1
|
Goodman AM, Wheelock MD, Harnett NG, Davis ES, Mrug S, Deshpande G, Knight DC. Stress-Induced Changes in Effective Connectivity During Regulation of the Emotional Response to Threat. Brain Connect 2022; 12:629-638. [PMID: 34541896 PMCID: PMC9634990 DOI: 10.1089/brain.2021.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Stress-related disruption of emotion regulation appears to involve the prefrontal cortex (PFC) and amygdala. However, the interactions between brain regions that mediate stress-induced changes in emotion regulation remain unclear. The present study builds upon prior work that assessed stress-induced changes in the neurobehavioral response to threat by investigating effective connectivity between these brain regions. Methods: Participants completed the Montreal Imaging Stress Task followed by a Pavlovian fear conditioning procedure during functional magnetic resonance imaging. Stress ratings and psychophysiological responses were used to assess stress reactivity. Effective connectivity during fear conditioning was identified using multivariate autoregressive modeling. Effective connectivity values were calculated during threat presentations that were either predictable (preceded by a warning cue) or unpredictable (no warning cue). Results: A neural hub within the dorsomedial PFC (dmPFC) showed greater effective connectivity to other PFC regions, inferior parietal lobule, insula, and amygdala during predictable than unpredictable threat. The dmPFC also showed greater connectivity to different dorsolateral PFC and amygdala regions during unpredictable than predictable threat. Stress ratings varied with connectivity differences from the dmPFC to the amygdala. Connectivity from dmPFC to amygdala was greater in general during unpredictable than predictable threat, however, this connectivity increased during predictable compared with unpredictable threat as stress reactivity increased. Conclusions: Our findings suggest that acute stress disrupts connectivity underlying top-down emotion regulation of the threat response. Furthermore, increased connectivity between the dmPFC and amygdala may play a critical role in stress-induced changes in the emotional response to threat. Impact statement The present study builds upon prior work that assessed stress-induced changes in the human neurobehavioral response to threat by demonstrating that increased top-down connectivity from the dorsomedial prefrontal cortex to the amygdala varies with individual differences in stress reactivity. These findings provide novel evidence in humans of stress-induced disruption of a specific top-down corticolimbic circuit during active emotion regulation processes, which may play a causal role in the long-term effects of chronic or excessive stress exposure.
Collapse
Affiliation(s)
- Adam M. Goodman
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Muriah D. Wheelock
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nathaniel G. Harnett
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth S. Davis
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gopikrishna Deshpande
- Auburn University MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
- Alabama Advanced Imaging Consortium, University of Alabama Birmingham, Alabama, USA
- Center for Neuroscience, Auburn University, Auburn, Alabama, USA
- School of Psychology, Capital Normal University, Beijing, China
- Key Laboratory for Learning and Cognition, Capital Normal University, Beijing, China
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - David C. Knight
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Korann V, Jacob A, Lu B, Devi P, Thonse U, Nagendra B, Maria Chacko D, Dey A, Padmanabha A, Shivakumar V, Dawn Bharath R, Kumar V, Varambally S, Venkatasubramanian G, Deshpande G, Rao NP. Effect of Intranasal Oxytocin on Resting-state Effective Connectivity in Schizophrenia. Schizophr Bull 2022; 48:1115-1124. [PMID: 35759349 PMCID: PMC9434443 DOI: 10.1093/schbul/sbac066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Evidence from several lines of research suggests the critical role of neuropeptide oxytocin in social cognition and social behavior. Though a few studies have examined the effect of oxytocin on clinical symptoms of schizophrenia, the underlying neurobiological changes are underexamined. Hence, in this study, we examined the effect of oxytocin on the brain's effective connectivity in schizophrenia. METHODS 31 male patients with schizophrenia (SCZ) and 21 healthy male volunteers (HV) underwent resting functional magnetic resonance imaging scans with intra-nasal oxytocin (24 IU) and placebo administered in counterbalanced order. We conducted a whole-brain effective connectivity analysis using a multivariate vector autoregressive granger causality model. We performed a conjunction analysis to control for spurious changes and canonical correlation analysis between changes in connectivity and clinical and demographic variables. RESULTS Three connections, sourced from the left caudate survived the FDR correction threshold with the conjunction analysis; connections to the left supplementary motor area, left precentral gyrus, and left frontal inferior triangular gyrus. At baseline, SCZ patients had significantly weaker connectivity from caudate to these three regions. Oxytocin, but not placebo, significantly increased the strength of connectivity in these connections. Better cognitive insight and lower negative symptoms were associated with a greater increase in connectivity with oxytocin. CONCLUSIONS These findings provide a preliminary mechanistic understanding of the effect of oxytocin on brain connectivity in schizophrenia. The study findings provide the rationale to examine the potential utility of oxytocin for social cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
| | | | - Bonian Lu
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Priyanka Devi
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Umesh Thonse
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Bhargavi Nagendra
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Dona Maria Chacko
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Avyarthana Dey
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Anantha Padmanabha
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Venkataram Shivakumar
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Rose Dawn Bharath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Vijay Kumar
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Shivarama Varambally
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | | | - Naren P Rao
- To whom correspondence should be addressed; tel: +91-80-26995879, e-mail:
| |
Collapse
|
3
|
Evidence for Independent Processing of Shape by Vision and Touch. eNeuro 2022; 9:ENEURO.0502-21.2022. [PMID: 35998295 PMCID: PMC9215689 DOI: 10.1523/eneuro.0502-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Although visual object recognition is well studied and relatively well understood, much less is known about how shapes are recognized by touch and how such haptic stimuli might be compared with visual shapes. One might expect that the processes of visual and haptic object recognition engage similar brain structures given the advantages of avoiding redundant brain circuitry and indeed there is some evidence that this is the case. A potentially fruitful approach to understanding the differences in how shapes might be neurally represented is to find an algorithmic method of comparing shapes, which agrees with human behavior and determines whether that method differs between different modality conditions. If not, it would provide further evidence for a shared representation of shape. We recruited human participants to perform a one-back same-different visual and haptic shape comparison task both within (i.e., comparing two visual shapes or two haptic shapes) and across (i.e., comparing visual with haptic shapes) modalities. We then used various shape metrics to predict performance based on the shape, orientation, and modality of the two stimuli that were being compared on each trial. We found that the metrics that best predict shape comparison behavior heavily depended on the modality of the two shapes, suggesting differences in which features are used for comparing shapes depending on modality and that object recognition is not necessarily performed in a single, modality-agnostic region.
Collapse
|
4
|
Yang J, Molfese PJ, Yu Y, Handwerker DA, Chen G, Taylor PA, Ejima Y, Wu J, Bandettini PA. Different activation signatures in the primary sensorimotor and higher-level regions for haptic three-dimensional curved surface exploration. Neuroimage 2021; 231:117754. [PMID: 33454415 PMCID: PMC11822888 DOI: 10.1016/j.neuroimage.2021.117754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 01/03/2023] Open
Abstract
Haptic object perception begins with continuous exploratory contact, and the human brain needs to accumulate sensory information continuously over time. However, it is still unclear how the primary sensorimotor cortex (PSC) interacts with these higher-level regions during haptic exploration over time. This functional magnetic resonance imaging (fMRI) study investigates time-dependent haptic object processing by examining brain activity during haptic 3D curve and roughness estimations. For this experiment, we designed sixteen haptic stimuli (4 kinds of curves × 4 varieties of roughness) for the haptic curve and roughness estimation tasks. Twenty participants were asked to move their right index and middle fingers along the surface twice and to estimate one of the two features-roughness or curvature-depending on the task instruction. We found that the brain activity in several higher-level regions (e.g., the bilateral posterior parietal cortex) linearly increased as the number of curves increased during the haptic exploration phase. Surprisingly, we found that the contralateral PSC was parametrically modulated by the number of curves only during the late exploration phase but not during the early exploration phase. In contrast, we found no similar parametric modulation activity patterns during the haptic roughness estimation task in either the contralateral PSC or in higher-level regions. Thus, our findings suggest that haptic 3D object perception is processed across the cortical hierarchy, whereas the contralateral PSC interacts with other higher-level regions across time in a manner that is dependent upon the features of the object.
Collapse
Affiliation(s)
- Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA.
| | - Peter J Molfese
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Yinghua Yu
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Gang Chen
- Scientific and Statistical Computational Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Paul A Taylor
- Scientific and Statistical Computational Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Yoshimichi Ejima
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Jinglong Wu
- Beijing Institute of Technology, Beijing, China; Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Peter A Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA; Functional MRI Core Facility, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Santarnecchi E, Egiziano E, D'Arista S, Gardi C, Romanella SM, Mencarelli L, Rossi S, Reda M, Rossi A. Mindfulness-based stress reduction training modulates striatal and cerebellar connectivity. J Neurosci Res 2021; 99:1236-1252. [PMID: 33634892 DOI: 10.1002/jnr.24798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Mindfulness is a meditation practice frequently associated with changes in subjective evaluation of cognitive and sensorial experience, as well as with modifications of brain activity and morphometry. Aside from the anatomical localization of functional changes induced by mindfulness practice, little is known about changes in functional and effective functional magnetic resonance imaging (fMRI) connectivity. Here we performed a connectivity fMRI analysis in a group of healthy individuals participating in an 8-week mindfulness-based stress reduction (MBSR) training program. Data from both a "mind-wandering" and a "meditation" state were acquired before and after the MBSR course. Results highlighted decreased local connectivity after training in the right anterior putamen and insula during spontaneous mind-wandering and the right cerebellum during the meditative state. A further effective connectivity analysis revealed (a) decreased modulation by the anterior cingulate cortex over the anterior portion of the putamen, and (b) a change in left and right posterior putamen excitatory input and inhibitory output with the cerebellum, respectively. Results suggest a rearrangement of dorsal striatum functional and effective connectivity in response to mindfulness practice, with changes in cortico-subcortical-cerebellar modulatory dynamics. Findings might be relevant for the understanding of widely documented mindfulness behavioral effects, especially those related to pain perception.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eutizio Egiziano
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy
| | - Sicilia D'Arista
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy
| | - Concetta Gardi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sara M Romanella
- Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - Lucia Mencarelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - Simone Rossi
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy.,Department of Medicine, Surgery and Neuroscience, Human Physiology Section, Siena Medical School, Siena, Italy
| | - Mario Reda
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy
| | - Alessandro Rossi
- Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| |
Collapse
|
6
|
Deshpande G, Jia H. Multi-Level Clustering of Dynamic Directional Brain Network Patterns and Their Behavioral Relevance. Front Neurosci 2020; 13:1448. [PMID: 32116487 PMCID: PMC7017718 DOI: 10.3389/fnins.2019.01448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/27/2019] [Indexed: 11/18/2022] Open
Abstract
Dynamic functional connectivity (DFC) obtained from resting state functional magnetic resonance imaging (fMRI) data has been shown to provide novel insights into brain function which may be obscured by static functional connectivity (SFC). Further, DFC, and by implication how different brain regions may engage or disengage with each other over time, has been shown to be behaviorally relevant and more predictive than SFC of behavioral performance and/or diagnostic status. DFC is not a directional entity and may capture neural synchronization. However, directional interactions between different brain regions is another putative mechanism by which neural populations communicate. Accordingly, static effective connectivity (SEC) has been explored as a means of characterizing such directional interactions. But investigation of its dynamic counterpart, i.e., dynamic effective connectivity (DEC), is still in its infancy. Of particular note are methodological insufficiencies in identifying DEC configurations that are reproducible across time and subjects as well as a lack of understanding of the behavioral relevance of DEC obtained from resting state fMRI. In order to address these issues, we employed a dynamic multivariate autoregressive (MVAR) model to estimate DEC. The method was first validated using simulations and then applied to resting state fMRI data obtained in-house (N = 21), wherein we performed dynamic clustering of DEC matrices across multiple levels [using adaptive evolutionary clustering (AEC)] – spatial location, time, and subjects. We observed a small number of directional brain network configurations alternating between each other over time in a quasi-stable manner akin to brain microstates. The dominant and consistent DEC network patterns involved several regions including inferior and mid temporal cortex, motor and parietal cortex, occipital cortex, as well as part of frontal cortex. The functional relevance of these DEC states were determined using meta-analyses and pertained mainly to memory and emotion, but also involved execution and language. Finally, a larger cohort of resting-state fMRI and behavioral data from the Human Connectome Project (HCP) (N = 232, Q1–Q3 release) was used to demonstrate that metrics derived from DEC can explain larger variance in 70 behaviors across different domains (alertness, cognition, emotion, and personality traits) compared to SEC in healthy individuals.
