1
|
Han MJ, Oh Y, Ann Y, Kang S, Baeg E, Hong SJ, Sohn H, Kim SG. Whole-brain effective connectivity of the sensorimotor system using 7T fMRI with electrical microstimulation in non-human primates. Prog Neurobiol 2025:102760. [PMID: 40280291 DOI: 10.1016/j.pneurobio.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
The sensorimotor system is a crucial interface between the brain and the environment, and it is endowed with multiple computational mechanisms that enable efficient behaviors. For example, predictive processing via an efference copy of a motor command has been proposed as one of the key computations used to compensate for the sensory consequence of movement. However, the neural pathways underlying this process remain unclear, particularly regarding whether the M1-to-S1 pathway plays a dominant role in predictive processing and how its influence compares to that of other pathways. In this study, we present a causally inferable input-output map of the sensorimotor effective connectivity that we made by combining ultrahigh-field functional MRI, electrical microstimulation of the S1/M1 cortex, and dynamic causal modeling for the whole sensorimotor network in anesthetized primates. We investigated how motor signals from M1 are transmitted to S1 at the circuit level, either via direct cortico-cortical projections or indirectly via subcortical structures such as the thalamus. Across different stimulation conditions, we observed a robust asymmetric connectivity from M1 to S1 that was also the most prominent output from M1. In the thalamus, we identified distinct activations: M1 stimulation showed connections to the anterior part of ventral thalamic nuclei, whereas S1 was linked to the more posterior regions of the ventral thalamic nuclei. These findings suggest that the cortico-cortical projection from M1 to S1, rather than the cortico-thalamic loop, plays a dominant role in transmitting movement-related information. Together, our detailed dissection of the sensorimotor circuitry underscores the importance of M1-to-S1 connectivity in sensorimotor coordination.
Collapse
Affiliation(s)
- Min-Jun Han
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Younghyun Oh
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yejin Ann
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sangyun Kang
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Eunha Baeg
- Department of Nano-bioengineering, Incheon National University, Incheon, Republic of Korea; Center for Brain-Machine Interface, Incheon National University, Incheon, Republic of Korea
| | - Seok Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Center for the Developing Brain, Child Mind Institute, NY, United States
| | - Hansem Sohn
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Rogachov A, Carlson HL, Robertson A, Domi T, Kirton A, Dlamini N. Thalamic oscillatory dysrhythmia and disrupted functional connectivity in thalamocortical loops in perinatal stroke. Sci Rep 2025; 15:12542. [PMID: 40216875 PMCID: PMC11992091 DOI: 10.1038/s41598-025-95560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Periventricular venous infarction (PVI) is a subtype of perinatal stroke localized to subcortical white matter occurring before 34 weeks of gestation. An emerging body of literature has reported life-long motor impairments and compromised quality of life in patients with PVI. However, there remains a paucity of foundational knowledge regarding the underlying neurobiological mechanisms that underpin these outcomes. Recent studies (Ferradal et al. in Cereb Cortex 29:1218-1229, 2019) in brain imaging suggest that healthy development of thalamocortical connections is instrumental in coordinating brain connectivity in both prenatal and postnatal periods given the central role the thalamus and basal ganglia play in motor circuitry. Therefore, we provide a regional and cross-network approach to the analysis of interactive pathways of the thalamus, basal ganglia, and cortex to explore possible neurobiological disruptions responsible for clinical motor function in children with PVI. A resting-state fMRI protocol was administered to children with left periventricular venous infarction (PVI) (n = 23) and typically developing children (TDC) (n = 22) to characterize regional oscillatory and thalamocortical disturbances and compare them to clinical motor function. We hypothesized that PVI would affect resting-state measures of both regional and global brain function, marked by abnormally high amplitudes of regional oscillatory activity, as well as lower local and cross-network communication. Using a combination of robust functional metrics to assess spontaneous, oscillatory activity (Amplitude of Low-Frequency Fluctuations [ALFF] and fractional ALFF), as well as local (Regional Homogeneity [ReHo]) and cross-network connectivity (Degree Centrality [DC] and Functional Connectivity [FC]). We found that compared with TDC, children with PVI exhibited higher levels of ALFF, and these functional differences were associated with the severity of motor impairment. Moreover, the thalamus in children with PVI also showed lower connectivity in relaying thalamocortical pathways. These disruptions in thalamocortical pathways from the thalamus were localized to the medial prefrontal cortex (mPFC), a key hub of the default mode network). Collectively, our findings suggest that heightened levels of regional, oscillatory activity in the thalamus may disrupt more widespread thalamocortical cross-network circuity, possibly contributing to motor impairments in children with PVI.
Collapse
Affiliation(s)
- Anton Rogachov
- Division of Neurology, The Hospital for Sick Children, University of Toronto, 175 Elizabeth Street | 19th floor, Toronto, ON, M5G 2G3, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Amanda Robertson
- Division of Neurology, The Hospital for Sick Children, University of Toronto, 175 Elizabeth Street | 19th floor, Toronto, ON, M5G 2G3, Canada
- Neurosciences and Mental Health Department, The Hospital for Sick Children, Toronto, ON, Canada
| | - Trish Domi
- Neurosciences and Mental Health Department, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatric and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nomazulu Dlamini
- Division of Neurology, The Hospital for Sick Children, University of Toronto, 175 Elizabeth Street | 19th floor, Toronto, ON, M5G 2G3, Canada.
- Neurosciences and Mental Health Department, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
3
|
Ghalyanchi-Langeroudi A, Yargholi E, Soleimani M, Shahrokhi A, Mirbagheri MM. Restoring Functional Connectivity in Hemiplegic Cerebral Palsy: A Study of Low-Frequency rTMS Intervention. J Biomed Phys Eng 2025; 15:173-184. [PMID: 40259943 PMCID: PMC12009472 DOI: 10.31661/jbpe.v0i0.2410-1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/25/2024] [Indexed: 04/23/2025]
Abstract
Background Hemiplegic Cerebral Palsy (HCP) causes significant motor impairments, due to disrupted Functional Connectivity (FC) between brain regions. Low-Frequency Repetitive Transcranial Magnetic Stimulation (LF-rTMS) has emerged as a potential therapeutic technique for restoring FC and motor recovery. Objective This study aimed to evaluate the effects of LF-rTMS on FC in children with spastic HCP. Material and Methods This Randomized Controlled Trial (RCT) included ten children with spastic HCP, aged 4 to 13 years. Six children received 12 sessions of LF-rTMS, while four in the control group underwent 12 sessions of sham stimulation. Functional Magnetic Resonance Imaging (fMRI) was used to assess intra- and interhemispheric FC during passive knee movements of the affected limb. Results LF-rTMS induced region-specific reductions in interhemispheric FC, particularly between the contralesional ventral premotor area (cPMv) and both the ipsilesional primary somatosensory cortex (iS1) (for effect size T=-2.60, P-value=0.048, FDR-corrected) and the ipsilesional primary motor area (iM1) (T=-2.45, P-value=0.048, FDR-corrected). These findings suggest modulation of interhemispheric motor-sensory pathways. Concurrently, localized increases in FC were observed in contralesional regions, and FC decreased between the ipsilesional Supplementary Motor Area (SMA) and the secondary somatosensory cortex (S2) (T=-3.11, P-value=0.041, FDR-corrected). Conclusion LF-rTMS may modulate FC and hold promise as a rehabilitative intervention for improving motor function in children with HCP.
Collapse
Affiliation(s)
- Azadeh Ghalyanchi-Langeroudi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran, University of Medical Science (TUMS), Tehran, Iran
| | - Elahé Yargholi
- Laboratory of Biological Psychology, Department of Brain and Cognition, Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven 3714, Belgium
| | - Maryam Soleimani
- Department of Basic Science, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Amin Shahrokhi
- Department of Basic Science, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad-Mehdi Mirbagheri
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neural Engineering and Rehabilitation Research Center, Tehran, Iran
- Department of Physical Medicine and Rehabilitation, Northwestern University, USA
| |
Collapse
|
4
|
Chen WT, Yeh YW, Kuo SC, Shiao YC, Huang CC, Wang YG, Chen CY. Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2025; 23:161-165. [PMID: 39820122 PMCID: PMC11747729 DOI: 10.9758/cpn.24.1193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 01/19/2025]
Abstract
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
Collapse
Affiliation(s)
- Wan-Ting Chen
- Department of Psychiatry, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Wei Yeh
- Department of Psychiatry, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shin-Chang Kuo
- Department of Psychiatry, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Chih Shiao
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Occupational Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
- College of Law, National Chengchi University, Taipei, Taiwan
| | - Chih-Chung Huang
- Department of Psychiatry, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Guang Wang
- Department of Psychiatry, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Yen Chen
- Department of Psychiatry, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
5
|
Juhi A, Gayen RK, Sharma S, Choudhary PK, Mondal H. Repetitive Transcranial Magnetic Stimulation in Stroke Rehabilitation: A Bibliometric Review. Cureus 2025; 17:e79509. [PMID: 40135028 PMCID: PMC11936310 DOI: 10.7759/cureus.79509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
Stroke is a major cause of disability globally, with rehabilitation playing a crucial role in restoring lost functions. Despite advancements, many stroke survivors face persistent deficits, prompting the need for innovative approaches such as repetitive transcranial magnetic stimulation (rTMS). This non-invasive technique promotes neural plasticity and recovery by modulating cortical excitability, garnering significant research interest. This bibliometric analysis of rTMS research in stroke rehabilitation was conducted to find publication trends and influential studies. Data were collected from the Web of Science (WOS) with search strings as follows: TI = ((repetitive transcranial magnetic stimulation) OR rTMS) AND TI = ((stroke) OR stroke rehabilitation). The studies till the 31st of December 2024 were included. No language or other filters were applied. A total of 556 studies were identified. While analyzing the data, there may be a higher or lower count of the total number of studies due to the overlap of categories. For example, a study may have authors from different countries, making the total number of publications according to countries higher than 556. There was a growing interest in rTMS in the context of stroke rehabilitation, with a substantial increase in publications in 2022, 2023, and 2024. Among the studies, the majority of the studies were research articles (62.42%), followed by meeting abstracts (18.41%). The studies (n = 983) were in the fields of clinical neurology (27.47%) and neuroscience (27.37%), followed by rehabilitation (8.55%). When studies (n = 645) were categorized according to countries, The People's Republic of China had the majority of the studies (29.92%), followed by South Korea (11.01%), the USA (10.85%), and Japan (9.61%). Elsevier (15.83%) leads in publishing the articles, followed by Frontiers Media (13.49%). The top citation was for the article titled "Repetitive Transcranial Magnetic Stimulation of Contralesional Primary Motor Cortex Improves Hand Function After Stroke" with 521 citations and was published in the journal Stroke. These findings provide valuable insights into research trends, influential studies, and global collaboration, emphasizing the potential of rTMS in advancing stroke recovery. More studies are needed from diverse geographical regions with possible international collaboration.
