An fMRI and DTI study. BRAIN AND LANGUAGE 2023; 245:105324. [PMID: 37741162 DOI: 10.1016/j.bandl.2023.105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
While the functional and microstructural changes that occur when we learn new language skills are well documented, relatively little is known about the time course of these changes. Here a combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study that tracks neural change over three days of learning Arabic phonetic categorization as a new language (L-training) is presented. Twenty adult native English-speaking (L-native) participants are scanned before and after training to perceive and produce L-training phonetic contrasts for one hour on three consecutive days. A third (Chinese) language is used as a control language (L-control). Behavioral results show significant performance improvement for L-training in both learnt tasks; the perception and production task. Imaging analysis reveals that, training-related hemodynamic fMRI signal and fractional anisotropy (FA) value increasing can be observed, in the left inferior frontal gyrus (LIFG) and positively correlated with behavioral improvement. Moreover, post training functional connectivity findings show a significant increasing between LIFG and left inferior parietal lobule for L-training. These results indicate that three hours of phonetic categorization learning causes functional and microstructural changes that are typically associated with much more long-term learning.
Collapse
Affiliation(s)
- Sahal Alotaibi
- Radiology Dept, Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZA, United Kingdom
| | - Alanood Alsaleh
- Radiological Sciences Dept, Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sophie Wuerger
- Clinical and Cognitive Neuroscience Group, Dept of Psychology, University of Liverpool, Liverpool L69 7ZA, United Kingdom
| | - Georg Meyer
- Clinical and Cognitive Neuroscience Group, Dept of Psychology, University of Liverpool, Liverpool L69 7ZA, United Kingdom; Virtual Engineering Centre, Digital Innovation Facility, University of Liverpool, L69 3RF, United Kingdom.
| |
Collapse
|
13
|
Zanoaga MD, Friligkou E, He J, Pathak GA, Koller D, Cabrera-Mendoza B, Stein MB, Polimanti R. Brain-Wide Mendelian Randomization Study of Anxiety Disorders and Symptoms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295448. [PMID: 37745546 PMCID: PMC10516096 DOI: 10.1101/2023.09.12.23295448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background To gain insights into the role of brain structure and function on anxiety (ANX), we conducted a genetically informed investigation leveraging information from ANX genome-wide association studies available from UK Biobank (UKB; N=380,379), FinnGen Program (N=290,361), and Million Veteran Program (MVP; N=199,611) together with UKB genome-wide data (N=33,224) related to 3,935 brain imaging-derived phenotypes (IDP). Methods A genetic correlation analysis between ANX and brain IDPs was performed using linkage disequilibrium score regression. To investigate ANX-brain associations, a two-sample Mendelian randomization (MR) was performed considering multiple methods and sensitivity analyses. A subsequent multivariable MR (MVMR) was executed to distinguish between direct and indirect effects. Finally, a generalized linear model was used to explore the associations of brain IDPs with ANX symptoms. Results After false discovery rate correction (FDR q<0.05), we identified 41 brain IDPs genetically correlated with ANX without heterogeneity among the datasets investigated (i.e., UKB, FinnGen, and MVP). Six of these IDPs showed genetically inferred causal effects on ANX. In the subsequent MVMR analysis, reduced area of the right posterior middle-cingulate gyrus (rpMCG; beta=-0.09, P= 8.01×10 -4 ) and reduced gray-matter volume of the right anterior superior temporal gyrus (raSTG; beta=-0.09, P=1.55×10 -3 ) had direct effects on ANX. In the ANX symptom-level analysis, rpMCG was negatively associated with "tense sore oraching muscles during the worst period of anxiety" (beta=-0.13, P=8.26×10 -6 ). Conclusions This study identified genetically inferred effects generalizable across large cohorts, contributing to understand how changes in brain structure and function can lead to ANX.
Collapse
|
14
|
Hanewald B, Lockhofen DEL, Sammer G, Stingl M, Gallhofer B, Mulert C, Iffland JR. Functional connectivity in a monetary and social incentive delay task in medicated patients with schizophrenia. Front Psychiatry 2023; 14:1200860. [PMID: 37711426 PMCID: PMC10498543 DOI: 10.3389/fpsyt.2023.1200860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/02/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Numerous studies indicate impaired reward-related learning in individuals with schizophrenia, with various factors such as illness duration, medication, disease severity, and level of analysis (behavioral or neurophysiological data) potentially confounding the results. Patients with schizophrenia who are treated with second-generation antipsychotics have been found to have a less affected reward system. However, this finding does not explain the neural dysfunctions observed in previous studies. This study aimed to address the open question of whether the less impaired reward-related behavior is associated with unimpaired task-related functional connectivity or altered task-related functional connectivity. Methods The study included 23 participants diagnosed within the schizophrenia spectrum and 23 control participants matched in terms of age, sex, and education. Participants underwent an MRI while performing a monetary incentive delay task and a social incentive delay task. The collected data were analyzed in terms of behavior and functional connectivity. Results Both groups exhibited a main effect of reward type on behavioral performance, indicating faster reaction times in the social incentive delay task, but no main effect of reward level. Altered functional connectivity was observed in predictable brain regions within the patient group, depending on the chosen paradigm, but not when compared to healthy individuals. Discussion In addition to expected slower response times, patients with schizophrenia demonstrated similar response patterns to control participants at the behavioral level. The similarities in behavioral data may underlie different connectivity patterns. Our findings suggest that perturbations in reward processing do not necessarily imply disturbances in underlying connectivities. Consequently, we were able to demonstrate that patients with schizophrenia are indeed capable of exhibiting goal-directed, reward-responsive behavior, although there are differences depending on the type of reward.
Collapse
Affiliation(s)
- Bernd Hanewald
- Center for Psychiatry, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Kong Q, Sacca V, Zhu M, Ursitti AK, Kong J. Anatomical and Functional Connectivity of Critical Deep Brain Structures and Their Potential Clinical Application in Brain Stimulation. J Clin Med 2023; 12:4426. [PMID: 37445460 DOI: 10.3390/jcm12134426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Subcortical structures, such as the hippocampus, amygdala, and nucleus accumbens (NAcc), play crucial roles in human cognitive, memory, and emotional processing, chronic pain pathophysiology, and are implicated in various psychiatric and neurological diseases. Interventions modulating the activities of these deep brain structures hold promise for improving clinical outcomes. Recently, non-invasive brain stimulation (NIBS) has been applied to modulate brain activity and has demonstrated its potential for treating psychiatric and neurological disorders. However, modulating the above deep brain structures using NIBS may be challenging due to the nature of these stimulations. This study attempts to identify brain surface regions as source targets for NIBS to reach these deep brain structures by integrating functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). We used resting-state functional connectivity (rsFC) and probabilistic tractography (PTG) analysis to identify brain surface stimulation targets that are functionally and structurally connected to the hippocampus, amygdala, and NAcc in 119 healthy participants. Our results showed that the medial prefrontal cortex (mPFC) is functionally and anatomically connected to all three subcortical regions, while the precuneus is connected to the hippocampus and amygdala. The mPFC and precuneus, two key hubs of the default mode network (DMN), as well as other cortical areas distributed at the prefrontal cortex and the parietal, temporal, and occipital lobes, were identified as potential locations for NIBS to modulate the function of these deep structures. The findings may provide new insights into the NIBS target selections for treating psychiatric and neurological disorders and chronic pain.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Valeria Sacca
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Amy Katherine Ursitti
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| |
Collapse
|
16
|
Gu B, Liu B, Beltrán D, de Vega M. ERP evidence for emotion-specific congruency effects between sentences and new words with disgust and sadness connotations. Front Psychol 2023; 14:1154442. [PMID: 37251037 PMCID: PMC10213552 DOI: 10.3389/fpsyg.2023.1154442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction The present study investigated how new words with acquired connotations of disgust and sadness, both negatively valenced but distinctive emotions, modulate the brain dynamics in the context of emotional sentences. Methods Participants completed a learning session in which pseudowords were repeatedly paired with faces expressing disgust and sadness. An event-related potential (ERP) session followed the next day, in which participants received the learned pseudowords (herein, new words) combined with sentences and were asked to make emotional congruency judgment. Results Sad new words elicited larger negative waveform than disgusting new words in the 146-228 ms time window, and emotionally congruent trials showed larger positive waveform than emotionally incongruent trials in the 304-462 ms time window. Moreover, the source localization in the latter suggested that congruent trials elicited larger current densities than incongruent trials in a number of emotion-related brain structures (e.g., the orbitofrontal cortex and cingulate gyrus) and language-related brain structures (e.g., the temporal lobe and the lingual gyrus). Discussion These results suggested that faces are an effective source for the acquisition of words' emotional connotations, and such acquired connotations can generate semantic and emotional congruency effects in sentential contexts.