Collapse
Affiliation(s)
- Gopikrishna Deshpande
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States.,Department of Psychology, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States.,Center for Health Ecology and Equity Research, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India.,School of Psychology, Capital Normal University, Beijing, China.,Key Laboratory for Learning and Cognition, Capital Normal University, Beijing, China
| | - Hao Jia
- Department of Automation, College of Information Engineering, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
7
|
Zhao S, Rangaprakash D, Liang P, Deshpande G. Deterioration from healthy to mild cognitive impairment and Alzheimer's disease mirrored in corresponding loss of centrality in directed brain networks. Brain Inform 2019; 6:8. [PMID: 31792630 PMCID: PMC6888786 DOI: 10.1186/s40708-019-0101-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/11/2019] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE It is important to identify brain-based biomarkers that progressively deteriorate from healthy to mild cognitive impairment (MCI) to Alzheimer's disease (AD). Cortical thickness, amyloid-ß deposition, and graph measures derived from functional connectivity (FC) networks obtained using functional MRI (fMRI) have been previously identified as potential biomarkers. Specifically, in the latter case, betweenness centrality (BC), a nodal graph measure quantifying information flow, is reduced in both AD and MCI. However, all such reports have utilized BC calculated from undirected networks that characterize synchronization rather than information flow, which is better characterized using directed networks. METHODS Therefore, we estimated BC from directed networks using Granger causality (GC) on resting-state fMRI data (N = 132) to compare the following populations (p < 0.05, FDR corrected for multiple comparisons): normal control (NC), early MCI (EMCI), late MCI (LMCI) and AD. We used an additional metric called middleman power (MP), which not only characterizes nodal information flow as in BC, but also measures nodal power critical for information flow in the entire network. RESULTS MP detected more brain regions than BC that progressively deteriorated from NC to EMCI to LMCI to AD, as well as exhibited significant associations with behavioral measures. Additionally, graph measures obtained from conventional FC networks could not identify a single node, underscoring the relevance of GC. CONCLUSION Our findings demonstrate the superiority of MP over BC as well as GC over FC in our case. MP obtained from GC networks could serve as a potential biomarker for progressive deterioration of MCI and AD.
Collapse
Affiliation(s)
- Sinan Zhao
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL, 36849, USA
| | - D Rangaprakash
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL, 36849, USA
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Peipeng Liang
- School of Psychology, Capital Normal University, Beijing, China
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL, 36849, USA.
- Department of Psychology, Auburn University, Auburn, AL, USA.
- Alabama Advanced Imaging Consortium, Auburn, AL, USA.
- Center for Neuroscience, Auburn University, Auburn, AL, USA.
- Center for Health Ecology and Equity Research, Auburn University, Auburn, AL, USA.
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
8
|
Palaniyappan L, Deshpande G, Lanka P, Rangaprakash D, Iwabuchi S, Francis S, Liddle PF. Effective connectivity within a triple network brain system discriminates schizophrenia spectrum disorders from psychotic bipolar disorder at the single-subject level. Schizophr Res 2019; 214:24-33. [PMID: 29398207 DOI: 10.1016/j.schres.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Schizophrenia spectrum disorders (SSD) and psychotic bipolar disorder share a number of genetic and neurobiological features, despite a divergence in clinical course and outcome trajectories. We studied the diagnostic classification potential that can be achieved on the basis of the structure and connectivity within a triple network system (the default mode, salience and central executive network) in patients with SSD and psychotic bipolar disorder. METHODS Directed static connectivity and its dynamic variance was estimated among 8 nodes of the three large-scale networks. Multivariate autoregressive models of deconvolved resting state functional magnetic resonance imaging time series were obtained from 57 patients (38 with SSD and 19 with bipolar disorder and psychosis). We used 2/3 of the patients for training and validation of the classifier and the remaining 1/3 as an independent hold-out test data for performance estimation. RESULTS A high level of discrimination between bipolar disorder with psychosis and SSD (combined balanced accuracy = 96.2%; class accuracies 100% for bipolar and 92.3% for SSD) was achieved when effective connectivity and morphometry of the triple network nodes was combined with symptom scores. Patients with SSD were discriminated from patients with bipolar disorder and psychosis as showing higher clinical severity of disorganization and higher variability in the effective connectivity between salience and executive networks. CONCLUSIONS Our results support the view that the study of network-level connectivity patterns can not only clarify the pathophysiology of SSD but also provide a measure of excellent clinical utility to identify discrete diagnostic/prognostic groups among individuals with psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada.
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA; Department of Psychology, Auburn University, Auburn, AL, USA; Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, AL, USA.
| | - Pradyumna Lanka
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - D Rangaprakash
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Sarina Iwabuchi
- Centre for Translational Neuroimaging, Division of Psychiatry & Applied Psychology, Institute of Mental Health, University of Nottingham, UK
| | - Susan Francis
- Sir Peter Mansfield MR Centre, University of Nottingham, UK
| | - Peter F Liddle
- Centre for Translational Neuroimaging, Division of Psychiatry & Applied Psychology, Institute of Mental Health, University of Nottingham, UK
| |
Collapse
|
9
|
Bola Ł, Matuszewski J, Szczepanik M, Droździel D, Sliwinska MW, Paplińska M, Jednoróg K, Szwed M, Marchewka A. Functional hierarchy for tactile processing in the visual cortex of sighted adults. Neuroimage 2019; 202:116084. [PMID: 31400530 DOI: 10.1016/j.neuroimage.2019.116084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/07/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Perception via different sensory modalities was traditionally believed to be supported by largely separate brain systems. However, a growing number of studies demonstrate that the visual cortices of typical, sighted adults are involved in tactile and auditory perceptual processing. Here, we investigated the spatiotemporal dynamics of the visual cortex's involvement in a complex tactile task: Braille letter recognition. Sighted subjects underwent Braille training and then participated in a transcranial magnetic stimulation (TMS) study in which they tactually identified single Braille letters. During this task, TMS was applied to their left early visual cortex, visual word form area (VWFA), and left early somatosensory cortex at five time windows from 20 to 520 ms following the Braille letter presentation's onset. The subjects' response accuracy decreased when TMS was applied to the early visual cortex at the 120-220 ms time window and when TMS was applied to the VWFA at the 320-420 ms time window. Stimulation of the early somatosensory cortex did not have a time-specific effect on the accuracy of the subjects' Braille letter recognition, but rather caused a general slowdown during this task. Our results indicate that the involvement of sighted people's visual cortices in tactile perception respects the canonical visual hierarchy-the early tactile processing stages involve the early visual cortex, whereas more advanced tactile computations involve high-level visual areas. Our findings are compatible with the metamodal account of brain organization and suggest that the whole visual cortex may potentially support spatial perception in a task-specific, sensory-independent manner.
Collapse
Affiliation(s)
- Łukasz Bola
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland; Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060, Krakow, Poland.
| | - Jacek Matuszewski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland
| | - Michał Szczepanik
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland
| | - Dawid Droździel
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland
| | | | - Małgorzata Paplińska
- The Maria Grzegorzewska University, 40 Szczęśliwicka Street, 02-353, Warsaw, Poland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060, Krakow, Poland.
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland.
| |
Collapse
|
10
|
Rao NP, Deshpande G, Gangadhar KB, Arasappa R, Varambally S, Venkatasubramanian G, Ganagadhar BN. Directional brain networks underlying OM chanting. Asian J Psychiatr 2018; 37:20-25. [PMID: 30099280 DOI: 10.1016/j.ajp.2018.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023]
Abstract
OM chanting is an ancient technique of Indian meditation. OM chanting is associated with an experience of relaxation, changes in autonomic balance and deactivation of limbic brain regions. While functional localization is important, how brain regions interact with each other has been shown to underlie various brain functions. Therefore, in this study, we tested the hypothesis that there is reduced communication between deactivated regions during OM chanting. In order to do so, we employed multivariate autoregressive model (MVAR) based Granger causality to obtain directional connectivity between deactivated regions. fMRI scans of 12 right handed healthy volunteers (9 Men) from a previously published study was used in which participants performed OM chanting and a control condition in a block design. We found that outputs from insula, anterior cingulate and orbitofrontal cortices were significantly reduced in OM condition. Of interest is the reduction of outputs from these regions to limbic area amygdala. Modulation of brain regions involved in emotion processing and implicated in major depressive disorder (MDD) raises a potential possibility of OM chanting in the treatment of MDD.
