1
|
Peterchev AV. One's trash is another's treasure: Subthreshold kilohertz brain modulation as a side effect and as an intervention. Brain Stimul 2025; 18:622-623. [PMID: 40058727 DOI: 10.1016/j.brs.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Affiliation(s)
- Angel V Peterchev
- Department of Psychiatry & Behavioral Sciences, Department of Biomedical Engineering, Department of Electrical & Computer Engineering, Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Bontempi B, Lévêque P, Dubreuil D, Jay TM, Edeline JM. Effects of Head-Only Exposure to 900 MHz GSM Electromagnetic Fields in Rats: Changes in Neuronal Activity as Revealed by c-Fos Imaging without Concomitant Cognitive Impairments. Biomedicines 2024; 12:1954. [PMID: 39335468 PMCID: PMC11428239 DOI: 10.3390/biomedicines12091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Over the last two decades, animal models have been used to evaluate the physiological and cognitive effects of mobile phone exposure. Here, we used a head-only exposure system in rats to determine whether exposure to 900 MHz GSM electromagnetic fields (EMFs) induces regional changes in neuronal activation as revealed by c-Fos imaging. In a first study, rats were exposed for 2 h to brain average specific absorption rates (BASARs) ranging from 0.5 to 6 W/kg. Changes in neuronal activation were found to be dose-dependent, with significant increases in c-Fos expression occurring at BASAR of 1 W/kg in prelimbic, infralimbic, frontal, and cingulate cortices. In a second study, rats were submitted to either a spatial working memory (WM) task in a radial maze or a spatial reference memory (RM) task in an open field arena. Exposures (45 min) were conducted before each daily training session (BASARs of 1 and 3.5 W/kg). Control groups included sham-exposed and control cage animals. In both tasks, behavioral performance evolved similarly in the four groups over testing days. However, c-Fos staining was significantly reduced in cortical areas (prelimbic, infralimbic, frontal, cingulate, and visual cortices) and in the hippocampus of animals engaged in the WM task (BASARs of 1 and 3.5 W/kg). In the RM task, EMF exposure-induced decreases were limited to temporal and visual cortices (BASAR of 1 W/kg). These results demonstrate that both acute and subchronic exposures to 900 MHz EMFs can produce region-specific changes in brain activity patterns, which are, however, insufficient to induce detectable cognitive deficits in the behavioral paradigms used here.
Collapse
Affiliation(s)
- Bruno Bontempi
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux et Ecole Pratique des Hautes Etudes, 33000 Bordeaux, France
| | - Philippe Lévêque
- XLIM, CNRS UMR 6172, Université de Limoges, 87060 Limoges, France
| | - Diane Dubreuil
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France
| | - Thérèse M Jay
- Institut de Psychiatrie et Neurosciences de Paris, UMR_S 1266 INSERM, Université Paris Cité, 75014 Paris, France
| | - Jean-Marc Edeline
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France
| |
Collapse
|
3
|
Mellon N, Robbins B, van Bruggen R, Zhang Y. A systematic review and meta-analysis of the preclinical and clinical results of low-field magnetic stimulation in cognitive disorders. Rev Neurosci 2024; 35:619-625. [PMID: 38671560 PMCID: PMC11297417 DOI: 10.1515/revneuro-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Cognitive disorders such as major depressive disorder and bipolar disorder severely compromise brain function and neuronal activity. Treatments to restore cognitive abilities can have severe side effects due to their intense and excitatory nature, in addition to the fact that they are expensive and invasive. Low-field magnetic stimulation (LFMS) is a novel non-invasive proposed treatment for cognitive disorders. It repairs issues in the brain by altering deep cortical areas with treatments of low-intensity magnetic stimulation. This paper aims to summarize the current literature on the effects and results of LFMS in cognitive disorders. We developed a search strategy to identify relevant studies utilizing LFMS and systematically searched eight scientific databases. Our review suggests that LFMS could be a viable and effective treatment for multiple cognitive disorders, especially major depressive disorder. Additionally, longer, more frequent, and more personalized LFMS treatments tend to be more efficacious.