Collapse
Affiliation(s)
- Beixian Gu
- Institute for Language and Cognition, School of Foreign Languages, Dalian University of Technology, Dalian, China
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, La Laguna, Spain
| | - Bo Liu
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, La Laguna, Spain
- School of Foreign Languages, Dalian Maritime University, Dalian, China
| | - David Beltrán
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, La Laguna, Spain
- Psychology Department, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Manuel de Vega
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
17
|
Liu S, You B, Zhang X, Shaw A, Chen H, Jackson T. Individual Differences in Pain Catastrophizing and Regional Gray Matter Volume Among Community-dwelling Adults With Chronic Pain: A Voxel-based Morphology Study. Clin J Pain 2023; 39:209-216. [PMID: 36920221 DOI: 10.1097/ajp.0000000000001103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES Elevations in pain catastrophizing (PC) are associated with more severe pain, emotional distress, and impairment within samples with chronic pain. However, brain structure correlates underlying individual differences in PC are not well understood and predict more severe pain and impairment within samples with chronic pain. This study assessed links between regional gray matter volume (GMV) and individual differences in PC within a large mixed chronic pain sample. MATERIALS AND METHODS Chinese adult community dwellers with chronic pain of at least 3 months duration (101 women and 59 men) completed self-report measures of background characteristics, pain severity, depression, and a widely validated PC questionnaire as well as a structural magnetic resonance imagining scan featuring voxel-based morphology to assess regional GMV correlates of PC. RESULTS After controlling for demographic correlates of PC, pain severity, and depression, higher PC scores had a significant, unique association with lower GMV levels in the inferior temporal area of the right fusiform gyrus, a region previously implicated in emotion regulation. DISCUSSION GMV deficits, particularly in right temporal-occipital emotion regulation regions, correspond to high levels of PC among individuals with chronic pain.
Collapse
Affiliation(s)
- Shuyang Liu
- School of Psychology, Southwest University, Chongqing
| | - BeiBei You
- School of Nursing, Guizhou Medical University, Guizhou
| | - Xin Zhang
- School of Psychology, Southwest University, Chongqing
| | - Amy Shaw
- Department of Psychology, University of Macau, Taipa, Macau, S.A.R., China
| | - Hong Chen
- School of Psychology, Southwest University, Chongqing
| | - Todd Jackson
- Department of Psychology, University of Macau, Taipa, Macau, S.A.R., China
| |
Collapse
|
18
|
Wang W, Yuan Z, Zhang X, Bai X, Tang H, Mei Y, Qiu D, Zhang Y, Zhang P, Zhang X, Zhang Y, Yu X, Sui B, Wang Y. Mapping the aberrant brain functional connectivity in new daily persistent headache: a resting-state functional magnetic resonance imaging study. J Headache Pain 2023; 24:46. [PMID: 37098469 PMCID: PMC10131335 DOI: 10.1186/s10194-023-01577-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of new daily persistent headache (NDPH) is not fully understood. We aim to map aberrant functional connectivity (FC) in patients with NDPH using resting-state functional magnetic resonance imaging (MRI). METHODS Brain structural and functional MRI data were acquired from 29 patients with NDPH and 37 well-matched healthy controls (HCs) in this cross-sectional study. Region of interest (ROI) based analysis was used to compare FC between patients and HCs, with 116 brain regions in the automated anatomical labeling (AAL) atlas were defined as seeds. The correlations between aberrant FC and patients' clinical characteristics, and neuropsychological evaluation were also investigated. RESULTS Compared with HCs, patients with NDPH showed increased FC in the left inferior occipital gyrus, right thalamus and decreased FC in right lingual gyrus, left superior occipital gyrus, right middle occipital gyrus, left inferior occipital gyrus, right inferior occipital gyrus, right fusiform gyrus, left postcentral gyrus, right postcentral gyrus, right thalamus and right superior temporal gyrus. There were no correlation between FC of these brain regions and clinical characteristics, neuropsychological evaluation after Bonferroni correction (p > 0.05/266). CONCLUSIONS Patients with NDPH showed aberrant FC in multiple brain regions involved in perception and regulation of emotion and pain. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05334927.
Collapse
Affiliation(s)
- Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xueyan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing Neurosurgical Institute, Beijing, 100070, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yanliang Mei
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dong Qiu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yingkui Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xue Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing Neurosurgical Institute, Beijing, 100070, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
19
|
Bajaj S, Blair KS, Dobbertin M, Patil KR, Tyler PM, Ringle JL, Bashford-Largo J, Mathur A, Elowsky J, Dominguez A, Schmaal L, Blair RJR. Machine learning based identification of structural brain alterations underlying suicide risk in adolescents. DISCOVER MENTAL HEALTH 2023; 3:6. [PMID: 37861863 PMCID: PMC10501026 DOI: 10.1007/s44192-023-00033-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 10/21/2023]
Abstract
Suicide is the third leading cause of death for individuals between 15 and 19 years of age. The high suicide mortality rate and limited prior success in identifying neuroimaging biomarkers indicate that it is crucial to improve the accuracy of clinical neural signatures underlying suicide risk. The current study implements machine-learning (ML) algorithms to examine structural brain alterations in adolescents that can discriminate individuals with suicide risk from typically developing (TD) adolescents at the individual level. Structural MRI data were collected from 79 adolescents who demonstrated clinical levels of suicide risk and 79 demographically matched TD adolescents. Region-specific cortical/subcortical volume (CV/SCV) was evaluated following whole-brain parcellation into 1000 cortical and 12 subcortical regions. CV/SCV parameters were used as inputs for feature selection and three ML algorithms (i.e., support vector machine [SVM], K-nearest neighbors, and ensemble) to classify adolescents at suicide risk from TD adolescents. The highest classification accuracy of 74.79% (with sensitivity = 75.90%, specificity = 74.07%, and area under the receiver operating characteristic curve = 87.18%) was obtained for CV/SCV data using the SVM classifier. Identified bilateral regions that contributed to the classification mainly included reduced CV within the frontal and temporal cortices but increased volume within the cuneus/precuneus for adolescents at suicide risk relative to TD adolescents. The current data demonstrate an unbiased region-specific ML framework to effectively assess the structural biomarkers of suicide risk. Future studies with larger sample sizes and the inclusion of clinical controls and independent validation data sets are needed to confirm our findings.
Collapse
Affiliation(s)
- Sahil Bajaj
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, 14015 Flanagan Blvd. Suite #102, Boys Town, NE, USA.
| | - Karina S Blair
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, 14015 Flanagan Blvd. Suite #102, Boys Town, NE, USA
| | - Matthew Dobbertin
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, 14015 Flanagan Blvd. Suite #102, Boys Town, NE, USA
- Child and Adolescent Psychiatric Inpatient Center, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick M Tyler
- Child and Family Translational Research Center, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jay L Ringle
- Child and Family Translational Research Center, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Johannah Bashford-Largo
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, 14015 Flanagan Blvd. Suite #102, Boys Town, NE, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Avantika Mathur
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, 14015 Flanagan Blvd. Suite #102, Boys Town, NE, USA
| | - Jaimie Elowsky
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, 14015 Flanagan Blvd. Suite #102, Boys Town, NE, USA
| | - Ahria Dominguez
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, 14015 Flanagan Blvd. Suite #102, Boys Town, NE, USA
| | - Lianne Schmaal
- Center for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Orygen, Parkville, Australia
| | - R James R Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| |
Collapse
|
20
|
Pintos Lobo R, Bottenhorn KL, Riedel MC, Toma AI, Hare MM, Smith DD, Moor AC, Cowan IK, Valdes JA, Bartley JE, Salo T, Boeving ER, Pankey B, Sutherland MT, Musser ED, Laird AR. Neural systems underlying RDoC social constructs: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2023; 144:104971. [PMID: 36436737 PMCID: PMC9843621 DOI: 10.1016/j.neubiorev.2022.104971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Neuroscientists have sought to identify the underlying neural systems supporting social processing that allow interaction and communication, forming social relationships, and navigating the social world. Through the use of NIMH's Research Domain Criteria (RDoC) framework, we evaluated consensus among studies that examined brain activity during social tasks to elucidate regions comprising the "social brain". We examined convergence across tasks corresponding to the four RDoC social constructs, including Affiliation and Attachment, Social Communication, Perception and Understanding of Self, and Perception and Understanding of Others. We performed a series of coordinate-based meta-analyses using the activation likelihood estimate (ALE) method. Meta-analysis was performed on whole-brain coordinates reported from 864 fMRI contrasts using the NiMARE Python package, revealing convergence in medial prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex, temporoparietal junction, bilateral insula, amygdala, fusiform gyrus, precuneus, and thalamus. Additionally, four separate RDoC-based meta-analyses revealed differential convergence associated with the four social constructs. These outcomes highlight the neural support underlying these social constructs and inform future research on alterations among neurotypical and atypical populations.
Collapse
Affiliation(s)
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michael C Riedel
- Department of Physics, Florida International University, Miami, FL, USA
| | - Afra I Toma
- Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| | - Megan M Hare
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Donisha D Smith
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Alexandra C Moor
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Isis K Cowan
- Department of Psychology, Old Dominion University, Norfolk, VA, USA
| | - Javier A Valdes
- College of Medicine, Florida International University, Miami, FL, USA
| | - Jessica E Bartley
- Department of Physics, Florida International University, Miami, FL, USA
| | - Taylor Salo
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Emily R Boeving
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Brianna Pankey
- Department of Psychology, Florida International University, Miami, FL, USA
| | | | - Erica D Musser
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| |
Collapse
|
21
|
Zhang K, Du X, Liu X, Su W, Sun Z, Wang M, Du X. Gender differences in brain response to infant emotional faces. BMC Neurosci 2022; 23:79. [PMID: 36575370 PMCID: PMC9793562 DOI: 10.1186/s12868-022-00761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
Infant emotional stimuli can preferentially engage adults' attention and provide valuable information essential for successful interaction between adults and infants. Exploring the neural processes of recognizing infant stimuli promotes better understandings of the mother-infant attachment mechanisms. Here, combining task-functional magnetic resonance imaging (Task-fMRI) and resting-state fMRI (rs-fMRI), we investigated the effects of infants' faces on the brain activity of adults. Two groups including 26 women and 25 men were recruited to participate in the current study. During the task-fMRI, subjects were exposed to images of infant emotional faces (including happy, neutral, and sad) randomly. We found that the brains of women and men reacted differently to infants' faces, and these differential areas are in facial processing, attention, and empathetic networks. The rs-fMRI further showed that the connectivity of the default-mode network-related regions increased in women than in men. Additionally, brain activations in regions related to emotional networks were associated with the empathetic abilities of women. These differences in women might facilitate them to more effective and quick adjustments in behaviors and emotions during the nurturing infant period. The findings provide special implications and insights for understanding the neural processing of reacting to infant cues in adults.