Collapse
Affiliation(s)
- Naren P Rao
- National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA; Department of Psychology, Auburn University, Auburn, AL, USA; Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, AL, USA
| | | | - Rashmi Arasappa
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | |
Collapse
|
11
|
Brain regions that retain the spatial layout of tactile stimuli during working memory – A ‘tactospatial sketchpad’? Neuroimage 2018; 178:531-539. [DOI: 10.1016/j.neuroimage.2018.05.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 11/17/2022] Open
|
12
|
Zhao X, Rangaprakash D, Yuan B, Denney TS, Katz JS, Dretsch MN, Deshpande G. Investigating the Correspondence of Clinical Diagnostic Grouping With Underlying Neurobiological and Phenotypic Clusters Using Unsupervised Machine Learning. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS 2018; 4:25. [PMID: 30393630 PMCID: PMC6214192 DOI: 10.3389/fams.2018.00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many brain-based disorders are traditionally diagnosed based on clinical interviews and behavioral assessments, which are recognized to be largely imperfect. Therefore, it is necessary to establish neuroimaging-based biomarkers to improve diagnostic precision. Resting-state functional magnetic resonance imaging (rs-fMRI) is a promising technique for the characterization and classification of varying disorders. However, most of these classification methods are supervised, i.e., they require a priori clinical labels to guide classification. In this study, we adopted various unsupervised clustering methods using static and dynamic rs-fMRI connectivity measures to investigate whether the clinical diagnostic grouping of different disorders is grounded in underlying neurobiological and phenotypic clusters. In order to do so, we derived a general analysis pipeline for identifying different brain-based disorders using genetic algorithm-based feature selection, and unsupervised clustering methods on four different datasets; three of them-ADNI, ADHD-200, and ABIDE-which are publicly available, and a fourth one-PTSD and PCS-which was acquired in-house. Using these datasets, the effectiveness of the proposed pipeline was verified on different disorders: Attention Deficit Hyperactivity Disorder (ADHD), Alzheimer's Disease (AD), Autism Spectrum Disorder (ASD), Post-Traumatic Stress Disorder (PTSD), and Post-Concussion Syndrome (PCS). For ADHD and AD, highest similarity was achieved between connectivity and phenotypic clusters, whereas for ASD and PTSD/PCS, highest similarity was achieved between connectivity and clinical diagnostic clusters. For multi-site data (ABIDE and ADHD-200), we report site-specific results. We also reported the effect of elimination of outlier subjects for all four datasets. Overall, our results suggest that neurobiological and phenotypic biomarkers could potentially be used as an aid by the clinician, in additional to currently available clinical diagnostic standards, to improve diagnostic precision. Data and source code used in this work is publicly available at https://github.com/xinyuzhao/identification-of-brain-based-disorders.git.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Quora, Inc., Mountain View, CA, United States
| | - D. Rangaprakash
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bowen Yuan
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
| | - Thomas S. Denney
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Department of Psychology, Auburn University, Auburn, AL, United States
- Alabama Advanced Imaging Consortium, Auburn University, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Jeffrey S. Katz
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Department of Psychology, Auburn University, Auburn, AL, United States
- Alabama Advanced Imaging Consortium, Auburn University, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Michael N. Dretsch
- Human Dimension Division, HQ TRADOC, Fort Eustis, VA, United States
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, United States
| | - Gopikrishna Deshpande
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Department of Psychology, Auburn University, Auburn, AL, United States
- Alabama Advanced Imaging Consortium, Auburn University, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
- Center for Health Ecology and Equity Research, Auburn University, Auburn, AL, United States
| |
Collapse
|
13
|
Abstract
Prior functional magnetic resonance imaging (fMRI) results suggest that true memories, but not false memories, activate early sensory cortex. It is thought that false memories, which reflect conscious processing, do not activate early sensory cortex because these regions are associated with nonconscious processing. We posited that false memories may activate the earliest visual cortical processing region (i.e., V1) when task conditions are manipulated to evoke conscious processing in this region. In an fMRI experiment, abstract shapes were presented to the left or right of fixation during encoding. During retrieval, old shapes were presented at fixation and participants characterized each shape as previously on the "left" or "right" followed by an "unsure"-"sure"-"very sure" confidence rating. False memories for spatial location (i.e., "right"/left or "left"/right trials with "sure" or "very sure" confidence ratings) were associated with activity in bilateral early visual regions, including V1. In a follow-up fMRI-guided transcranial magnetic stimulation (TMS) experiment that employed the same paradigm, we assessed whether V1 activity was necessary for false memory construction. Between the encoding phase and the retrieval phase of each run, TMS (1 Hz, 8 min) was used to target the location of false memory activity (identified in the fMRI experiment) in left V1, right V1, or the vertex (control site). Confident false memories for spatial location were significantly reduced following TMS to V1, as compared to vertex. The results of the present experiments provide convergent evidence that early sensory cortex can contribute to false memory construction under particular task conditions.
Collapse
Affiliation(s)
- Jessica M Karanian
- a Department of Psychology , John Jay College of Criminal Justice, The City University of New York , New York , NY , USA
| | - Scott D Slotnick
- b Department of Psychology , Boston College , Chestnut Hill , MA , USA
| |
Collapse
|
14
|
Karanian JM, Slotnick SD. False memories for shape activate the lateral occipital complex. ACTA ACUST UNITED AC 2017; 24:552-556. [PMID: 28916630 PMCID: PMC5602348 DOI: 10.1101/lm.045765.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/02/2017] [Indexed: 11/25/2022]
Abstract
Previous functional magnetic resonance imaging evidence has shown that false memories arise from higher-level conscious processing regions rather than lower-level sensory processing regions. In the present study, we assessed whether the lateral occipital complex (LOC)—a lower-level conscious shape processing region—was associated with false memories for shape. During encoding, participants viewed intact or scrambled colored abstract shapes. During retrieval, colored disks were presented and participants indicated whether the corresponding item was previously “intact” or “scrambled.” False memories for shape (“intact”/scrambled > “scrambled”/scrambled) activated LOC, which indicates lower-level sensory processing regions can support false memory.
Collapse
Affiliation(s)
- Jessica M Karanian
- Department of Psychology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Scott D Slotnick
- Department of Psychology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
15
|
Lee Masson H, Kang HM, Petit L, Wallraven C. Neuroanatomical correlates of haptic object processing: combined evidence from tractography and functional neuroimaging. Brain Struct Funct 2017; 223:619-633. [PMID: 28905126 DOI: 10.1007/s00429-017-1510-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022]
Abstract
Touch delivers a wealth of information already from birth, helping infants to acquire knowledge about a variety of important object properties using their hands. Despite the fact that we are touch experts as much as we are visual experts, surprisingly, little is known how our perceptual ability in touch is linked to either functional or structural aspects of the brain. The present study, therefore, investigates and identifies neuroanatomical correlates of haptic perceptual performance using a novel, multi-modal approach. For this, participants' performance in a difficult shape categorization task was first measured in the haptic domain. Using a multi-modal functional magnetic resonance imaging and diffusion-weighted magnetic resonance imaging analysis pipeline, functionally defined and anatomically constrained white-matter pathways were extracted and their microstructural characteristics correlated with individual variability in haptic categorization performance. Controlling for the effects of age, total intracranial volume and head movements in the regression model, haptic performance was found to correlate significantly with higher axial diffusivity in functionally defined superior longitudinal fasciculus (fSLF) linking frontal and parietal areas. These results were further localized in specific sub-parts of fSLF. Using additional data from a second group of participants, who first learned the categories in the visual domain and then transferred to the haptic domain, haptic performance correlates were obtained in the functionally defined inferior longitudinal fasciculus. Our results implicate SLF linking frontal and parietal areas as an important white-matter track in processing touch-specific information during object processing, whereas ILF relays visually learned information during haptic processing. Taken together, the present results chart for the first time potential neuroanatomical correlates and interactions of touch-related object processing.
Collapse
Affiliation(s)
- Haemy Lee Masson
- Department of Brain and Cognition, KU Leuven, 3000, Louvain, Belgium
| | - Hyeok-Mook Kang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 136-713, Korea
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives, UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Christian Wallraven
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 136-713, Korea.
| |
Collapse
|
16
|
Jin C, Jia H, Lanka P, Rangaprakash D, Li L, Liu T, Hu X, Deshpande G. Dynamic brain connectivity is a better predictor of PTSD than static connectivity. Hum Brain Mapp 2017; 38:4479-4496. [PMID: 28603919 PMCID: PMC6866943 DOI: 10.1002/hbm.23676] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/23/2017] [Indexed: 12/24/2022] Open
Abstract
Using resting-state functional magnetic resonance imaging, we test the hypothesis that subjects with post-traumatic stress disorder (PTSD) are characterized by reduced temporal variability of brain connectivity compared to matched healthy controls. Specifically, we test whether PTSD is characterized by elevated static connectivity, coupled with decreased temporal variability of those connections, with the latter providing greater sensitivity toward the pathology than the former. Static functional connectivity (FC; nondirectional zero-lag correlation) and static effective connectivity (EC; directional time-lagged relationships) were obtained over the entire brain using conventional models. Dynamic FC and dynamic EC were estimated by letting the conventional models to vary as a function of time. Statistical separation and discriminability of these metrics between the groups and their ability to accurately predict the diagnostic label of a novel subject were ascertained using separate support vector machine classifiers. Our findings support our hypothesis that PTSD subjects have stronger static connectivity, but reduced temporal variability of connectivity. Further, machine learning classification accuracy obtained with dynamic FC and dynamic EC was significantly higher than that obtained with static FC and static EC, respectively. Furthermore, results also indicate that the ease with which brain regions engage or disengage with other regions may be more sensitive to underlying pathology than the strength with which they are engaged. Future studies must examine whether this is true only in the case of PTSD or is a general organizing principle in the human brain. Hum Brain Mapp 38:4479-4496, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Changfeng Jin
- The Mental Health Institute, The Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Hao Jia
- AU MRI Research Center, Department of Electrical and Computer EngineeringAuburn UniversityAuburnAlabama
- Department of Automation, College of Information EngineeringTaiyuan University of TechnologyTaiyuanShanxiChina
| | - Pradyumna Lanka
- AU MRI Research Center, Department of Electrical and Computer EngineeringAuburn UniversityAuburnAlabama
| | - D Rangaprakash
- AU MRI Research Center, Department of Electrical and Computer EngineeringAuburn UniversityAuburnAlabama
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCalifornia
| | - Lingjiang Li
- The Mental Health Institute, The Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research CenterUniversity of GeorgiaAthensGeorgia
| | - Xiaoping Hu
- Center for Advanced Neuroimaging, Department of BioengineeringUniversity of CaliforniaRiversideCalifornia
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer EngineeringAuburn UniversityAuburnAlabama
- Department of PsychologyAuburn UniversityAuburnAlabama
- Alabama Advanced Imaging Consortium, Auburn University and University of Alabama BirminghamAlabama
| |
Collapse
|
17
|
Gurtubay-Antolin A, Rodríguez-Fornells A. Neurophysiological evidence for enhanced tactile acuity in early blindness in some but not all haptic tasks. Neuroimage 2017; 162:23-31. [PMID: 28843538 DOI: 10.1016/j.neuroimage.2017.08.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/11/2017] [Accepted: 08/20/2017] [Indexed: 10/19/2022] Open
Abstract
Previous research assessing the presence of enhanced tactile skills in early-blind (EB) population obtained conflicting results. Most of the studies relied on behavioral measures with which different mechanisms leading to the same outcome go unnoticed. Moreover, the scarce electrophysiological research that has been conducted focused exclusively on the processing of microgeometric properties. To clarify the extent of superior tactile abilities in EBs using high-density multichannel electrophysiological recordings, the present study compared the electrophysiological correlates of EBs and sighted controls (CON) in two tactile discrimination tasks that targeted microgeometric (texture) and macrogeometric (shape) properties. After a restricted exploration (haptic glance), participants judged whether a touched stimulus corresponded to an expected stimulus whose name had been previously presented aurally. In the texture discrimination task, differences between groups emerged at ∼75 ms (early perceptual processing stages) whereas we found no between-group differences during shape discrimination. Furthermore, for the first time, we were able to determine the latency at which EBs started to discriminate micro- (EB: 170 ms; CON: 230 ms) and macrogeometric (EB: 250 ms; CON: 270 ms) properties. Altogether, the results suggest different electrophysiological signatures during texture (but not shape) discrimination in EBs, possibly due to cortical reorganization in occipital areas and their increased connectivity with S1.
