1
|
Correa S, Nichols ES, Mueller ME, de Vrijer B, Eagleson R, McKenzie CA, de Ribaupierre S, Duerden EG. Default mode network functional connectivity strength in utero and the association with fetal subcortical development. Cereb Cortex 2023; 33:9144-9153. [PMID: 37259175 PMCID: PMC10350815 DOI: 10.1093/cercor/bhad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
The default mode network is essential for higher-order cognitive processes and is composed of an extensive network of functional and structural connections. Early in fetal life, the default mode network shows strong connectivity with other functional networks; however, the association with structural development is not well understood. In this study, resting-state functional magnetic resonance imaging and anatomical images were acquired in 30 pregnant women with singleton pregnancies. Participants completed 1 or 2 MR imaging sessions, on average 3 weeks apart (43 data sets), between 28- and 39-weeks postconceptional ages. Subcortical volumes were automatically segmented. Activation time courses from resting-state functional magnetic resonance imaging were extracted from the default mode network, medial temporal lobe network, and thalamocortical network. Generalized estimating equations were used to examine the association between functional connectivity strength between default mode network-medial temporal lobe, default mode network-thalamocortical network, and subcortical volumes, respectively. Increased functional connectivity strength in the default mode network-medial temporal lobe network was associated with smaller right hippocampal, left thalamic, and right caudate nucleus volumes, but larger volumes of the left caudate. Increased functional connectivity strength in the default mode network-thalamocortical network was associated with smaller left thalamic volumes. The strong associations seen among the default mode network functional connectivity networks and regionally specific subcortical volume development indicate the emergence of short-range connectivity in the third trimester.
Collapse
Affiliation(s)
- Susana Correa
- Neuroscience Program, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
| | - Emily S Nichols
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
- Applied Psychology, Faculty of Education, Western University, London, ON N6A 3K7, Canada
| | - Megan E Mueller
- Applied Psychology, Faculty of Education, Western University, London, ON N6A 3K7, Canada
| | - Barbra de Vrijer
- Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Roy Eagleson
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
- Biomedical Engineering, Western University, London, ON N6A 3K7, Canada
- Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada
| | - Charles A McKenzie
- Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Sandrine de Ribaupierre
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
- Biomedical Engineering, Western University, London, ON N6A 3K7, Canada
- Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Emma G Duerden
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
- Applied Psychology, Faculty of Education, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
2
|
Konecny L, Quadir R, Ninan A, Rodríguez-Contreras A. Neurovascular responses to neuronal activity during sensory development. Front Cell Neurosci 2022; 16:1025429. [DOI: 10.3389/fncel.2022.1025429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the development of intercellular communication in sensory regions is relevant to elucidate mechanisms of physiological and pathological responses to oxygen shortage in the newborn brain. Decades of studies in laboratory rodents show that neuronal activity impacts sensory maturation during two periods of postnatal development distinguished by the maturation of accessory structures at the sensory periphery. During the first of these developmental periods, angiogenesis is modulated by neuronal activity, and physiological levels of neuronal activity cause local tissue hypoxic events. This correlation suggests that neuronal activity is upstream of the production of angiogenic factors, a process that is mediated by intermittent hypoxia caused by neuronal oxygen consumption. In this perspective article we address three theoretical implications based on this hypothesis: first, that spontaneous activity of sensory neurons has properties that favor the generation of intermittent tissue hypoxia in neonate rodents; second, that intermittent hypoxia promotes the expression of hypoxia inducible transcription factors (HIFs) in sensory neurons and astrocytes; and third, that activity-dependent production of angiogenic factors is involved in pathological oxygen contexts.
Collapse
|
3
|
Lucas-Ruiz F, Galindo-Romero C, Albaladejo-García V, Vidal-Sanz M, Agudo-Barriuso M. Mechanisms implicated in the contralateral effect in the central nervous system after unilateral injury: focus on the visual system. Neural Regen Res 2021; 16:2125-2131. [PMID: 33818483 PMCID: PMC8354113 DOI: 10.4103/1673-5374.310670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
The retina, as part of the central nervous system is an ideal model to study the response of neurons to injury and disease and to test new treatments. During the last decade is becoming clear that unilateral lesions in bilateral areas of the central nervous system trigger an inflammatory response in the contralateral uninjured site. This effect has been better studied in the visual system where, as a rule, one retina is used as experimental and the other as control. Contralateral retinas in unilateral models of retinal injury show neuronal degeneration and glial activation. The mechanisms by which this adverse response in the central nervous system occurs are discussed in this review, focusing primarily on the visual system.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Virginia Albaladejo-García
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| |
Collapse
|
4
|
In vivo MRI evaluation of early postnatal development in normal and impaired rat eyes. Sci Rep 2021; 11:15513. [PMID: 34330952 PMCID: PMC8324881 DOI: 10.1038/s41598-021-93991-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/01/2021] [Indexed: 11/08/2022] Open
Abstract
This study employed in vivo 7-T magnetic resonance imaging (MRI) to evaluate the postnatal ocular growth patterns under normal development or neonatal impairments in Sprague-Dawley rats. Using T2-weighted imaging on healthy rats from postnatal day (P) 1 (newborn) to P60 (adult), the volumes of the anterior chamber and posterior chamber (ACPC), lens, and vitreous humor increased logistically with ACPC expanding by 33-fold and the others by fivefold. Intravitreal potassium dichromate injection at P1, P7, and P14 led to T1-weighted signal enhancement in the developing retina by 188-289%. Upon unilateral hypoxic-ischemic encephalopathy at P7, monocular deprivation at P15, and monocular enucleation at P1, T2-weighted imaging of the adult rats showed decreased ocular volumes to different extents. In summary, in vivo high-field MRI allows for non-invasive evaluation of early postnatal development in the normal and impaired rat eyes. Chromium-enhanced MRI appeared effective in examining the developing retina before natural eyelid opening at P14 with relevance to lipid metabolism. The reduced ocular volumes upon neonatal visual impairments provided evidence to the emerging problems of why some impaired visual outcomes cannot be solely predicted by neurological assessments and suggested the need to look into both the eye and the brain under such conditions.
Collapse
|
5
|
Jiang D, Qiu X, Ren S, Hua F, Kong Y, Guan Y, Xie F. Maturation of topological organization of brain networks in male adolescent rats: A longitudinal FDG-PET study. Neurosci Lett 2020; 723:134864. [PMID: 32109556 DOI: 10.1016/j.neulet.2020.134864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 11/30/2022]
Abstract
Recent studies have found developmental alterations of the brain during the adolescent period. However, maturation-related changes of the topological properties in brain networks are unexplored so far. We therefore used fluoro-d-glucose positron emission tomography (FDG PET) to explore the maturation-related topological metabolic changes in brain networks from adolescence to adulthood with a longitudinal study in rats (male, n = 6), followed by a graph theoretical analysis. Our results showed reduced normalization characteristic path length and increased small world index of brain networks. Specifically, we found that relative to adulthood, in the adolescent stage rats had significantly increased nodal centrality in right entorhinal cortex, left frontal association cortex, and cerebellum, areas relating to memory, executive function and higher cognitive control and motor control; and significantly reduced nodal centrality in left superior colliculus and left retrosplenial cortex. These findings suggest that moving from adolescence to adulthood, networks of the brain mature accompanied by reassignment of hub regions to increase network efficiency. These results provide an animal model of brain network maturation from adolescence to adulthood which are relevant for understanding of development of psychiatric disorders during adolescence or transition from adolescence to adulthood.