Collapse
Affiliation(s)
- Kaihua Zhang
- grid.410585.d0000 0001 0495 1805School of Psychology, Shandong Normal University, Jinan, 250358 Shandong China
| | - Xiaoyu Du
- grid.1008.90000 0001 2179 088XFaculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, 3010 Australia
| | - Xianling Liu
- grid.411634.50000 0004 0632 4559Department of Medicine Imaging, The People’s Hospital of Jinan Central District, Jinan, 250014 Shandong China
| | - Wei Su
- grid.410585.d0000 0001 0495 1805School of Psychology, Shandong Normal University, Jinan, 250358 Shandong China
| | - Zhenhua Sun
- grid.410747.10000 0004 1763 3680School of Information Science and Engineering, Linyi University, Linyi, 276000 Shandong China
| | - Mengxing Wang
- grid.507037.60000 0004 1764 1277College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318 China
| | - Xiaoxia Du
- grid.412543.50000 0001 0033 4148Department of Psychology, Shanghai University of Sport, No.399 Shanghai Road, Yangpu District, Shanghai, 200438 China
| |
Collapse
|
22
|
Liu B, Zhang Q, Xue L, Song PXK, Kang J. Robust High-Dimensional Regression with Coefficient Thresholding and its Application to Imaging Data Analysis. J Am Stat Assoc 2022; 119:715-729. [PMID: 38818252 PMCID: PMC11136478 DOI: 10.1080/01621459.2022.2142590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
It is important to develop statistical techniques to analyze high-dimensional data in the presence of both complex dependence and possible heavy tails and outliers in real-world applications such as imaging data analyses. We propose a new robust high-dimensional regression with coefficient thresholding, in which an efficient nonconvex estimation procedure is proposed through a thresholding function and the robust Huber loss. The proposed regularization method accounts for complex dependence structures in predictors and is robust against heavy tails and outliers in outcomes. Theoretically, we rigorously analyze the landscape of the population and empirical risk functions for the proposed method. The fine landscape enables us to establish both statistical consistency and computational convergence under the high-dimensional setting. We also present an extension to incorporate spatial information into the proposed method. Finite-sample properties of the proposed methods are examined by extensive simulation studies. An application concerns a scalar-on-image regression analysis for an association of psychiatric disorder measured by the general factor of psychopathology with features extracted from the task functional MRI data in the Adolescent Brain Cognitive Development (ABCD) study.
Collapse
Affiliation(s)
| | - Qi Zhang
- The Pennsylvania State University
| | | | | | | |
Collapse
|
23
|
Wang Z, Zou Z, Xiao J, Wang P, Luo Y, Min W, He Y, Yuan C, Su Y, Yang C, Chang F, Zhu H. Task-related neural activation abnormalities in patients with remitted major depressive disorder: A coordinate-based meta-analysis. Neurosci Biobehav Rev 2022; 143:104929. [DOI: 10.1016/j.neubiorev.2022.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
24
|
Li R, Bruno JL, Lee CH, Bartholomay KL, Sundstrom J, Piccirilli A, Jordan T, Miller JG, Lightbody AA, Reiss AL. Aberrant brain network and eye gaze patterns during natural social interaction predict multi-domain social-cognitive behaviors in girls with fragile X syndrome. Mol Psychiatry 2022; 27:3768-3776. [PMID: 35595977 DOI: 10.1038/s41380-022-01626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
Girls with fragile X syndrome (FXS) often manifest significant symptoms of avoidance, anxiety, and arousal, particularly in the context of social interaction. However, little is currently known about the associations among neurobiological, biobehavioral such as eye gaze pattern, and social-cognitive dysfunction in real-world settings. In this study, we sought to characterize brain network properties and eye gaze patterns in girls with FXS during natural social interaction. Participants included 42 girls with FXS and 31 age- and verbal IQ-matched girls (control). Portable functional near-infrared spectroscopy (fNIRS) and an eye gaze tracker were used to investigate brain network alterations and eye gaze patterns associated with social-cognitive dysfunction in girls with FXS during a structured face-to-face conversation. Compared to controls, girls with FXS showed significantly increased inter-regional functional connectivity and greater excitability within the prefrontal cortex (PFC), frontal eye field (FEF) and superior temporal gyrus (STG) during the conversation. Girls with FXS showed significantly less eye contact with their conversational partner and more unregulated eye gaze behavior compared to the control group. We also demonstrated that a machine learning approach based on multimodal data, including brain network properties and eye gaze patterns, was predictive of multiple domains of social-cognitive behaviors in girls with FXS. Our findings expand current knowledge of neural mechanisms and eye gaze behaviors underlying naturalistic social interaction in girls with FXS. These results could be further evaluated and developed as intermediate phenotypic endpoints for treatment trial evaluation in girls with FXS.
Collapse
Affiliation(s)
- Rihui Li
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - Jennifer L Bruno
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Cindy H Lee
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Kristi L Bartholomay
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Jamie Sundstrom
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Aaron Piccirilli
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Tracy Jordan
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Jonas G Miller
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Amy A Lightbody
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Departments of Radiology and Pediatrics, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
25
|
Pircalabelu E, Claeskens G. Linear manifold modeling and graph estimation based on multivariate functional data with different coarseness scales. J Comput Graph Stat 2022. [DOI: 10.1080/10618600.2022.2108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Eugen Pircalabelu
- Institute of Statistics, Biostatistics and Actuarial Sciences, LIDAM, UC, Louvain
| | | |
Collapse
|
26
|
Weng Y, Lin J, Ahorsu DK, Tsang HWH. Neuropathways of theory of mind in schizophrenia: A systematic review and meta-analysis. Neurosci Biobehav Rev 2022; 137:104625. [PMID: 35339482 DOI: 10.1016/j.neubiorev.2022.104625] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Social cognition is significantly associated with daily functioning in patients with schizophrenia. Its neural basis remains unknown. METHODS A systematic literature search was performed. Studies using imaging to measure theory of mind (ToM) in schizophrenia were identified. Imaging data were synthesized using the seed-based d mapping approach. Potential neuropathways were hypothesized based on the identified brain regions activated during ToM tasks. RESULTS A total of 25 studies were included in the present study. Compared with healthy people, patients with schizophrenia showed hyperactivations in superior longitudinal fasciculus II and hypoactivations in superior frontal gyrus, precuneus and cuneus, and precentral gyrus during ToM tasks. The primary brain regions involved in the potential neuropathways in schizophrenia were the middle temporal gyrus, superior and inferior frontal gyrus, and supplementary motor areas. CONCLUSION Deactivated brain regions in schizophrenia overlapped with the default mode and salience networks. Our findings shed light on how to develop a diagnostic tool for deficits in social cognition using neuroimaging techniques and effective therapeutic interventions to rectify dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Yiting Weng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, People's Republic of China
| | - Jingxia Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, People's Republic of China; Mental Health Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, People's Republic of China
| | - Daniel Kwasi Ahorsu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, People's Republic of China
| | - Hector W H Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, People's Republic of China; Mental Health Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, People's Republic of China.
| |
Collapse
|
27
|
Cui L, Li H, Li JB, Zeng H, Zhang Y, Deng W, Zhou W, Cao L. Altered cerebellar gray matter and cerebellar-cortex resting-state functional connectivity in patients with bipolar disorder Ⅰ. J Affect Disord 2022; 302:50-57. [PMID: 35074460 DOI: 10.1016/j.jad.2022.01.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bipolar disorder (BP) is a common psychiatric disorder characterized by extreme fluctuations in mood. Recent studies have indicated the involvement of cerebellum in the pathogenesis of BP. However, no study has focused on the precise role of cerebellum exclusively in patients with bipolar I disorder (BP-I). METHODS Forty-five patients with BP-I and 40 healthy controls were recruited. All subjects underwent clinical evaluation and Magnetic Resonance diffusion Tension Imaging scans. For structural images, we used a spatially unbiased infratentorial template toolbox to isolate the cerebellum and then preformed voxel-based morphometry (VBM) analyses to assess the difference in cerebellar gray matter volume (GMV) between the two groups. For the functional images, we chose the clusters that survived from VBM analysis as seeds and performed functional connectivity (FC) analysis. Between-group differences were assessed using the independent Students t test or the nonparametric Mann-Whitney U Test. For multiple comparisons, the results were further corrected with Gaussian random field (GRF) approach (voxel-level P < 0.001, cluster-level P < 0.05). RESULTS Compared with healthy controls, BP-I patients showed significantly decreased GMV in left lobule V and left lobule VI (P < 0.05, GRF corrected). The FC of cerebellum with bilateral superior temporal gyrus, bilateral insula, bilateral rolandic operculum, right putamen, and left precentral gyrus was disrupted in BP-I patients (P < 0.05, GRF corrected). CONCLUSIONS BP-I patients showed decreased cerebellar GMV and disrupted cerebellar-cortex resting-state FC. This suggests that cerebellar abnormalities may play an important role in the pathogenesis of BP-I.