Collapse
Affiliation(s)
- Ane Gurtubay-Antolin
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute- IDIBELL, 08097, L'Hospitalet de Llobregat, Barcelona, Spain; Dept. of Cognition, Development and Education Psychology, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08097, Spain.
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute- IDIBELL, 08097, L'Hospitalet de Llobregat, Barcelona, Spain; Dept. of Cognition, Development and Education Psychology, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08097, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
18
|
Zhao S, Rangaprakash D, Venkataraman A, Liang P, Deshpande G. Investigating Focal Connectivity Deficits in Alzheimer's Disease Using Directional Brain Networks Derived from Resting-State fMRI. Front Aging Neurosci 2017; 9:211. [PMID: 28729831 PMCID: PMC5498531 DOI: 10.3389/fnagi.2017.00211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/15/2017] [Indexed: 01/17/2023] Open
Abstract
Connectivity analysis of resting-state fMRI has been widely used to identify biomarkers of Alzheimer's disease (AD) based on brain network aberrations. However, it is not straightforward to interpret such connectivity results since our understanding of brain functioning relies on regional properties (activations and morphometric changes) more than connections. Further, from an interventional standpoint, it is easier to modulate the activity of regions (using brain stimulation, neurofeedback, etc.) rather than connections. Therefore, we employed a novel approach for identifying focal directed connectivity deficits in AD compared to healthy controls. In brief, we present a model of directed connectivity (using Granger causality) that characterizes the coupling among different regions in healthy controls and Alzheimer's disease. We then characterized group differences using a (between-subject) generative model of pathology, which generates latent connectivity variables that best explain the (within-subject) directed connectivity. Crucially, our generative model at the second (between-subject) level explains connectivity in terms of local or regionally specific abnormalities. This allows one to explain disconnections among multiple regions in terms of regionally specific pathology; thereby offering a target for therapeutic intervention. Two foci were identified, locus coeruleus in the brain stem and right orbitofrontal cortex. Corresponding disrupted connectivity network associated with the foci showed that the brainstem is the critical focus of disruption in AD. We further partitioned the aberrant connectomic network into four unique sub-networks, which likely leads to symptoms commonly observed in AD. Our findings suggest that fMRI studies of AD, which have been largely cortico-centric, could in future investigate the role of brain stem in AD.
Collapse
Affiliation(s)
- Sinan Zhao
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn UniversityAuburn, AL, United States
| | - D Rangaprakash
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn UniversityAuburn, AL, United States.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los AngelesLos Angeles, CA, United States
| | - Archana Venkataraman
- Department of Electrical and Computer Engineering, Johns Hopkins UniversityBaltimore, MD, United States
| | - Peipeng Liang
- Department of Radiology, Xuanwu Hospital, Capital Medical UniversityBeijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijing, China.,Key Laboratory for Neurodegenerative Diseases, Ministry of EducationBeijing, China
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn UniversityAuburn, AL, United States.,Department of Psychology, Auburn UniversityAuburn, AL, United States.,Alabama Advanced Imaging Consortium, Auburn University and University of Alabama BirminghamAuburn, AL, United States
| |
Collapse
|
19
|
Sathian K. Analysis of haptic information in the cerebral cortex. J Neurophysiol 2016; 116:1795-1806. [PMID: 27440247 DOI: 10.1152/jn.00546.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/20/2016] [Indexed: 11/22/2022] Open
Abstract
Haptic sensing of objects acquires information about a number of properties. This review summarizes current understanding about how these properties are processed in the cerebral cortex of macaques and humans. Nonnoxious somatosensory inputs, after initial processing in primary somatosensory cortex, are partially segregated into different pathways. A ventrally directed pathway carries information about surface texture into parietal opercular cortex and thence to medial occipital cortex. A dorsally directed pathway transmits information regarding the location of features on objects to the intraparietal sulcus and frontal eye fields. Shape processing occurs mainly in the intraparietal sulcus and lateral occipital complex, while orientation processing is distributed across primary somatosensory cortex, the parietal operculum, the anterior intraparietal sulcus, and a parieto-occipital region. For each of these properties, the respective areas outside primary somatosensory cortex also process corresponding visual information and are thus multisensory. Consistent with the distributed neural processing of haptic object properties, tactile spatial acuity depends on interaction between bottom-up tactile inputs and top-down attentional signals in a distributed neural network. Future work should clarify the roles of the various brain regions and how they interact at the network level.
Collapse
Affiliation(s)
- K Sathian
- Departments of Neurology, Rehabilitation Medicine and Psychology, Emory University, Atlanta, Georgia; and Center for Visual and Neurocognitive Rehabilitation, Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
20
|
Liang P, Deshpande G, Zhao S, Liu J, Hu X, Li K. Altered directional connectivity between emotion network and motor network in Parkinson's disease with depression. Medicine (Baltimore) 2016; 95:e4222. [PMID: 27472694 PMCID: PMC5265831 DOI: 10.1097/md.0000000000004222] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Depression is common in patients with Parkinson's disease (PD), which can make all the other symptoms of PD much worse. It is thus urgent to differentiate depressed PD (DPD) patients from non-depressed PD (NDPD).The purpose of the present study was to characterize alterations in directional brain connectivity unique to Parkinson's disease with depression, using resting state functional magnetic resonance imaging (rs-fMRI).Sixteen DPD patients, 20 NDPD patients, 17 patients with major depressive disorder (MDD) and 21 healthy control subjects (normal controls [NC]) underwent structural MRI and rs-fMRI scanning. Voxel-based morphometry and directional brain connectivity during resting-state were analyzed. Analysis of variance (ANOVA) and 2-sample t tests were used to compare each pair of groups, using sex, age, education level, structural atrophy, and/or HAMD, unified PD rating scale (UPDRS) as covariates.In contrast to NC, DPD showed significant gray matter (GM) volume abnormalities in some mid-line limbic regions including dorsomedial prefrontal cortex and precuneus, and sub-cortical regions including caudate and cerebellum. Relative to NC and MDD, both DPD and NDPD showed significantly increased directional connectivity from bilateral anterior insula and posterior orbitofrontal cortices to left inferior temporal cortex. As compared with NC, MDD and NDPD, alterations of directional connectivity in DPD were specifically observed in the pathway from bilateral anterior insula and posterior orbitofrontal cortices to right basal ganglia.Resting state directional connectivity alterations were observed between emotion network and motor network in DPD patients after controlling for age, sex, structural atrophy. Given that these alterations are unique to DPD, it may provide a potential differential biomarker for distinguishing DPD from NC, NDPD, and MDD.
Collapse
Affiliation(s)
- Peipeng Liang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing
- Beijing Key Lab of MRI and Brain Informatics, Beijing
- Key Laboratory for Neurodegenerative Diseases, Ministry of Education, PR China
| | - Gopikrishna Deshpande
- Auburn University MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama
- Department of Psychology, Auburn University, Auburn, Alabama
- Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, Alabama
| | - Sinan Zhao
- Auburn University MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama
| | - Jiangtao Liu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing
| | - Xiaoping Hu
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Correspondence: Xiaoping Hu, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 101 Woodruff Circle, Suite 2001, Atlanta, GA 30322-4600 (e-mail: ); Kuncheng Li, Xuanwu Hospital, Capital Medical University, 45 Chang Chun Street, Xi Cheng District, Beijing 100053, China (e-mail: )
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing
- Beijing Key Lab of MRI and Brain Informatics, Beijing
- Key Laboratory for Neurodegenerative Diseases, Ministry of Education, PR China
- Correspondence: Xiaoping Hu, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 101 Woodruff Circle, Suite 2001, Atlanta, GA 30322-4600 (e-mail: ); Kuncheng Li, Xuanwu Hospital, Capital Medical University, 45 Chang Chun Street, Xi Cheng District, Beijing 100053, China (e-mail: )
| |
Collapse
|
21
|
Ryali S, Chen T, Supekar K, Tu T, Kochalka J, Cai W, Menon V. Multivariate dynamical systems-based estimation of causal brain interactions in fMRI: Group-level validation using benchmark data, neurophysiological models and human connectome project data. J Neurosci Methods 2016; 268:142-53. [PMID: 27015792 DOI: 10.1016/j.jneumeth.2016.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Causal estimation methods are increasingly being used to investigate functional brain networks in fMRI, but there are continuing concerns about the validity of these methods. NEW METHOD Multivariate dynamical systems (MDS) is a state-space method for estimating dynamic causal interactions in fMRI data. Here we validate MDS using benchmark simulations as well as simulations from a more realistic stochastic neurophysiological model. Finally, we applied MDS to investigate dynamic casual interactions in a fronto-cingulate-parietal control network using human connectome project (HCP) data acquired during performance of a working memory task. Crucially, since the ground truth in experimental data is unknown, we conducted novel stability analysis to determine robust causal interactions within this network. RESULTS MDS accurately recovered dynamic causal interactions with an area under receiver operating characteristic (AUC) above 0.7 for benchmark datasets and AUC above 0.9 for datasets generated using the neurophysiological model. In experimental fMRI data, bootstrap procedures revealed a stable pattern of causal influences from the anterior insula to other nodes of the fronto-cingulate-parietal network. COMPARISON WITH EXISTING METHODS MDS is effective in estimating dynamic causal interactions in both the benchmark and neurophysiological model based datasets in terms of AUC, sensitivity and false positive rates. CONCLUSIONS Our findings demonstrate that MDS can accurately estimate causal interactions in fMRI data. Neurophysiological models and stability analysis provide a general framework for validating computational methods designed to estimate causal interactions in fMRI. The right anterior insula functions as a causal hub during working memory.