Collapse
Affiliation(s)
- Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiangzhe Qiu
- The Clinical Hospital of Chengdu Brain Science Institute, Key Laboratory for Neuroinformation of Ministry of Education, Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shuhua Ren
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fengchun Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China; Molecular Imaging Center, The Academy of Integrative Medicine of Fudan University, Shanghai, 200040, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
6
|
Dong CM, Leong ATL, Manno FA, Lau C, Ho LC, Chan RW, Feng Y, Gao PP, Wu EX. Functional MRI Investigation of Audiovisual Interactions in Auditory Midbrain. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5527-5530. [PMID: 30441589 DOI: 10.1109/embc.2018.8513629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The brain integrates information from different sensory modalities to form a representation of the environment and facilitate behavioral responses. The auditory midbrain or inferior colliculus (IC) is a pivotal station in the auditory system, integrating ascending and descending information from various auditory sources and cortical systems. The present study investigated the modulation of auditory responses in the IC by visual stimuli of different frequencies and intensities in rats using functional MRI (fMRI). Low-frequency (1 Hz) high-intensity visual stimulus suppressed IC auditory responses. However, high-frequency (10 Hz) or low-intensity visual stimuli did not alter the IC auditory responses. This finding demonstrates that cross-modal processing occurs in the IC in a manner that depends on the stimulus. Furthermore, only low-frequency high-intensity visual stimulus elicited responses in non-visual cortical regions, suggesting that the above cross-modal modulation effect may arise from top-down cortical feedback. These fMRI results provide insight to guide future studies of cross-modal processing in sensory pathways.
Collapse
|
7
|
Lau C, Manno FAM, Dong CM, Chan KC, Wu EX. Auditory-visual convergence at the superior colliculus in rat using functional MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5531-5536. [PMID: 30441590 DOI: 10.1109/embc.2018.8513633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The superior colliculus (SC) of the midbrain has been a model structure for multisensory processing. Many neurons in the intermediate and deep SC layers respond to two or more of auditory, visual, and somatosensory stimuli as assessed by electrophysiology. In contrast, noninvasive and large field of view functional magnetic resonance imaging (fMRI) studies have focused on multisensory processing in the cortex. In this study, we applied blood oxygenation leveldependent (BOLD) fMRI on Sprague-Dawley rats receiving monaural (auditory) and binocular (visual) stimuli to study subcortical multisensory processing. Activation was observed in the left superior olivary complex, lateral lemniscus, and inferior colliculus and both hemispheres of the superior colliculus during auditory stimulation. The SC response was bilateral even though the stimulus was monaural. During visual stimulation, activation was observed in both hemispheres of the SC and lateral geniculate nucleus. In both hemispheres of the SC, the number of voxels in the activation area $( \mathrm {p}<10 -8$) and BOLD signal changes $( \mathrm {p}<0.01)$ were significantly greater during visual than auditory stimulation. These results provide functional imaging evidence that the SC is a site of auditoryvisual convergence due to its involvement in both auditory and visual processing. The auditory and visual fMRI activations likely reflect the firing of unisensory and multisensory neurons in the SC. The present study lays the groundwork for noninvasive functional imaging studies of multisensory convergence and integration in the SC.
Collapse
|
8
|
Leong ATL, Dong CM, Gao PP, Chan RW, To A, Sanes DH, Wu EX. Optogenetic auditory fMRI reveals the effects of visual cortical inputs on auditory midbrain response. Sci Rep 2018; 8:8736. [PMID: 29880842 PMCID: PMC5992211 DOI: 10.1038/s41598-018-26568-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/10/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory cortices contain extensive descending (corticofugal) pathways, yet their impact on brainstem processing - particularly across sensory systems - remains poorly understood. In the auditory system, the inferior colliculus (IC) in the midbrain receives cross-modal inputs from the visual cortex (VC). However, the influences from VC on auditory midbrain processing are unclear. To investigate whether and how visual cortical inputs affect IC auditory responses, the present study combines auditory blood-oxygenation-level-dependent (BOLD) functional MRI (fMRI) with cell-type specific optogenetic manipulation of visual cortex. The results show that predominant optogenetic excitation of the excitatory pyramidal neurons in the infragranular layers of the primary VC enhances the noise-evoked BOLD fMRI responses within the IC. This finding reveals that inputs from VC influence and facilitate basic sound processing in the auditory midbrain. Such combined optogenetic and auditory fMRI approach can shed light on the large-scale modulatory effects of corticofugal pathways and guide detailed electrophysiological studies in the future.
Collapse
Affiliation(s)
- Alex T L Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Celia M Dong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Patrick P Gao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Russell W Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Anthea To
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY, 10003, United States
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
9
|
Blazquez Freches G, Chavarrias C, Shemesh N. BOLD-fMRI in the mouse auditory pathway. Neuroimage 2018; 165:265-277. [DOI: 10.1016/j.neuroimage.2017.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 01/31/2023] Open
|
10
|
Liang Z, Ma Y, Watson GDR, Zhang N. Simultaneous GCaMP6-based fiber photometry and fMRI in rats. J Neurosci Methods 2017; 289:31-38. [PMID: 28687521 DOI: 10.1016/j.jneumeth.2017.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Understanding the relationship between neural and vascular signals is essential for interpretation of functional MRI (fMRI) results with respect to underlying neuronal activity. Simultaneously measuring neural activity using electrophysiology with fMRI has been highly valuable in elucidating the neural basis of the blood oxygenation-level dependent (BOLD) signal. However, this approach is also technically challenging due to the electromagnetic interference that is observed in electrophysiological recordings during MRI scanning. NEW METHOD Recording optical correlates of neural activity, such as calcium signals, avoids this issue, and has opened a new avenue to simultaneously acquire neural and BOLD signals. RESULTS The present study is the first to demonstrate the feasibility of simultaneously and repeatedly acquiring calcium and BOLD signals in animals using a genetically encoded calcium indicator, GCaMP6. This approach was validated with a visual stimulation experiment, during which robust increases of both calcium and BOLD signals in the superior colliculus were observed. In addition, repeated measurement in the same animal demonstrated reproducible calcium and BOLD responses to the same stimuli. COMPARISON WITH EXISTING METHOD(S) Taken together, simultaneous GCaMP6-based fiber photometry and fMRI recording presents a novel, artifact-free approach to simultaneously measuring neural and fMRI signals. Furthermore, given the cell-type specificity of GCaMP6, this approach has the potential to mechanistically dissect the contributions of individual neuron populations to BOLD signal, and ultimately reveal its underlying neural mechanisms. CONCLUSIONS The current study established the method for simultaneous GCaMP6-based fiber photometry and fMRI in rats.
Collapse
Affiliation(s)
- Zhifeng Liang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, United States; Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yuncong Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| | - Glenn D R Watson
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, United States; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
11
|
Sperry MM, Kandel BM, Wehrli S, Bass KN, Das SR, Dhillon PS, Gee JC, Barr GA. Mapping of pain circuitry in early post-natal development using manganese-enhanced MRI in rats. Neuroscience 2017; 352:180-189. [PMID: 28391012 PMCID: PMC7276061 DOI: 10.1016/j.neuroscience.2017.03.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/08/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022]
Abstract
Premature or ill full-term infants are subject to a number of noxious procedures as part of their necessary medical care. Although we know that human infants show neural changes in response to such procedures, we know little of the sensory or affective brain circuitry activated by pain. In rodent models, the focus has been on spinal cord and, more recently, midbrain and medulla. The present study assesses activation of brain circuits using manganese-enhanced magnetic resonance imaging (MEMRI). Uptake of manganese, a paramagnetic contrast agent that is transported across active synapses and along axons, was measured in response to a hindpaw injection of dilute formalin in 12-day-old rat pups, the age at which rats begin to show aversion learning and which is roughly the equivalent of full-term human infants. Formalin induced the oft-reported biphasic response at this age and induced a conditioned aversion to cues associated with its injection, thus demonstrating the aversiveness of the stimulation. Morphometric analyses, structural equation modeling and co-expression analysis showed that limbic and sensory paths were activated, the most prominent of which were the prefrontal and anterior cingulate cortices, nucleus accumbens, amygdala, hypothalamus, several brainstem structures, and the cerebellum. Therefore, both sensory and affective circuits, which are activated by pain in the adult, can also be activated by noxious stimulation in 12-day-old rat pups.