Collapse
Affiliation(s)
- Nicholas Mellon
- Faculty of Medicine and Dentistry, The University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Brett Robbins
- Faculty of Medicine and Dentistry, The University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Rebekah van Bruggen
- Faculty of Medicine and Dentistry, The University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Yanbo Zhang
- Faculty of Medicine and Dentistry, The University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
4
|
van Belkum SM, Opmeer EM, Geugies H, de Boer MK, Schoevers RA, Aleman A. Change in brain activation after transcranial pulsed electromagnetic fields in treatment-resistant depression. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01797-w. [PMID: 38580858 DOI: 10.1007/s00406-024-01797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Preliminary evidence suggests antidepressant effects of transcranial pulsed electromagnetic fields (tPEMF). However, the precise mechanism of action in the brain is still unknown. The aim of this study was to investigate the influence of tPEMF on brain activation in patients with treatment-resistant depression (TRD) by studying two processes that might be of particular interest in relation to the symptoms of depression: emotional processing and reward processing. METHODS Eligible participants (n = 50) with TRD in this sham-controlled double-blind multicenter trial [registered at the Dutch Trial Register ( http://www.trialregister.nl ), NTR3702] were randomly assigned to five weeks daily active or sham tPEMF. Pre- and post-treatment functional MR-scans were made during which participants performed a social-emotional task and a reward task. RESULTS Participants in the active treatment group showed a stronger decrease in activation post-treatment compared to sham during reward-outcome processing in the left inferior frontal gyrus and in a cluster comprising the right lingual gyrus and the posterior part of the middle temporal gyrus. No effect of tPEMF was found on activation during the social-emotional task. Neurostimulation with tPEMF did also not affect behavioral performance for both tasks. CONCLUSIONS We found a decrease in reward-related activation as a result of tPEMF stimulation, while no effect of tPEMF on social-emotional processing was found. The treatment-related reduction in activation of regulatory regions may reflect normalization and may have implications for anhedonia. These findings suggest that there is an effect of tPEMF on brain activation of relevant circuits, albeit in the absence of a clinical antidepressant effect.
Collapse
Affiliation(s)
- Sjoerd M van Belkum
- Department of Psychiatry, Research School of Behavioral and Cognitive Neurosciences (BCN), Interdisciplinary Center Psychopathology of Emotion Regulation (ICPE), University Medical Center Groningen, University of Groningen, PO Box 30.001 (CC30), 9700 RB, Groningen, The Netherlands.
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Esther M Opmeer
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hanneke Geugies
- Department of Psychiatry, Research School of Behavioral and Cognitive Neurosciences (BCN), Interdisciplinary Center Psychopathology of Emotion Regulation (ICPE), University Medical Center Groningen, University of Groningen, PO Box 30.001 (CC30), 9700 RB, Groningen, The Netherlands
| | - Marrit K de Boer
- Department of Psychiatry, Research School of Behavioral and Cognitive Neurosciences (BCN), Interdisciplinary Center Psychopathology of Emotion Regulation (ICPE), University Medical Center Groningen, University of Groningen, PO Box 30.001 (CC30), 9700 RB, Groningen, The Netherlands
| | - Robert A Schoevers
- Department of Psychiatry, Research School of Behavioral and Cognitive Neurosciences (BCN), Interdisciplinary Center Psychopathology of Emotion Regulation (ICPE), University Medical Center Groningen, University of Groningen, PO Box 30.001 (CC30), 9700 RB, Groningen, The Netherlands
| | - André Aleman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
High Frequency and Low Intensity Transcranial Magnetic Stimulation for Smoking Cessation. JOURNAL OF ADDICTION 2021; 2021:9988618. [PMID: 34589245 PMCID: PMC8476253 DOI: 10.1155/2021/9988618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Introduction Tobacco consumption is one of the main causes of mortality in the world. Because of its effect on health, smoking cessation should be prioritized as an important health intervention; however, current interventions have shown low success rates as only 31% of the cases can stop smoking. In this paper, an intervention with high frequency and low intensity transcranial magnetic stimulation (HFLI TMS) was applied to determine if this type of neuromodulation could have an effect in decreasing tobacco addiction. Methods Retrospective data from ten ambulatory smoker patients that underwent 24 sessions of HFLI TMS over 8 weeks were retrieved and are here presented. Results Exhaled CO concentrations were statistically significantly different from baseline at the weeks 3, 5, 6, and 8. After the 24 sessions, all patients stopped smoking; this was confirmed directly by exhaled carbon monoxide and the smoking diary. Three months after intervention, eight out of ten subjects continued without smoking. No severe adverse effects were reported by participants. Conclusions Overall, employing HFLI TMS appears to have acceptable result; however, further evidence is needed to determine with more certainty its therapeutic effect and adverse effects for addiction intervention.