Collapse
Affiliation(s)
- Srikanth Ryali
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - Tianwen Chen
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Kaustubh Supekar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Tao Tu
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - John Kochalka
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Weidong Cai
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States; Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
22
|
Occelli V, Lacey S, Stephens C, John T, Sathian K. Haptic Object Recognition is View-Independent in Early Blind but not Sighted People. Perception 2015; 45:337-45. [PMID: 26562881 DOI: 10.1177/0301006615614489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Object recognition, whether visual or haptic, is impaired in sighted people when objects are rotated between learning and test, relative to an unrotated condition, that is, recognition is view-dependent. Loss of vision early in life results in greater reliance on haptic perception for object identification compared with the sighted. Therefore, we hypothesized that early blind people may be more adept at recognizing objects despite spatial transformations. To test this hypothesis, we compared early blind and sighted control participants on a haptic object recognition task. Participants studied pairs of unfamiliar three-dimensional objects and performed a two-alternative forced-choice identification task, with the learned objects presented both unrotated and rotated 180° about they-axis. Rotation impaired the recognition accuracy of sighted, but not blind, participants. We propose that, consistent with our hypothesis, haptic view-independence in the early blind reflects their greater experience with haptic object perception.
Collapse
Affiliation(s)
| | - Simon Lacey
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Careese Stephens
- Department of Neurology, Emory University, Atlanta, GA, USARehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA
| | - Thomas John
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - K Sathian
- Department of Neurology, Emory University, Atlanta, GA, USADepartment of Rehabilitation Medicine, Emory University, Atlanta, GA, USA; Department of Psychology, Emory University, Atlanta, GA, USARehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA
| |
Collapse
|
23
|
Silverstein SM, Elliott CM, Feusner JD, Keane BP, Mikkilineni D, Hansen N, Hartmann A, Wilhelm S. Comparison of visual perceptual organization in schizophrenia and body dysmorphic disorder. Psychiatry Res 2015; 229:426-33. [PMID: 26184989 PMCID: PMC4546849 DOI: 10.1016/j.psychres.2015.05.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 05/05/2015] [Accepted: 05/17/2015] [Indexed: 02/04/2023]
Abstract
People with schizophrenia are impaired at organizing potentially ambiguous visual information into well-formed shape and object representations. This perceptual organization (PO) impairment has not been found in other psychiatric disorders. However, recent data on body dysmorphic disorder (BDD), suggest that BDD may also be characterized by reduced PO. Similarities between these groups could have implications for understanding the RDoC dimension of visual perception in psychopathology, and for modeling symptom formation across these two conditions. We compared patients with SCZ (n=24) to those with BDD (n=20), as well as control groups of obsessive-compulsive disorder (OCD) patients (n=20) and healthy controls (n=20), on two measures of PO that have been reliably associated with schizophrenia-related performance impairment. On both the contour integration and Ebbinghaus illusion tests, only the SCZ group demonstrated abnormal performance relative to controls; the BDD group performed similarly to the OCD and CON groups. In addition, on both tasks, the SCZ group performed more abnormally than the BDD group. Overall, these data suggest that PO reductions observed in SCZ are not present in BDD. Visual processing impairments in BDD may arise instead from other perceptual disturbances or attentional biases related to emotional factors.
Collapse
Affiliation(s)
- Steven M. Silverstein
- Department of Psychiatry and University Behavioral Health Care, Rutgers University, Piscataway, New Jersey, USA,Corresponding author: Steven M. Silverstein, Ph.D. Rutgers University Behavioral Health Care, 151 Centennial Avenue, Piscataway, NJ 08854, USA. Tel.: +1-732-235-5149.
| | - Corinna M. Elliott
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Jamie D. Feusner
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Brian P. Keane
- Department of Psychiatry and University Behavioral Health Care, Rutgers University, Piscataway, New Jersey, USA
| | - Deepthi Mikkilineni
- Department of Psychiatry and University Behavioral Health Care, Rutgers University, Piscataway, New Jersey, USA
| | - Natasha Hansen
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Andrea Hartmann
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Sabine Wilhelm
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Lee Masson H, Bulthé J, Op de Beeck HP, Wallraven C. Visual and Haptic Shape Processing in the Human Brain: Unisensory Processing, Multisensory Convergence, and Top-Down Influences. Cereb Cortex 2015. [DOI: 10.1093/cercor/bhv170] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Sreenivasan KR, Havlicek M, Deshpande G. Nonparametric hemodynamic deconvolution of FMRI using homomorphic filtering. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1155-1163. [PMID: 25531878 DOI: 10.1109/tmi.2014.2379914] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is an indirect measure of neural activity which is modeled as a convolution of the latent neuronal response and the hemodynamic response function (HRF). Since the sources of HRF variability can be nonneural in nature, the measured fMRI signal does not faithfully represent underlying neural activity. Therefore, it is advantageous to deconvolve the HRF from the fMRI signal. However, since both latent neural activity and the voxel-specific HRF is unknown, the deconvolution must be blind. Existing blind deconvolution approaches employ highly parameterized models, and it is unclear whether these models have an over fitting problem. In order to address these issues, we 1) present a nonparametric deconvolution method based on homomorphic filtering to obtain the latent neuronal response from the fMRI signal and, 2) compare our approach to the best performing existing parametric model based on the estimation of the biophysical hemodynamic model using the Cubature Kalman Filter/Smoother. We hypothesized that if the results from nonparametric deconvolution closely resembled that obtained from parametric deconvolution, then the problem of over fitting during estimation in highly parameterized deconvolution models of fMRI could possibly be over stated. Both simulations and experimental results demonstrate support for our hypothesis since the estimated latent neural response from both parametric and nonparametric methods were highly correlated in the visual cortex. Further, simulations showed that both methods were effective in recovering the simulated ground truth of the latent neural response.
Collapse
|
26
|
Winges SA. Somatosensory feedback refines the perception of hand shape with respect to external constraints. Neuroscience 2015; 293:1-11. [PMID: 25743250 DOI: 10.1016/j.neuroscience.2015.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/20/2015] [Accepted: 02/25/2015] [Indexed: 12/17/2022]
Abstract
Motor commands issued by the CNS are based upon memories of past experiences with similar objects, the current state of the hand and arm postures, and sensory input. Thus widespread somatosensory information is available to form precise representations of hand shape on which to base motor commands to match a desired posture or movement. The aim of this study was to examine the extent to which somatosensory information reflecting external influences on independent finger movement is incorporated into the perception of hand shape driving the motor command. To address this issue, a matching task was performed while pairs of fingers in the grasping hand were constrained to move in tandem when grasping familiar objects. The hypothesis was that motor commands would be driven by comparison of the online sensory information from the matching hand to a desired somatosensory state determined by the current somatosensory input from the grasping hand. The results demonstrated that multi-muscle patterns of activation and hand postures were altered with respect to the external constraint on independent finger movement. A secondary aim of this study was to examine the influence of sensory information on the structure of the multi-muscle patterns. The hypothesis was that the same synergies (patterns of activation across muscles) would be used to complete the task but would be rescaled with respect to condition. The results demonstrated that rescaling the patterns of multi-muscle activity from the unconstrained condition could not equivalently represent those from the constrained conditions. Thus it appears that external restriction of independent finger movement was signaled by somatosensory feedback and incorporated into the desired state driving the motor command resulting in selective activation of groups of muscles.
Collapse
Affiliation(s)
- S A Winges
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, United States; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
27
|
Karanian JM, Slotnick SD. Memory for shape reactivates the lateral occipital complex. Brain Res 2015; 1603:124-32. [PMID: 25623846 DOI: 10.1016/j.brainres.2015.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/24/2014] [Accepted: 01/16/2015] [Indexed: 11/26/2022]
Abstract
Memory is thought to be a constructive process in which the cortical regions associated with processing event features are reactivated during retrieval. Although there is evidence for non-detailed cortical reactivation during retrieval (e.g., memory for visual or auditory information reactivates the visual or auditory processing regions, respectively), there is limited evidence that memory can reactivate cortical regions associated with processing detailed, feature-specific information. Such evidence is critical to our understanding of the mechanisms of episodic retrieval. The present functional magnetic resonance imaging (fMRI) study assessed whether the lateral occipital complex (LOC), a region that preferentially processes shape, is associated with retrieval of shape information. During encoding, participants were presented with colored abstract shapes that were either intact or scrambled. During retrieval, colored disks were presented and participants indicated whether the corresponding shape was previously "intact" or "scrambled". To assess whether conscious retrieval of intact shapes reactivated LOC, we conducted a conjunction of shape perception/encoding and accurate versus inaccurate retrieval of intact shapes, which produced many activations in LOC. To determine whether activity in LOC was specific to intact shapes, we conducted a conjunction of shape perception/encoding and intact versus scrambled shapes, which also produced many activations in LOC. Furthermore, memory for intact shapes in each hemifield produced contralateral activity in LOC (e.g., memory for left visual field intact shapes activated right LOC), which reflects the specific reinstatement of perception/encoding activity. The present results extend previous feature-specific memory reactivation evidence and support the view that memory is a constructive process.
Collapse
Affiliation(s)
- Jessica M Karanian
- Department of Psychology, Boston College, Chestnut Hill, MA, United States.
| | - Scott D Slotnick
- Department of Psychology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
28
|
Hutcheson NL, Sreenivasan KR, Deshpande G, Reid MA, Hadley J, White DM, Ver Hoef L, Lahti AC. Effective connectivity during episodic memory retrieval in schizophrenia participants before and after antipsychotic medication. Hum Brain Mapp 2014; 36:1442-57. [PMID: 25504918 DOI: 10.1002/hbm.22714] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Impairment in episodic memory is one of the most robust findings in schizophrenia. Disruptions of fronto-temporal functional connectivity that could explain some aspects of these deficits have been reported. Recent work has identified abnormal hippocampal function in unmedicated patients with schizophrenia (SZ), such as increased metabolism and glutamate content that are not always seen in medicated SZ. For these reasons, we hypothesized that altered fronto-temporal connectivity might originate from the hippocampus and might be partially restored by antipsychotic medication. METHODS Granger causality methods were used to evaluate the effective connectivity between frontal and temporal regions in 21 unmedicated SZ and 20 matched healthy controls (HC) during performance of an episodic memory retrieval task. In 16 SZ, effective connectivity between these regions was evaluated before and after 1-week of antipsychotic treatment. RESULTS In HC, significant effective connectivity originating from the right hippocampus to frontal regions was identified. Compared to HC, unmedicated SZ showed significant altered fronto-temporal effective connectivity, including reduced right hippocampal to right medial frontal connectivity. After 1-week of antipsychotic treatment, connectivity more closely resembled the patterns observed in HC, including increased effective connectivity from the right hippocampus to frontal regions. CONCLUSIONS These results support the notion that memory disruption in schizophrenia might originate from hippocampal dysfunction and that medication restores some aspects of fronto-temporal dysconnectivity. Patterns of fronto-temporal connectivity could provide valuable biomarkers to identify new treatments for the symptoms of schizophrenia, including memory deficits.