Collapse
Affiliation(s)
- M M Sperry
- Department of Bioengineering, University of Pennsylvania, United States
| | - B M Kandel
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, United States
| | - S Wehrli
- NMR Core, Children's Hospital of Philadelphia, United States
| | - K N Bass
- Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, United States
| | - S R Das
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, United States
| | - P S Dhillon
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, United States
| | - J C Gee
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, United States
| | - G A Barr
- Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
12
|
Tang S, Xu S, Lu X, Gullapalli RP, McKenna MC, Waddell J. Neuroprotective Effects of Acetyl-L-Carnitine on Neonatal Hypoxia Ischemia-Induced Brain Injury in Rats. Dev Neurosci 2017; 38:384-396. [PMID: 28226317 DOI: 10.1159/000455041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 12/17/2022] Open
Abstract
Perinatal hypoxia ischemia (HI) is a significant cause of brain injury in surviving infants. Although hypothermia improves outcomes in some infants, additional therapies are needed since about 40% of infants still have a poor outcome. Acetyl-L-carnitine (ALCAR), an acetylated derivative of L-carnitine, protected against early changes in brain metabolites and mitochondrial function after HI on postnatal day (PND) 7 in a rat pup model of near-term HI injury. However, its efficacy in long-term structural and functional outcomes remains unexplored. We determined the efficacy of ALCAR therapy administered to rat pups after HI at PND 7, using both longitudinal in vivo magnetic resonance imaging and behavioral tests, in male and female rats. HI led to sex-specific behavioral impairment, with males exhibiting more global functional deficits than females. Interestingly, HI reduced the volume of the contralateral hemisphere in males only, suggesting that the brain injury is more diffuse in males than in females. Treatment with ALCAR improved both morphological and functional outcomes in both male and female rats. These results suggest that ALCAR may be a potential therapy for clinical use since the treatment attenuated the moderate injury produced under the experimental conditions used and improved the functional outcome in preclinical studies.
Collapse
Affiliation(s)
- Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
13
|
Gesnik M, Blaize K, Deffieux T, Gennisson JL, Sahel JA, Fink M, Picaud S, Tanter M. 3D functional ultrasound imaging of the cerebral visual system in rodents. Neuroimage 2017; 149:267-274. [PMID: 28167348 PMCID: PMC5387157 DOI: 10.1016/j.neuroimage.2017.01.071] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022] Open
Abstract
3D functional imaging of the whole brain activity during visual task is a challenging task in rodents due to the complex tri-dimensional shape of involved brain regions and the fine spatial and temporal resolutions required to reveal the visual tract. By coupling functional ultrasound (fUS) imaging with a translational motorized stage and an episodic visual stimulation device, we managed to accurately map and to recover the activity of the visual cortices, the Superior Colliculus (SC) and the Lateral Geniculate Nuclei (LGN) in 3D. Cerebral Blood Volume (CBV) responses during visual stimuli were found to be highly correlated with the visual stimulus time profile in visual cortices (r=0.6), SC (r=0.7) and LGN (r=0.7). These responses were found dependent on flickering frequency and contrast, and optimal stimulus parameters for largest CBV increases were obtained. In particular, increasing the flickering frequency higher than 7 Hz revealed a decrease of visual cortices response while the SC response was preserved. Finally, cross-correlation between CBV signals exhibited significant delays (d=0.35 s +/−0.1 s) between blood volume response in SC and visual cortices in response to our visual stimulus. These results emphasize the interest of fUS imaging as a whole brain neuroimaging modality for brain vision studies in rodent models.
Collapse
Affiliation(s)
- Marc Gesnik
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR 7587, INSERM U979, 75012 Paris, France.
| | - Kevin Blaize
- Institut de la Vision, Sorbonne Universités UPMC, University of Paris 06, INSERM UMR_S 968, CNRS UMR 7210, 75012 Paris, France
| | - Thomas Deffieux
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR 7587, INSERM U979, 75012 Paris, France
| | - Jean-Luc Gennisson
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR 7587, INSERM U979, 75012 Paris, France
| | - José-Alain Sahel
- Institut de la Vision, Sorbonne Universités UPMC, University of Paris 06, INSERM UMR_S 968, CNRS UMR 7210, 75012 Paris, France; Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France; CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, 75012 Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, 15213 PA, USA; Academie des Sciences, Paris
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR 7587, INSERM U979, 75012 Paris, France
| | - Serge Picaud
- Institut de la Vision, Sorbonne Universités UPMC, University of Paris 06, INSERM UMR_S 968, CNRS UMR 7210, 75012 Paris, France
| | - Mickaël Tanter
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR 7587, INSERM U979, 75012 Paris, France
| |
Collapse
|
14
|
Diaz R, Miguel PM, Deniz BF, Confortim HD, Barbosa S, Mendonça MCP, Cruz‐Höfling MA, Pereira LO. Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxia‐ischemia. Int J Dev Neurosci 2016; 53:35-45. [DOI: 10.1016/j.ijdevneu.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ramiro Diaz
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Patrícia Maidana Miguel
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Bruna Ferrary Deniz
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Heloísa Deola Confortim
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Sílvia Barbosa
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
- Departamento de Ciências MorfológicasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Monique Culturato Padilha Mendonça
- Departamento de Farmacologia, Faculdade de Ciências MédicasUniversidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
- Departamento de Bioquímica e Biologia TecidualInstituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - Maria Alice Cruz‐Höfling
- Departamento de Farmacologia, Faculdade de Ciências MédicasUniversidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
- Departamento de Bioquímica e Biologia TecidualInstituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - Lenir Orlandi Pereira
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
- Departamento de Ciências MorfológicasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| |
Collapse
|
15
|
Jung WB, Im GH, Chung JJ, Ahn SY, Jeon TY, Chang YS, Park WS, Kim JH, Kim KS, Lee JH. Neuroplasticity for spontaneous functional recovery after neonatal hypoxic ischemic brain injury in rats observed by functional MRI and diffusion tensor imaging. Neuroimage 2015; 126:140-50. [PMID: 26589335 DOI: 10.1016/j.neuroimage.2015.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023] Open
Abstract
For infants and children, an incredible resilience from injury is often observed. There is growing evidence that functional recovery after brain injury might well be a consequence of the reorganization of the neural network as a process of neuroplasticity. We demonstrate the presence of neuroplasticity at work in spontaneous recovery after neonatal hypoxic ischemic (HI) injury, by elucidating a precise picture in which such reorganization takes place using functional MRI techniques. For all 12 siblings, 6 rats were subjected to severe HI brain injury and 6 rats underwent sham operation only. Severe HI brain injury was induced to postnatal day 7 (p7) Sprague-Dawley rats according to the Rice-Vannucci model (right carotid artery occlusion followed by 150min of hypoxia with 8% O2 and 92% of N2). Brain activation maps along with anatomical and functional connectivity maps related to the sensory motor function were obtained at adult (p63) using blood oxygen level dependent (BOLD)-functional MRI (fMRI), resting state-functional MRI (rs-fMRI) and diffusion tensor imaging (DTI); each of these MRI data was related to sensory motor functional outcome. In-depth investigation of the functional MRI data revealed: 1) intra-hemispheric expansion of BOLD signal activation in the contralesional undamaged hemisphere for ipsilesional forepaw stimuli to include the M2 and Cg1 in addition to the S1 and M1 wide spreading in the anterior and posterior directions, 2) inter-hemispheric transfer of BOLD signal activation for contralesional forepaw stimuli, normally routed to the injured hemisphere, to analogous sites in the contralesional undamaged hemisphere, localized newly to the M1 and M2 with a reduced portion of the S1, 3) inter-hemispheric axonal disconnection and axonal rewiring within the undamaged hemisphere as shown through DTI, and 4) increased functional interactions within the cingulate gyrus in the HI injured rats as shown through rs-fMRI. The BOLD signal amplitudes as well as DTI and rs-fMRI data well correlate with behavioral tests (tape to remove). We found that function normally utilizing what would be the injured hemisphere is transferred to the uninjured hemisphere, and functionality of the uninjured hemisphere remains not untouched but is also rewired in an expansion corresponding to the newly formed sensorimotor function from both the contralesional and the ipsilesional sides. The conclusion drawn from the data in our current study is that enhanced motor function in the contralesional hemisphere governs both the normal and damaged sides, indicating that active plasticity with brain laterality was spontaneously generated to overcome functional loss and established autonomously through normal experience via modification of neural circuitry for neonatal HI injured brain.