Collapse
|
6
|
High-Frequency and Low-Intensity Patterned Transcranial Magnetic Stimulation over Left Dorsolateral Prefrontal Cortex as Treatment for Major Depressive Disorder: A Report of 3 Cases. Case Rep Psychiatry 2021; 2021:5563017. [PMID: 33828869 PMCID: PMC8004358 DOI: 10.1155/2021/5563017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022] Open
Abstract
Current transcranial magnetic stimulation devices apply intense (near 1 tesla) repetitive magnetic pulses over a specific area of the skull at relatively lower frequencies (1-50 Hz). Nevertheless, different studies have shown that very small magnetic fields, at higher frequencies (50-1000 Hz.), produce therapeutic effects in major depressive disorder. We report the application of high-frequency and low-intensity patterned magnetic pulses over the left prefrontal dorsolateral cortex in three subjects diagnosed with clinical major depressive disorder. All three patients showed sharp changes in their self-reports as well as in the standardized clinical assessment. Hypothesized mechanisms of action of this new variant of magnetic stimulation are discussed.
Collapse
|
7
|
Static magnetic field induces abnormality of glucose metabolism in rats' brain and results in anxiety-like behavior. J Chem Neuroanat 2021; 113:101923. [PMID: 33549700 DOI: 10.1016/j.jchemneu.2021.101923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
In this study, fifty-four male Wistar rats were randomly divided into four groups according to the static magnetic field (SMF) intensity, namely, control, low-intensity, moderate-intensity, and high-intensity groups. The rats' whole body was exposed to a superconducting magnet exposure source. The exposure SMF intensity for the low-intensity, moderate-intensity, and high-intensity groups was 50 m T, 100 m T, and 200 m T, respectively, and the exposure time was 1 h/day for consecutive 15 days. After different exposure times, glucose metabolism in rats' brain was evaluated by micro-positron emission tomography (micro-PET), and the expression of hexokinase 1(HK1) and 6-phosphate fructokinase-1(PFK1) was detected by western blot. The exploration and locomotion abilities of the rats were evaluated by conducting open field test (OFT). Furthermore, pathological changes of rats' brain were observed under a microscope by using hematoxylin-eosin staining. PET results showed that moderate-intensity SMFs could cause fluctuant changes in glucose metabolism in rats' brain and the abnormalities were SMF intensity dependent. The expression of the two rate-limiting enzymes HK1 and PFK1 in glucose metabolism in brain significantly decreased after SMF exposure. The OFT showed that the total distance, surrounding distance, activity time, and climbing and standing times significantly decreased after SMF exposure. The main pathological changes in the brain were pyknosis, edema of neurons, and slight widening of the perivascular space, which occurred after 15 times of exposure. This study indicated that SMF exposure could lead to abnormal glucose metabolism in the brain and might result in anxiety-like behaviors.