Collapse
Affiliation(s)
- Ayesha Juhi
- Physiology, All India Institute of Medical Sciences, Deoghar, IND
| | - Rintu K Gayen
- Electronics and Communication Engineering, Institute of Engineering and Management, Kolkata, IND
| | - Shreya Sharma
- Neuromodulation Laboratory, Physiology, All India Institute of Medical Sciences, Deoghar, IND
| | - Pritam K Choudhary
- Neuromodulation Laboratory, Physiology, All India Institute of Medical Sciences, Deoghar, IND
| | - Himel Mondal
- Physiology, All India Institute of Medical Sciences, Deoghar, IND
| |
Collapse
|
6
|
Fan L, Su C, Li Y, Guo J, Huang Z, Zhang W, Liu T, Wang J. The alterations of repetitive transcranial magnetic stimulation on the energy landscape of resting-state networks differ across the human cortex. Hum Brain Mapp 2024; 45:e70029. [PMID: 39465912 PMCID: PMC11514123 DOI: 10.1002/hbm.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention tool for the noninvasive modulation of brain activity and behavior in neuroscience research and clinical settings. However, the resting-state dynamic evolution of large-scale functional brain networks following rTMS has rarely been investigated. Here, using resting-state fMRI images collected from 23 healthy individuals before (baseline) and after 1 Hz rTMS of the left frontal (FRO) and occipital (OCC) lobes, we examined the different effects of rTMS on brain dynamics across the human cortex. By fitting a pairwise maximum entropy model (pMEM), we constructed an energy landscape for the baseline and poststimulus conditions by fitting a pMEM. We defined dominant brain states (local minima) in the energy landscape with synergistic activation and deactivation patterns of large-scale functional networks. We calculated state dynamics including appearance probability, transitions and duration. The results showed that 1 Hz rTMS induced increased and decreased state probability, transitions and duration when delivered to the FRO and OCC targets, respectively. Most importantly, the shortest path and minimum cost between dominant brain states were altered after stimulation. The absolute sum of the costs from the source states to the destinations was lower after OCC stimulation than after FRO stimulation. In conclusion, our study characterized the dynamic trajectory of state transitions in the energy landscape and suggested that local rTMS can induce significant dynamic perturbation involving stimulated and distant functional networks, which aligns with the modern view of the dynamic and complex brain. Our results suggest low-dimensional mapping of rTMS-induced brain adaption, which will contribute to a broader and more effective application of rTMS in clinical settings.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Chunwang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jinjia Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Zi‐Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
- The Key Laboratory of Neuro‐informatics & Rehabilitation Engineering of Ministry of Civil AffairsXi'anShaanxiP. R. China
| |
Collapse
|
7
|
Li Y, Yang B, Ma J, Li Y, Zeng H, Zhang J. Assessment of rTMS treatment effects for methamphetamine addiction based on EEG functional connectivity. Cogn Neurodyn 2024; 18:2373-2386. [PMID: 39555303 PMCID: PMC11564447 DOI: 10.1007/s11571-024-10097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/25/2024] [Accepted: 02/24/2024] [Indexed: 11/19/2024] Open
Abstract
Methamphetamine (MA) addiction leads to impairment of neural communication functions in the brain, and functional connectivity (FC) may be a valid indicator. However, it is unclear how FC in the brain changes in methamphetamine use disorder (MUD) after treatment with repetitive transcranial magnetic stimulation (rTMS). Thirty-four patients with MUD participated in this study. The subjects were randomized to receive the active or sham rTMS for four weeks. Subjects performed electroencephalography (EEG) examinations and visual analogue scale (VAS) assessments before and after the treatment. The FC networks were constructed and visualized, and then the graph theory analysis was carried out. Finally, machine learning was used to classify FC networks before and after rTMS. The results showed that (1) the active group showed a significant enhancement in connectivity in the beta band; (2) the global efficiency, local efficiency, and aggregation coefficient of the active group in the beta band decreased significantly; (3) the LDA algorithm combined with the beta band FC matrix achieved an average accuracy of 82.5% in distinguishing before and after treatment. This study demonstrated that brain FC could effectively assess the therapeutic effect of rTMS, among which the beta band was the most sensitive and effective frequency band. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10097-x.
Collapse
Affiliation(s)
- Yongcong Li
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Banghua Yang
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Jun Ma
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Yunzhe Li
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Hui Zeng
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Jie Zhang
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China
| |
Collapse
|
8
|
Goldenkoff ER, Deluisi JA, Lee TG, Hampstead BM, Taylor SF, Polk TA, Vesia M. Repeated spaced cortical paired associative stimulation promotes additive plasticity in the human parietal-motor circuit. Clin Neurophysiol 2024; 166:202-210. [PMID: 39182339 DOI: 10.1016/j.clinph.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE Repeated spaced sessions of repetitive transcranial magnetic stimulation (TMS) to the human primary motor cortex can lead to dose-dependent increases in motor cortical excitability. However, this has yet to be demonstrated in a defined cortical circuit. We aimed to examine the effects of repeated spaced cortical paired associative stimulation (cPAS) on excitability in the motor cortex. METHODS cPAS was delivered to the primary motor cortex (M1) and posterior parietal cortex (PPC) with two coils. In the multi-dose condition, three sessions of cPAS were delivered 50-min apart. The single-dose condition had one session of cPAS, followed by two sessions of a control cPAS protocol. Motor-evoked potentials were evaluated before and up to 40 min after each cPAS session as a measure of cortical excitability. RESULTS Compared to a single dose of cPAS, motor cortical excitability significantly increased after multi-dose cPAS. Increasing the number of cPAS sessions resulted in a cumulative, dose-dependent effect on excitability in the motor cortex, with each successive cPAS session leading to notable increases in potentiation. CONCLUSION Repeated spaced cPAS sessions summate to increase motor cortical excitability induced by single cPAS. SIGNIFICANCE Repeated spaced cPAS could potentially restore abilities lost due to disorders like stroke.
Collapse
Affiliation(s)
| | | | - Taraz G Lee
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | | | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
9
|
Sütçübaşı B, Bayram A, Metin B, Demiralp T. Neural correlates of approach-avoidance behavior in healthy subjects: Effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) over the right dorsolateral prefrontal cortex. Int J Psychophysiol 2024; 203:112392. [PMID: 39002638 DOI: 10.1016/j.ijpsycho.2024.112392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The dorsolateral prefrontal cortex (dlPFC) is implicated in top-down regulation of emotion, but the detailed network mechanisms require further elucidation. To investigate network-level functions of the dlPFC in emotion regulation, this study measured changes in task-based activation, resting-state and task-based functional connectivity (FC) patterns following suppression of dlPFC excitability by 1-Hz repetitive transcranial magnetic stimulation (rTMS). In a sham-controlled within-subject design, 1-Hz active or sham rTMS was applied to the right dlPFC of 19 healthy volunteers during two separate counterbalanced sessions. Following active and sham rTMS, functional magnetic resonance imaging (fMRI) was conducted in the resting state (rs-fMRI) and during approach-avoidance task responses to pictures with positive and negative emotional content (task-based fMRI). Activation and generalized psychophysiological interaction analyses were performed on task-based fMRI, and seed-based FC analysis was applied to rs-fMRI data. Task-based fMRI revealed greater and more lateralized activation in the right hemisphere during negative picture responses compared to positive picture responses. After active rTMS, greater activation was observed in the left middle prefrontal cortex compared to sham rTMS. Further, rTMS reduced response times and error rates in approach to positive pictures compared to negative pictures. Significant FC changes due to rTMS were observed predominantly in the frontoparietal network (FPN) and visual network (VN) during the task, and in the default mode network (DMN) and VN at rest. Suppression of right dlPFC activity by 1-Hz rTMS alters large-scale neural networks and modulates emotion, supporting potential applications for the treatment of mood disorders.
Collapse
Affiliation(s)
- Bernis Sütçübaşı
- Acibadem University, Faculty of Humanities and Social Sciences, Department of Psychology, Istanbul, Turkey
| | - Ali Bayram
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey.
| | - Barış Metin
- Uskudar University, Faculty of Medicine, Department of Neurology, Istanbul, Turkey.
| | - Tamer Demiralp
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul, Turkey.
| |
Collapse
|
10
|
Li Y, Yang B, Ma J, Gao S, Zeng H, Wang W. Assessment of rTMS treatment effects for methamphetamine use disorder based on EEG microstates. Behav Brain Res 2024; 465:114959. [PMID: 38494128 DOI: 10.1016/j.bbr.2024.114959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Microstates have been proposed as topographical maps representing large-scale resting-state networks and have recently been suggested as markers for methamphetamine use disorder (MUD). However, it is unknown whether and how they change after repetitive transcranial magnetic stimulation (rTMS) intervention. This study included a comprehensive subject population to investigate the effect of rTMS on MUD microstates. 34 patients with MUD underwent a 4-week randomized, double-blind rTMS intervention (active=17, sham=17). Two resting-state EEG recordings and VAS evaluations were conducted before and after the intervention period. Additionally, 17 healthy individuals were included as baseline controls. The modified k-means clustering method was used to calculate four microstates (MS-A∼MS-D) of EEG, and the FC network was also analyzed. The differences in microstate indicators between groups and within groups were compared. The durations of MS-A and MS-B microstates in patients with MUD were significantly lower than that in HC but showed significant improvements after rTMS intervention. Changes in microstate indicators were found to be significantly correlated with changes in craving level. Furthermore, selective modulation of the resting-state network by rTMS was observed in the FC network. The findings indicate that changes in microstates in patients with MUD are associated with craving level improvement following rTMS, suggesting they may serve as valuable evaluation markers.
Collapse
Affiliation(s)
- Yongcong Li
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Banghua Yang
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Jun Ma
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Shouwei Gao
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hui Zeng
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Shaanxi 710038, China.
| |
Collapse
|
11
|
Marzetti L, Basti A, Guidotti R, Baldassarre A, Metsomaa J, Zrenner C, D’Andrea A, Makkinayeri S, Pieramico G, Ilmoniemi RJ, Ziemann U, Romani GL, Pizzella V. Exploring Motor Network Connectivity in State-Dependent Transcranial Magnetic Stimulation: A Proof-of-Concept Study. Biomedicines 2024; 12:955. [PMID: 38790917 PMCID: PMC11118810 DOI: 10.3390/biomedicines12050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
State-dependent non-invasive brain stimulation (NIBS) informed by electroencephalography (EEG) has contributed to the understanding of NIBS inter-subject and inter-session variability. While these approaches focus on local EEG characteristics, it is acknowledged that the brain exhibits an intrinsic long-range dynamic organization in networks. This proof-of-concept study explores whether EEG connectivity of the primary motor cortex (M1) in the pre-stimulation period aligns with the Motor Network (MN) and how the MN state affects responses to the transcranial magnetic stimulation (TMS) of M1. One thousand suprathreshold TMS pulses were delivered to the left M1 in eight subjects at rest, with simultaneous EEG. Motor-evoked potentials (MEPs) were measured from the right hand. The source space functional connectivity of the left M1 to the whole brain was assessed using the imaginary part of the phase locking value at the frequency of the sensorimotor μ-rhythm in a 1 s window before the pulse. Group-level connectivity revealed functional links between the left M1, left supplementary motor area, and right M1. Also, pulses delivered at high MN connectivity states result in a greater MEP amplitude compared to low connectivity states. At the single-subject level, this relation is more highly expressed in subjects that feature an overall high cortico-spinal excitability. In conclusion, this study paves the way for MN connectivity-based NIBS.
Collapse
Affiliation(s)
- Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Alessio Basti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Roberto Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Johanna Metsomaa
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany (U.Z.)
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, 00076 Aalto, Finland
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, 72076 Tübingen, Germany
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H1, Canada
| | - Antea D’Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Saeed Makkinayeri
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giulia Pieramico
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Risto J. Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, 00076 Aalto, Finland
| | - Ulf Ziemann
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany (U.Z.)
- Department of Neurology & Stroke, University of Tübingen, 72076 Tübingen, Germany
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| |
Collapse
|
12
|
Gurdiel-Álvarez F, Navarro-López V, Varela-Rodríguez S, Juárez-Vela R, Cobos-Rincón A, Sánchez-González JL. Transcranial magnetic stimulation therapy for central post-stroke pain: systematic review and meta-analysis. Front Neurosci 2024; 18:1345128. [PMID: 38419662 PMCID: PMC10899389 DOI: 10.3389/fnins.2024.1345128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Although rare, central post-stroke pain remains one of the most refractory forms of neuropathic pain. It has been reported that repetitive transcranial magnetic stimulation (rTMS) may be effective in these cases of pain. Aim The aim of this study was to investigate the efficacy of rTMS in patients with central post-stroke pain (CPSP). Methods We included randomized controlled trials or Controlled Trials published until October 3rd, 2022, which studied the effect of rTMS compared to placebo in CPSP. We included studies of adult patients (>18 years) with a clinical diagnosis of stroke, in which the intervention consisted of the application of rTMS to treat CSP. Results Nine studies were included in the qualitative analysis; 6 studies (4 RCT and 2 non-RCT), with 180 participants, were included in the quantitative analysis. A significant reduction in CPSP was found in favor of rTMS compared with sham, with a large effect size (SMD: -1.45; 95% CI: -1.87; -1.03; p < 0.001; I2: 58%). Conclusion The findings of the present systematic review with meta-analysis suggest that there is low quality evidence for the effectiveness of rTMS in reducing CPSP. Systematic review registration Identifier (CRD42022365655).