Collapse
Affiliation(s)
- Won-Beom Jung
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Geun Ho Im
- Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, South Korea
| | - Julius Juhyun Chung
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul 06351, South Korea
| | - So-Yoon Ahn
- Department of Pediatrics Division of Neonatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Tae Yeon Jeon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Yun Sil Chang
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Department of Pediatrics Division of Neonatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Won Soon Park
- Department of Pediatrics Division of Neonatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Ji Hye Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Ki-Soo Kim
- Department of Pediatrics Division of Neonatology, Asan Medical Center, University of Ulsan School of Medicine, Seoul 05535, South Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea; Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul 06351, South Korea.
| |
Collapse
|
16
|
Lau C, Pienkowski M, Zhang JW, McPherson B, Wu EX. Chronic exposure to broadband noise at moderate sound pressure levels spatially shifts tone-evoked responses in the rat auditory midbrain. Neuroimage 2015; 122:44-51. [DOI: 10.1016/j.neuroimage.2015.07.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/10/2015] [Accepted: 07/24/2015] [Indexed: 02/09/2023] Open
|
17
|
Ho LC, Wang B, Conner IP, van der Merwe Y, Bilonick RA, Kim SG, Wu EX, Sigal IA, Wollstein G, Schuman JS, Chan KC. In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT. Invest Ophthalmol Vis Sci 2015; 56:3788-800. [PMID: 26066747 DOI: 10.1167/iovs.14-15552] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT). METHODS Diffusion tensor MRI was performed at 9.4 Tesla to monitor white matter integrity changes after unilateral N-methyl-D-aspartate (NMDA)-induced ERI in six Sprague-Dawley rats and six C57BL/6J mice. Additionally, four rats and four mice were intravitreally injected with saline to compare with NMDA-injected animals. Optical coherence tomography of the retina and manganese-enhanced MRI of anterograde transport were evaluated and correlated with DTI parameters. RESULTS In the rat optic nerve, the largest axial diffusivity decrease and radial diffusivity increase occurred within the first 3 and 7 days post ERI, respectively, suggestive of early axonal degeneration and delayed demyelination. The optic tract showed smaller directional diffusivity changes and weaker DTI correlations with retinal thickness compared with optic nerve, indicative of anterograde degeneration. The splenium of corpus callosum was also reorganized at 4 weeks post ERI. The DTI profiles appeared comparable between rat and mouse models. Furthermore, the NMDA-injured visual pathway showed reduced anterograde manganese transport, which correlated with diffusivity changes along but not perpendicular to optic nerve. CONCLUSIONS Diffusion tensor MRI, manganese-enhanced MRI, and OCT provided an in vivo model system for characterizing the spatiotemporal changes in white matter integrity, the eye-brain relationships and structural-physiological relationships in the visual system after ERI.
Collapse
Affiliation(s)
- Leon C Ho
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylva
| | - Bo Wang
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Ian P Conner
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylva
| | - Richard A Bilonick
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Seong-Gi Kim
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 6McGowan Institute for Regenerative
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ian A Sigal
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Gadi Wollstein
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 5Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pi
| | - Joel S Schuman
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylva
| |
Collapse
|
18
|
Gao PP, Zhang JW, Fan SJ, Sanes DH, Wu EX. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study. Neuroimage 2015; 123:22-32. [PMID: 26306991 DOI: 10.1016/j.neuroimage.2015.08.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022] Open
Abstract
The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical gain modulation is mediated primarily through direct projections and they point to future investigations of the differential roles of the direct and indirect projections in corticofugal modulation. In summary, our imaging findings demonstrate the large-scale descending influences, from both the auditory and visual cortices, on sound processing in different IC subdivisions. They can guide future studies on the coordinated activity across multiple regions of the auditory network, and its dysfunctions.
Collapse
Affiliation(s)
- Patrick P Gao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jevin W Zhang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shu-Juan Fan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
19
|
Gao PP, Zhang JW, Chan RW, Leong ATL, Wu EX. BOLD fMRI study of ultrahigh frequency encoding in the inferior colliculus. Neuroimage 2015; 114:427-37. [PMID: 25869860 DOI: 10.1016/j.neuroimage.2015.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/02/2015] [Accepted: 04/02/2015] [Indexed: 01/23/2023] Open
Abstract
Many vertebrates communicate with ultrahigh frequency (UHF) vocalizations to limit auditory detection by predators. The mechanisms underlying the neural encoding of such UHF sounds may provide important insights for understanding neural processing of other complex sounds (e.g. human speeches). In the auditory system, sound frequency is normally encoded topographically as tonotopy, which, however, contains very limited representation of UHFs in many species. Instead, electrophysiological studies suggested that two neural mechanisms, both exploiting the interactions between frequencies, may contribute to UHF processing. Neurons can exhibit excitatory or inhibitory responses to a tone when another UHF tone is presented simultaneously (combination sensitivity). They can also respond to such stimulation if they are tuned to the frequency of the cochlear-generated distortion products of the two tones, e.g. their difference frequency (cochlear distortion). Both mechanisms are present in an early station of the auditory pathway, the midbrain inferior colliculus (IC). Currently, it is unclear how prevalent the two mechanisms are and how they are functionally integrated in encoding UHFs. This study investigated these issues with large-view BOLD fMRI in rat auditory system, particularly the IC. UHF vocalizations (above 40kHz), but not pure tones at similar frequencies (45, 55, 65, 75kHz), evoked robust BOLD responses in multiple auditory nuclei, including the IC, reinforcing the sensitivity of the auditory system to UHFs despite limited representation in tonotopy. Furthermore, BOLD responses were detected in the IC when a pair of UHF pure tones was presented simultaneously (45 & 55kHz, 55 & 65kHz, 45 & 65kHz, 45 & 75kHz). For all four pairs, a cluster of voxels in the ventromedial side always showed the strongest responses, displaying combination sensitivity. Meanwhile, voxels in the dorsolateral side that showed strongest secondary responses to each pair of UHF pure tones also showed the strongest responses to a pure tone at their difference frequency, suggesting that they are sensitive to cochlear distortion. These BOLD fMRI results indicated that combination sensitivity and cochlear distortion are employed by large but spatially distinctive neuron populations in the IC to represent UHFs. Our imaging findings provided insights for understanding sound feature encoding in the early stage of the auditory pathway.
Collapse
Affiliation(s)
- Patrick P Gao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jevin W Zhang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Russell W Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alex T L Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
20
|
van de Looij Y, Dean JM, Gunn AJ, Hüppi PS, Sizonenko SV. Advanced magnetic resonance spectroscopy and imaging techniques applied to brain development and animal models of perinatal injury. Int J Dev Neurosci 2015; 45:29-38. [PMID: 25818582 DOI: 10.1016/j.ijdevneu.2015.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 11/16/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are widely used in the field of brain development and perinatal brain injury. Due to technical progress the magnetic field strength (B0) of MR systems has continuously increased, favoring (1)H-MRS with quantification of up to 18 metabolites in the brain and short echo time (TE) MRI sequences including phase and susceptibility imaging. For longer TE techniques including diffusion imaging modalities, the benefits of higher B0 have not been clearly established. Nevertheless, progress has also been made in new advanced diffusion models that have been developed to enhance the accuracy and specificity of the derived diffusion parameters. In this review, we will describe the latest developments in MRS and MRI techniques, including high-field (1)H-MRS, phase and susceptibility imaging, and diffusion imaging, and discuss their application in the study of cerebral development and perinatal brain injury.