Collapse
|
8
|
Vlaicu A, Bustuchina Vlaicu M. New neuromodulation techniques for treatment resistant depression. Int J Psychiatry Clin Pract 2020; 24:106-115. [PMID: 32069166 DOI: 10.1080/13651501.2020.1728340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the treatment of depression, when pharmacotherapy, psychotherapy and the oldest brain stimulation techniques are deadlocked, the emergence of new therapies is a necessary development. The field of neuromodulation is very broad and controversial. This article provides an overview of current progress in the technological advances in neuromodulation and neurostimulation treatments for treatment-resistant depression: magnetic seizure therapy; focal electrically administered seizure therapy; low field magnetic stimulation; transcranial pulsed electromagnetic fields; transcranial direct current stimulation; epidural cortical stimulation; trigeminal nerve stimulation; transcutaneous vagus nerve stimulation; transcranial focussed ultrasound; near infra-red transcranial radiation; closed loop stimulation. The role of new interventions is expanding, probably with more efficacy. Nowadays, still under experimentation, neuromodulation will probably revolutionise the field of neuroscience. At present, major efforts are still necessary before that these therapies are likely to become widespread.Key pointsThere is a critical need for new therapies for treatment resistant depression.Newer therapies are expanding. In the future, these therapies, as an evidence-based adjunctive treatments, could offer a good therapeutic choice for the patients with a TRD.The current trend in the new neuromodulation therapies is to apply a personalised treatment.These news therapies can be complementary.That treatment approaches can provide clinically significant benefits.
Collapse
Affiliation(s)
- Andrei Vlaicu
- Psychiatry Department, CHHM, Hospital Andre Breton, Saint-Dizier, France
| | | |
Collapse
|
9
|
Rhythmic low-field magnetic stimulation may improve depression by increasing brain-derived neurotrophic factor. CNS Spectr 2019; 24:313-321. [PMID: 29460712 DOI: 10.1017/s1092852917000670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Low-field magnetic stimulation (LFMS) has mood-elevating effect, and the increase of brain-derived neurotrophic factor (BDNF) is associated with antidepressant treatment. We evaluated the effects and association with BDNF of rhythmic LFMS in the treatment of major depressive disorder (MDD). METHODS A total of 22 MDD patients were randomized to rhythmic alpha stimulation (RAS) or rhythmic delta stimulation (RDS), with 5 sessions per week, lasting for 6 weeks. Outcomes assessments included the 17-item Hamilton Depression Rating Scale (HAMD-17), the Hamilton Anxiety Rating Scale (HAMA), and the Clinical Global Impressions-Severity scale (CGI-S) at baseline and at weeks 1, 2, 3, 4, and 6. Serum BDNF level was measured at baseline and at weeks 2, 4, and 6. RESULTS HAMD-17, HAMA, and CGI-S scores were significantly reduced with both RAS and RDS. RAS patients had numerically greater reductions in HAMD-17 scores than RDS patients (8.9 ± 7.4 vs. 6.2 ± 6.2, effect size [ES]=0.40), while RDS patients had greater improvement in HAMA scores (8.2 ± 8.0 vs. 5.3 ± 5.8, ES=0.42). RAS was associated with clinically relevant advantages in response (54.5% vs. 18.2%, number-needed-to-treat [NNT]=3) and remission (36.4% vs. 9.1%, NNT=4). BDNF increased significantly during the 6-week study period (p<0.05), with greater increases in RAS at weeks 4 and 6 (ES=0.66-0.76) and statistical superiority at week 2 (p=0.034, ES=1.23). Baseline BDNF in the 8 responders (24.8±9.0 ng/ml) was lower than in the 14 nonresponders (31.1±7.3 ng/ml, p=0.083, ES=-0.79), and BDNF increased more in responders (8.9±7.8 ng/ml) than in nonresponders (1.8±3.5 ng/ml, p=0.044). The change in BDNF at week 2 was the most strongly predicted response (p=0.016). CONCLUSIONS Rhythmic LFMS was effective for MDD. BDNF may moderate/mediate the efficacy of LFMS.