Collapse
Affiliation(s)
- Francisco Gurdiel-Álvarez
- International Doctoral School, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Víctor Navarro-López
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | - Sergio Varela-Rodríguez
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Raúl Juárez-Vela
- Nursing Department, Faculty of Health Sciences, University of La Rioja, Research Group GRUPAC, Logroño, Spain
| | - Ana Cobos-Rincón
- Nursing Department, Faculty of Health Sciences, University of La Rioja, Research Group GRUPAC, Logroño, Spain
| | - Juan Luis Sánchez-González
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
13
|
Ti CHE, Hu C, Yuan K, Chu WCW, Tong RKY. Uncovering the Neural Mechanisms of Inter-Hemispheric Balance Restoration in Chronic Stroke Through EMG-Driven Robot Hand Training: Insights From Dynamic Causal Modeling. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1-11. [PMID: 38051622 DOI: 10.1109/tnsre.2023.3339756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
EMG-driven robot hand training can facilitate motor recovery in chronic stroke patients by restoring the interhemispheric balance between motor networks. However, the underlying mechanisms of reorganization between interhemispheric regions remain unclear. This study investigated the effective connectivity (EC) between the ventral premotor cortex (PMv), supplementary motor area (SMA), and primary motor cortex (M1) using Dynamic Causal Modeling (DCM) during motor tasks with the paretic hand. Nineteen chronic stroke subjects underwent 20 sessions of EMG-driven robot hand training, and their Action Reach Arm Test (ARAT) showed significant improvement ( β =3.56, [Formula: see text]). The improvement was correlated with the reduction of inhibitory coupling from the contralesional M1 to the ipsilesional M1 (r=0.58, p=0.014). An increase in the laterality index was only observed in homotopic M1, but not in the premotor area. Additionally, we identified an increase in resting-state functional connectivity (FC) between bilateral M1 ( β =0.11, p=0.01). Inter-M1 FC demonstrated marginal positive relationships with ARAT scores (r=0.402, p=0.110), but its changes did not correlate with ARAT improvements. These findings suggest that the improvement of hand functions brought about by EMG-driven robot hand training was driven explicitly by task-specific reorganization of motor networks. Particularly, the restoration of interhemispheric balance was induced by a reduction in interhemispheric inhibition from the contralesional M1 during motor tasks of the paretic hand. This finding sheds light on the mechanistic understanding of interhemispheric balance and functional recovery induced by EMG-driven robot training.
Collapse
|
14
|
Liu J, Wang J, Tan G, Sheng Y, Feng L, Tang T, Li X, Xie Q, Liu H, Wei Y. A Generalized Cortico-Muscular-Cortical Network to Evaluate the Effects of Three-Week Brain Stimulation. IEEE Trans Biomed Eng 2024; 71:195-206. [PMID: 37436865 DOI: 10.1109/tbme.2023.3294509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
OBJECTIVE Post-stroke transcranial magnetic stimulation (TMS) has gradually become a brain intervention to assist patients in the recovery of motor function. The long lasting regulatory of TMS may involve the coupling changes between cortex and muscles. However, the effects of multi-day TMS on motor recovery after stroke is unclear. METHODS This study proposed to quantify the effects of three-week TMS on brain activity and muscles movement performance based on a generalized cortico-muscular-cortical network (gCMCN). The gCMCN-based features were further extracted and combined with the partial least squares (PLS) method to predict the Fugl-Meyer of upper extremity (FMUE) in stroke patients, thereby establishing an objective rehabilitation method that can evaluate the positive effects of continuous TMS on motor function. RESULTS We found that the improvement of motor function after three-week TMS was significantly correlated with the complexity trend of information interaction between hemispheres and the intensity of corticomuscular coupling. In addition, the fitting coefficient ([Formula: see text]) for predicted and actual FMUE before and after TMS were 0.856 and 0.963, respectively, suggesting that the gCMCN-based measurement may be a promising method for evaluating the therapeutic effect of TMS. CONCLUSION From the perspective of a novel brain-muscles network with dynamic contraction as the entry point, this work quantified TMS-induced connectivity differences while evaluating the potential efficacy of multi-day TMS. SIGNIFICANCE It provides a unique insight for the further application of intervention therapy in the field of brain diseases.
Collapse
|
15
|
Snyder DB, Beardsley SA, Hyngstrom AS, Schmit BD. Cortical effects of wrist tendon vibration during an arm tracking task in chronic stroke survivors: An EEG study. PLoS One 2023; 18:e0266586. [PMID: 38127998 PMCID: PMC10735026 DOI: 10.1371/journal.pone.0266586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The purpose of this study was to characterize changes in cortical activity and connectivity in stroke survivors when vibration is applied to the wrist flexor tendons during a visuomotor tracking task. Data were collected from 10 chronic stroke participants and 10 neurologically-intact controls while tracking a target through a figure-8 pattern in the horizontal plane. Electroencephalography (EEG) was used to measure cortical activity (beta band desynchronization) and connectivity (beta band task-based coherence) with movement kinematics and performance error also being recorded during the task. All participants came into our lab on two separate days and performed three blocks (16 trials each, 48 total trials) of tracking, with the middle block including vibration or sham applied at the wrist flexor tendons. The order of the sessions (Vibe vs. Sham) was counterbalanced across participants to prevent ordering effects. During the Sham session, cortical activity increased as the tracking task progressed (over blocks). This effect was reduced when vibration was applied to controls. In contrast, vibration increased cortical activity during the vibration period in participants with stroke. Cortical connectivity increased during vibration, with larger effect sizes in participants with stroke. Changes in tracking performance, standard deviation of hand speed, were observed in both control and stroke groups. Overall, EEG measures of brain activity and connectivity provided insight into effects of vibration on brain control of a visuomotor task. The increases in cortical activity and connectivity with vibration improved patterns of activity in people with stroke. These findings suggest that reactivation of normal cortical networks via tendon vibration may be useful during physical rehabilitation of stroke patients.
Collapse
Affiliation(s)
- Dylan B. Snyder
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Scott A. Beardsley
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Allison S. Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
16
|
Devi M. Exploring research trends and focal points in the application of transcranial magnetic stimulation for enhancing motor function in post-stroke patients: A bibliometric and content analytical approach. Injury 2023; 54:111116. [PMID: 37880033 DOI: 10.1016/j.injury.2023.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Motor impairment is a significant health concern among post-stroke patients. Transcranial magnetic stimulation (TMS) is considered as an emerging rehabilitation therapy for various neurological conditions, and the effects of excitatory TMS on post-stroke have received much attention in past decade. However, the future hotspots and content analysis on the growth trends have not been studied. This bibliometric and content analysis aimed to study the global developmental history and current status of TMS for motor function of post-stroke from January 2004 to July 2023. METHODS Literature published on Scopus database from January 2004 to July 2023 were searched. Extracted data was analysed using the R studio and VOS viewer for author's publication, institutions, sources, keyword co-occurrence and world network analysis. Keyword cluster analysis, co-citation analysis for references and content analysis were also performed. We screened top 10 most cited or collaborative areas for publications, institutions and sources in the field of TMS associated with motor function of post-stroke. RESULTS In this study, a comprehensive analysis of 267 publications was conducted, revealing a substantial surge in research output throughout 2022. China emerged as the leading contributor, with 409 publications, followed by the United States with 211 publications. Notably, Harvard Medical School stood out as one of the most prolific institutions, accounting for 34 publications (13.12 %). Among researchers, Abo M garnered the highest publication count, with 9 articles (14.5 %). The Word cloud showed that motor function, repetitive transcranial magnetic stimulation (rTMS) and upper limb have been the focus of recent attention. Burst keywords on thematic evolution and topic trend shows that quality of life scale, network parameters, cognition, lower limb motor function are the future trends. CONCLUSION This bibliometric study describes that TMS has shown promising results in improving motor function of upper extremity in stroke patients, the long-term effects and durability of these improvements are still being investigated. Future research might focus on understanding the optimal duration and frequency of TMS sessions for sustained motor recovery and exploring strategies to maintain gains achieved through TMS over extended periods of time. Future studies can investigate the changes in the lower limb motor function.
Collapse
Affiliation(s)
- Manju Devi
- Department of Physiotherapy, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara, 144001, India.
| |
Collapse
|
17
|
Safdar A, Smith MC, Byblow WD, Stinear CM. Applications of Repetitive Transcranial Magnetic Stimulation to Improve Upper Limb Motor Performance After Stroke: A Systematic Review. Neurorehabil Neural Repair 2023; 37:837-849. [PMID: 37947106 PMCID: PMC10685705 DOI: 10.1177/15459683231209722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
BACKGROUND Noninvasive brain stimulation (NIBS) is a promising technique for improving upper limb motor performance post-stroke. Its application has been guided by the interhemispheric competition model and typically involves suppression of contralesional motor cortex. However, the bimodal balance recovery model prompts a more tailored application of NIBS based on ipsilesional corticomotor function. OBJECTIVE To review and assess the application of repetitive transcranial magnetic stimulation (rTMS) protocols that aimed to improve upper limb motor performance after stroke. METHODS A PubMed search was conducted for studies published between 1st January 2005 and 1st November 2022 using rTMS to improve upper limb motor performance of human adults after stroke. Studies were grouped according to whether facilitatory or suppressive rTMS was applied to the contralesional hemisphere. RESULTS Of the 492 studies identified, 70 were included in this review. Only 2 studies did not conform to the interhemispheric competition model, and facilitated the contralesional hemisphere. Only 21 out of 70 (30%) studies reported motor evoked potential (MEP) status as a biomarker of ipsilesional corticomotor function. Around half of the studies (37/70, 53%) checked whether rTMS had the expected effect by measuring corticomotor excitability (CME) after application. CONCLUSION The interhemispheric competition model dominates the application of rTMS post-stroke. The majority of recent and current studies do not consider bimodal balance recovery model for the application of rTMS. Evaluating CME after the application rTMS could confirm that the intervention had the intended neurophysiological effect. Future studies could select patients and apply rTMS protocols based on ipsilesional MEP status.
Collapse
Affiliation(s)
- Afifa Safdar
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Marie-Claire Smith
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Winston D. Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Cathy M. Stinear
- Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Espiritu AI, Hara T, Tolledo JK, Blair M, Burhan AM. Repetitive transcranial magnetic stimulation for apathy in patients with neurodegenerative conditions, cognitive impairment, stroke, and traumatic brain injury: a systematic review. Front Psychiatry 2023; 14:1259481. [PMID: 38034914 PMCID: PMC10684725 DOI: 10.3389/fpsyt.2023.1259481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Background We aimed to determine the effects and tolerability of repetitive transcranial magnetic stimulation (rTMS) on apathy in patients with neurodegenerative conditions, mild cognitive impairment (MCI), stroke, and traumatic brain injury (TBI) via systematic review. Methods We conducted a systematic search in major electronic health databases, including PubMed, Scopus, and PsycINFO, covering the period from inception to June 2023. Comparative clinical trials and cohort studies, and studies with before-after designs were considered for inclusion. We used the Cochrane Risk of Bias and the National Institutes of Health (NIH) tools to assess methodological quality. Results Out of 258 records identified, 14 studies met our eligibility criteria (11 randomized controlled trials (RCT) and 3 studies utilized before-and-after designs) with a total of 418 patients (overall female-to-male ratio 1:1.17) included in the review. The overall methodological quality of the included studies was assessed to be fair to good. The stimulation parameters used varied considerably across the studies. The summary findings of our review indicate the following observations on the effects of rTMS on apathy: (1) the results of all included studies in Alzheimer's disease investigating the effects of rTMS on apathy have consistently shown a positive impact on apathy; (2) the majority of studies conducted in Parkinson's disease have not found statistically significant results; (3) a single study (RCT) on patients with primary progressive aphasia demonstrated significant beneficial effects of rTMS on apathy; (4) the trials conducted on individuals with MCI yielded varying conclusions; (5) one study (RCT) in chronic stroke suggested that rTMS might have the potential to improve apathy; (6) one study conducted on individuals with mild TBI did not find a significant favorable association on apathy; and (7) the use of different rTMS protocols on the populations described is generally safe. Conclusion The feasibility of utilizing rTMS as a treatment for apathy has been suggested in this review. Overall, limited evidence suggests that rTMS intervention may have the potential to modify apathy among patients with AD, PPA, MCI and chronic stroke, but less so in PD and mild TBI. These findings require confirmation by larger, well-designed clinical trials.