Collapse
Affiliation(s)
- Nathan L Hutcheson
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kitada R, Sasaki AT, Okamoto Y, Kochiyama T, Sadato N. Role of the precuneus in the detection of incongruency between tactile and visual texture information: A functional MRI study. Neuropsychologia 2014; 64:252-62. [DOI: 10.1016/j.neuropsychologia.2014.09.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
|
30
|
Wheelock MD, Sreenivasan KR, Wood KH, Ver Hoef LW, Deshpande G, Knight DC. Threat-related learning relies on distinct dorsal prefrontal cortex network connectivity. Neuroimage 2014; 102 Pt 2:904-12. [PMID: 25111474 DOI: 10.1016/j.neuroimage.2014.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/23/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022] Open
Abstract
Conditioned changes in the emotional response to threat (e.g. aversive unconditioned stimulus; UCS) are mediated in part by the prefrontal cortex (PFC). Unpredictable threats elicit large emotional responses, while the response is diminished when the threat is predictable. A better understanding of how PFC connectivity to other brain regions varies with threat predictability would provide important insights into the neural processes that mediate conditioned diminution of the emotional response to threat. The present study examined brain connectivity during predictable and unpredictable threat exposure using a fear conditioning paradigm (previously published in Wood et al., 2012) in which unconditioned functional magnetic resonance imaging data were reanalyzed to assess effective connectivity. Granger causality analysis was performed using the time series data from 15 activated regions of interest after hemodynamic deconvolution, to determine regional effective connectivity. In addition, connectivity path weights were correlated with trait anxiety measures to assess the relationship between negative affect and brain connectivity. Results indicate the dorsomedial PFC (dmPFC) serves as a neural hub that influences activity in other brain regions when threats are unpredictable. In contrast, the dorsolateral PFC (dlPFC) serves as a neural hub that influences the activity of other brain regions when threats are predictable. These findings are consistent with the view that the dmPFC coordinates brain activity to take action, perhaps in a reactive manner, when an unpredicted threat is encountered, while the dlPFC coordinates brain regions to take action, in what may be a more proactive manner, to respond to predictable threats. Further, dlPFC connectivity to other brain regions (e.g. ventromedial PFC, amygdala, and insula) varied with negative affect (i.e. trait anxiety) when the UCS was predictable, suggesting that stronger connectivity may be required for emotion regulation in individuals with higher levels of negative affect.
Collapse
Affiliation(s)
- M D Wheelock
- Department of Psychology, University of Alabama at Birmingham, USA
| | - K R Sreenivasan
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - K H Wood
- Department of Psychology, University of Alabama at Birmingham, USA
| | - L W Ver Hoef
- Department of Neurology, University of Alabama at Birmingham, School of Medicine, Birmingham VA Medical Center, USA
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA; Department of Psychology, Auburn University, Auburn, AL, USA
| | - D C Knight
- Department of Psychology, University of Alabama at Birmingham, USA.
| |
Collapse
|
31
|
Lacey S, Sathian K. Visuo-haptic multisensory object recognition, categorization, and representation. Front Psychol 2014; 5:730. [PMID: 25101014 PMCID: PMC4102085 DOI: 10.3389/fpsyg.2014.00730] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
Visual and haptic unisensory object processing show many similarities in terms of categorization, recognition, and representation. In this review, we discuss how these similarities contribute to multisensory object processing. In particular, we show that similar unisensory visual and haptic representations lead to a shared multisensory representation underlying both cross-modal object recognition and view-independence. This shared representation suggests a common neural substrate and we review several candidate brain regions, previously thought to be specialized for aspects of visual processing, that are now known also to be involved in analogous haptic tasks. Finally, we lay out the evidence for a model of multisensory object recognition in which top-down and bottom-up pathways to the object-selective lateral occipital complex are modulated by object familiarity and individual differences in object and spatial imagery.
Collapse
Affiliation(s)
- Simon Lacey
- Department of Neurology, Emory University School of Medicine Atlanta, GA, USA
| | - K Sathian
- Department of Neurology, Emory University School of Medicine Atlanta, GA, USA ; Department of Rehabilitation Medicine, Emory University School of Medicine Atlanta, GA, USA ; Department of Psychology, Emory University School of Medicine Atlanta, GA, USA ; Rehabilitation Research and Development Center of Excellence, Atlanta Veterans Affairs Medical Center Decatur, GA, USA
| |
Collapse
|
32
|
Lacey S, Stilla R, Sreenivasan K, Deshpande G, Sathian K. Spatial imagery in haptic shape perception. Neuropsychologia 2014; 60:144-58. [PMID: 25017050 DOI: 10.1016/j.neuropsychologia.2014.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/27/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022]
Abstract
We have proposed that haptic activation of the shape-selective lateral occipital complex (LOC) reflects a model of multisensory object representation in which the role of visual imagery is modulated by object familiarity. Supporting this, a previous functional magnetic resonance imaging (fMRI) study from our laboratory used inter-task correlations of blood oxygenation level-dependent (BOLD) signal magnitude and effective connectivity (EC) patterns based on the BOLD signals to show that the neural processes underlying visual object imagery (objIMG) are more similar to those mediating haptic perception of familiar (fHS) than unfamiliar (uHS) shapes. Here we employed fMRI to test a further hypothesis derived from our model, that spatial imagery (spIMG) would evoke activation and effective connectivity patterns more related to uHS than fHS. We found that few of the regions conjointly activated by spIMG and either fHS or uHS showed inter-task correlations of BOLD signal magnitudes, with parietal foci featuring in both sets of correlations. This may indicate some involvement of spIMG in HS regardless of object familiarity, contrary to our hypothesis, although we cannot rule out alternative explanations for the commonalities between the networks, such as generic imagery or spatial processes. EC analyses, based on inferred neuronal time series obtained by deconvolution of the hemodynamic response function from the measured BOLD time series, showed that spIMG shared more common paths with uHS than fHS. Re-analysis of our previous data, using the same EC methods as those used here, showed that, by contrast, objIMG shared more common paths with fHS than uHS. Thus, although our model requires some refinement, its basic architecture is supported: a stronger relationship between spIMG and uHS compared to fHS, and a stronger relationship between objIMG and fHS compared to uHS.
Collapse
Affiliation(s)
- Simon Lacey
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Randall Stilla
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Karthik Sreenivasan
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, USA
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, USA; Department of Psychology, Auburn University, Auburn, AL, USA
| | - K Sathian
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA; Department of Psychology, Emory University, Atlanta, GA, USA; Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA.
| |
Collapse
|
33
|
Schmidt TT, Ostwald D, Blankenburg F. Imaging tactile imagery: changes in brain connectivity support perceptual grounding of mental images in primary sensory cortices. Neuroimage 2014; 98:216-24. [PMID: 24836010 DOI: 10.1016/j.neuroimage.2014.05.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/31/2022] Open
Abstract
Constructing mental representations in the absence of sensory stimulation is a fundamental ability of the human mind and has been investigated in numerous brain imaging studies. However, it is still unclear how brain areas facilitating mental construction processes interact with brain regions related to specific sensory representations. In this fMRI study subjects formed mental representations of tactile stimuli either from memory (imagery) or from presentation of actual corresponding vibrotactile patterned stimuli. First our analysis addressed the question of whether tactile imagery recruits primary somatosensory cortex (SI), because the activation of early perceptual areas is classically interpreted as perceptual grounding of the mental image. We also tested whether a network, referred to as 'core construction system', is involved in the generation of mental representations in the somatosensory domain. In fact, we observed imagery-induced activation of SI. We further found support for the notion of a modality independent construction network with the retrosplenial cortices and the precuneus as core components, which were supplemented with the left inferior frontal gyrus (IFG). Finally, psychophysiological interaction (PPI) analyses revealed robust imagery-modulated changes in the connectivity of these construction related areas, which suggests that they orchestrate the assembly of an abstract mental representation. Interestingly, we found increased coupling between prefrontal cortex (left IFG) and SI during mental imagery, indicating the augmentation of an abstract mental representation by reactivating perceptually grounded sensory details.
Collapse
Affiliation(s)
- Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany; Max Planck Institute for Human Development, Center for Adaptive Rationality (ARC), 14195 Berlin, Germany.
| | - Dirk Ostwald
- Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany; Max Planck Institute for Human Development, Center for Adaptive Rationality (ARC), 14195 Berlin, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany; Max Planck Institute for Human Development, Center for Adaptive Rationality (ARC), 14195 Berlin, Germany
| |
Collapse
|
34
|
Liang P, Li Z, Deshpande G, Wang Z, Hu X, Li K. Altered causal connectivity of resting state brain networks in amnesic MCI. PLoS One 2014; 9:e88476. [PMID: 24613934 PMCID: PMC3948954 DOI: 10.1371/journal.pone.0088476] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/07/2014] [Indexed: 01/14/2023] Open
Abstract
Most neuroimaging studies of resting state networks in amnesic mild cognitive impairment (aMCI) have concentrated on functional connectivity (FC) based on instantaneous correlation in a single network. The purpose of the current study was to investigate effective connectivity in aMCI patients based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data--default mode network (DMN), hippocampal cortical memory network (HCMN), dorsal attention network (DAN) and fronto-parietal control network (FPCN). Structural and functional MRI data were collected from 16 aMCI patients and 16 age, gender-matched healthy controls. Correlation-purged Granger causality analysis was used, taking gray matter atrophy as covariates, to compare the group difference between aMCI patients and healthy controls. We found that the causal connectivity between networks in aMCI patients was significantly altered with both increases and decreases in the aMCI group as compared to healthy controls. Some alterations were significantly correlated with the disease severity as measured by mini-mental state examination (MMSE), and California verbal learning test (CVLT) scores. When the whole-brain signal averaged over the entire brain was used as a nuisance co-variate, the within-group maps were significantly altered while the between-group difference maps did not. These results suggest that the alterations in causal influences may be one of the possible underlying substrates of cognitive impairments in aMCI. The present study extends and complements previous FC studies and demonstrates the coexistence of causal disconnection and compensation in aMCI patients, and thus might provide insights into biological mechanism of the disease.