Collapse
Affiliation(s)
- Liqian Cui
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| | - Hao Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Jin Biao Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Huixing Zeng
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yizhi Zhang
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Wenhao Deng
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Wenjin Zhou
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Liping Cao
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China.
| |
Collapse
|
28
|
Features and Extra-Striate Body Area Representations of Diagnostic Body Parts in Anger and Fear Perception. Brain Sci 2022; 12:brainsci12040466. [PMID: 35447997 PMCID: PMC9028525 DOI: 10.3390/brainsci12040466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Social species perceive emotion via extracting diagnostic features of body movements. Although extensive studies have contributed to knowledge on how the entire body is used as context for decoding bodily expression, we know little about whether specific body parts (e.g., arms and legs) transmit enough information for body understanding. In this study, we performed behavioral experiments using the Bubbles paradigm on static body images to directly explore diagnostic body parts for categorizing angry, fearful and neutral expressions. Results showed that subjects recognized emotional bodies through diagnostic features from the torso with arms. We then conducted a follow-up functional magnetic resonance imaging (fMRI) experiment on body part images to examine whether diagnostic parts modulated body-related brain activity and corresponding neural representations. We found greater activations of the extra-striate body area (EBA) in response to both anger and fear than neutral for the torso and arms. Representational similarity analysis showed that neural patterns of the EBA distinguished different bodily expressions. Furthermore, the torso with arms and whole body had higher similarities in EBA representations relative to the legs and whole body, and to the head and whole body. Taken together, these results indicate that diagnostic body parts (i.e., torso with arms) can communicate bodily expression in a detectable manner.
Collapse
|
29
|
Baksa D, Szabo E, Kocsel N, Galambos A, Edes AE, Pap D, Zsombok T, Magyar M, Gecse K, Dobos D, Kozak LR, Bagdy G, Kokonyei G, Juhasz G. Circadian Variation of Migraine Attack Onset Affects fMRI Brain Response to Fearful Faces. Front Hum Neurosci 2022; 16:842426. [PMID: 35355585 PMCID: PMC8959375 DOI: 10.3389/fnhum.2022.842426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Previous studies suggested a circadian variation of migraine attack onset, although, with contradictory results – possibly because of the existence of migraine subgroups with different circadian attack onset peaks. Migraine is primarily a brain disorder, and if the diversity in daily distribution of migraine attack onset reflects an important aspect of migraine, it may also associate with interictal brain activity. Our goal was to assess brain activity differences in episodic migraine subgroups who were classified according to their typical circadian peak of attack onset. Methods Two fMRI studies were conducted with migraine without aura patients (n = 31 in Study 1, n = 48 in Study 2). Among them, three subgroups emerged with typical Morning, Evening, and Varying start of attack onset. Whole brain activity was compared between the groups in an implicit emotional processing fMRI task, comparing fearful, sad, and happy facial stimuli to neutral ones. Results In both studies, significantly increased neural activation was detected to fearful (but not sad or happy) faces. In Study 1, the Evening start group showed increased activation compared to the Morning start group in regions involved in emotional, self-referential (left posterior cingulate gyrus, right precuneus), pain (including left middle cingulate, left postcentral, left supramarginal gyri, right Rolandic operculum) and sensory (including bilateral superior temporal gyrus, right Heschl’s gyrus) processing. While in Study 2, the Morning start group showed increased activation compared to the Varying start group at a nominally significant level in regions with pain (right precentral gyrus, right supplementary motor area) and sensory processing (bilateral paracentral lobule) functions. Conclusion Our fMRI studies suggest that different circadian attack onset peaks are associated with interictal brain activity differences indicating heterogeneity within migraine patients and alterations in sensitivity to threatening fearful stimuli. Circadian variation of migraine attack onset may be an important characteristic to address in future studies and migraine prophylaxis.
Collapse
Affiliation(s)
- Daniel Baksa
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Department of Personality and Clinical Psychology, Institute of Psychology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University, Budapest, Hungary
| | - Edina Szabo
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Center for Pain and the Brain (PAIN Research Group), Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Natalia Kocsel
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Galambos
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea Edit Edes
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dorottya Pap
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Terezia Zsombok
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Mate Magyar
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dora Dobos
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Lajos Rudolf Kozak
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gyongyi Kokonyei
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Juhasz
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Gabriella Juhasz,
| |
Collapse
|
30
|
Zhu T, Wang Z, Zhou C, Fang X, Huang C, Xie C, Ge H, Yan Z, Zhang X, Chen J. Meta-analysis of structural and functional brain abnormalities in schizophrenia with persistent negative symptoms using activation likelihood estimation. Front Psychiatry 2022; 13:957685. [PMID: 36238945 PMCID: PMC9552970 DOI: 10.3389/fpsyt.2022.957685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Persistent negative symptoms (PNS) include both primary and secondary negative symptoms that persist after adequate treatment, and represent an unmet therapeutic need. Published magnetic resonance imaging (MRI) evidence of structural and resting-state functional brain abnormalities in schizophrenia with PNS has been inconsistent. Thus, the purpose of this meta-analysis is to identify abnormalities in structural and functional brain regions in patients with PNS compared to healthy controls. METHODS We systematically searched PubMed, Web of Science, and Embase for structural and functional imaging studies based on five research methods, including voxel-based morphometry (VBM), diffusion tensor imaging (DTI), functional connectivity (FC), the amplitude of low-frequency fluctuation or fractional amplitude of low-frequency fluctuation (ALFF/fALFF), and regional homogeneity (ReHo). Afterward, we conducted a coordinate-based meta-analysis by using the activation likelihood estimation algorithm. RESULTS Twenty-five structural MRI studies and thirty-two functional MRI studies were included in the meta-analyses. Our analysis revealed the presence of structural alterations in patients with PNS in some brain regions including the bilateral insula, medial frontal gyrus, anterior cingulate gyrus, left amygdala, superior temporal gyrus, inferior frontal gyrus, cingulate gyrus and middle temporal gyrus, as well as functional differences in some brain regions including the bilateral precuneus, thalamus, left lentiform nucleus, posterior cingulate gyrus, medial frontal gyrus, and superior frontal gyrus. CONCLUSION Our study suggests that structural brain abnormalities are consistently located in the prefrontal, temporal, limbic and subcortical regions, and functional alterations are concentrated in the thalamo-cortical circuits and the default mode network (DMN). This study provides new insights for targeted treatment and intervention to delay further progression of negative symptoms. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022338669].
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zixu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengbing Huang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Third People's Hospital of Huai'an, Huaian, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine Southeast University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Finch JE, Palumbo IM, Tobin KE, Latzman RD. Structural brain correlates of eating pathology symptom dimensions: A systematic review. Psychiatry Res Neuroimaging 2021; 317:111379. [PMID: 34487978 DOI: 10.1016/j.pscychresns.2021.111379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
There has been an increasing interest in neurobiological correlates of psychopathology with a growing consensus that such research questions are best investigated through dimensional approaches to psychopathology. One area that has been noticeably understudied in this regard is eating pathology. Therefore, the goal of the current systematic review was to summarize research on structural brain correlates of symptom dimensions of eating-related pathology. Google Scholar and PubMed databases were searched following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Results suggest that restrained eating is associated with increased GMV (gray matter volume) in regions involved in emotional, visuo-spatial, attentional, and self-related processing. Disinhibitory eating is associated with increased GMV in regions involved in reward value of food-related stimuli and decreased GMV in regions involved in emotional/motivational processing. All told, results suggest that dimensions of eating pathology have differential neuroanatomical correlates potentially suggesting differences in neural pathways which has the potential to support future biologically-driven classification and treatment efforts.
Collapse
Affiliation(s)
- Jody E Finch
- Department of Psychology, Georgia State University, PO Box 5010, Atlanta, GA 30302-5010. United States
| | - Isabella M Palumbo
- Department of Psychology, Georgia State University, PO Box 5010, Atlanta, GA 30302-5010. United States
| | - Kaitlyn E Tobin
- Department of Psychology, Georgia State University, PO Box 5010, Atlanta, GA 30302-5010. United States
| | - Robert D Latzman
- Department of Psychology, Georgia State University, PO Box 5010, Atlanta, GA 30302-5010. United States.
| |
Collapse
|
32
|
Feng C, Jiang W, Xiao Y, Liu Y, Pang L, Liang M, Tang J, Lu Y, Wei J, Li W, Lei Y, Guo W, Luo S. Comparing Brain Functional Activities in Patients With Blepharospasm and Dry Eye Disease Measured With Resting-State fMRI. Front Neurol 2021; 12:607476. [PMID: 34777188 PMCID: PMC8578056 DOI: 10.3389/fneur.2021.607476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 09/24/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Blepharospasm (BSP) and dry eye disease (DED) are clinically common diseases characterized by an increased blinking rate. A sustained eyelid muscle activity may alter the cortical sensorimotor concordance and lead to secondary functional changes. This study aimed to explore the central mechanism of BSP by assessing brain functional differences between the two groups and comparing them with healthy controls. Methods: In this study, 25 patients with BSP, 22 patients with DED, and 23 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) scan. The amplitude of low-frequency fluctuations (ALFF) was applied to analyze the imaging data. Results: Analysis of covariance (ANCOVA) revealed widespread differences in ALFF across the three groups. In comparison with healthy controls, patients with BSP showed abnormal ALFF in the sensorimotor integration related-brain regions, including the bilateral supplementary motor area (SMA), left cerebellar Crus I, left fusiform gyrus, bilateral superior medial prefrontal cortex (MPFC), and right superior frontal gyrus (SFG). In comparison with patients with DED, patients with BSP exhibited a significantly increased ALFF in the left cerebellar Crus I and left SMA. ALFF in the left fusiform gyrus/cerebellar Crus I was positively correlated with symptomatic severity of BSP. Conclusions: Our results reveal that the distinctive changes in the brain function in patients with BSP are different from those in patients with DED and healthy controls. The results further emphasize the primary role of sensorimotor integration in the pathophysiology of BSP.