Collapse
|
10
|
Dubin MJ, Ilieva IP, Deng ZD, Thomas J, Cochran A, Kravets K, Brody BD, Christos PJ, Kocsis JH, Liston C, Gunning FM. A double-blind pilot dosing study of low field magnetic stimulation (LFMS) for treatment-resistant depression (TRD). J Affect Disord 2019; 249:286-293. [PMID: 30784726 PMCID: PMC6486658 DOI: 10.1016/j.jad.2019.02.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Low field magnetic stimulation is a potentially rapid-acting treatment for depression with mood-enhancing effects in as little as one 20-min session. The most convincing data for LFMS has come from treating bipolar depression. We examined whether LFMS also has rapid mood-enhancing effects in treatment-resistant major depressive disorder, and whether these effects are dose-dependent. OBJECTIVE/HYPOTHESIS We hypothesized that a single 20-min session of LFMS would reduce depressive symptom severity and that the magnitude of this change would be greater after three 20-min sessions than after a single 20-min session. METHODS In a double-blind randomized controlled trial, 30 participants (age 21-65) with treatment-resistant depression were randomized to three 20-min active or sham LFMS treatments with 48 h between treatments. Response was assessed immediately following LFMS treatment using the 6-item Hamilton Depression Rating Scale (HAMD-6), the Positive and Negative Affect Scale (PANAS) and the Visual Analog Scale. RESULTS Following the 3rd session of LFMS, the effect of LFMS on VAS and HAMD-6 was superior to sham (F (1, 24) = 7.45, p = 0.03, Bonferroni-Holm corrected; F (1, 22) = 6.92, p = 0.03, Bonferroni-Holm corrected, respectively). There were no differences between sham and LFMS following the initial or second session with the effect not becoming significant until after the third session. CONCLUSIONS Three 20-min LFMS sessions were required for active LFMS to have a mood-enhancing effect for individuals with treatment-resistant depression. As this effect may be transient, future work should address dosing schedules of longer treatment courses as well as biomarker-based targeting of LFMS to optimize patient selection and treatment outcomes.
Collapse
Affiliation(s)
- Marc J Dubin
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA.
| | - Irena P Ilieva
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeena Thomas
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashly Cochran
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - Kamilla Kravets
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - Benjamin D Brody
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - Paul J Christos
- Department of Healthcare Policy and Research, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - James H Kocsis
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA; Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA; Institute of Geriatric Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| |
Collapse
|
11
|
Negahbani E, Schmidt SL, Mishal N, Fröhlich F. Neuromodulation-dependent effect of gated high-frequency, LFMS-like electric field stimulation in mouse cortical slices. Eur J Neurosci 2018; 49:1288-1297. [PMID: 30450622 DOI: 10.1111/ejn.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/27/2022]
Abstract
Low-field magnetic stimulation (LFMS) is a gated high-frequency non-invasive brain stimulation method (500 Hz gated at 2 Hz) with a proposed antidepressant effect. However, it has remained unknown how such stimulation paradigms modulate neuronal network activity and how the induced changes depend on network state. Here we examined the immediate and outlasting effects of the gated high-frequency electric field associated with LFMS on the cortical activity as a function of neuromodulatory tone that defines network state. We used a sham-controlled study design to investigate effects of stimulation (20 min of 0.5 s trains of 500 Hz charge-balanced pulse stimulation patterned at 0.5 Hz) on neural activity in mouse medial prefrontal cortex in vitro. Bath application of cholinergic and noradrenergic agents enabled us to examine the stimulation effects as a function of neuromodulatory tone. The stimulation attenuated the increase in firing rate of layer V cortical neurons during the post-stimulation period in the presence of cholinergic activation. The same stimulation had no significant immediate or outlasting effect in the absence of exogenous neuromodulators or in the presence of noradrenergic activation. These results provide electrophysiological insights into the neuromodulatory-dependent effects of gated high-frequency stimulation. More broadly, our results are the first to provide a mechanistic demonstration of how behavioral states and arousal levels may modify the effects of non-invasive brain stimulation.