Collapse
Affiliation(s)
- Yohan van de Looij
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland; Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Petra S Hüppi
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Stéphane V Sizonenko
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Lau C, Zhang JW, McPherson B, Pienkowski M, Wu EX. Long-term, passive exposure to non-traumatic acoustic noise induces neural adaptation in the adult rat medial geniculate body and auditory cortex. Neuroimage 2015; 107:1-9. [DOI: 10.1016/j.neuroimage.2014.11.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/12/2014] [Accepted: 11/22/2014] [Indexed: 02/02/2023] Open
|
22
|
Dumanska GV, Rikhalsky OV, Veselovsky NS. [EFFECT OF HYPOXIA ON SYNAPTIC TRANSMISSION BETWEEN RETINAL GANGLION CELLS AND SUPERIOR COLLICULUS NEURONS IN COCULTURE]. ACTA ACUST UNITED AC 2015; 61:119-28. [PMID: 27025053 DOI: 10.15407/fz61.06.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study we conducted a series of experiments to characterize the effect and define the mechanisms of hypoxia on synaptic transmission between retinal ganglion cells and superior colliculus (SC) neurons. Application of hypoxic solution leads to a long lasting potentiation (LTP) NMDA-mediated synaptic transmission. Analysis of the oxygen deficiency effect on the spontaneous and miniature postsynaptic currents (sPSC and mPSC respectively) revealed an increase in the frequency of their occurrence and the appearance of the second peak in the mPSC histogram distribution. The assessment of quantum and binomial parameters reflects the complex pre- and postsynaptic changes during the potentiation, independent of the release probability. Most likely this LTP can be caused by an increase in the total number of active synapses. Glutamatergic synaptic transmission mediated by non-NMDA activation receptor-channel complexes, responded to application of deoxygenated solution by the brief depression, which is the result of presynaptic dysfunction and associates with decrease in release probability and number of active zones. GABAergic synaptic transmission mediated by activation GABA(A)-receptor-channel complexes, responded to hypoxic action by long term depression (LTD). Analysis of sPSC and mPSC showed a significant decrease in the frequency of their occurrence and significant (P = 0.05) decrease in the quantum over a period of oxygen deficiency. In general, the effect of hypoxia-induced LTD of GABAergic synaptic transmission is based on complex changes of presynaptic (independent on the release probability) and postsynaptic (reduction sensitivity of receptors in postsynaptic membrane) mechanisms.
Collapse
|
23
|
Chan KC, Kancherla S, Fan SJ, Wu EX. Long-term effects of neonatal hypoxia-ischemia on structural and physiological integrity of the eye and visual pathway by multimodal MRI. Invest Ophthalmol Vis Sci 2014; 56:1-9. [PMID: 25491295 DOI: 10.1167/iovs.14-14287] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. METHODS Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. RESULTS Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. CONCLUSIONS High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury.
Collapse
Affiliation(s)
- Kevin C Chan
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Swarupa Kancherla
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shu-Juan Fan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
24
|
Chan KC, Fan SJ, Chan RW, Cheng JS, Zhou IY, Wu EX. In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI. Neuroimage 2014; 90:235-45. [PMID: 24394694 PMCID: PMC3951771 DOI: 10.1016/j.neuroimage.2013.12.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/16/2013] [Accepted: 12/23/2013] [Indexed: 12/16/2022] Open
Abstract
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn(2+) injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn(2+) transfer but not intra- or inter-hemispheric monosynaptic Mn(2+) transport after Mn(2+) injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; UPMC Eye Center, Ophthalmology and Visual Science Research Center, Louis J. Fox Center for Vision Restoration, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Shu-Juan Fan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Russell W Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Joe S Cheng
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Iris Y Zhou
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
25
|
Cheng JS, Gao PP, Zhou IY, Chan RW, Chan Q, Mak HK, Khong PL, Wu EX. Resting-state fMRI using passband balanced steady-state free precession. PLoS One 2014; 9:e91075. [PMID: 24622278 PMCID: PMC3951283 DOI: 10.1371/journal.pone.0091075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/09/2014] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Resting-state functional MRI (rsfMRI) has been increasingly used for understanding brain functional architecture. To date, most rsfMRI studies have exploited blood oxygenation level-dependent (BOLD) contrast using gradient-echo (GE) echo planar imaging (EPI), which can suffer from image distortion and signal dropout due to magnetic susceptibility and inherent long echo time. In this study, the feasibility of passband balanced steady-state free precession (bSSFP) imaging for distortion-free and high-resolution rsfMRI was investigated. METHODS rsfMRI was performed in humans at 3 T and in rats at 7 T using bSSFP with short repetition time (TR = 4/2.5 ms respectively) in comparison with conventional GE-EPI. Resting-state networks (RSNs) were detected using independent component analysis. RESULTS AND SIGNIFICANCE RSNs derived from bSSFP images were shown to be spatially and spectrally comparable to those derived from GE-EPI images with considerable intra- and inter-subject reproducibility. High-resolution bSSFP images corresponded well to the anatomical images, with RSNs exquisitely co-localized to the gray matter. Furthermore, RSNs at areas of severe susceptibility such as human anterior prefrontal cortex and rat piriform cortex were proved accessible. These findings demonstrated for the first time that passband bSSFP approach can be a promising alternative to GE-EPI for rsfMRI. It offers distortion-free and high-resolution RSNs and is potentially suited for high field studies.
Collapse
Affiliation(s)
- Joe S. Cheng
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Patrick P. Gao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Iris Y. Zhou
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Russell W. Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | | | - Henry K. Mak
- Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China
| | - Pek L. Khong
- Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
- Department of Anatomy, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
26
|
The inferior colliculus is involved in deviant sound detection as revealed by BOLD fMRI. Neuroimage 2014; 91:220-7. [PMID: 24486979 DOI: 10.1016/j.neuroimage.2014.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 11/24/2022] Open
Abstract
Rapid detection of deviant sounds is a crucial property of the auditory system because it increases the saliency of biologically important, unexpected sounds. The oddball paradigm in which a deviant sound is randomly interspersed among a train of standard sounds has been traditionally used to study this property in mammals. Currently, most human studies have only revealed the involvement of cortical regions in this property. Recently, several animal electrophysiological studies have reported that neurons in the inferior colliculus (IC) exhibit reduced responses to a standard sound but restore their responses at the occurrence of a deviant sound (i.e., stimulus-specific adaptation or SSA), suggesting that the IC may also be involved in deviance detection. However, by adopting an invasive method, these animal studies examined only a limited number of neurons. Although SSA appears to be more prominent in the external cortical nuclei of the IC for frequency deviant, a thorough investigation of this property throughout the IC using other deviants and efficient imaging techniques may provide more comprehensive information on this important phenomenon. In this study, blood-oxygen-level-dependent (BOLD) fMRI with a large field of view was applied to investigate the role of the IC in deviance detection. Two sound tokens that had identical frequency spectrum but temporally inverted profiles were used as the deviant and standard. A control experiment showed that these two sounds evoked the same responses in the IC when they were separately presented. Two oddball experiments showed that the deviant induced higher responses than the standard (by 0.41±0.09% and 0.41±0.10%, respectively). The most activated voxels were in the medial side of the IC in both oddball experiments. The results clearly demonstrated that the IC is involved in deviance detection. BOLD fMRI detection of increased activities in the medial side of the IC to the deviant revealed the highly adaptive nature of a substantial population of neurons in this region, probably those that belong to the rostral or dorsal cortex of the IC. These findings highlighted the complexity of auditory information processing in the IC and may guide future studies of the functional organizations of this subcortical structure.
Collapse
|
27
|
Zhou IY, Liang YX, Chan RW, Gao PP, Cheng JS, Hu Y, So KF, Wu EX. Brain resting-state functional MRI connectivity: morphological foundation and plasticity. Neuroimage 2013; 84:1-10. [PMID: 23988270 DOI: 10.1016/j.neuroimage.2013.08.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/26/2013] [Accepted: 08/16/2013] [Indexed: 01/21/2023] Open
Abstract
Despite the immense ongoing efforts to map brain functional connections and organizations with resting-state functional MRI (rsfMRI), the mechanisms governing the temporally coherent rsfMRI signals remain unclear. In particular, there is a lack of direct evidence regarding the morphological foundation and plasticity of these rsfMRI derived connections. In this study, we investigated the role of axonal projections in rsfMRI connectivity and its plasticity. Well-controlled rodent models of complete and posterior corpus callosotomy were longitudinally examined with rsfMRI at 7T in conjunction with intracortical EEG recording and functional MRI tracing of interhemispheric neuronal pathways by manganese (Mn(2+)). At post-callosotomy day 7, significantly decreased interhemispheric rsfMRI connectivity was observed in both groups in the specific cortical areas whose callosal connections were severed. At day 28, the disrupted connectivity was restored in the partial callosotomy group but not in the complete callosotomy group, likely due to the compensation that occurred through the remaining interhemispheric axonal pathways. This restoration - along with the increased intrahemispheric functional connectivity observed in both groups at day 28 - highlights the remarkable adaptation and plasticity in brain rsfMRI connections. These rsfMRI findings were paralleled by the intracortical EEG recording and Mn(2+) tracing results. Taken together, our experimental results directly demonstrate that axonal connections are the indispensable foundation for rsfMRI connectivity and that such functional connectivity can be plastic and dynamically reorganized atop the morphological connections.