Collapse
Affiliation(s)
- Changqiang Feng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyan Jiang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yang Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lulu Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meilan Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingqun Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yulin Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Wei
- Department of Comprehensive Internal Medicine, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Wenmei Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiwu Lei
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuguang Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
33
|
Shi Y, Zeng W, Deng J, Li Y, Lu J. The Study of Sailors’ Brain Activity Difference Before and After Sailing Using Activated Functional Connectivity Pattern. Neural Process Lett 2021; 53:3253-3265. [DOI: 10.1007/s11063-021-10545-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
|
34
|
Hu J, Liu J, Liu Y, Wu X, Zhuang K, Chen Q, Yang W, Xie P, Qiu J, Wei D. Dysfunction of the anterior and intermediate hippocampal functional network in major depressive disorders across the adult lifespan. Biol Psychol 2021; 165:108192. [PMID: 34555480 DOI: 10.1016/j.biopsycho.2021.108192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022]
Abstract
Accumulating evidence indicates that structural and functional abnormalities in hippocampal formation are linked to major depressive disorder (MDD). However, the resting-state functional connectivity (RSFC) of hippocampal subfields in MDD remains unclear. This cross-sectional study aimed to investigate the RSFC of hippocampal subfields in a large sample of MDD patients. The results revealed that patients with MDD showed lower RSFC between the right anterior hippocampus and the insula, and the RSFC was inversely correlated with anxiety symptoms of depression. Depressed patients also showed decreased RSFC between the bilateral intermediate hippocampus and left nucleus accumbens (NAcc), and the hippocampus-NAcc circuit was negatively correlated with core symptoms of depression. The functional connectivity between the right anterior hippocampus and left postcentral gyrus increased with ageing in MDD patients compared with healthy controls. These findings suggest that the functional network of hippocampal subfields may underlie anxiety and core depression symptoms.
Collapse
Affiliation(s)
- Jun Hu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jiahui Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Yu Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Xianran Wu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Kaixiang Zhuang
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Qunlin Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Wenjing Yang
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China.
| | - Dongtao Wei
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China.
| |
Collapse
|
35
|
Puig-Davi A, Martinez-Horta S, Sampedro F, Horta-Barba A, Perez-Perez J, Campolongo A, Izquierdo-Barrionuevo C, Pagonabarraga J, Gomez-Anson B, Kulisevsky J. Cognitive and Affective Empathy in Huntington's Disease. J Huntingtons Dis 2021; 10:323-334. [PMID: 34486985 DOI: 10.3233/jhd-210469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Empathy is a multidimensional construct and a key component of social cognition. In Huntington's disease (HD), little is known regarding the phenomenology and the neural correlates of cognitive and affective empathy, and regarding how empathic deficits interact with other behavioral and cognitive manifestations. OBJECTIVE To explore the cognitive and affective empathy disturbances and related behavioral and neural correlates in HD. METHODS Clinical and sociodemographic data were obtained from 36 healthy controls (HC) and 54 gene-mutation carriers (17 premanifest and 37 early-manifest HD). The Test of Cognitive and Affective Empathy (TECA) was used to characterize cognitive (CE) and affective empathy (AE), and to explore their associations with grey matter volume (GMV) and cortical thickness (Cth). RESULTS Compared to HC, premanifest participants performed significantly worse in perspective taking (CE) and empathic distress (AE). In symptomatic participants, scores were significantly lower in almost all the TECA subscales. Several empathy subscales were associated with the severity of apathy, irritability, and cognitive deficits. CE was associated with GMV in thalamic, temporal, and occipital regions, and with Cth in parietal and temporal areas. AE was associated with GMV in the basal ganglia, limbic, occipital, and medial orbitofrontal regions, and with Cth in parieto-occipital areas. CONCLUSION Cognitive and affective empathy deficits are detectable early, are more severe in symptomatic participants, and involve the disruption of several fronto-temporal, parieto-occipital, basal ganglia, and limbic regions. These deficits are associated with disease severity and contribute to several behavioral symptoms, facilitating the presentation of maladaptive patterns of social interaction.
Collapse
Affiliation(s)
- Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| | - Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| | - Jesus Perez-Perez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Cristina Izquierdo-Barrionuevo
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Beatriz Gomez-Anson
- Neuroradiology, Radiology Department, Hospital de la Santa Creu i Sant Pau, AutonomousUniversity of Barcelona, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| |
Collapse
|
36
|
Yang YC, Cai GQ, Yang QC, Li B, Ge QM, Li QY, Shi WQ, Min YL, Liang RB, Shao Y. Brain Functional Connectivity Changes in Patients with Acute Eye Pain: A Resting-State Functional Magnetic Resonance Imaging (fMRI) Study. Med Sci Monit 2021; 27:e930588. [PMID: 34388144 PMCID: PMC8369943 DOI: 10.12659/msm.930588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background By using functional magnetic resonance imaging (fMRI), we aimed to study the changes in potential brain function network activity in patients with acute eye pain. Also, by using the voxel-wise degree centrality (DC) method, we aimed to explore the relationship between spontaneous brain activity and the clinical features of patients with acute eye pain. Material/Methods A total of 15 patients with acute eye pain (5 women and 10 men; EP group) and 15 healthy controls (5 women and 10 men; HC group), were scanned by fMRI. The DC method was used to evaluate changes in spontaneous brain activity. Receiver operating characteristic (ROC) curves were analyzed, and Pearson correlation analysis was used to study the relationship between DC values and clinical manifestations in different regions of brain. Results The area of the left limbic lobe showed a reduction in DC value in patients in the EP group. DC values were elevated in the left cerebellum posterior lobe, left inferior parietal lobule, left inferior temporal gyrus, left precuneus, and right cerebellum posterior lobe in the EP group. The visual analog scale value of the eyes in the EP group was negatively correlated with the left limbic lobe signal value and positively correlated with the left inferior parietal lobule signal value. Further, the scores of the hospital anxiety and depression scale and DC value of the left limbic lobe were negatively correlated. Conclusions Compared with the HC group, patients with acute eye pain had abnormal patterns of intrinsic brain activity in different brain regions, which may help reveal the potential neural mechanisms involved in eye pain.
Collapse
Affiliation(s)
- Yan-Chang Yang
- Department of Anesthesiology, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Guo-Qian Cai
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China (mainland)
| | - Qi-Chen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China (mainland)
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China (mainland)
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China (mainland)
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China (mainland)
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China (mainland)
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China (mainland)
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center,, Nanchang, Jiangxi, China (mainland)
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center,, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
37
|
Functional alterations of the suicidal brain: a coordinate-based meta-analysis of functional imaging studies. Brain Imaging Behav 2021; 16:291-304. [PMID: 34351557 DOI: 10.1007/s11682-021-00503-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 01/22/2023]
Abstract
Altered brain activities in suicidal subjects have been reported in a number of neuroimaging studies. However, the activity aberrances were inconsistent in previous investigations. Thus, we aimed to address activity abnormalities in suicidal individuals. Databases were searched to perform a meta-analysis of whole-brain functional MRI studies of suicidal individuals through January 14, 2020. Meta-analyses were conducted using Seed-based d Mapping software. Based on a meta-analysis of 17 studies comprising 381 suicidal individuals and 642 controls, we mainly found that increased activity in the bilateral superior temporal gyrus, left middle temporal gyrus, and bilateral middle occipital gyrus, along with decreased activity in the right putamen and left insula, were detected in suicidal individuals compared with nonsuicidal subjects. To reduce methodological heterogeneity between the included studies, subanalyses of behavioral domains were conducted, and the right superior temporal gyrus was found to increase in all subanalyses of domains. In subanalyses of suicidal attempters and ideators, suicide attempters displayed hyperactivation in the bilateral superior temporal gyrus and left middle temporal gyrus and blunted responses in the left insula relative to controls. Suicidal ideators demonstrated elevated activation in the right middle occipital gyrus and reduced activity in the right putamen relative to controls. The bilateral superior temporal gyrus was the most robust finding, replicable in all data sets in the jackknife sensitive analysis. Moreover, increased activity in the right superior temporal gyrus, left middle temporal gyrus, and right middle occipital gyrus was found to be involved with higher suicide ideation scores. This study revealed several brain regions associated with suicidality. These findings may contribute to our understanding of the pathophysiology of suicide and have important implications for suicide prevention and interventions.