Collapse
Affiliation(s)
- Peipeng Liang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing, PR China
| | - Zhihao Li
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Gopikrishna Deshpande
- Auburn University MRI Research Center, Department of Electrical and Computer Engineering, and Department of Psychology, Auburn University, Auburn, Alabama, United States of America
| | - Zhiqun Wang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing, PR China
| | - Xiaoping Hu
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing, PR China
| |
Collapse
|
35
|
Kapogiannis D, Deshpande G, Krueger F, Thornburg MP, Grafman JH. Brain networks shaping religious belief. Brain Connect 2014; 4:70-9. [PMID: 24279687 DOI: 10.1089/brain.2013.0172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously demonstrated with functional magnetic resonance imaging (fMRI) that religious belief depends upon three cognitive dimensions, which can be mapped to specific brain regions. In the present study, we considered these co-activated regions as nodes of three networks each one corresponding to a particular dimension, corresponding to each dimension and examined the causal flow within and between these networks to address two important hypotheses that remained untested in our previous work. First, we hypothesized that regions involved in theory of mind (ToM) are located upstream the causal flow and drive non-ToM regions, in line with theories attributing religion to the evolution of ToM. Second, we hypothesized that differences in directional connectivity are associated with differences in religiosity. To test these hypotheses, we performed a multivariate Granger causality-based directional connectivity analysis of fMRI data to demonstrate the causal flow within religious belief-related networks. Our results supported both hypotheses. Religious subjects preferentially activated a pathway from inferolateral to dorsomedial frontal cortex to monitor the intent and involvement of supernatural agents (SAs; intent-related ToM). Perception of SAs engaged pathways involved in fear regulation and affective ToM. Religious beliefs are founded both on propositional statements for doctrine, but also on episodic memory and imagery. Beliefs based on doctrine engaged a pathway from Broca's to Wernicke's language areas. Beliefs related to everyday life experiences engaged pathways involved in imagery. Beliefs implying less involved SAs and evoking imagery activated a pathway from right lateral temporal to occipital regions. This pathway was more active in non-religious compared to religious subjects, suggesting greater difficulty and procedural demands for imagining and processing the intent of SAs. Insights gained by Granger connectivity analysis inform us about the causal binding of individual regions activated during religious belief processing.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- 1 Laboratory of Clinical Investigation, National Institute on Aging (NIA/NIH) , Baltimore, Maryland
| | | | | | | | | |
Collapse
|
36
|
Adhikari BM, Sathian K, Epstein CM, Lamichhane B, Dhamala M. Oscillatory activity in neocortical networks during tactile discrimination near the limit of spatial acuity. Neuroimage 2014; 91:300-10. [PMID: 24434679 DOI: 10.1016/j.neuroimage.2014.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/20/2013] [Accepted: 01/03/2014] [Indexed: 12/11/2022] Open
Abstract
Oscillatory interactions within functionally specialized but distributed brain regions are believed to be central to perceptual and cognitive functions. Here, using human scalp electroencephalography (EEG) recordings combined with source reconstruction techniques, we study how oscillatory activity functionally organizes different neocortical regions during a tactile discrimination task near the limit of spatial acuity. While undergoing EEG recordings, blindfolded participants felt a linear three-dot array presented electromechanically, under computer control, and reported whether the central dot was offset to the left or right. The average brain response differed significantly for trials with correct and incorrect perceptual responses in the timeframe approximately between 130 and 175ms. During trials with correct responses, source-level peak activity appeared in the left primary somatosensory cortex (SI) at around 45ms, in the right lateral occipital complex (LOC) at 130ms, in the right posterior intraparietal sulcus (pIPS) at 160ms, and finally in the left dorsolateral prefrontal cortex (dlPFC) at 175ms. Spectral interdependency analysis of activity in these nodes showed two distinct distributed networks, a dominantly feedforward network in the beta band (12-30Hz) that included all four nodes and a recurrent network in the gamma band (30-100Hz) that linked SI, pIPS and dlPFC. Measures of network activity in both bands were correlated with the accuracy of task performance. These findings suggest that beta and gamma band oscillatory networks coordinate activity between neocortical regions mediating sensory and cognitive processing to arrive at tactile perceptual decisions.
Collapse
Affiliation(s)
- Bhim M Adhikari
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA
| | - K Sathian
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA; Department of Psychology, Emory University, Atlanta, GA, USA; Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA
| | - Charles M Epstein
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bidhan Lamichhane
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA
| | - Mukesh Dhamala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA; Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
37
|
Maidenbaum S, Abboud S, Amedi A. Sensory substitution: closing the gap between basic research and widespread practical visual rehabilitation. Neurosci Biobehav Rev 2013; 41:3-15. [PMID: 24275274 DOI: 10.1016/j.neubiorev.2013.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 10/06/2013] [Accepted: 11/08/2013] [Indexed: 11/25/2022]
Abstract
Sensory substitution devices (SSDs) have come a long way since first developed for visual rehabilitation. They have produced exciting experimental results, and have furthered our understanding of the human brain. Unfortunately, they are still not used for practical visual rehabilitation, and are currently considered as reserved primarily for experiments in controlled settings. Over the past decade, our understanding of the neural mechanisms behind visual restoration has changed as a result of converging evidence, much of which was gathered with SSDs. This evidence suggests that the brain is more than a pure sensory-machine but rather is a highly flexible task-machine, i.e., brain regions can maintain or regain their function in vision even with input from other senses. This complements a recent set of more promising behavioral achievements using SSDs and new promising technologies and tools. All these changes strongly suggest that the time has come to revive the focus on practical visual rehabilitation with SSDs and we chart several key steps in this direction such as training protocols and self-train tools.
Collapse
Affiliation(s)
- Shachar Maidenbaum
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Sami Abboud
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Amir Amedi
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel; The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91220, Israel.
| |
Collapse
|
38
|
van der Groen O, van der Burg E, Lunghi C, Alais D. Touch influences visual perception with a tight orientation-tuning. PLoS One 2013; 8:e79558. [PMID: 24244523 PMCID: PMC3828350 DOI: 10.1371/journal.pone.0079558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Stimuli from different sensory modalities are thought to be processed initially in distinct unisensory brain areas prior to convergence in multisensory areas. However, signals in one modality can influence the processing of signals from other modalities and recent studies suggest this cross-modal influence may occur early on, even in 'unisensory' areas. Some recent psychophysical studies have shown specific cross-modal effects between touch and vision during binocular rivalry, but these cannot completely rule out a response bias. To test for genuine cross-modal integration of haptic and visual signals, we investigated whether congruent haptic input could influence visual contrast sensitivity compared to incongruent haptic input in three psychophysical experiments using a two-interval, two-alternative forced-choice method to eliminate response bias. The initial experiment demonstrated that contrast thresholds for a visual grating were lower when exploring a haptic grating that shared the same orientation compared to an orthogonal orientation. Two subsequent experiments mapped the orientation and spatial frequency tunings for the congruent haptic facilitation of vision, finding a clear orientation tuning effect but not a spatial frequency tuning. In addition to an increased contrast sensitivity for iso-oriented visual-haptic gratings, we found a significant loss of sensitivity for orthogonally oriented visual-haptic gratings. We conclude that the tactile influence on vision is a result of a tactile input to orientation-tuned visual areas.
Collapse
Affiliation(s)
- Onno van der Groen
- Department of Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | | | - Claudia Lunghi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - David Alais
- School of Psychology, University of Sydney, Sydney, Australia
| |
Collapse
|
39
|
Deshpande G, Hu X. Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis. Brain Connect 2013; 2:235-45. [PMID: 23016794 DOI: 10.1089/brain.2012.0091] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interactions between brain regions have been recognized as a critical ingredient required to understand brain function. Two modes of interactions have held prominence-synchronization and causal influence. Efforts to ascertain causal influence from functional magnetic resonance imaging (fMRI) data have relied primarily on confirmatory model-driven approaches, such as dynamic causal modeling and structural equation modeling, and exploratory data-driven approaches such as Granger causality analysis. A slew of recent articles have focused on the relative merits and caveats of these approaches. The relevant studies can be classified into simulations, theoretical developments, and experimental results. In the first part of this review, we will consider each of these themes and critically evaluate their arguments, with regard to Granger causality analysis. Specifically, we argue that simulations are bounded by the assumptions and simplifications made by the simulator, and hence must be regarded only as a guide to experimental design and should not be viewed as the final word. On the theoretical front, we reason that each of the improvements to existing, yet disparate, methods brings them closer to each other with the hope of eventually leading to a unified framework specifically designed for fMRI. We then review latest experimental results that demonstrate the utility and validity of Granger causality analysis under certain experimental conditions. In the second part, we will consider current issues in causal connectivity analysis-hemodynamic variability, sampling, instantaneous versus causal relationship, and task versus resting states. We highlight some of our own work regarding these issues showing the effect of hemodynamic variability and sampling on Granger causality. Further, we discuss recent techniques such as the cubature Kalman filtering, which can perform blind deconvolution of the hemodynamic response robustly well, and hence enabling wider application of Granger causality analysis. Finally, we discuss our previous work on the less-appreciated interactions between instantaneous and causal relationships and the utility and interpretation of Granger causality results obtained from task versus resting state (e.g., ability of causal relationships to provide a mode of connectivity between regions that are instantaneously dissociated in resting state). We conclude by discussing future directions in this area.
Collapse
Affiliation(s)
- Gopikrishna Deshpande
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Alabama 36849, USA.
| | | |
Collapse
|
40
|
Berger C, Ehrsson H. Mental Imagery Changes Multisensory Perception. Curr Biol 2013; 23:1367-72. [PMID: 23810539 DOI: 10.1016/j.cub.2013.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/30/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
|
41
|
Neural pathways conveying novisual information to the visual cortex. Neural Plast 2013; 2013:864920. [PMID: 23840972 PMCID: PMC3690246 DOI: 10.1155/2013/864920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022] Open
Abstract
The visual cortex has been traditionally considered as a stimulus-driven, unimodal system with a hierarchical organization. However, recent animal and human studies have shown that the visual cortex responds to non-visual stimuli, especially in individuals with visual deprivation congenitally, indicating the supramodal nature of the functional representation in the visual cortex. To understand the neural substrates of the cross-modal processing of the non-visual signals in the visual cortex, we firstly showed the supramodal nature of the visual cortex. We then reviewed how the nonvisual signals reach the visual cortex. Moreover, we discussed if these non-visual pathways are reshaped by early visual deprivation. Finally, the open question about the nature (stimulus-driven or top-down) of non-visual signals is also discussed.
Collapse
|
42
|
Neural changes with tactile learning reflect decision-level reweighting of perceptual readout. J Neurosci 2013; 33:5387-98. [PMID: 23516304 DOI: 10.1523/jneurosci.3482-12.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite considerable work, the neural basis of perceptual learning remains uncertain. For visual learning, although some studies suggested that changes in early sensory representations are responsible, other studies point to decision-level reweighting of perceptual readout. These competing possibilities have not been examined in other sensory systems, investigating which could help resolve the issue. Here we report a study of human tactile microspatial learning in which participants achieved >six-fold decline in acuity threshold after multiple training sessions. Functional magnetic resonance imaging was performed during performance of the tactile microspatial task and a control, tactile temporal task. Effective connectivity between relevant brain regions was estimated using multivariate, autoregressive models of hidden neuronal variables obtained by deconvolution of the hemodynamic response. Training-specific increases in task-selective activation assessed using the task × session interaction and associated changes in effective connectivity primarily involved subcortical and anterior neocortical regions implicated in motor and/or decision processes, rather than somatosensory cortical regions. A control group of participants tested twice, without intervening training, exhibited neither threshold improvement nor increases in task-selective activation. Our observations argue that neuroplasticity mediating perceptual learning occurs at the stage of perceptual readout by decision networks. This is consonant with the growing shift away from strictly modular conceptualization of the brain toward the idea that complex network interactions underlie even simple tasks. The convergence of our findings on tactile learning with recent studies of visual learning reconciles earlier discrepancies in the literature on perceptual learning.