Collapse
Affiliation(s)
- Iris Y Zhou
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lau C, Zhang JW, Cheng JS, Zhou IY, Cheung MM, Wu EX. Noninvasive fMRI investigation of interaural level difference processing in the rat auditory subcortex. PLoS One 2013; 8:e70706. [PMID: 23940631 PMCID: PMC3733930 DOI: 10.1371/journal.pone.0070706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/21/2013] [Indexed: 12/02/2022] Open
Abstract
Objective Interaural level difference (ILD) is the difference in sound pressure level (SPL) between the two ears and is one of the key physical cues used by the auditory system in sound localization. Our current understanding of ILD encoding has come primarily from invasive studies of individual structures, which have implicated subcortical structures such as the cochlear nucleus (CN), superior olivary complex (SOC), lateral lemniscus (LL), and inferior colliculus (IC). Noninvasive brain imaging enables studying ILD processing in multiple structures simultaneously. Methods In this study, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is used for the first time to measure changes in the hemodynamic responses in the adult Sprague-Dawley rat subcortex during binaural stimulation with different ILDs. Results and Significance Consistent responses are observed in the CN, SOC, LL, and IC in both hemispheres. Voxel-by-voxel analysis of the change of the response amplitude with ILD indicates statistically significant ILD dependence in dorsal LL, IC, and a region containing parts of the SOC and LL. For all three regions, the larger amplitude response is located in the hemisphere contralateral from the higher SPL stimulus. These findings are supported by region of interest analysis. fMRI shows that ILD dependence occurs in both hemispheres and multiple subcortical levels of the auditory system. This study is the first step towards future studies examining subcortical binaural processing and sound localization in animal models of hearing.
Collapse
Affiliation(s)
- Condon Lau
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
29
|
Chan KC, Wu EX. In vivo manganese-enhanced MRI for visuotopic brain mapping. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:2279-82. [PMID: 23366378 DOI: 10.1109/embc.2012.6346417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study explored the feasibility of localized manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administrations for visuotopic brain mapping of retinal, callosal, cortico-subcortical, transsynaptic and horizontal connections in normal adult rats. Upon fractionated intravitreal Mn(2+) injection, Mn enhancements were observed in the contralateral superior colliculus (SC) and lateral geniculate nucleus (LGN) by 45-60% at 1-3 days after initial Mn(2+) injection and in the contralateral primary visual cortex (V1) by about 10% at 2-3 days after initial Mn(2+) injection. Direct, single-dose Mn(2+) injection to the LGN resulted in Mn enhancement by 13-21% in V1 and 8-11% in SC of the ipsilateral hemisphere at 8 to 24 hours after Mn(2+) administration. Intracortical, single-dose Mn(2+) injection to the visual cortex resulted in Mn enhancement by 53-65% in ipsilateral LGN, 15-26% in ipsilateral SC, 32-34% in the splenium of corpus callosum and 17-25% in contralateral V1/V2 transition zone at 8 to 24 hours after Mn(2+) administration. Notably, some patchy patterns were apparent near the V1/V2 border of the contralateral hemisphere. Laminar-specific horizontal cortical connections were also observed in the ipsilateral hemisphere. The current results demonstrated the sensitivity of MEMRI for assessing the neuroarchitecture of the visual brains in vivo without depth-limitation, and may possess great potentials for studying the basic neural components and connections in the visual system longitudinally during development, plasticity, pharmacological interventions and genetic modifications.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing and the Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China.
| | | |
Collapse
|
30
|
Suzuki H, Sumiyoshi A, Kawashima R, Shimokawa H. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats. PLoS One 2013; 8:e56990. [PMID: 23451129 PMCID: PMC3579932 DOI: 10.1371/journal.pone.0056990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/16/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. METHODOLOGY/PRINCIPAL FINDINGS An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. CONCLUSION/SIGNIFICANCE This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.
Collapse
Affiliation(s)
- Hideaki Suzuki
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | |
Collapse
|
31
|
Chan KC, Cheng JS, Fan S, Zhou IY, Wu EX. In vivo manganese-enhanced MRI and diffusion tensor imaging of developing and impaired visual brains. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:7005-8. [PMID: 22255951 DOI: 10.1109/iembs.2011.6091771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study explored the feasibility of high-resolution Mn-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) for in vivo assessments of the development and reorganization of retinal and visual callosal pathways in normal neonatal rodent brains and after early postnatal visual impairments. Using MEMRI, intravitreal Mn(2+) injection into one eye resulted in maximal T1-weighted hyperintensity in neonatal contralateral superior colliculus (SC) 8 hours after administration, whereas in adult contralateral SC signal increase continued at 1 day post-injection. Notably, mild but significant Mn(2+) enhancement was observed in the ipsilateral SC in normal neonatal rats, and in adult rats after neonatal monocular enucleation (ME) but not in normal adult rats. Upon intracortical Mn(2+) injection to the visual cortex, neonatal binocularly-enucleated (BE) rats showed an enhancement of a larger projection area, via the splenium of corpus callosum to the V1/V2 transition zone of the contralateral hemisphere in comparison to normal rats. For DTI, the retinal pathways projected from the enucleated eyes possessed lower fractional anisotropy (FA) 6 weeks after BE and ME. Interestingly, in the optic nerve projected from the remaining eye in ME rats a significantly higher FA was observed compared to normal rats. The results of this study are potentially important for understanding the axonal transport, microstructural reorganization and functional activities in the living visual brain during early postnatal development and plasticity in a global and longitudinal setting.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing and the Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | |
Collapse
|
32
|
Arichi T, Fagiolo G, Varela M, Melendez-Calderon A, Allievi A, Merchant N, Tusor N, Counsell SJ, Burdet E, Beckmann CF, Edwards AD. Development of BOLD signal hemodynamic responses in the human brain. Neuroimage 2012; 63:663-73. [PMID: 22776460 PMCID: PMC3459097 DOI: 10.1016/j.neuroimage.2012.06.054] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/08/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022] Open
Abstract
In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing populations. We aimed to characterize HRF in human infants before and after the normal time of birth using rapid sampling of the Blood Oxygen Level Dependent (BOLD) signal. A somatosensory stimulus and an event related experimental design were used to collect data from 10 healthy adults, 15 sedated infants at term corrected post menstrual age (PMA) (median 41 + 1 weeks), and 10 preterm infants (median PMA 34 + 4 weeks). A positive amplitude HRF waveform was identified across all subject groups, with a systematic maturational trend in terms of decreasing time-to-peak and increasing positive peak amplitude associated with increasing age. Application of the age-appropriate HRF models to fMRI data significantly improved the precision of the fMRI analysis. These findings support the notion of a structured development in the brain's response to stimuli across the last trimester of gestation and beyond.
Collapse
Affiliation(s)
- Tomoki Arichi
- Centre for the Developing Brain, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cheung MM, Lau C, Zhou IY, Chan KC, Zhang JW, Fan SJ, Wu EX. High fidelity tonotopic mapping using swept source functional magnetic resonance imaging. Neuroimage 2012; 61:978-86. [PMID: 22445952 DOI: 10.1016/j.neuroimage.2012.03.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/25/2022] Open
Abstract
Tonotopy, the topographic encoding of sound frequency, is the fundamental property of the auditory system. Invasive techniques lack the spatial coverage or frequency resolution to rigorously investigate tonotopy. Conventional auditory fMRI is corrupted by significant image distortion, sporadic acoustic noise and inadequate frequency resolution. We developed an efficient and high fidelity auditory fMRI method that integrates continuous frequency sweeping stimulus, distortion free MRI sequence with stable scanner noise and Fourier analysis. We demonstrated this swept source imaging (SSI) in the rat inferior colliculus and obtained tonotopic maps with ~2 kHz resolution and 40 kHz bandwidth. The results were vastly superior to those obtained by conventional fMRI mapping approach and in excellent agreement with invasive findings. We applied SSI to examine tonotopic injury following developmental noise exposure and observed that the tonotopic organization was significantly disrupted. With SSI, we also observed the subtle effects of sound pressure level on tonotopic maps, reflecting the complex neuronal responses associated with asymmetric tuning curves. This in vivo and noninvasive technique will greatly facilitate future investigation of tonotopic plasticity and disorders and auditory information processing. SSI can also be adapted to study topographic organization in other sensory systems such as retinotopy and somatotopy.