Collapse
|
38
|
Böhnlein J, Leehr EJ, Roesmann K, Sappelt T, Platte O, Grotegerd D, Sindermann L, Repple J, Opel N, Meinert S, Lemke H, Borgers T, Dohm K, Enneking V, Goltermann J, Waltemate L, Hülsmann C, Thiel K, Winter N, Bauer J, Lueken U, Straube T, Junghöfer M, Dannlowski U. Neural processing of emotional facial stimuli in specific phobia: An fMRI study. Depress Anxiety 2021; 38:846-859. [PMID: 34224655 DOI: 10.1002/da.23191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Patients with specific phobia (SP) show altered brain activation when confronted with phobia-specific stimuli. It is unclear whether this pathogenic activation pattern generalizes to other emotional stimuli. This study addresses this question by employing a well-powered sample while implementing an established paradigm using nonspecific aversive facial stimuli. METHODS N = 111 patients with SP, spider subtype, and N = 111 healthy controls (HCs) performed a supraliminal emotional face-matching paradigm contrasting aversive faces versus shapes in a 3-T magnetic resonance imaging scanner. We performed region of interest (ROI) analyses for the amygdala, the insula, and the anterior cingulate cortex using univariate as well as machine-learning-based multivariate statistics based on this data. Additionally, we investigated functional connectivity by means of psychophysiological interaction (PPI). RESULTS Although the presentation of emotional faces showed significant activation in all three ROIs across both groups, no group differences emerged in all ROIs. Across both groups and in the HC > SP contrast, PPI analyses showed significant task-related connectivity of brain areas typically linked to higher-order emotion processing with the amygdala. The machine learning approach based on whole-brain activity patterns could significantly differentiate the groups with 73% balanced accuracy. CONCLUSIONS Patients suffering from SP are characterized by differences in the connectivity of the amygdala and areas typically linked to emotional processing in response to aversive facial stimuli (inferior parietal cortex, fusiform gyrus, middle cingulate, postcentral cortex, and insula). This might implicate a subtle difference in the processing of nonspecific emotional stimuli and warrants more research furthering our understanding of neurofunctional alteration in patients with SP.
Collapse
Affiliation(s)
- Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kati Roesmann
- Institute for Clinical Psychology, University of Siegen, Siegen, Germany.,Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Teresa Sappelt
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ole Platte
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lisa Sindermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Carina Hülsmann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Clinic for Radiology, School of Medicine, University of Münster, Münster, Germany
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
39
|
Functional connectivity evidence for state-independent executive function deficits in patients with major depressive disorder. J Affect Disord 2021; 291:76-82. [PMID: 34023750 DOI: 10.1016/j.jad.2021.04.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/14/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Persistent neurocognitive deficits are often associated with poor outcomes of major depressive disorder (MDD). Executive dysfunction is the most common cognitive deficit in MDD. However, it remains unclear which subcomponent of executive dysfunction is state-independent with distinct neural substrates. METHODS A comprehensive neurocognitive test battery was used to assess four subcomponents of executive function (working memory, inhibition, shifting, and verbal fluency) in 95 MDD patients and 111 matched healthy controls (HCs). After 6 months of paroxetine treatment, 56 patients achieved clinical remission (rMDD) and completed the second-time neurocognitive test. Network-based statistics analysis was utilized to explore the changes in functional connectivity (FC). RESULTS Compared with the HCs, all the four subcomponents of MDD patients were significantly impaired. After treatment, there was a significant improvement in working memory, inhibition, and verbal fluency in the rMDD group. And shifting and verbal fluency of the rMDD group remained impaired compared with the HCs. Fifteen functional connections were interrupted in the MDD group, and 11 connections remained in a disrupted state after treatment. Importantly, verbal fluency was negatively correlated with the disrupted FC between the right dorsal prefrontal cortex and the left inferior parietal lobule in patients with MDD and remitted MDD. LIMITATIONS The correlation analysis of the association between cognitive impairment and connectivity alterations precluded us from making causal inferences. CONCLUSIONS Verbal fluency is the potential state-independent cognitive deficit with distinct neural basis in patients with MDD.
Collapse
|
40
|
Chaari N, Akdağ HC, Rekik I. Estimation of gender-specific connectional brain templates using joint multi-view cortical morphological network integration. Brain Imaging Behav 2021; 15:2081-2100. [PMID: 33089469 PMCID: PMC8413178 DOI: 10.1007/s11682-020-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/02/2022]
Abstract
The estimation of a connectional brain template (CBT) integrating a population of brain networks while capturing shared and differential connectional patterns across individuals remains unexplored in gender fingerprinting. This paper presents the first study to estimate gender-specific CBTs using multi-view cortical morphological networks (CMNs) estimated from conventional T1-weighted magnetic resonance imaging (MRI). Specifically, each CMN view is derived from a specific cortical attribute (e.g. thickness), encoded in a network quantifying the dissimilarity in morphology between pairs of cortical brain regions. To this aim, we propose Multi-View Clustering and Fusion Network (MVCF-Net), a novel multi-view network fusion method, which can jointly identify consistent and differential clusters of multi-view datasets in order to capture simultaneously similar and distinct connectional traits of samples. Our MVCF-Net method estimates a representative and well-centered CBTs for male and female populations, independently, to eventually identify their fingerprinting regions of interest (ROIs) in four main steps. First, we perform multi-view network clustering model based on manifold optimization which groups CMNs into shared and differential clusters while preserving their alignment across views. Second, for each view, we linearly fuse CMNs belonging to each cluster, producing local CBTs. Third, for each cluster, we non-linearly integrate the local CBTs across views, producing a cluster-specific CBT. Finally, by linearly fusing the cluster-specific centers we estimate a final CBT of the input population. MVCF-Net produced the most centered and representative CBTs for male and female populations and identified the most discriminative ROIs marking gender differences. The most two gender-discriminative ROIs involved the lateral occipital cortex and pars opercularis in the left hemisphere and the middle temporal gyrus and lingual gyrus in the right hemisphere.
Collapse
Affiliation(s)
- Nada Chaari
- BASIRA Lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey
| | | | - Islem Rekik
- BASIRA Lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey.
- Computing, School of Science and Engineering, University of Dundee, Dundee, UK.
| |
Collapse
|
41
|
Deng X, Liu Z, Kang Q, Lu L, Zhu Y, Xu R. Cortical Structural Connectivity Alterations and Potential Pathogenesis in Mid-Stage Sporadic Parkinson's Disease. Front Aging Neurosci 2021; 13:650371. [PMID: 34135748 PMCID: PMC8200851 DOI: 10.3389/fnagi.2021.650371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Many clinical symptoms of sporadic Parkinson's disease (sPD) cannot be completely explained by a lesion of the simple typical extrapyramidal circuit between the striatum and substantia nigra. Therefore, this study aimed to explore the new potential damaged pathogenesis of other brain regions associated with the multiple and complex clinical symptoms of sPD through magnetic resonance imaging (MRI). A total of 65 patients with mid-stage sPD and 35 healthy controls were recruited in this study. Cortical structural connectivity was assessed by seed-based analysis using the vertex-based morphology of MRI. Seven different clusters in the brain regions of cortical thickness thinning derived from the regression analysis using brain size as covariates between sPD and control were selected as seeds. Results showed that the significant alteration of cortical structural connectivity mainly occurred in the bilateral frontal orbital, opercular, triangular, precentral, rectus, supplementary-motor, temporal pole, angular, Heschl, parietal, supramarginal, postcentral, precuneus, occipital, lingual, cuneus, Rolandic-opercular, cingulum, parahippocampal, calcarine, olfactory, insula, paracentral-lobule, and fusiform regions at the mid-stage of sPD. These findings suggested that the extensive alteration of cortical structural connectivity is one of possible pathogenesis resulting in the multiple and complex clinical symptoms in sPD.
Collapse
Affiliation(s)
- Xia Deng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zheng Liu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qin Kang
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Affiliated People’s Hospital of Nanchang University, Nanchang, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhu
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Affiliated People’s Hospital of Nanchang University, Nanchang, China
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Affiliated People’s Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Sarkinaite M, Gleizniene R, Adomaitiene V, Dambrauskiene K, Raskauskiene N, Steibliene V. Volumetric MRI Analysis of Brain Structures in Patients with History of First and Repeated Suicide Attempts: A Cross Sectional Study. Diagnostics (Basel) 2021; 11:diagnostics11030488. [PMID: 33801896 PMCID: PMC8000590 DOI: 10.3390/diagnostics11030488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 12/03/2022] Open
Abstract
Structural brain changes are found in suicide attempters and in patients with mental disorders. It remains unclear whether the suicidal behaviors are related to atrophy of brain regions and how the morphology of specific brain areas is changing with each suicide attempt. The sample consisted of 56 patients hospitalized after first suicide attempt (first SA) (n = 29), more than one suicide attempt (SA > 1) (n = 27) and 54 healthy controls (HC). Brain volume was measured using FreeSurfer 6.0 automatic segmentation technique. In comparison to HC, patients with first SA had significantly lower cortical thickness of the superior and rostral middle frontal areas, the inferior, middle and superior temporal areas of the left hemisphere and superior frontal area of the right hemisphere. In comparison to HC, patients after SA > 1 had a significantly lower cortical thickness in ten areas of frontal cortex of the left hemisphere and seven areas of the right hemisphere. The comparison of hippocampus volume showed a significantly lower mean volume of left and right parts in patients with SA > 1, but not in patients with first SA. The atrophy of frontal, temporal cortex and hippocampus parts was significantly higher in repeated suicide attempters than in patients with first suicide attempt.