Collapse
Affiliation(s)
- Ehsan Negahbani
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.,Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, North Carolina
| | - Stephen L Schmidt
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.,Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Nadia Mishal
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.,Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, North Carolina.,Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Habib S, Hamid U, Jamil A, Zainab AZ, Yousuf T, Habib S, Tariq SM, Ali F. Transcranial Magnetic Stimulation as a Therapeutic Option for Neurologic and Psychiatric Illnesses. Cureus 2018; 10:e3456. [PMID: 30564535 PMCID: PMC6298622 DOI: 10.7759/cureus.3456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022] Open
Abstract
In recent years, transcranial magnetic stimulation has become an area of interest in the field of neurosciences due to its ability to non-invasively induce sufficient electric current to depolarize superficial axons and networks in the cortex and can be used to explore brain functioning. Evidence shows that transcranial magnetic stimulation could be used as a diagnostic and therapeutic tool for various neurological and psychiatric illnesses. The aim of this review is to introduce the basics of this technology to the readers and to bring together an overview of some of its clinical applications investigated thus far.
Collapse
Affiliation(s)
- Sara Habib
- Neurology, Thomas Jefferson University, Philadelphia, USA
| | - Umair Hamid
- Internal Medicine, The Indus Hospital, Lahore, PAK
| | - Ayesha Jamil
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Aariz Z Zainab
- Radiology, Mayo Hospital King Edward Medical College, Lahore, PAK
| | - Tooba Yousuf
- Family Medicine, Civil Hospital Karachi, Dow University of Health Sciences, Karachi, PAK
| | - Sana Habib
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Syed Maaz Tariq
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Faryal Ali
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| |
Collapse
|
13
|
Smith JE, Peterchev AV. Electric field measurement of two commercial active/sham coils for transcranial magnetic stimulation. J Neural Eng 2018; 15:054001. [PMID: 29932429 DOI: 10.1088/1741-2552/aace89] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Sham TMS coils isolate the ancillary effects of their active counterparts but typically induce low-strength electric fields (E-fields) in the brain, which could be biologically active. We measured the E-fields induced by two pairs of commonly-used commercial active/sham coils. APPROACH E-field distributions of the active and sham configurations of the Magstim 70 mm AFC and MagVenture Cool-B65 A/P coils were measured over a 7 cm-radius, hemispherical grid approximating the cortical surface. Peak E-field strength was recorded over a range of pulse amplitudes. MAIN RESULTS The Magstim and MagVenture shams induce peak E-fields corresponding to 25.3% and 7.72% of their respective active values. The MagVenture sham has an E-field distribution shaped like its active counterpart. The Magstim sham induces nearly zero E-field under the coil's center, and its peak E-field forms a diffuse oval 3-7 cm from the center. Electrical scalp stimulation paired with the MagVenture sham is estimated to increase the sham E-field in the brain up to 10%. SIGNIFICANCE Different commercial shams induce different E-field strengths and distributions in the brain, which should be considered in interpreting outcomes of sham stimulation.
Collapse
Affiliation(s)
- J Evan Smith
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, United States of America
| | | |
Collapse
|
14
|
Premi E, Benussi A, La Gatta A, Visconti S, Costa A, Gilberti N, Cantoni V, Padovani A, Borroni B, Magoni M. Modulation of long-term potentiation-like cortical plasticity in the healthy brain with low frequency-pulsed electromagnetic fields. BMC Neurosci 2018; 19:34. [PMID: 29895259 PMCID: PMC5998451 DOI: 10.1186/s12868-018-0434-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/29/2018] [Indexed: 02/04/2023] Open
Abstract