Collapse
Affiliation(s)
- Adrian I. Espiritu
- Ontario Shores Centre for Mental Health Sciences, Whitby, ON, Canada
- Department of Psychiatry and Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Takatoshi Hara
- Department of Rehabilitation Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Mervin Blair
- Ontario Shores Centre for Mental Health Sciences, Whitby, ON, Canada
- Lawson Research Institute, London, ON, Canada
| | - Amer M. Burhan
- Ontario Shores Centre for Mental Health Sciences, Whitby, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Tang Z, Liu T, Liu Y, Han K, Su W, Zhao J, Chi Q, Zhang X, Zhang H. Different doses of intermittent theta burst stimulation for upper limb motor dysfunction after stroke: a study protocol for a randomized controlled trial. Front Neurosci 2023; 17:1259872. [PMID: 37869516 PMCID: PMC10585036 DOI: 10.3389/fnins.2023.1259872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Background Upper limb motor recovery is one of the important goals of stroke rehabilitation. Intermittent theta burst stimulation (iTBS), a new type of repetitive transcranial magnetic stimulation (rTMS), is considered a potential therapy. However, there is still no consensus on the efficacy of iTBS for upper limb motor dysfunction after stroke. Stimulus dose may be an important factor affecting the efficacy of iTBS. Therefore, we aim to investigate and compare the effects and neural mechanisms of three doses of iTBS on upper limb motor recovery in stroke patients, and our hypothesis is that the higher the dose of iTBS, the greater the improvement in upper limb motor function. Methods This prospective, randomized, controlled trial will recruit 56 stroke patients with upper limb motor dysfunction. All participants will be randomized in a 1:1:1:1 ratio to receive 21 sessions of 600 pulses active iTBS, 1,200 pulses active iTBS, 1,800 pulses active iTBS, or 1,800 pulses sham iTBS in addition to conventional rehabilitation training. The primary outcome is the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score from baseline to end of intervention, and the secondary outcomes are the Wolf Motor Function Test (WMFT), Grip Strength (GS), Modified Barthel Index (MBI), and Stroke Impact Scale (SIS). The FMA-UE, MBI, and SIS are assessed pre-treatment, post-treatment, and at the 3-weeks follow-up. The WMFT, GS, and resting-state functional magnetic resonance imaging (rs-fMRI) data will be obtained pre- and post-treatment. Discussion The iTBS intervention in this study protocol is expected to be a potential method to promote upper limb motor recovery after stroke, and the results may provide supportive evidence for the optimal dose of iTBS intervention.
Collapse
Affiliation(s)
- Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Tianhao Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Ying Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Kaiyue Han
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Wenlong Su
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jingdu Zhao
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Qianqian Chi
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Xiaonian Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
20
|
Chang H, Sheng Y, Liu J, Yang H, Pan X, Liu H. Noninvasive Brain Imaging and Stimulation in Post-Stroke Motor Rehabilitation: A Review. IEEE Trans Cogn Dev Syst 2023; 15:1085-1101. [DOI: 10.1109/tcds.2022.3232581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Hui Chang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yixuan Sheng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Jinbiao Liu
- Research Centre for Augmented Intelligence, Zhejiang Laboratory, Artificial Intelligence Research Institute, Hangzhou, China
| | - Hongyu Yang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Xiangyu Pan
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Honghai Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
21
|
Fan L, Li Y, Huang ZG, Zhang W, Wu X, Liu T, Wang J. Low-frequency repetitive transcranial magnetic stimulation alters the individual functional dynamical landscape. Cereb Cortex 2023; 33:9583-9598. [PMID: 37376783 DOI: 10.1093/cercor/bhad228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive approach to modulate brain activity and behavior in humans. Still, how individual resting-state brain dynamics after rTMS evolves across different functional configurations is rarely studied. Here, using resting state fMRI data from healthy subjects, we aimed to examine the effects of rTMS to individual large-scale brain dynamics. Using Topological Data Analysis based Mapper approach, we construct the precise dynamic mapping (PDM) for each participant. To reveal the relationship between PDM and canonical functional representation of the resting brain, we annotated the graph using relative activation proportion of a set of large-scale resting-state networks (RSNs) and assigned the single brain volume to corresponding RSN-dominant or a hub state (not any RSN was dominant). Our results show that (i) low-frequency rTMS could induce changed temporal evolution of brain states; (ii) rTMS didn't alter the hub-periphery configurations underlined resting-state brain dynamics; and (iii) the rTMS effects on brain dynamics differ across the left frontal and occipital lobe. In conclusion, low-frequency rTMS significantly alters the individual temporo-spatial dynamics, and our finding further suggested a potential target-dependent alteration of brain dynamics. This work provides a new perspective to comprehend the heterogeneous effect of rTMS.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi 710049, China
| |
Collapse
|
22
|
Jin J, Wang X, Wang H, Li Y, Liu Z, Yin T. Train duration and inter-train interval determine the direction and intensity of high-frequency rTMS after-effects. Front Neurosci 2023; 17:1157080. [PMID: 37476832 PMCID: PMC10355321 DOI: 10.3389/fnins.2023.1157080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background and objective It has been proved that repetitive transcranial magnetic stimulation (rTMS) triggers the modulation of homeostatic metaplasticity, which causes the effect of rTMS to disappear or even reverse, and a certain length of interval between rTMS trains might break the modulation of homeostatic metaplasticity. However, it remains unknown whether the effects of high-frequency rTMS can be modulated by homeostatic metaplasticity by lengthening the train duration and whether homeostatic metaplasticity can be broken by prolonging the inter-train interval. Methods In this study, 15 subjects participated in two experiments including different rTMS protocols targeting the motor cortex. In the first experiment, high-frequency rTMS protocols with different train durations (2 s and 5 s) and an inter-train interval of 25 s were adopted. In the second experiment, high-frequency rTMS protocols with a train duration of 5 s and different inter-train intervals (50 s and 100 s) were adopted. A sham protocol was also included. Changes of motor evoked potential amplitude acquired from electromyography, power spectral density, and intra-region and inter-region functional connectivity acquired from electroencephalography in the resting state before and after each rTMS protocol were evaluated. Results High-frequency rTMS with 2 s train duration and 25 s inter-train interval increased cortex excitability and the power spectral density of bilateral central regions in the alpha frequency band and enhanced the functional connectivity between central regions and other brain regions. When the train duration was prolonged to 5 s, the after-effects of high-frequency rTMS disappeared. The after-effects of rTMS with 5 s train duration and 100 s inter-train interval were the same as those of rTMS with 2 s train duration and 25 s inter-train interval. Conclusion Our results indicated that train duration and inter-train interval could induce the homeostatic metaplasticiy and determine the direction of intensity of rTMS after-effects, and should certainly be taken into account when performing rTMS in both research and clinical practice.
Collapse
Affiliation(s)
- Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Cheng S, Xin R, Zhao Y, Wang P, Feng W, Liu P. Evaluation of fMRI activation in post-stroke patients with movement disorders after repetitive transcranial magnetic stimulation: a scoping review. Front Neurol 2023; 14:1192545. [PMID: 37404941 PMCID: PMC10315664 DOI: 10.3389/fneur.2023.1192545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Background Movement disorders are one of the most common stroke residual effects, which cause a major stress on their families and society. Repetitive transcranial magnetic stimulation (rTMS) could change neuroplasticity, which has been suggested as an alternative rehabilitative treatment for enhancing stroke recovery. Functional magnetic resonance imaging (fMRI) is a promising tool to explore neural mechanisms underlying rTMS intervention. Object Our primary goal is to better understand the neuroplastic mechanisms of rTMS in stroke rehabilitation, this paper provides a scoping review of recent studies, which investigate the alteration of brain activity using fMRI after the application of rTMS over the primary motor area (M1) in movement disorders patients after stroke. Method The database PubMed, Embase, Web of Science, WanFang Chinese database, ZhiWang Chinese database from establishment of each database until December 2022 were included. Two researchers reviewed the study, collected the information and the relevant characteristic extracted to a summary table. Two researchers also assessed the quality of literature with the Downs and Black criteria. When the two researchers unable to reach an agreement, a third researcher would have been consulted. Results Seven hundred and eleven studies in all were discovered in the databases, and nine were finally enrolled. They were of good quality or fair quality. The literature mainly involved the therapeutic effect and imaging mechanisms of rTMS on improving movement disorders after stroke. In all of them, there was improvement of the motor function post-rTMS treatment. Both high-frequency rTMS (HF-rTMS) and low-frequency rTMS (LF-rTMS) can induce increased functional connectivity, which may not directly correspond to the impact of rTMS on the activation of the stimulated brain areas. Comparing real rTMS with sham group, the neuroplastic effect of real rTMS can lead to better functional connectivity in the brain network in assisting stroke recovery. Conclusion rTMS allows the excitation and synchronization of neural activity, promotes the reorganization of brain function, and achieves the motor function recovery. fMRI can observe the influence of rTMS on brain networks and reveal the neuroplasticity mechanism of post-stroke rehabilitation. The scoping review helps us to put forward a series of recommendations that might guide future researchers exploring the effect of motor stroke treatments on brain connectivity.
Collapse
Affiliation(s)
- Siman Cheng
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Rong Xin
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open 2023; 10:100495. [PMID: 37396489 PMCID: PMC10311181 DOI: 10.1016/j.ejro.2023.100495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Jixin Luan
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Canada
| | - Zeshan Yao
- Biomedical Engineering Institute, Jingjinji National Center of Technology Innovation, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| |
Collapse
|
25
|
Banduni O, Saini M, Singh N, Nath D, Kumaran SS, Kumar N, Srivastava MVP, Mehndiratta A. Post-Stroke Rehabilitation of Distal Upper Limb with New Perspective Technologies: Virtual Reality and Repetitive Transcranial Magnetic Stimulation-A Mini Review. J Clin Med 2023; 12:2944. [PMID: 37109280 PMCID: PMC10142518 DOI: 10.3390/jcm12082944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Upper extremity motor impairment is the most common sequelae in patients with stroke. Moreover, its continual nature limits the optimal functioning of patients in the activities of daily living. Because of the intrinsic limitations in the conventional form of rehabilitation, the rehabilitation applications have been expanded to technology-driven solutions, such as Virtual Reality and Repetitive Transcranial Magnetic Stimulation (rTMS). The motor relearning processes are influenced by variables, such as task specificity, motivation, and feedback provision, and a VR environment in the form of interactive games could provide novel and motivating customized training solutions for better post-stroke upper limb motor improvement. rTMS being a precise non-invasive brain stimulation method with good control of stimulation parameters, has the potential to facilitate neuroplasticity and hence a good recovery. Although several studies have discussed these forms of approaches and their underlying mechanisms, only a few of them have specifically summarized the synergistic applications of these paradigms. To bridge the gaps, this mini review presents recent research and focuses precisely on the applications of VR and rTMS in distal upper limb rehabilitation. It is anticipated that this article will provide a better representation of the role of VR and rTMS in distal joint upper limb rehabilitation in patients with stroke.
Collapse
Affiliation(s)
- Onika Banduni
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi 110016, India
| | - Megha Saini
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi 110016, India
| | - Neha Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi 110016, India
| | - Debasish Nath
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi 110016, India
| | - S. Senthil Kumaran
- Department of Nuclear Medicine and Resonance, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Nand Kumar
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - M. V. Padma Srivastava
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
26
|
Yukawa Y, Shibata S, Koganemaru S, Minakuchi M, Shimomura R, Nakamura K, Mima T. Low-frequency repetitive transcranial magnetic stimulation can alleviate spasticity and induce functional recovery in patients with severe chronic stroke: A prospective, non-controlled, pilot study. Heliyon 2023; 9:e15564. [PMID: 37128321 PMCID: PMC10148132 DOI: 10.1016/j.heliyon.2023.e15564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Objective Developing new therapies to improve motor function in patients with severe chronic stroke remains a major focus of neurorehabilitation. In this prospective, non-controlled, pilot study, we aimed to investigate the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) combined with occupational therapy (OT) on the motor function recovery of the affected upper limb in chronic stroke patients with severe upper limb hemiparesis. Methods Consecutive patients (n = 40) diagnosed with chronic stroke (time since stroke, ≥1 year) and upper limb hemiparesis were enrolled in this study. Patients were classified according to the Brunnstrom recovery stage (BRS) for fingers. The severity of upper limb hemiparesis was categorized as mild (BRS IV-VI) or severe (BRS I-III). Patients received low-frequency rTMS to the contralesional primary motor area (M1) followed by OT for 12 consecutive days. The primary outcome was upper limb motor recovery, as measured with the Fugl-Meyer assessment (FMA). Secondary outcomes included manual dexterity, upper limb use, spasticity of the fingers and wrist, and motor evoked potential (MEP). Results Patients with severe hemiparesis showed a significant increase in upper limb use, significantly improved quality of movement, and significantly reduced spasticity. Those with mild hemiparesis showed significant improvements in the FMA scores and manual dexterity, a significant increase in upper limb use and MEP, and significantly reduced spasticity. Conclusions Low-frequency rTMS applied to the contralesional M1 combined with OT was effective in the rehabilitation of chronic stroke patients with severe upper limb hemiparesis by reducing the spasticity of the fingers.