Collapse
Affiliation(s)
- Milda Sarkinaite
- Department of Radiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-67876580
| | - Rymante Gleizniene
- Department of Radiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Virginija Adomaitiene
- Psychiatry Clinic of Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (V.A.); (K.D.); (V.S.)
| | - Kristina Dambrauskiene
- Psychiatry Clinic of Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (V.A.); (K.D.); (V.S.)
| | - Nijole Raskauskiene
- Laboratory of Behavioural Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Vesta Steibliene
- Psychiatry Clinic of Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (V.A.); (K.D.); (V.S.)
- Laboratory of Behavioural Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| |
Collapse
|
43
|
Gao W, Biswal B, Chen S, Wu X, Yuan J. Functional coupling of the orbitofrontal cortex and the basolateral amygdala mediates the association between spontaneous reappraisal and emotional response. Neuroimage 2021; 232:117918. [PMID: 33652140 DOI: 10.1016/j.neuroimage.2021.117918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Emotional regulation is known to be associated with activity in the amygdala. The amygdala is an emotion-generative region that comprises of structurally and functionally distinct nuclei. However, little is known about the contributions of different frontal-amygdala sub-region pathways to emotion regulation. Here, we investigated how functional couplings between frontal regions and amygdala sub-regions are involved in different spontaneous emotion regulation processes by using an individual-difference approach and a generalized psycho-physiological interaction (gPPI) approach. Specifically, 50 healthy participants reported their dispositional use of spontaneous cognitive reappraisal and expressive suppression in daily life and their actual use of these two strategies during the performance of an emotional-picture watching task. Results showed that functional coupling between the orbitofrontal cortex (OFC) and the basolateral amygdala (BLA) was associated with higher scores of both dispositional and actual uses of reappraisal. Similarly, functional coupling between the dorsolateral prefrontal cortex (dlPFC) and the centromedial amygdala (CMA) was associated with higher scores of both dispositional and actual uses of suppression. Mediation analyses indicated that functional coupling of the right OFC-BLA partially mediated the association between reappraisal and emotional response, irrespective of whether reappraisal was measured by dispositional use (indirect effect(SE)=-0.2021 (0.0811), 95%CI(BC)= [-0.3851, -0.0655]) or actual use (indirect effect(SE)=-0.1951 (0.0796), 95%CI(BC)= [-0.3654, -0.0518])). These findings suggest that spontaneous reappraisal and suppression involve distinct frontal- amygdala functional couplings, and the modulation of BLA activity from OFC may be necessary for changing emotional response during spontaneous reappraisal.
Collapse
Affiliation(s)
- Wei Gao
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States
| | - ShengDong Chen
- School of Psychology, Qufu Normal University, Qufu, Shandong, China
| | - XinRan Wu
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - JiaJin Yuan
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China.
| |
Collapse
|
44
|
Lehmann M, Neumann C, Wasserthal S, Schultz J, Delis A, Trautner P, Hurlemann R, Ettinger U. Effects of ketamine on brain function during metacognition of episodic memory. Neurosci Conscious 2021; 2021:niaa028. [PMID: 33747545 PMCID: PMC7959215 DOI: 10.1093/nc/niaa028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Only little research has been conducted on the pharmacological underpinnings of metacognition. Here, we tested the modulatory effects of a single intravenous dose (100 ng/ml) of the N-methyl-D-aspartate-glutamate-receptor antagonist ketamine, a compound known to induce altered states of consciousness, on metacognition and its neural correlates. Fifty-three young, healthy adults completed two study phases of an episodic memory task involving both encoding and retrieval in a double-blind, placebo-controlled fMRI study. Trial-by-trial confidence ratings were collected during retrieval. Effects on the subjective state of consciousness were assessed using the 5D-ASC questionnaire. Confirming that the drug elicited a psychedelic state, there were effects of ketamine on all 5D-ASC scales. Acute ketamine administration during retrieval had deleterious effects on metacognitive sensitivity (meta-d') and led to larger metacognitive bias, with retrieval performance (d') and reaction times remaining unaffected. However, there was no ketamine effect on metacognitive efficiency (meta-d'/d'). Measures of the BOLD signal revealed that ketamine compared to placebo elicited higher activation of posterior cortical brain areas, including superior and inferior parietal lobe, calcarine gyrus, and lingual gyrus, albeit not specific to metacognitive confidence ratings. Ketamine administered during encoding did not significantly affect performance or brain activation. Overall, our findings suggest that ketamine impacts metacognition, leading to significantly larger metacognitive bias and deterioration of metacognitive sensitivity as well as unspecific activation increases in posterior hot zone areas of the neural correlates of consciousness.
Collapse
Affiliation(s)
- Mirko Lehmann
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Claudia Neumann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sven Wasserthal
- Department of Psychiatry and Division of Medical Psychology, University Hospital Bonn, Bonn, Germany
| | - Johannes Schultz
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute for Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Achilles Delis
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Peter Trautner
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute for Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
- Department for NeuroCognition, Life & Brain Center, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry and Division of Medical Psychology, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | | |
Collapse
|
45
|
Hwang HC, Kim SM, Han DH. Different facial recognition patterns in schizophrenia and bipolar disorder assessed using a computerized emotional perception test and fMRI. J Affect Disord 2021; 279:83-88. [PMID: 33039778 DOI: 10.1016/j.jad.2020.09.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The emotional perception test is considered an effective tool in differentiating between schizophrenia and bipolar disorder. We hypothesized that schizophrenic patients would show decreased emotional perception ability compared with bipolar patients and that the disrupted emotional perception ability would be associated with the disrupted functional connectivity within the fronto-temporal-occipital circuit. METHODS In total, 55 schizophrenic patients, 54 bipolar patients, and 50 healthy participants were evaluated using a computerized assessment tool for facial emotion recognition, resting-state magnetic resonance imaging, and Korean versions of the Positive and Negative Syndrome Scale (PANSS) and Young Mania Rating Scale (YMRS). RESULTS The emotional perception index (EPI) was higher in the schizophrenia group than in the bipolar and healthy control (lowest) groups. The PANSS total and YMRS scores positively correlated with the EPI in schizophrenia and bipolar patients. In healthy controls, EPI positively correlated with regional homogeneity (ReHo) within the left fusiform gyrus, left superior frontal gyrus, left inferior frontal gyrus, and right inferior temporal gyrus. In schizophrenic patients, EPI negatively correlated with ReHo within the frontal lobe and left fusiform gyrus. In bipolar patients, EPI positively correlated with ReHo within the left parietal lobe and negatively correlated with ReHo within both frontal lobes. LIMITATIONS More specific definition of EPI should be suggested. Due to lack of cognitive function tests, cognitive functions might be biased throughout the analyses. CONCLUSIONS Schizophrenic patients showed decreased emotion recognition abilities compared with bipolar patients. Further, schizophrenic patients showed less frontal cortex usage, while bipolar patients used the parietal lobe to compensate for facial emotion recognition.
Collapse
Affiliation(s)
- Hyun Chan Hwang
- Department of Psychiatry, Chung Ang University Hospital, Seoul, South Korea
| | - Sun Mi Kim
- Department of Psychiatry, Chung Ang University Hospital, Seoul, South Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung Ang University Hospital, Seoul, South Korea.
| |
Collapse
|
46
|
Schäfer T, Mann C, Bletsch A, Zimmermann J, Seelemeyer H, Herøy N, Ecker C. Die Kortexdicke bei Autismus-Spektrum-Störung wird moduliert durch eine komorbide Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung. KINDHEIT UND ENTWICKLUNG 2021. [DOI: 10.1026/0942-5403/a000329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zusammenfassung. Theoretischer Hintergrund: Autismus-Spektrum-Störung (ASS) ist eine neuronale Entwicklungsstörung und tritt häufig gemeinsam mit der Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) auf. Bisher wurde jedoch nur selten untersucht, wie sich Personen mit ASS von Personen mit ASS und komorbider ADHS, sowie von einer gesunden Kontrollgruppe (KG) auf neuroanatomischer Ebene unterscheiden. Fragestellung: In der vorliegenden Studie wurde an 101 Jugendlichen untersucht, ob die Kortexdicke bei ASS von komorbid auftretenden ADHS-Symptomen moduliert wird. Methode: Für jeden Proband_innen berechneten wir auf Basis struktureller T1-gewichteter Magnetresonanztomographie Scans die Kortexdicke an jedem Punkt der Gehirnoberfläche. Ergebnisse: Es zeigten sich signifikante Unterschiede zwischen autistischen Proband_innen mit und ohne ADHS im posterioren Cingulum, der Lingualwindung sowie dem Precuneus der linken Hemisphäre. Diskussion und Schlussfolgerung: Die Ergebnisse implizieren, dass die kortikale Dicke bei ASS durch das gleichzeitige Vorliegen einer ADHS moduliert wird. Diese Erkenntnisse könnten in zukünftigen Studien zur Untersuchung neuroanatomischer Ursachen von ASS und der Unterteilung von Proband_innen in homogenere Subgruppen von Nutzen sein und so der zukünftigen Entwicklung individualisierter Therapien dienen.