Collapse
Affiliation(s)
- Matthew M Cheung
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
34
|
BOLD fMRI investigation of the rat auditory pathway and tonotopic organization. Neuroimage 2012; 60:1205-11. [PMID: 22297205 DOI: 10.1016/j.neuroimage.2012.01.087] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 01/10/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022] Open
Abstract
Rodents share general anatomical, physiological and behavioral features in the central auditory system with humans. In this study, monaural broadband noise and pure tone sounds are presented to normal rats and the resulting hemodynamic responses are measured with blood oxygenation level-dependent (BOLD) fMRI using a standard spin-echo echo planar imaging sequence (without sparse temporal sampling). The cochlear nucleus (CN), superior olivary complex, lateral lemniscus, inferior colliculus (IC), medial geniculate body and primary auditory cortex, all major auditory structures, are activated by broadband stimulation. The CN and IC BOLD signal changes increase monotonically with sound pressure level. Pure tone stimulation with three distinct frequencies (7, 20 and 40 kHz) reveals the tonotopic organization of the IC. The activated regions shift from dorsolateral to ventromedial IC with increasing frequency. These results agree with electrophysiology and immunohistochemistry findings, indicating the feasibility of auditory fMRI in rats. This is the first fMRI study of the rodent ascending auditory pathway.
Collapse
|
35
|
Cao J, Zhu H, Deng D, Xue B, Tang L, Mahounga D, Qian Z, Gu Y. In vivo NIR imaging with PbS quantum dots entrapped in biodegradable micelles. J Biomed Mater Res A 2012; 100:958-68. [PMID: 22275223 DOI: 10.1002/jbm.a.34043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/07/2011] [Accepted: 11/29/2011] [Indexed: 01/19/2023]
Abstract
In this article, we firstly synthesized oil-soluble PbS quantum dots (QDs) emitting in the near-infrared (NIR) spectral range through a two-phase method, which exhibit a conveniently tunable photoluminescence (PL) emission (from ~750 to 872 nm) with a narrow PL bandwidth, as well as a high (up to 40%) PL quantum yield (QY). Next, the as-prepared oil-soluble NIR PbS QDs were applied to the in vivo imaging of tumors by entrapping in biodegradable micelles (N-succinyl-N'-octyl nanomicelles, SOC) which had hydrophobic inner cores. Transmission electron microscope results show well dispersed spherical shaped QDs-loaded SOC micelles with 100 nm diameter. The QY of PbS QDs entrapped into SOC has no significant change compared to free QDs. Besides, both in vitro and in vivo acute toxicity results demonstrated that the QDs-loaded micelles have low cytotoxicity. Furthermore, in vivo imaging of PbS QDs-loaded SOC injected intravenously into tumor-bearing nude mice showed the NIR QDs-loaded micelles can accumulate in the tumor tissue due to the enhanced permeability and retention effect of SOC micelles. These results confirm that the as-prepared PbS QDs could be used as fluorescence probes to study the biodistribution of nanocarriers and their intracellular pathways, as well as their passive targeted behavior to tumors in preclinical research.
Collapse
Affiliation(s)
- Jie Cao
- Department of Biomedical Engineering, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gao J, Li X, Hou X, Ding A, Chan KC, Sun Q, Wu EX, Yang J. Tract-based spatial statistics (TBSS): application to detecting white matter tract variation in mild hypoxic-ischemic neonates. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2012:432-435. [PMID: 23365921 DOI: 10.1109/embc.2012.6345960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aim of this study is to employ tract-based spatial statistics (TBSS) to analyze the voxel-wise differences in DTI parameters between normal and mild hypoxic-ischemic (HI) neonatal brains. Forty-one full term neonates (24 normal controls and 17 with mild HI injury) and 31 preterm neonates (20 normal controls and 11 with mild HI injury) underwent T1 weighted imaging, T2 weighted imaging and diffusion tensor imaging (DTI) within 28 days after birth. The voxel differences of fractional anisotropy (FA), λ1, λ2, and λ3 values between mild HI group and control group were analyzed in preterm and full term neonates respectively. The significantly decreased FA with increased λ2, λ3 in corticospinal tract, genu of corpus callosum (GCC), external capsule (EC) and splenium of the corpus callosum (SCC) in mild HI neonates suggested deficits or delays in both myelination and premyelination. Such impaired corticospinal tract, in both preterm and term neonates, may directly lead to the subsequent poor motor performance. Impaired EC and SCC, the additional injured sites observed in full term neonates with mild HI injury, may be causally responsible for the dysfunction in coordination and integration. In conclusion, TBSS provides an objective, independent and sensitive method for DTI data analysis of neonatal white matter alterations after mild HI injury.
Collapse
Affiliation(s)
- Jie Gao
- Department of Radiology, The First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhou IY, Cheung MM, Lau C, Chan KC, Wu EX. Balanced steady-state free precession fMRI with intravascular susceptibility contrast agent. Magn Reson Med 2011; 68:65-73. [PMID: 22127794 DOI: 10.1002/mrm.23202] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/03/2011] [Accepted: 08/11/2011] [Indexed: 11/07/2022]
Abstract
One major challenge in echo planar imaging-based functional MRI (fMRI) is the susceptibility-induced image distortion. In this study, a new cerebral blood volume-weighted fMRI technique using distortion-free balanced steady-state free precession (bSSFP) sequence was proposed and its feasibility was investigated in rat brain at 7 Tesla. After administration of intravascular susceptibility contrast agent (monocrystalline iron oxide nanoparticle [MION] at 15 mg/kg), unilateral visual stimulation was presented using a block-design paradigm. With repetition time/echo time = 3.8/1.9 ms and α = 18°, bSSFP fMRI was performed and compared with the conventional cerebral blood volume-weighted fMRI using post-MION gradient echo and spin echo echo planar imaging. The results showed that post-MION bSSFP fMRI provides comparable sensitivity but with no severe image distortion and signal dropout. Robust negative responses were observed during stimulation and activation patterns were in excellent agreement with known neuroanatomy. Furthermore, the post-MION bSSFP signal was observed to decrease significantly during hypercapnia challenge, indicating its sensitivity to cerebral blood volume changes. These findings demonstrated that post-MION bSSFP fMRI is a promising alternative to conventional cerebral blood volume-weighted fMRI. This technique is particularly suited for fMRI investigation of animal models at high field.