Collapse
|
43
|
Rolls ET. A biased activation theory of the cognitive and attentional modulation of emotion. Front Hum Neurosci 2013; 7:74. [PMID: 23508210 PMCID: PMC3600537 DOI: 10.3389/fnhum.2013.00074] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/25/2013] [Indexed: 11/13/2022] Open
Abstract
Cognition can influence emotion by biasing neural activity in the first cortical region in which the reward value and subjective pleasantness of stimuli is made explicit in the representation, the orbitofrontal cortex (OFC). The same effect occurs in a second cortical tier for emotion, the anterior cingulate cortex (ACC). Similar effects are found for selective attention, to for example the pleasantness vs. the intensity of stimuli, which modulates representations of reward value and affect in the orbitofrontal and anterior cingulate cortices. The mechanisms for the effects of cognition and attention on emotion are top-down biased competition and top-down biased activation. Affective and mood states can in turn influence memory and perception, by backprojected biasing influences. Emotion-related decision systems operate to choose between gene-specified rewards such as taste, touch, and beauty. Reasoning processes capable of planning ahead with multiple steps held in working memory in the explicit system can allow the gene-specified rewards not to be selected, or to be deferred. The stochastic, noisy, dynamics of decision-making systems in the brain may influence whether decisions are made by the selfish-gene-specified reward emotion system, or by the cognitive reasoning system that explicitly calculates reward values that are in the interests of the individual, the phenotype.
Collapse
|
44
|
Eck J, Kaas AL, Goebel R. Crossmodal interactions of haptic and visual texture information in early sensory cortex. Neuroimage 2013; 75:123-135. [PMID: 23507388 DOI: 10.1016/j.neuroimage.2013.02.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/21/2013] [Accepted: 02/28/2013] [Indexed: 02/08/2023] Open
Abstract
Both visual and haptic information add to the perception of surface texture. While prior studies have reported crossmodal interactions of both sensory modalities at the behavioral level, neuroimaging studies primarily investigated texture perception in separate visual and haptic paradigms. These experimental designs, however, only allowed to identify overlap in both sensory processing streams but no interaction of visual and haptic texture processing. By varying texture characteristics in a bimodal task, the current study investigated how these crossmodal interactions are reflected at the cortical level. We used fMRI to compare cortical activation in response to matching versus non-matching visual-haptic texture information. We expected that passive simultaneous presentation of matching visual-haptic input would be sufficient to induce BOLD responses graded with varying texture characteristics. Since no cognitive evaluation of the stimuli was required, we expected to find changes primarily at a rather early processing stage. Our results confirmed our assumptions by showing crossmodal interactions of visual-haptic texture information in early somatosensory and visual cortex. However, the nature of the crossmodal effects was slightly different in both sensory cortices. In early visual cortex, matching visual-haptic information increased the average activation level and induced parametric BOLD signal variations with varying texture characteristics. In early somatosensory cortex only the latter was true. These results challenge the notion that visual and haptic texture information is processed independently and indicate a crossmodal interaction of sensory information already at an early cortical processing stage.
Collapse
Affiliation(s)
- Judith Eck
- Department of Cognitive Neuroscience, Maastricht University, The Netherlands; Brain Innovation B.V., Maastricht, The Netherlands.
| | - Amanda L Kaas
- Department of Cognitive Neuroscience, Maastricht University, The Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, The Netherlands; Brain Innovation B.V., Maastricht, The Netherlands; Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| |
Collapse
|
45
|
Kassuba T, Klinge C, Hölig C, Röder B, Siebner HR. Vision holds a greater share in visuo-haptic object recognition than touch. Neuroimage 2013; 65:59-68. [DOI: 10.1016/j.neuroimage.2012.09.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022] Open
|
46
|
Fernandes AM, Albuquerque PB. Tactual perception: a review of experimental variables and procedures. Cogn Process 2012; 13:285-301. [PMID: 22669262 DOI: 10.1007/s10339-012-0443-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/18/2012] [Indexed: 01/05/2023]
Abstract
This paper reviews the literature on tactual perception. Throughout this review, we will highlight some of the most relevant aspects in the touch literature: type of stimuli; type of participants; type of tactile exploration; and finally, the interaction between touch and other senses. Regarding type of stimuli, we will analyse studies with abstract stimuli such as vibrations, with two- and three-dimensional stimuli, and also concrete stimuli, considering the relation between familiar and unfamiliar stimuli and the haptic perception of faces. Under the "type of participants" topic, we separated studies with blind participants, studies with children and adults, and also performed an overview of sex differences in performance. The type of tactile exploration is explored considering conditions of active and passive touch, the relevance of movement in touch and the relation between haptic exploration and time. Finally, interactions between touch and vision, touch and smell and touch and taste are explored in the last topic. The review ends with an overall conclusion on the state of the art for the tactual perception literature. With this work, we intend to present an organised overview of the main variables in touch experiments, compiling aspects reported in the tactual literature, and attempting to provide both a summary of previous findings, and a guide to the design of future works on tactual perception and memory, through a presentation of implications from previous studies.
Collapse
|
47
|
The neural mechanisms of reliability weighted integration of shape information from vision and touch. Neuroimage 2012; 60:1063-72. [DOI: 10.1016/j.neuroimage.2011.09.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/08/2011] [Accepted: 09/24/2011] [Indexed: 11/23/2022] Open
|
48
|
Martinovic J, Lawson R, Craddock M. Time course of information processing in visual and haptic object classification. Front Hum Neurosci 2012; 6:49. [PMID: 22470327 PMCID: PMC3311268 DOI: 10.3389/fnhum.2012.00049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/24/2012] [Indexed: 11/13/2022] Open
Abstract
Vision identifies objects rapidly and efficiently. In contrast, object recognition by touch is much slower. Furthermore, haptics usually serially accumulates information from different parts of objects, whereas vision typically processes object information in parallel. Is haptic object identification slower simply due to sequential information acquisition and the resulting memory load or due to more fundamental processing differences between the senses? To compare the time course of visual and haptic object recognition, we slowed visual processing using a novel, restricted viewing technique. In an electroencephalographic (EEG) experiment, participants discriminated familiar, nameable from unfamiliar, unnamable objects both visually and haptically. Analyses focused on the evoked and total fronto-central theta-band (5-7 Hz; a marker of working memory) and the occipital upper alpha-band (10-12 Hz; a marker of perceptual processing) locked to the onset of classification. Decreases in total upper alpha-band activity for haptic identification of objects indicate a likely processing role of multisensory extrastriate areas. Long-latency modulations of alpha-band activity differentiated between familiar and unfamiliar objects in haptics but not in vision. In contrast, theta-band activity showed a general increase over time for the slowed-down visual recognition task only. We conclude that haptic object recognition relies on common representations with vision but also that there are fundamental differences between the senses that do not merely arise from differences in their speed of processing.
Collapse
Affiliation(s)
| | - Rebecca Lawson
- School of Psychology, University of LiverpoolLiverpool, UK
| | - Matt Craddock
- School of Psychology, University of LiverpoolLiverpool, UK
- Institut für Psychologie, Universität LeipzigLeipzig, Germany
| |
Collapse
|
49
|
Hales JB, Brewer JB. The path to memory is guided by strategy: distinct networks are engaged in associative encoding under visual and verbal strategy and influence memory performance in healthy and impaired individuals. J Cogn Neurosci 2012; 24:1398-410. [PMID: 22390467 DOI: 10.1162/jocn_a_00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Given the diversity of stimuli encountered in daily life, a variety of strategies must be used for learning new information. Relating and encoding visual and verbal stimuli into memory has been probed using various tasks and stimulus types. Engagement of specific subsequent memory and cortical processing regions depends on the stimulus modality of studied material; however, it remains unclear whether different encoding strategies similarly influence regional activity when stimulus type is held constant. In this study, participants encoded object pairs using a visual or verbal associative strategy during fMRI, and subsequent memory was assessed for pairs encoded under each strategy. Each strategy elicited distinct regional processing and subsequent memory effects: middle/superior frontal, lateral parietal, and lateral occipital for visually associated pairs and inferior frontal, medial frontal, and medial occipital for verbally associated pairs. This regional selectivity mimics the effects of stimulus modality, suggesting that cortical involvement in associative encoding is driven by strategy and not simply by stimulus type. The clinical relevance of these findings, probed in a patient with a recent aphasic stroke, suggest that training with strategies utilizing unaffected cortical regions might improve memory ability in patients with brain damage.
Collapse
|
50
|
Wacker E, Spitzer B, Lützkendorf R, Bernarding J, Blankenburg F. Tactile motion and pattern processing assessed with high-field FMRI. PLoS One 2011; 6:e24860. [PMID: 21949769 PMCID: PMC3174219 DOI: 10.1371/journal.pone.0024860] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/18/2011] [Indexed: 11/23/2022] Open
Abstract
Processing of motion and pattern has been extensively studied in the visual domain, but much less in the somatosensory system. Here, we used ultra-high-field functional magnetic resonance imaging (fMRI) at 7 Tesla to investigate the neuronal correlates of tactile motion and pattern processing in humans under tightly controlled stimulation conditions. Different types of dynamic stimuli created the sensation of moving or stationary bar patterns during passive touch. Activity in somatosensory cortex was increased during both motion and pattern processing and modulated by motion directionality in primary and secondary somatosensory cortices (SI and SII) as well as by pattern orientation in the anterior intraparietal sulcus. Furthermore, tactile motion and pattern processing induced activity in the middle temporal cortex (hMT+/V5) and in the inferior parietal cortex (IPC), involving parts of the supramarginal und angular gyri. These responses covaried with subjects' individual perceptual performance, suggesting that hMT+/V5 and IPC contribute to conscious perception of specific tactile stimulus features. In addition, an analysis of effective connectivity using psychophysiological interactions (PPI) revealed increased functional coupling between SI and hMT+/V5 during motion processing, as well as between SI and IPC during pattern processing. This connectivity pattern provides evidence for the direct engagement of these specialized cortical areas in tactile processing during somesthesis.
Collapse
Affiliation(s)
- Evelin Wacker
- Department of Neurology and Bernstein Center for Computational Neuroscience, Charité, Berlin, Germany.
| | | | | | | | | |
Collapse
|