Collapse
Affiliation(s)
- Tim Schäfer
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum,Goethe-Universität Frankfurt am Main
- Brain Imaging Center, Goethe-Universität Frankfurt am Main
| | - Caroline Mann
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum,Goethe-Universität Frankfurt am Main
- Brain Imaging Center, Goethe-Universität Frankfurt am Main
| | - Anke Bletsch
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum,Goethe-Universität Frankfurt am Main
- Brain Imaging Center, Goethe-Universität Frankfurt am Main
| | - Jennifer Zimmermann
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum,Goethe-Universität Frankfurt am Main
- Brain Imaging Center, Goethe-Universität Frankfurt am Main
| | - Hanna Seelemeyer
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum,Goethe-Universität Frankfurt am Main
- Brain Imaging Center, Goethe-Universität Frankfurt am Main
| | - Njål Herøy
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum,Goethe-Universität Frankfurt am Main
- Brain Imaging Center, Goethe-Universität Frankfurt am Main
| | - Christine Ecker
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum,Goethe-Universität Frankfurt am Main
- Brain Imaging Center, Goethe-Universität Frankfurt am Main
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience,King’s College, London
| |
Collapse
|
47
|
Stoyanov D, Kandilarova S, Aryutova K, Paunova R, Todeva-Radneva A, Latypova A, Kherif F. Multivariate Analysis of Structural and Functional Neuroimaging Can Inform Psychiatric Differential Diagnosis. Diagnostics (Basel) 2020; 11:19. [PMID: 33374207 PMCID: PMC7823426 DOI: 10.3390/diagnostics11010019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional psychiatric diagnosis has been overly reliant on either self-reported measures (introspection) or clinical rating scales (interviews). This produced the so-called explanatory gap with the bio-medical disciplines, such as neuroscience, which are supposed to deliver biological explanations of disease. In that context the neuro-biological and clinical assessment in psychiatry remained discrepant and incommensurable under conventional statistical frameworks. The emerging field of translational neuroimaging attempted to bridge the explanatory gap by means of simultaneous application of clinical assessment tools and functional magnetic resonance imaging, which also turned out to be problematic when analyzed with standard statistical methods. In order to overcome this problem our group designed a novel machine learning technique, multivariate linear method (MLM) which can capture convergent data from voxel-based morphometry, functional resting state and task-related neuroimaging and the relevant clinical measures. In this paper we report results from convergent cross-validation of biological signatures of disease in a sample of patients with schizophrenia as compared to depression. Our model provides evidence that the combination of the neuroimaging and clinical data in MLM analysis can inform the differential diagnosis in terms of incremental validity.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology and Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.K.); (K.A.); (R.P.); (A.T.-R.)
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology and Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.K.); (K.A.); (R.P.); (A.T.-R.)
| | - Katrin Aryutova
- Department of Psychiatry and Medical Psychology and Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.K.); (K.A.); (R.P.); (A.T.-R.)
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology and Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.K.); (K.A.); (R.P.); (A.T.-R.)
| | - Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology and Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.K.); (K.A.); (R.P.); (A.T.-R.)
| | - Adeliya Latypova
- Centre for Research in Neuroscience—Department of Clinical Neurosciences, CHUV—UNIL, 1010 Lausanne, Switzerland; (A.L.); (F.K.)
| | - Ferath Kherif
- Centre for Research in Neuroscience—Department of Clinical Neurosciences, CHUV—UNIL, 1010 Lausanne, Switzerland; (A.L.); (F.K.)
| |
Collapse
|
48
|
Zhou F, Zhu Y, Zhu Y, Huang M, Jiang J, He L, Huang S, Zeng X, Gong H. Altered long- and short-range functional connectivity density associated with poor sleep quality in patients with chronic insomnia disorder: A resting-state fMRI study. Brain Behav 2020; 10:e01844. [PMID: 32935924 PMCID: PMC7667361 DOI: 10.1002/brb3.1844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Previous neuroimaging studies have suggested that brain functional impairment and hyperarousal occur during the daytime among patients with chronic insomnia disorder (CID); however, alterations to the brain's intrinsic functional architecture and their association with sleep quality have not yet been documented. METHODS In this study, our aim was to investigate the insomnia-related alterations to the intrinsic connectome in patients with CID (n = 27) at resting state, with a data-driven approach based on graph theory assessment and functional connectivity density (FCD), which can be interpreted as short-range (intraregional) or long-range (interregional) mapping. RESULTS Compared with healthy controls with good sleep, CID patients showed significantly decreased long-range FCD in the dorsolateral prefrontal cortices and the putamen. These patients also showed decreased short-range FCD in their multimodal-processing regions, executive control network, and supplementary motor-related areas. Furthermore, several regions showed increased short-range FCD in patients with CID, implying hyper-homogeneity of local activity. CONCLUSIONS Together, these findings suggest that insufficient sleep during chronic insomnia widely affects cortical functional activities, including disrupted FCD and increased short-range FCD, which is associated with poor sleep quality.
Collapse
Affiliation(s)
- Fuqing Zhou
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| | - Yanyan Zhu
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| | - Yujun Zhu
- Department of RespiratoryThe People’s Hospital of Yichun CityYichunChina
| | - Muhua Huang
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| | - Jian Jiang
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| | - Laichang He
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| | - Suhua Huang
- Department of RadiologyJiangxi Province Children's HospitalNanchangChina
| | - Xianjun Zeng
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| | - Honghan Gong
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| |
Collapse
|
49
|
Localised Grey Matter Atrophy in Multiple Sclerosis and Clinically Isolated Syndrome-A Coordinate-Based Meta-Analysis, Meta-Analysis of Networks, and Meta-Regression of Voxel-Based Morphometry Studies. Brain Sci 2020; 10:brainsci10110798. [PMID: 33143012 PMCID: PMC7693631 DOI: 10.3390/brainsci10110798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Atrophy of grey matter (GM) is observed in the earliest stages of multiple sclerosis (MS) and is associated with cognitive decline and physical disability. Localised GM atrophy in MS can be explored and better understood using magnetic resonance imaging and voxel-based morphometry (VBM). However, results are difficult to interpret due to methodological differences between studies. Methods: Coordinate-based analysis is a way to find the reliably observable results across multiple independent VBM studies. This work uses coordinate-based meta-analysis, meta-analysis of networks, and meta-regression to summarise the evidence from voxel-based morphometry of regional GM hanges in patients with MS and clinically isolated syndrome (CIS), and whether these measured changes are relatable to clinical features. Results: Thirty-four published articles reporting forty-four independent experiments using VBM for the assessment of GM atrophy between MS or CIS patients and healthy controls were identified. Analysis identified eight clusters of consistent cross-study reporting of localised GM atrophy involving both cortical and subcortical regions. Meta-network analysis identified a network-like pattern indicating that GM loss occurs with some symmetry between hemispheres. Meta-regression analysis indicates a relationship between disease duration or age and the magnitude of reported statistical effect in some deep GM structures. Conclusions: These results suggest consistency in MRI-detectible regional GM loss across multiple MS studies, and the estimated effect sizes and symmetries can help design prospective studies to test specific hypotheses.
Collapse
|
50
|
Zhou Z, Zhu PW, Shi WQ, Min YL, Lin Q, Ge QM, Li B, Yuan Q, Shao Y. Resting-State Functional MRI Study Demonstrates That the Density of Functional Connectivity Density Mapping Changes in Patients with Acute Eye Pain. J Pain Res 2020; 13:2103-2112. [PMID: 32982384 PMCID: PMC7492714 DOI: 10.2147/jpr.s224687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/13/2020] [Indexed: 01/03/2023] Open
Abstract
Purpose Brain function in patients with acute eye pain (EP) has not been extensively studied. An understanding of the alterations in short-range functional connectivity density (shortFCD) and long-range functional connectivity density (longFCD) in patients with EP remains elusive. The aim of the present study was to compare the functional connectivity density (FCD) between patients with EP and healthy controls (HCs) using resting-state functional connectivity. Methods A total of 40 patients with EP (26 males and 14 females) and 40 HCs (26 males and 14 females) of similar age underwent functional magnetic resonance (MR) examination at the resting state. The shortFCD and longFCD values were compared using the one-sample t-test. The differences between patients with EP and the HCs were evaluated using receiver operating characteristic (ROC) curves. Results In the patients with EP, significantly reduced shortFCD values were observed in the left posterior lobe of the cerebellum, right inferior parietal lobule, and left anterior lobe of the cerebellum, and significantly reduced longFCD values were observed in both the left and right posterior lobe of the cerebellum. Significantly increased shortFCD values were also observed in both superior frontal gyri (Brodmann area 6), and increased longFCD values were observed in the left inferior temporal gyrus and left superior frontal gyri (Brodmann area 11). Compared with the HCs, less reduction was noted among the shortFCD values of patients with EP in the right posterior lobe of the cerebellum, right supramarginal gyrus, left middle temporal gyrus, bilateral superior frontal gyri, and bilateral caudate nuclei. Conclusion EP patients shown variation of binarized shortFCD and long FCD in brain areas including premotor cortex, ventral cortical visual system, newest part of the cerebellum, cerebellum control unconscious proprioception, inhibition of involuntary movement, somatosensory association cortex, nucleus involving reward system and ventral cortical visual system which might provide an explanation of brain functional compensation for chronic eye pain and visual impairment in the EP patients.
Collapse
Affiliation(s)
- Zhou Zhou
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, People's Republic of China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, People's Republic of China.,Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|