Collapse
Affiliation(s)
- Yoshihiro Yukawa
- Department of Rehabilitation, Wakayama Professional University of Rehabilitation, 3-1, Minatohon-machi, Wakayama-shi, Wakayama, ZIP: 640-8222, Japan
| | - Sumiya Shibata
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, Japan (ZIP: 950-3198)
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, ZIP: 950-3198, Japan
| | - Satoko Koganemaru
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54, Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, ZIP: 606-8507, Japan
| | - Masatoshi Minakuchi
- Clover Care Medical Co.Ltd.,Wakayama, Japan, 2-34-17, Takao, Tanabe-shi, Wakayama, ZIP:646-0028, Japan
| | - Ryota Shimomura
- Department of Rehabilitation, Murata Hospital, Osaka, Japan, 4-2-1, Tajima, Ikuno-ku, Osaka-shi, Osaka, ZIP: 544-0011, Japan
| | - Kazuhito Nakamura
- Department of Neurosurgery, Murata Hospital, Osaka, Japan, 4-2-1, Tajima, Ikuno-ku, Osaka-shi, Osaka, ZIP: 544-0011, Japan
- Interdisciplinary Laboratory for Advanced Medical Science, Louis Pasteur Center for Medical Research, Kyoto, Japan, 103-5, Tanakamonzen-cho, Sakyo-ku, Kyoto-shi, Kyoto, ZIP: 606-8225, Japan
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, 56-1, Tojiin, Kitamachi, Kita-ku, Kyoto-shi, Kyoto, ZIP: 603-8577, Japan
- Corresponding author. Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, 56-1, Tojiin, Kitamachi, Kita-ku, Kyoto, 603-8577, Kyoto, Japan.
| |
Collapse
|
27
|
Champagne PL, Blanchette AK, Schneider C. Continuous, and not intermittent, theta-burst stimulation of the unlesioned hemisphere improved brain and hand function in chronic stroke: A case study. BRAIN DISORDERS 2023. [DOI: 10.1016/j.dscb.2022.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
28
|
Katai S, Maeda M, Katsuyama S, Maruyama Y, Midorikawa M, Okushima T, Yoshida K. Cortical reorganization correlates with motor recovery after low-frequency repetitive transcranial magnetic stimulation combined with occupational therapy in chronic subcortical stroke patients. NEUROIMAGE: REPORTS 2023. [DOI: 10.1016/j.ynirp.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Chen N, Qiu X, Hua Y, Hu J, Bai Y. Effects of sequential inhibitory and facilitatory repetitive transcranial magnetic stimulation on neurological and functional recovery of a patient with chronic stroke: A case report and literature review. Front Neurol 2023; 14:1064718. [PMID: 36779047 PMCID: PMC9911674 DOI: 10.3389/fneur.2023.1064718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Background and purpose The effects of conventional protocols of repetitive transcranial magnetic stimulation (rTMS) in the chronic phase of stroke are limited. This study aimed to apply the sequential inhibitory and facilitatory rTMS for upper limb motor dysfunction post-stroke to observe the efficacy and explore the possible neurophysiological mechanism. We hypothesize that this protocol would both enhance the excitability of affected M1 and promote connections among motor areas. Case description We reported a 55-year-old female patient with a 1-year chronic stroke and right-sided hemiplegia, who underwent the 14-session rTMS with seven sessions of low frequency (LF) and with seven sessions of high frequency (HF). Clinical scales mainly including Fugl-Meyer Assessment of Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), neurophysiological measures, and functional near-infrared spectroscopy (fNIRS) were assessed before (T0), at the midpoint (T1), and after the intervention (T2). Outcomes The patient exhibited post-intervention improvement in upper extremity function. There was increased excitability in the ipsilesional hemisphere and the opposite in the contralesional hemisphere. The interhemispheric inhibition (IHI) ratio increased from 2.70 to 10.81 and finally decreased to 1.34. Oxy-Hb signal was significantly decreased in affected M1 and mildly decreased in unaffected M1, while that of PMC and SMA on the affected side increased significantly. Conclusion The sequential inhibitory and facilitatory rTMS significantly promoted motor recovery in the patient. Related mechanisms include upregulation of excitability in the ipsilesional hemisphere, return of interhemispheric balance, and neuroplasticity-induced cortical reorganization.
Collapse
|
30
|
Olafson E, Russello G, Jamison KW, Liu H, Wang D, Bruss JE, Boes AD, Kuceyeski A. Frontoparietal network activation is associated with motor recovery in ischemic stroke patients. Commun Biol 2022; 5:993. [PMID: 36131012 PMCID: PMC9492673 DOI: 10.1038/s42003-022-03950-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Strokes cause lesions that damage brain tissue, disrupt normal brain activity patterns and can lead to impairments in motor function. Although modulation of cortical activity is central to stimulation-based rehabilitative therapies, aberrant and adaptive patterns of brain activity after stroke have not yet been fully characterized. Here, we apply a brain dynamics analysis approach to study longitudinal brain activity patterns in individuals with ischemic pontine stroke. We first found 4 commonly occurring brain states largely characterized by high amplitude activations in the visual, frontoparietal, default mode, and motor networks. Stroke subjects spent less time in the frontoparietal state compared to controls. For individuals with dominant-hand CST damage, more time spent in the frontoparietal state from 1 week to 3-6 months post-stroke was associated with better motor recovery over the same time period, an association which was independent of baseline impairment. Furthermore, the amount of time spent in brain states was linked empirically to functional connectivity. This work suggests that when the dominant-hand CST is compromised in stroke, resting state configurations may include increased activation of the frontoparietal network, which may facilitate compensatory neural pathways that support recovery of motor function when traditional motor circuits of the dominant-hemisphere are compromised.
Collapse
Affiliation(s)
- Emily Olafson
- Department of Radiology, Weill Cornell Medicine, New York City, NY, 10021, USA.
| | - Georgia Russello
- Pelham Memorial High School, 575 Colonial Ave, Village of Pelham, NY, 10803, USA
| | - Keith W Jamison
- Department of Radiology, Weill Cornell Medicine, New York City, NY, 10021, USA
| | - Hesheng Liu
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Danhong Wang
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Joel E Bruss
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Aaron D Boes
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York City, NY, 10021, USA
| |
Collapse
|
31
|
Liu F, Chen C, Bai Z, Hong W, Wang S, Tang C. Specific subsystems of the inferior parietal lobule are associated with hand dysfunction following stroke: A cross-sectional resting-state fMRI study. CNS Neurosci Ther 2022; 28:2116-2128. [PMID: 35996952 PMCID: PMC9627383 DOI: 10.1111/cns.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
AIM The inferior parietal lobule (IPL) plays important roles in reaching and grasping during hand movements, but how reorganizations of IPL subsystems underlie the paretic hand remains unclear. We aimed to explore whether specific IPL subsystems were disrupted and associated with hand performance after chronic stroke. METHODS In this cross-sectional study, we recruited 65 patients who had chronic subcortical strokes and 40 healthy controls from China. Each participant underwent the Fugl-Meyer Assessment of Hand and Wrist and resting-state fMRI at baseline. We mainly explored the group differences in resting-state effective connectivity (EC) patterns for six IPL subregions in each hemisphere, and we correlated these EC patterns with paretic hand performance across the whole stroke group and stroke subgroups. Moreover, we used receiver operating characteristic curve analysis to distinguish the stroke subgroups with partially (PPH) and completely (CPH) paretic hands. RESULTS Stroke patients exhibited abnormal EC patterns with ipsilesional PFt and bilateral PGa, and five sensorimotor-parietal/two parietal-temporal subsystems were positively or negatively correlated with hand performance. Compared with CPH patients, PPH patients exhibited abnormal EC patterns with the contralesional PFop. The PPH patients had one motor-parietal subsystem, while the CPH patients had one sensorimotor-parietal and three parietal-occipital subsystems that were associated with hand performance. Notably, the EC strength from the contralesional PFop to the ipsilesional superior frontal gyrus could distinguish patients with PPH from patients with CPH. CONCLUSIONS The IPL subsystems manifest specific functional reorganization and are associated with hand dysfunction following chronic stroke.
Collapse
Affiliation(s)
- FeiWen Liu
- Department of Rehabilitation MedicineChengdu Second People's HospitalChengduChina
| | - ChangCheng Chen
- Department of Rehabilitation MedicineQingtian People's HospitalLishuiChina
| | - ZhongFei Bai
- Yangzhi Rehabilitation Hospital Affiliated to Tongji University (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - WenJun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - SiZhong Wang
- Centre for Health, Activity and Rehabilitation Research (CHARR), School of PhysiotherapyUniversity of OtagoDunedinNew Zealand
| | - ChaoZheng Tang
- Capacity Building and Continuing Education CenterNational Health Commission of the People's Republic of ChinaBeijingChina
| |
Collapse
|
32
|
Livett MF, Williams D, Potter H, Cairns M. Functional cortical changes associated with shoulder instability - a systematic review. Shoulder Elbow 2022; 14:452-464. [PMID: 35846404 PMCID: PMC9284298 DOI: 10.1177/17585732211019016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Glenohumeral joint instability is associated with structural deficits and/or alterations in sensory and motor processing; however, a proportion of patients with glenohumeral joint instability fail to respond to surgical and rehabilitative measures. This systematic review aimed to establish if functional cortical changes occur in patients with glenohumeral joint instability. METHODS AMED, CINAHL, Cochrane Central Register of Controlled Trials, Embase, Medline, PEDro, Pubmed, PsychINFO and Scopus were searched from inception to 17 March 2021. Randomised controlled trials and non-randomised trials were included and quality was appraised using the Downs and Black tool. RESULTS One thousand two hundred seventy-nine records were identified of which five were included in the review. All studies showed altered cortical function when comparing instability patients with healthy controls and included areas associated with higher cortical functions. DISCUSSION The findings of this systematic review offer some insight as to why interventions addressing peripheral pathoanatomical factors in patients with glenohumeral joint instability may fail in some cases due to functional cortical changes. However, data are of moderate to high risk of bias. Further high-quality research is required to ascertain the degree of functional cortical changes associated with the type and duration of glenohumeral joint instability.
Collapse
Affiliation(s)
- Morissa F Livett
- School of Health and Social Work, University of Hertfordshire, Hatfield, UK,Morissa F Livett, Cornwall Partnership NHS
Foundation Trust, Bodmin Community Hospital, Boundary Road, Bodmin, Cornwall
PL31 2QT, UK.
| | | | - Hayley Potter
- Cornwall Partnership NHS Foundation
Trust, Bodmin, UK
| | - Melinda Cairns
- School of Health and Social Work, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
33
|
Liu J, Tan G, Wang J, Wei Y, Sheng Y, Chang H, Xie Q, Liu H. Closed-Loop Construction and Analysis of Cortico-Muscular-Cortical Functional Network After Stroke. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1575-1586. [PMID: 35030075 DOI: 10.1109/tmi.2022.3143133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Brain networks allow a topological understanding into the pathophysiology of stroke-induced motor deficits, and have been an influential tool for investigating brain functions. Unfortunately, currently applied methods generally lack in the recognition of the dynamic changes in the cortical networks related to muscle activity, which is crucial to clarify the alterations of the cooperative working patterns in the motor control system after stroke. In this study, we integrate corticomuscular and intermuscular interactions to cortico-cortical network and propose a novel closed-loop construction of cortico-muscular-cortical functional network, named closed-loop network (CLN). Directional characteristic in terms of differentiating causal interactions is endowed on basis of the CLN framework, further expanding the definition of functional connectivity (FC) and effective connectivity (EC) dedicated to CLN. Next, CLN is applied to stroke patients to reveal the underlying after-effects mechanism of low frequency repetitive transcranial magnetic stimulation (rTMS) induced alterations of cortical physiologic functions during movement. Results show that the short-term modulation of rTMS is reflected in the enhancement of information interaction within the interhemispheric primary motor regions and inhibition of the coupling between motor cortex and effector muscles. CLN provides a new perspective for the study of motor-related cortical networks with muscle activities involvement instead of being restricted to brain network analysis of behaviors.