Collapse
Affiliation(s)
- Iris Y Zhou
- Laboratory of Biomedical Imaging and Signal Processing, Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
38
|
Chan KC, Cheng JS, Fan S, Zhou IY, Yang J, Wu EX. In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging. Neuroimage 2011; 59:2274-83. [PMID: 21985904 DOI: 10.1016/j.neuroimage.2011.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/22/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022] Open
Abstract
The rodents are an excellent model for understanding the development and plasticity of the visual system. In this study, we explored the feasibility of Mn-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) at 7 T for in vivo and longitudinal assessments of the retinal and callosal pathways in normal neonatal rodent brains and after early postnatal visual impairments. Along the retinal pathways, unilateral intravitreal Mn2+ injection resulted in Mn2+ uptake and transport in normal neonatal visual brains at postnatal days (P) 1, 5 and 10 with faster Mn2+ clearance than the adult brains at P60. The reorganization of retinocollicular projections was also detected by significant Mn2+ enhancement by 2%-10% in the ipsilateral superior colliculus (SC) of normal neonatal rats, normal adult mice and adult rats after neonatal monocular enucleation (ME) but not in normal adult rats or adult rats after monocular deprivation (MD). DTI showed a significantly higher fractional anisotropy (FA) by 21% in the optic nerve projected from the remaining eye of ME rats compared to normal rats at 6 weeks old, likely as a result of the retention of axons from the ipsilaterally uncrossed retinal ganglion cells, whereas the anterior and posterior retinal pathways projected from the enucleated or deprived eyes possessed lower FA after neonatal binocular enucleation (BE), ME and MD by 22%-56%, 18%-46% and 11%-15% respectively compared to normal rats, indicative of neurodegeneration or immaturity of white matter tracts. Along the visual callosal pathways, intracortical Mn2+ injection to the visual cortex of BE rats enhanced a larger projection volume by about 74% in the V1/V2 transition zone of the contralateral hemisphere compared to normal rats, without apparent DTI parametric changes in the splenium of corpus callosum. This suggested an adaptive change in interhemispheric connections and spatial specificity in the visual cortex upon early blindness. The results of this study may help determine the mechanisms of axonal uptake and transport, microstructural reorganization and functional activities in the living visual brains during development, diseases, plasticity and early interventions in a global and longitudinal setting.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
39
|
BOLD responses in the superior colliculus and lateral geniculate nucleus of the rat viewing an apparent motion stimulus. Neuroimage 2011; 58:878-84. [PMID: 21741483 DOI: 10.1016/j.neuroimage.2011.06.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/03/2011] [Accepted: 06/21/2011] [Indexed: 11/24/2022] Open
Abstract
In rats, the superior colliculus (SC) is a main destination for retinal ganglion cells and is an important subcortical structure for vision. Electrophysiology studies have observed that many SC neurons are highly sensitive to moving objects, but complementary non-invasive functional imaging studies with larger fields of view have been rarely conducted. In this study, BOLD fMRI is used to measure the SC and nearby lateral geniculate nucleus' (LGN) hemodynamic responses, in normal adult Sprague Dawley (SD) rats, during a dynamic visual stimulus similar to those used in long-range apparent motion studies. The stimulation paradigm consists of four light spots arranged in a linear array and turned on and off sequentially at different rates to create five effective speeds of motion (7, 14, 41, 82, and 164°/s across the visual field). Stationary periods (same light spot always on) are interleaved between the moving periods. The speed response function (SRF), the hemodynamic response amplitude at each speed tested, is measured. Significant responses are observed in the SC and LGN at all speeds. In the SC, the SRF increases monotonically from 7 to 82°/s. The minimum response amplitude occurs at 164°/s. The results suggest that the SC is sensitive to slow moving visual stimuli but the hemodynamic response is reduced at higher speeds. In the LGN, the SRF exhibits a similar trend to that of the SC, but response amplitude during 7°/s stimulation is comparable to that during 164°/s stimulation. These findings are in good agreement with previous electrophysiology studies conducted on albino rats like the SD strain. This work represents the first fMRI study of stimulus speed dependence in the SC and is also the first fMRI study of motion responsiveness in the rat.
Collapse
|
40
|
Lau C, Zhou IY, Cheung MM, Chan KC, Wu EX. BOLD temporal dynamics of rat superior colliculus and lateral geniculate nucleus following short duration visual stimulation. PLoS One 2011; 6:e18914. [PMID: 21559482 PMCID: PMC3084720 DOI: 10.1371/journal.pone.0018914] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 03/24/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN's response temporal dynamics following short duration (1 s) visual stimulation. METHODOLOGY/PRINCIPAL FINDINGS Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. CONCLUSIONS/SIGNIFICANCE The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different.
Collapse
Affiliation(s)
- Condon Lau
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China
| | - Iris Y. Zhou
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China
| | - Matthew M. Cheung
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China
| | - Kevin C. Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China
| |
Collapse
|
41
|
CHAN KEVINC, CHEUNG MATTHEWM, WU EDX. IN VIVOMULTIPARAMETRIC MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY OF RODENT VISUAL SYSTEM. J Integr Neurosci 2010; 9:477-508. [DOI: 10.1142/s0219635210002524] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/04/2010] [Indexed: 01/27/2023] Open
|
42
|
Chan KC, Cheung MM, Xing KK, Zhou IY, Chow AM, Lau C, So KF, Wu EX. In vivo MRI study of the visual system in normal, developing and injured rodent brains. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:5689-92. [PMID: 21097319 DOI: 10.1109/iembs.2010.5627884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper demonstrated our recent use of contrast-enhanced MRI, diffusion tensor/kurtosis imaging, proton magnetic resonance spectroscopy, and functional MRI techniques, for in vivo and global assessments of the structure, metabolism and function of the visual system in rodent studies of ocular diseases, optic neuropathies, developmental plasticity and neonatal hypoxic-ischemic brain injury at 7T. Results suggested the significant values of high-field multiparametric MRI for uncovering the processes and mechanisms of developmental and pathophysiological changes systematically along both anterior and posterior visual pathways, and may provide early diagnoses and therapeutic strategies for promoting functional recovery upon partial vision loss.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing and the Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Chow AM, Zhou IY, Fan SJ, Chan KW, Chan KC, Wu EX. Metabolic changes in visual cortex of neonatal monocular enucleated rat: a proton magnetic resonance spectroscopy study. Int J Dev Neurosci 2010; 29:25-30. [DOI: 10.1016/j.ijdevneu.2010.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/30/2010] [Accepted: 10/01/2010] [Indexed: 01/14/2023] Open
Affiliation(s)
- April M. Chow
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongPokfulamHong Kong SARChina
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SARChina
| | - Iris Y. Zhou
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongPokfulamHong Kong SARChina
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SARChina
| | - Shu Juan Fan
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongPokfulamHong Kong SARChina
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SARChina
| | - Kannie W.Y. Chan
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongPokfulamHong Kong SARChina
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SARChina
| | - Kevin C. Chan
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongPokfulamHong Kong SARChina
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SARChina
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongPokfulamHong Kong SARChina
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SARChina
- Department of AnatomyThe University of Hong KongPokfulamHong Kong SARChina
| |
Collapse
|
44
|
In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging. Neuroimage 2010; 54:389-95. [PMID: 20633657 DOI: 10.1016/j.neuroimage.2010.07.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/27/2010] [Accepted: 07/06/2010] [Indexed: 11/24/2022] Open
Abstract
The superior colliculus (SC) is a dome-shaped subcortical laminar structure in the mammalian midbrain, whose superficial layers receive visual information from the retina in a topological order. Despite the increasing number of studies investigating retinotopic projection in visual brain development and disorders, in vivo, high-resolution 3D mapping of topographic organization in the subcortical visual nuclei has not yet been available. This study explores the capability of 3D manganese-enhanced MRI (MEMRI) at 200 μm isotropic resolution for in vivo retinotopic mapping of the rat SC upon partial transection of the intraorbital optic nerve. One day after intravitreal Mn(2+) injection into both eyes, animals with partial transection at the right superior intraorbital optic nerve in Group 1 (n=8) exhibited a significantly lower T1-weighted signal intensity in the lateral region of the left SC compared to the left medial SC and right control SC. Partial transection toward the temporal or nasal region of the right intraorbital optic nerve in Group 2 (n=7) led to T1-weighted hypointensity in the rostral or caudal region of the left SC, whereas a clear border was observed separating 2 halves of the left SC in all groups. Previous histological and electrophysiological studies showed that the retinal ganglion cell axons emanating from superior, inferior, nasal and temporal retina projected respectively to the contralateral lateral, medial, caudal and rostral SC in rodents. While this topological pattern is preserved in the intraorbital optic nerve, it was shown that partial transection of the superior intraorbital optic nerve led to primary injury predominantly in the superior but not inferior retina and optic nerve. The results of this study demonstrated the sensitivity of submillimeter-resolution MEMRI for in vivo, 3D mapping of the precise retinotopic projections in SC upon reduced anterograde axonal transport of Mn(2+) ions from localized regions of the anterior visual pathways to the subcortical midbrain nuclei. Future MEMRI studies are envisioned that measure the topographic changes in brain development, diseases, plasticity and regeneration therapies in a global and longitudinal setting.
Collapse
|