Collapse
|
34
|
Cassidy JM, Mark JI, Cramer SC. Functional connectivity drives stroke recovery: shifting the paradigm from correlation to causation. Brain 2022; 145:1211-1228. [PMID: 34932786 PMCID: PMC9630718 DOI: 10.1093/brain/awab469] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/14/2022] Open
Abstract
Stroke is a leading cause of disability, with deficits encompassing multiple functional domains. The heterogeneity underlying stroke poses significant challenges in the prediction of post-stroke recovery, prompting the development of neuroimaging-based biomarkers. Structural neuroimaging measurements, particularly those reflecting corticospinal tract injury, are well-documented in the literature as potential biomarker candidates of post-stroke motor recovery. Consistent with the view of stroke as a 'circuitopathy', functional neuroimaging measures probing functional connectivity may also prove informative in post-stroke recovery. An important step in the development of biomarkers based on functional neural network connectivity is the establishment of causality between connectivity and post-stroke recovery. Current evidence predominantly involves statistical correlations between connectivity measures and post-stroke behavioural status, either cross-sectionally or serially over time. However, the advancement of functional connectivity application in stroke depends on devising experiments that infer causality. In 1965, Sir Austin Bradford Hill introduced nine viewpoints to consider when determining the causality of an association: (i) strength; (ii) consistency; (iii) specificity; (iv) temporality; (v) biological gradient; (vi) plausibility; (vii) coherence; (viii) experiment; and (ix) analogy. Collectively referred to as the Bradford Hill Criteria, these points have been widely adopted in epidemiology. In this review, we assert the value of implementing Bradford Hill's framework to stroke rehabilitation and neuroimaging. We focus on the role of neural network connectivity measurements acquired from task-oriented and resting-state functional MRI, EEG, magnetoencephalography and functional near-infrared spectroscopy in describing and predicting post-stroke behavioural status and recovery. We also identify research opportunities within each Bradford Hill tenet to shift the experimental paradigm from correlation to causation.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Allied Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jasper I Mark
- Department of Allied Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles; and California Rehabilitation Institute, Los Angeles, CA, USA
| |
Collapse
|
35
|
Lu Y, Xia Y, Wu Y, Pan X, Wang Z, Li Y. Repetitive transcranial magnetic stimulation for upper limb motor function and activities of daily living in patients with stroke: a protocol of a systematic review and Bayesian network meta-analysis. BMJ Open 2022; 12:e051630. [PMID: 35273041 PMCID: PMC8915325 DOI: 10.1136/bmjopen-2021-051630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Patients with stroke usually suffer from varying degrees of movement dysfunction, which seriously affects their quality of life, especially for the upper limb dysfunction. Therefore, this study aims to compare the effects of different repetitive transcranial magnetic stimulation (rTMS) modalities on upper limb motor function and daily activities in patients with stroke. METHODS AND ANALYSIS Relevant research will be collected systematically from PubMed, Web of Science, Embase, Cochrane Library, ProQuest, Wanfang Database, China National Knowledge Infrastructure and Chinese Scientific and Journal Database (VIP) about randomised controlled trials of rTMS in the stroke treatment range from the establishment to November 2020. Primary outcomes will be obtained from scales measuring the upper limb motor function like Upper Extremity Fugl-Meyer Assessment Scale, Wolf Motor Function Test, Jebsen-Taylor Hand Function Test, Action Research Arm Test and Box and Block Test. The secondary outcomes include modified Barthel Index and adverse events (such as vertigo, headache and epilepsy), with the goal of assessing patients' activities of daily living and the safety of treatment. In order to avoid personal bias in the included studies, two reviewers will conduct the data extraction and quality evaluation independently, and all data analyses will be performed by Generate Mixed Treatment comparison software V.0.14.3 and Stata V.16.0. ETHICS AND DISSEMINATION The network meta-analysis (NMA) in this study does not require ethical approval because the data analysis will be used only to evaluate the rTMS treatment efficacy without patients' private information. In addition, the results will be disseminated in international conference reports and peer-reviewed manuscripts. PROSPERO REGISTRATION NUMBER CRD42020212253.
Collapse
Affiliation(s)
- Yue Lu
- Department of Health Sciences, Wuhan Sports University, Wuhan, Hubei, China
| | - Yuan Xia
- Department of Health Sciences, Wuhan Sports University, Wuhan, Hubei, China
| | - Yue Wu
- Department of Health Sciences, Wuhan Sports University, Wuhan, Hubei, China
| | - Xinyong Pan
- Department of Health Sciences, Wuhan Sports University, Wuhan, Hubei, China
| | - Zhenyu Wang
- Department of Health Sciences, Wuhan Sports University, Wuhan, Hubei, China
| | - Yongjie Li
- Department of Rehabilitation Medicine, Guizhou Orthopedics Hospital, Guiyang, Guizhou, China
| |
Collapse
|
36
|
Otaki R, Oouchida Y, Aizu N, Sudo T, Sasahara H, Saito Y, Takemura S, Izumi SI. Relationship Between Body-Specific Attention to a Paretic Limb and Real-World Arm Use in Stroke Patients: A Longitudinal Study. Front Syst Neurosci 2022; 15:806257. [PMID: 35273480 PMCID: PMC8902799 DOI: 10.3389/fnsys.2021.806257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Learned nonuse is a major problem in upper limb (UL) rehabilitation after stroke. Among the various factors that contribute to learned nonuse, recent studies have focused on body representation of the paretic limb in the brain. We previously developed a method to measure body-specific attention, as a marker of body representation of the paretic limb and revealed a decline in body-specific attention to the paretic limb in chronic stroke patients by a cross-sectional study. However, longitudinal changes in body-specific attention and paretic arm use in daily life (real-world arm use) from the onset to the chronic phase, and their relationship, remain unknown. Here, in a longitudinal, prospective, observational study, we sought to elucidate the longitudinal changes in body-specific attention to the paretic limb and real-world arm use, and their relationship, by using accelerometers and psychophysical methods, respectively, in 25 patients with subacute stroke. Measurements were taken at baseline (TBL), 2 weeks (T2w), 1 month (T1M), 2 months (T2M), and 6 months (T6M) after enrollment. UL function was measured using the Fugl-Meyer Assessment (FMA) and Action Research Arm Test (ARAT). Real-world arm use was measured using accelerometers on both wrists. Body-specific attention was measured using a visual detection task. The UL function and real-world arm use improved up to T6M. Longitudinal changes in body-specific attention were most remarkable at T1M. Changes in body-specific attention up to T1M correlated positively with changes in real-world arm use up to T6M, and from T1M to T6M, and the latter more strongly correlated with changes in real-world arm use. Changes in real-world arm use up to T2M correlated positively with changes in FMA up to T2M and T6M. No correlation was found between body-specific attention and FMA scores. Thus, these results suggest that improved body-specific attention to the paretic limb during the early phase contributes to increasing long-term real-world arm use and that increased real-world use is associated with the recovery of UL function. Our results may contribute to the development of rehabilitation strategies to enhance adaptive changes in body representation in the brain and increase real-world arm use after stroke.
Collapse
Affiliation(s)
- Ryoji Otaki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation, Yamagata Saisei Hospital, Yamagata, Japan
| | - Yutaka Oouchida
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Education, Osaka Kyoiku University, Osaka, Japan
| | - Naoki Aizu
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Tamami Sudo
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Computer and Information Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Sasahara
- Department of Rehabilitation, Yamagata Saisei Hospital, Yamagata, Japan
| | - Yuki Saito
- Department of Neurosurgery, Yamagata Saisei Hospital, Yamagata, Japan
| | - Sunao Takemura
- Department of Neurosurgery, Yamagata Saisei Hospital, Yamagata, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| |
Collapse
|
37
|
Hildesheim FE, Silver AN, Dominguez-Vargas AU, Andrushko JW, Edwards JD, Dancause N, Thiel A. Predicting Individual Treatment Response to rTMS for Motor Recovery After Stroke: A Review and the CanStim Perspective. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:795335. [PMID: 36188894 PMCID: PMC9397689 DOI: 10.3389/fresc.2022.795335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022]
Abstract
Background Rehabilitation is critical for reducing stroke-related disability and improving quality-of-life post-stroke. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique used as stand-alone or adjunct treatment to physiotherapy, may be of benefit for motor recovery in subgroups of stroke patients. The Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim) seeks to advance the use of these techniques to improve post-stroke recovery through clinical trials and pre-clinical studies using standardized research protocols. Here, we review existing clinical trials for demographic, clinical, and neurobiological factors which may predict treatment response to identify knowledge gaps which need to be addressed before implementing these parameters for patient stratification in clinical trial protocols. Objective To provide a review of clinical rTMS trials of stroke recovery identifying factors associated with rTMS response in stroke patients with motor deficits and develop research perspectives for pre-clinical and clinical studies. Methods A literature search was performed in PubMed, using the Boolean search terms stroke AND repetitive transcranial magnetic stimulation OR rTMS AND motor for studies investigating the use of rTMS for motor recovery in stroke patients at any recovery phase. A total of 1,676 articles were screened by two blinded raters, with 26 papers identified for inclusion in this review. Results Multiple possible factors associated with rTMS response were identified, including stroke location, cortical thickness, brain-derived neurotrophic factor (BDNF) genotype, initial stroke severity, and several imaging and clinical factors associated with a relatively preserved functional motor network of the ipsilesional hemisphere. Age, sex, and time post-stroke were generally not related to rTMS response. Factors associated with greater response were identified in studies of both excitatory ipsilesional and inhibitory contralesional rTMS. Heterogeneous study designs and contradictory data exemplify the need for greater protocol standardization and high-quality controlled trials. Conclusion Clinical, brain structural and neurobiological factors have been identified as potential predictors for rTMS response in stroke patients with motor impairment. These factors can inform the design of future clinical trials, before being considered for optimization of individual rehabilitation therapy for stroke patients. Pre-clinical models for stroke recovery, specifically developed in a clinical context, may accelerate this process.
Collapse
Affiliation(s)
- Franziska E. Hildesheim
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Alexander N. Silver
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Adan-Ulises Dominguez-Vargas
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Justin W. Andrushko
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jodi D. Edwards
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Numa Dancause
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- *Correspondence: Alexander Thiel
| |
Collapse
|
38
|
Rafique SA, Steeves JKE. Modulating intrinsic functional connectivity with visual cortex using low-frequency repetitive transcranial magnetic stimulation. Brain Behav 2022; 12:e2491. [PMID: 35049143 PMCID: PMC8865167 DOI: 10.1002/brb3.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Intrinsic network connectivity becomes altered in pathophysiology. Noninvasive brain stimulation can modulate pathological functional networks in an attempt to restore the inherent response. To determine its usefulness for visual-related disorders, we developed procedures investigating repetitive transcranial magnetic stimulation (rTMS) protocols targeting the visual cortex on modulating connectivity associated with the visual network and default mode network (DMN). METHODS We compared two low-frequency (1 Hz) rTMS protocols to the visual cortex (V1)-a single 20 min session and five successive 20 min sessions (accelerated/within-session rTMS)-using multi-echo resting-state functional magnetic resonance whole-brain imaging and resting-state functional connectivity (rsFC). We also explored the relationship between rsFC and rTMS-induced changes in key inhibitory and excitatory neurotransmitters, γ-aminobutyric acid (GABA) and glutamate. GABA (GABA+) and glutamate (Glx) concentrations were measured in vivo using magnetic resonance spectroscopy. RESULTS Acute disruption with a single rTMS session caused widespread connectivity reconfiguration with nodes of interest. Changes were not evident immediately post-rTMS but were observed at 1 h post-rTMS. Accelerated sessions resulted in weak alterations in connectivity, producing a relatively homeostatic response. Changes in GABA+ and Glx concentrations with network connectivity were dependent on the rTMS protocol. CONCLUSIONS This proof-of-concept study offers new perspectives to assess stimulation-induced neural processes involved in intrinsic functional connectivity and the potential for rTMS to modulate nodes interconnected with the visual cortex. The differential effects of single-session and accelerated rTMS on physiological markers are crucial for furthering the advancement of treatment modalities in visual cortex related disorders.
Collapse
Affiliation(s)
- Sara A Rafique
- Department of Psychology and Centre for Vision Research, York University, Toronto, Canada
| | - Jennifer K E Steeves
- Department of Psychology and Centre for Vision Research, York University, Toronto, Canada
| |
Collapse
|
39
|
Liu F, Chen C, Hong W, Bai Z, Wang S, Lu H, Lin Q, Zhao Z, Tang C. Selectively disrupted sensorimotor circuits in chronic stroke with hand dysfunction. CNS Neurosci Ther 2022; 28:677-689. [PMID: 35005843 PMCID: PMC8981435 DOI: 10.1111/cns.13799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Aim To investigate the directional and selective disconnection of the sensorimotor cortex (SMC) subregions in chronic stroke patients with hand dysfunction. Methods We mapped the resting‐state fMRI effective connectivity (EC) patterns for seven SMC subregions in each hemisphere of 65 chronic stroke patients and 40 healthy participants and correlated these patterns with paretic hand performance. Results Compared with controls, patients demonstrated disrupted EC in the ipsilesional primary motor cortex_4p, ipsilesional primary somatosensory cortex_2 (PSC_2), and contralesional PSC_3a. Moreover, we found that EC values of the contralesional PSC_1 to contralesional precuneus, the ipsilesional inferior temporal gyrus to ipsilesional PSC_1, and the ipsilesional PSC_1 to contralesional postcentral gyrus were correlated with paretic hand performance across all patients. We further divided patients into partially (PPH) and completely (CPH) paretic hand subgroups. Compared with CPH patients, PPH patients demonstrated decreased EC in the ipsilesional premotor_6 and ipsilesional PSC_1. Interestingly, we found that paretic hand performance was positively correlated with seven sensorimotor circuits in PPH patients, while it was negatively correlated with five sensorimotor circuits in CPH patients. Conclusion SMC neurocircuitry was selectively disrupted after chronic stroke and associated with diverse hand outcomes, which deepens the understanding of SMC reorganization.
Collapse
Affiliation(s)
- FeiWen Liu
- Department of Rehabilitation Medicine, Chengdu Second People's Hospital, Chengdu, China
| | - ChangCheng Chen
- Department of Rehabilitation Medicine, Qingtian People's Hospital, Lishui, China
| | - WenJun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - ZhongFei Bai
- Yangzhi Rehabilitation Hospital Affiliated to Tongji University (Shanghai Sunshine Rehabilitation Center), Shanghai, China
| | - SiZhong Wang
- Centre for Health, Activity and Rehabilitation Research (CHARR), School of Physiotherapy, The University of Otago, Dunedin, New Zealand
| | - HanNa Lu
- Neuromodulation Laboratory, Department of Psychiatry, School of Medicine, The Chinese University of Hong Kong, HKSAR, China.,Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - QiXiang Lin
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - ZhiYong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - ChaoZheng Tang
- Capacity Building and Continuing Education Center, National Health Commission of the People's Republic of China, Beijing, China
| |
Collapse
|
40
|
Brancaccio A, Tabarelli D, Belardinelli P. A New Framework to Interpret Individual Inter-Hemispheric Compensatory Communication after Stroke. J Pers Med 2022; 12:jpm12010059. [PMID: 35055374 PMCID: PMC8778334 DOI: 10.3390/jpm12010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Stroke constitutes the main cause of adult disability worldwide. Even after application of standard rehabilitation protocols, the majority of patients still show relevant motor impairment. Outcomes of standard rehabilitation protocols have led to mixed results, suggesting that relevant factors for brain re-organization after stroke have not been considered in explanatory models. Therefore, finding a comprehensive model to optimally define patient-dependent rehabilitation protocols represents a crucial topic in clinical neuroscience. In this context, we first report on the rehabilitation models conceived thus far in the attempt of predicting stroke rehabilitation outcomes. Then, we propose a new framework to interpret results in stroke literature in the light of the latest evidence regarding: (1) the role of the callosum in inter-hemispheric communication, (2) the role of prefrontal cortices in exerting a control function, and (3) diaschisis mechanisms. These new pieces of evidence on the role of callosum can help to understand which compensatory mechanism may take place following a stroke. Moreover, depending on the individual impairment, the prefrontal control network will play different roles according to the need of high-level motor control. We believe that our new model, which includes crucial overlooked factors, will enable clinicians to better define individualized motor rehabilitation protocols.
Collapse
|
41
|
Steinkamp SR, Fink GR, Vossel S, Weidner R. Simultaneous modeling of reaction times and brain dynamics in a spatial cueing task. Hum Brain Mapp 2021; 43:1850-1867. [PMID: 34953009 PMCID: PMC8933333 DOI: 10.1002/hbm.25758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
Understanding how brain activity translates into behavior is a grand challenge in neuroscientific research. Simultaneous computational modeling of both measures offers to address this question. The extension of the dynamic causal modeling (DCM) framework for blood oxygenation level‐dependent (BOLD) responses to behavior (bDCM) constitutes such a modeling approach. However, only very few studies have employed and evaluated bDCM, and its application has been restricted to binary behavioral responses, limiting more general statements about its validity. This study used bDCM to model reaction times in a spatial attention task, which involved two separate runs with either horizontal or vertical stimulus configurations. We recorded fMRI data and reaction times (n= 26) and compared bDCM with classical DCM and a behavioral Rescorla–Wagner model using Bayesian model selection and goodness of fit statistics. Results indicate that bDCM performed equally well as classical DCM when modeling BOLD responses and as good as the Rescorla–Wagner model when modeling reaction times. Although our data revealed practical limitations of the current bDCM approach that warrant further investigation, we conclude that bDCM constitutes a promising method for investigating the link between brain activity and behavior.
Collapse
Affiliation(s)
- Simon R Steinkamp
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Research Centre Juelich, Juelich, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simone Vossel
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Research Centre Juelich, Juelich, Germany.,Department of Psychology, Faculty of Human Sciences, University of Cologne, Cologne, Germany
| | - Ralph Weidner
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
42
|
Chen P, Liu TW, Kwong PWH, Lai CKY, Chung RCK, Tsoh J, Ng SSM. Bilateral Transcutaneous Electrical Nerve Stimulation Improves Upper Limb Motor Recovery in Stroke: A Randomized Controlled Trial. Stroke 2021; 53:1134-1140. [PMID: 34852645 DOI: 10.1161/strokeaha.121.036895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Recent evidence has shown bilateral transcutaneous electrical nerve stimulation (Bi-TENS) combined with task-oriented training (TOT) to be superior to unilateral transcutaneous electrical nerve stimulation (Uni-TENS)+TOT in improving lower limb motor functioning following stroke. However, no research explored the effect of Bi-TENS+TOT in improving upper limb motor recovery. This study aimed to compare Bi-TENS+TOT with Uni-TENS+TOT, Placebo transcutaneous electrical nerve stimulation (Placebo-TENS)+TOT, and no treatment (Control) groups in upper limb motor recovery. METHODS This is a 4-group parallel design. One hundred and twenty subjects were given either Bi-TENS+TOT, Uni-TENS+TOT, Placebo-TENS+TOT, or Control without treatment in this randomized controlled trial. Twenty 60-minute sessions were administered 3× per week for 7 weeks. The outcome measure was the Fugl-Meyer Assessment of Upper Extremity, which was assessed at baseline, after 10 sessions (mid-intervention) and 20 sessions (post-intervention) of intervention, and at 1- and 3-month follow-up. RESULTS Patients in the Bi-TENS+TOT group showed greater improvement in the Fugl-Meyer Assessment of Upper Extremity scores than Uni-TENS+TOT (mean difference, 2.13; P=0.004), Placebo-TENS+TOT (mean difference, 2.63; P<0.001), and Control groups (mean difference, 3.11; P<0.001) at post-intervention. Both Bi-TENS+TOT (mean difference, 3.39; P<0.001) and Uni-TENS+TOT (mean difference, 1.26; P=0.018) showed significant within-group improvement in the Fugl-Meyer Assessment of Upper Extremity scores. Patients in the Bi-TENS+TOT group showed earlier within-group improvement in the Fugl-Meyer Assessment of Upper Extremity scores at mid-intervention than Uni-TENS+TOT. These improvements were maintained at the 3-month follow-up assessment. CONCLUSIONS Bi-TENS combined with TOT is an effective therapy for improving upper limb motor recovery following stroke. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03112473.
Collapse
Affiliation(s)
- Peiming Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, China. (P.C., P.W.H.K., R.C.K.C., S.S.M.N.)
| | - Tai-Wa Liu
- School of Nursing & Health Studies, Hong Kong Metropolitan University, Ho Man Tin, China (T.-W.L.)
| | - Patrick W H Kwong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, China. (P.C., P.W.H.K., R.C.K.C., S.S.M.N.)
| | - Claudia K Y Lai
- School of Nursing, The Hong Kong Polytechnic University, China. (C.K.Y.L.)
| | - Raymond C K Chung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, China. (P.C., P.W.H.K., R.C.K.C., S.S.M.N.)
| | - Joshua Tsoh
- Department of Psychiatry, Prince of Wales Hospital and Shatin Hospital, Hong Kong SAR, China (J.T.)
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, China. (P.C., P.W.H.K., R.C.K.C., S.S.M.N.)
| |
Collapse
|
43
|
Giulia L, Adolfo V, Julie C, Quentin D, Simon B, Fleury M, Leveque-Le Bars E, Bannier E, Lécuyer A, Barillot C, Bonan I. The impact of neurofeedback on effective connectivity networks in chronic stroke patients: an exploratory study. J Neural Eng 2021; 18. [PMID: 34551403 DOI: 10.1088/1741-2552/ac291e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/22/2021] [Indexed: 11/12/2022]
Abstract
Objective.In this study, we assessed the impact of electroencephalography-functional magnetic resonance imaging (EEG-fMRI) neurofeedback (NF) on connectivity strength and direction in bilateral motor cortices in chronic stroke patients. Most of the studies using NF or brain computer interfaces for stroke rehabilitation have assessed treatment effects focusing on successful activation of targeted cortical regions. However, given the crucial role of brain network reorganization for stroke recovery, our broader aim was to assess connectivity changes after an NF training protocol targeting localized motor areas.Approach.We considered changes in fMRI connectivity after a multisession EEG-fMRI NF training targeting ipsilesional motor areas in nine stroke patients. We applied the dynamic causal modeling and parametric empirical Bayes frameworks for the estimation of effective connectivity changes. We considered a motor network including both ipsilesional and contralesional premotor, supplementary and primary motor areas.Main results.Our results indicate that NF upregulation of targeted areas (ipsilesional supplementary and primary motor areas) not only modulated activation patterns, but also had a more widespread impact on fMRI bilateral motor networks. In particular, inter-hemispheric connectivity between premotor and primary motor regions decreased, and ipsilesional self-inhibitory connections were reduced in strength, indicating an increase in activation during the NF motor task.Significance.To the best of our knowledge, this is the first work that investigates fMRI connectivity changes elicited by training of localized motor targets in stroke. Our results open new perspectives in the understanding of large-scale effects of NF training and the design of more effective NF strategies, based on the pathophysiology underlying stroke-induced deficits.
Collapse
Affiliation(s)
- Lioi Giulia
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France.,IMT Atlantique, Lab-STICC, UMR CNRS 6285, Brest, F-29238, France
| | - Veliz Adolfo
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France
| | | | - Duché Quentin
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France.,Department of Physical and Rehabilitation Medicine, CHU Rennes, Rennes, France
| | - Butet Simon
- Department of Physical and Rehabilitation Medicine, CHU Rennes, Rennes, France
| | - Mathis Fleury
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France
| | | | - Elise Bannier
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France.,Department of Radiology, CHU Rennes, Rennes, France
| | | | | | - Isabelle Bonan
- Department of Physical and Rehabilitation Medicine, CHU Rennes, Rennes, France
| |
Collapse
|
44
|
Paul T, Hensel L, Rehme AK, Tscherpel C, Eickhoff SB, Fink GR, Grefkes C, Volz LJ. Early motor network connectivity after stroke: An interplay of general reorganization and state-specific compensation. Hum Brain Mapp 2021; 42:5230-5243. [PMID: 34346531 PMCID: PMC8519876 DOI: 10.1002/hbm.25612] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023] Open
Abstract
Motor recovery after stroke relies on functional reorganization of the motor network, which is commonly assessed via functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (rsFC) or task-related effective connectivity (trEC). Measures of either connectivity mode have been shown to successfully explain motor impairment post-stroke, posing the question whether motor impairment is more closely reflected by rsFC or trEC. Moreover, highly similar changes in ipsilesional and interhemispheric motor network connectivity have been reported for both rsFC and trEC after stroke, suggesting that altered rsFC and trEC may capture similar aspects of information integration in the motor network reflecting principle, state-independent mechanisms of network reorganization rather than state-specific compensation strategies. To address this question, we conducted the first direct comparison of rsFC and trEC in a sample of early subacute stroke patients (n = 26, included on average 7.3 days post-stroke). We found that both rsFC and trEC explained motor impairment across patients, stressing the clinical potential of fMRI-based connectivity. Importantly, intrahemispheric connectivity between ipsilesional M1 and premotor areas depended on the activation state, whereas interhemispheric connectivity between homologs was state-independent. From a mechanistic perspective, our results may thus arise from two distinct aspects of motor network plasticity: task-specific compensation within the ipsilesional hemisphere and a more fundamental form of reorganization between hemispheres.
Collapse
Affiliation(s)
- Theresa Paul
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Lukas Hensel
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Anne K Rehme
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich, Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Lukas J Volz
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
45
|
Jargow J, Zwosta K, Korb FM, Ruge H, Wolfensteller U. Low-Frequency TMS Results in Condition-Related Dynamic Activation Changes of Stimulated and Contralateral Inferior Parietal Lobule. Front Hum Neurosci 2021; 15:684367. [PMID: 34366812 PMCID: PMC8342925 DOI: 10.3389/fnhum.2021.684367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/21/2021] [Indexed: 01/27/2023] Open
Abstract
Non-invasive brain stimulation is a promising approach to study the causal relationship between brain function and behavior. However, it is difficult to interpret behavioral null results as dynamic brain network changes have the potential to prevent stimulation from affecting behavior, ultimately compensating for the stimulation. The present study investigated local and remote changes in brain activity via functional magnetic resonance imaging (fMRI) after offline disruption of the inferior parietal lobule (IPL) or the vertex in human participants via 1 Hz repetitive transcranial magnetic stimulation (rTMS). Since the IPL acts as a multimodal hub of several networks, we implemented two experimental conditions in order to robustly engage task-positive networks, such as the fronto-parietal control network (on-task condition) and the default mode network (off-task condition). The condition-dependent neural after-effects following rTMS applied to the IPL were dynamic in affecting post-rTMS BOLD activity depending on the exact time-window. More specifically, we found that 1 Hz rTMS applied to the right IPL led to a delayed activity increase in both, the stimulated and the contralateral IPL, as well as in other brain regions of a task-positive network. This was markedly more pronounced in the on-task condition suggesting a condition-related delayed upregulation. Thus together, our results revealed a dynamic compensatory reorganization including upregulation and intra-network compensation which may explain mixed findings after low-frequency offline TMS.
Collapse
Affiliation(s)
- Janine Jargow
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Katharina Zwosta
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Franziska M Korb
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Hannes Ruge
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Uta Wolfensteller
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
46
|
Neural Correlates of Motor Recovery after Robot-Assisted Training in Chronic Stroke: A Multimodal Neuroimaging Study. Neural Plast 2021; 2021:8866613. [PMID: 34211549 PMCID: PMC8208881 DOI: 10.1155/2021/8866613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/19/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022] Open
Abstract
Stroke is a leading cause of motor disability worldwide, and robot-assisted therapies have been increasingly applied to facilitate the recovery process. However, the underlying mechanism and induced neuroplasticity change remain partially understood, and few studies have investigated this from a multimodality neuroimaging perspective. The current study adopted BCI-guided robot hand therapy as the training intervention and combined multiple neuroimaging modalities to comprehensively understand the potential association between motor function alteration and various neural correlates. We adopted EEG-informed fMRI technique to understand the functional regions sensitive to training intervention. Additionally, correlation analysis among training effects, nonlinear property change quantified by fractal dimension (FD), and integrity of M1-M1 (M1: primary motor cortex) anatomical connection were performed. EEG-informed fMRI analysis indicated that for iM1 (iM1: ipsilesional M1) regressors, regions with significantly increased partial correlation were mainly located in contralesional parietal, prefrontal, and sensorimotor areas and regions with significantly decreased partial correlation were mainly observed in the ipsilesional supramarginal gyrus and superior temporal gyrus. Pearson's correlations revealed that the interhemispheric asymmetry change significantly correlated with the training effect as well as the integrity of M1-M1 anatomical connection. In summary, our study suggested that multiple functional brain regions not limited to motor areas were involved during the recovery process from multimodality perspective. The correlation analyses suggested the essential role of interhemispheric interaction in motor rehabilitation. Besides, the underlying structural substrate of the bilateral M1-M1 connection might relate to the interhemispheric change. This study might give some insights in understanding the neuroplasticity induced by the integrated BCI-guided robot hand training intervention and further facilitate the design of therapies for chronic stroke patients.
Collapse
|
47
|
Rumpf JJ, May L, Fricke C, Classen J, Hartwigsen G. Interleaving Motor Sequence Training With High-Frequency Repetitive Transcranial Magnetic Stimulation Facilitates Consolidation. Cereb Cortex 2021; 30:1030-1039. [PMID: 31373620 PMCID: PMC7132921 DOI: 10.1093/cercor/bhz145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 12/28/2022] Open
Abstract
The acquisition of novel motor skills is a fundamental process of lifelong learning and crucial for everyday behavior. Performance gains acquired by training undergo a transition from an initially labile state to a state that is progressively robust towards interference, a phenomenon referred to as motor consolidation. Previous work has demonstrated that the primary motor cortex (M1) is a neural key region for motor consolidation. However, it remains unknown whether physiological processes underlying posttraining motor consolidation in M1 are active already during an ongoing training phase or only after completion of the training. We examined whether 10-Hz interleaved repetitive transcranial magnetic stimulation (i-rTMS) of M1 during rest periods between active motor training in an explicit motor learning task affects posttraining offline consolidation. Relative to i-rTMS to the vertex (control region), i-rTMS to the M1hand area of the nondominant hand facilitated posttraining consolidation assessed 6 h after training without affecting training performance. This facilitatory effect generalized to delayed performance of the mirror-symmetric sequence with the untrained (dominant) hand. These findings indicate that posttraining consolidation can be facilitated independently from training-induced performance increments and suggest that consolidation is initiated already during offline processing in short rest periods between active training phases.
Collapse
Affiliation(s)
| | - Luca May
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
48
|
Eschweiler M, Bohr L, Kessler J, Fink GR, Kalbe E, Onur OA. Combined cognitive and motor training improves the outcome in the early phase after stroke and prevents a decline of executive functions: A pilot study. NeuroRehabilitation 2021; 48:97-108. [PMID: 33386825 DOI: 10.3233/nre-201583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The negative impact of cognitive dysfunction on motor rehabilitation as a relearning-process is well known in stroke patients. However, evidence for combined cognitive and motor training (CMT) is lacking. OBJECTIVE To evaluate the effects of combined CMT in early stroke rehabilitation. METHODS In a controlled pilot study, 29 moderately affected stroke patients with low-level motor performance and cognitive impairment received motor therapy plus either cognitive (experimental group, EG) or low-frequency ergometer training (control group, CG) for eight days. RESULTS Both groups improved their motor functioning significantly. After training, between-group comparison revealed significant differences for cognitive flexibility and trends for set-shifting, working memory, and reaction control in favor of the EG. Within-group effects showed improvement across all cognitive domains in the EG, which correlated with gains in bed-mobility, while the CG showed no significant improvement in cognition. Rather, a trend towards reaction control decline was observed, which correlated with less functional progression and recovery. Furthermore, a decline in cognitive flexibility, set-shifting, and working memory was descriptively observed. CONCLUSIONS Combined CMT may enhance cognition and motor relearning early after stroke and is superior to single motor training. Further studies are needed to replicate these results and investigate long-term benefits.
Collapse
Affiliation(s)
- Mareike Eschweiler
- Medical Faculty and University Hospital Cologne, Department of Medical Psychology, Neuropsychology & Gender Studies and Center for Neuropsychological Diagnostic and Intervention (CeNDI), Kerpener Str. 62, Cologne, Germany.,Medical Faculty and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, Cologne, Germany.,University Cologne, Medical Faculty, study program clinical and experimental neuroscience, Josef-Stelzmann-Str. 20, Germany.,Neurological Rehabilitation Center Godeshoehe e.V., Department of Therapeutic Science, Waldstr. 2-10, Bonn, Germany
| | - Lara Bohr
- Medical Faculty and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, Cologne, Germany.,University Cologne, Medical Faculty, study program clinical and experimental neuroscience, Josef-Stelzmann-Str. 20, Germany
| | - Josef Kessler
- Medical Faculty and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, Cologne, Germany
| | - Gereon R Fink
- Medical Faculty and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, Cologne, Germany.,Research Center Jülich, Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Leo-Brandt-Straße, Jülich, Germany
| | - Elke Kalbe
- Medical Faculty and University Hospital Cologne, Department of Medical Psychology, Neuropsychology & Gender Studies and Center for Neuropsychological Diagnostic and Intervention (CeNDI), Kerpener Str. 62, Cologne, Germany
| | - Oezguer A Onur
- Medical Faculty and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, Cologne, Germany.,Research Center Jülich, Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Leo-Brandt-Straße, Jülich, Germany
| |
Collapse
|
49
|
Choi S, Pyun SB. Repetitive Transcranial Magnetic Stimulation on the Supplementary Motor Area Changes Brain Connectivity in Functional Dysphagia. Brain Connect 2021; 11:368-379. [PMID: 33781085 DOI: 10.1089/brain.2020.0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies arguing that functional dysphagia could be explained by underlying neurobiological mechanisms are insufficient to explain brain regions that functionally interact in patients with functional dysphagia. Therefore, we investigated functional connectivity changes associated with functional dysphagia after applying facilitatory repetitive transcranial magnetic stimulation (rTMS) on the supplementary motor area (SMA). Materials and Methods: A patient with severe long-lasting functional dysphagia and 15 healthy controls participated in this study. A facilitatory 5 Hz rTMS protocol was applied to the patient's SMA. We performed functional magnetic resonance imaging (fMRI) using volitional swallowing tasks to investigate neural network changes before rTMS (pre-rTMS), immediately after rTMS, and 3 months later. Results: The pre-rTMS fMRI results of the patient showed extensive overactivation in the left-lateralized regions related to volitional swallowing compared with the healthy controls. Following rTMS, dysphagia symptoms partially improved. The patient showed positive connectivity with the bilateral cerebellum in the bilateral SMA seeds before rTMS treatment. Furthermore, left-lateralized overactivation was washed out immediately after completion of rTMS, and connectivity between the left SMA and left precentral gyrus recovered 3 months after rTMS treatment. Conclusion: Our findings confirm that functional dysphagia might be a neurobiological manifestation caused by maladaptive functional connectivity changes in brain structures related to swallowing. Furthermore, noninvasive brain modulation with rTMS over the SMA may facilitate functional connectivity changes between the cortical and subcortical regions. Accordingly, these changes will allow control of the movements related to swallowing and may lead to improved clinical symptoms.
Collapse
Affiliation(s)
- Sunyoung Choi
- Clinical Research Division, Korean Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sung-Bom Pyun
- BK21 Graduate Program, Department of Biomedical Sciences and Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Goldsworthy MR, Hordacre B, Rothwell JC, Ridding MC. Effects of rTMS on the brain: is there value in variability? Cortex 2021; 139:43-59. [PMID: 33827037 DOI: 10.1016/j.cortex.2021.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
The ability of repetitive transcranial magnetic stimulation (rTMS) to non-invasively induce neuroplasticity in the human cortex has opened exciting possibilities for its application in both basic and clinical research. Changes in the amplitude of motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation has so far provided a convenient model for exploring the neurophysiology of rTMS effects on the brain, influencing the ways in which these stimulation protocols have been applied therapeutically. However, a growing number of studies have reported large inter-individual variability in the mean MEP response to rTMS, raising legitimate questions about the usefulness of this model for guiding therapy. Although the increasing application of different neuroimaging approaches has made it possible to probe rTMS-induced neuroplasticity outside the motor cortex to measure changes in neural activity that impact other aspects of human behaviour, the high variability of rTMS effects on these measurements remains an important issue for the field to address. In this review, we seek to move away from the conventional facilitation/inhibition dichotomy that permeates much of the rTMS literature, presenting a non-standard approach for measuring rTMS-induced neuroplasticity. We consider the evidence that rTMS is able to modulate an individual's moment-to-moment variability of neural activity, and whether this could have implications for guiding the therapeutic application of rTMS.
Collapse
Affiliation(s)
- Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael C Ridding
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| |
Collapse
|