Background Non-depolarizing magnetic fields, like low frequency-pulsed electromagnetic fields (LF-PEMFs) have shown the ability to modulate living structures, principally by influencing synaptic activity and ion channels on cellular membranes. Recently, the CTU Mega 20 device was presented as a molecular accelerator, using energy up to 200 J and providing high-power (2 Tesla) pulsating fields with a water-repulsive (diamagnetic) action and tissue biostimulation. We tested the hypothesis that LF-PEMFs could modulate long-term corticospinal excitability in healthy brains by applying CTU Mega 20®. Ten healthy subjects without known neurological and/or psychiatric diseases entered the study. A randomized double-blind sham-controlled crossover design was employed, recording TMS parameters (amplitude variation of the motor evoked potential as index of cortical excitability perturbations of the motor system) before (pre) and after (post + 0, + 15, + 30 min) a single CTU Mega 20 session on the corresponding primary right-hand motor area, using a real (magnetic field = 2 Tesla; intensity = 90 J; impulse frequency = 7 Hz; duration = 15 min) or sham device. A two-way repeated measures ANOVA with TIME (pre, post + 0, + 15, + 30 min) and TREATMENT (real vs. sham stimulation) as within-subjects factor was applied. Results A significant TIME × TREATMENT interaction was found (p < 0.001). Post hoc comparisons showed a significant effect of TIME, with significant differences at + 0, + 15 and + 30 min compared to baseline after real stimulation (all p < 0.05) but not after sham stimulation (all p < 0.05) and significant effects of TREATMENT, with significant differences at + 0, + 15 and + 30 min for real stimulation compared to sham stimulation (all p < 0.005). No significant depolarizing effects were detected throughout the (real) stimulation. Conclusions Our proof-of-concept study in healthy subjects supports the idea that non-ionizing LF-PEMFs induced by the CTU Mega 20 diamagnetic acceleration system could represent a new approach for brain neuromodulation. Further studies to optimize protocol parameters for different neurological and psychiatric conditions are warranted. Trial Registration The present work has been retrospectively registered as clinical trial on ClinicalTrials.gov NCT03537469 and publicly released on May 24, 2018 Electronic supplementary material The online version of this article (10.1186/s12868-018-0434-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Enrico Premi
- Stroke Unit, Azienda Socio Sanitaria Territoriale "Spedali Civili", "Spedali Civili" Hospital, Piazza Spedali Civili 1, 25123, Brescia, Italy. .,Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Stefano Visconti
- Rehabilitation Unit, Casa di Cura "Villa Barbarano", Salò, Brescia, Italy
| | - Angelo Costa
- Stroke Unit, Azienda Socio Sanitaria Territoriale "Spedali Civili", "Spedali Civili" Hospital, Piazza Spedali Civili 1, 25123, Brescia, Italy
| | - Nicola Gilberti
- Stroke Unit, Azienda Socio Sanitaria Territoriale "Spedali Civili", "Spedali Civili" Hospital, Piazza Spedali Civili 1, 25123, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mauro Magoni
- Stroke Unit, Azienda Socio Sanitaria Territoriale "Spedali Civili", "Spedali Civili" Hospital, Piazza Spedali Civili 1, 25123, Brescia, Italy
| |
Collapse
|
15
|
Fava M, Freeman MP, Flynn M, Hoeppner BB, Shelton R, Iosifescu DV, Murrough JW, Mischoulon D, Cusin C, Rapaport M, Dunlop BW, Trivedi MH, Jha M, Sanacora G, Hermes G, Papakostas GI. Double-blind, proof-of-concept (POC) trial of Low-Field Magnetic Stimulation (LFMS) augmentation of antidepressant therapy in treatment-resistant depression (TRD). Brain Stimul 2018; 11:75-84. [PMID: 29030111 PMCID: PMC5729080 DOI: 10.1016/j.brs.2017.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Low-Field Magnetic Stimulation (LFMS) is a novel, non-invasive, sub-threshold neuromodulation technique, shown in preliminary studies to have immediate mood elevating effects in both unipolar and bipolar depressed patients. OBJECTIVE We aimed to assess the antidepressant augmentation effects at 48 h of LFMS administered on two consecutive days compared to sham treatment in treatment resistant depression (TRD) subjects, using the Sequential Parallel Comparison Design (SPCD). METHODS Eighty-four eligible subjects with TRD were randomly assigned to double-blind treatment with LFMS 20 min/day for four days, sham treatment 20 min/day for four days, or sham treatment 20 min/day for 2 days followed by LFMS treatment 20 min/day for two days, using the pre-randomization version of the SPCD (randomization 1:1:1). The SPCD analyses used a repeated measures linear modeling approach with maximum likelihood estimation to use all available data, and using a 60-40 weighting of Stage 1 vs. 2 responses, with the primary outcome being measured after 2 and 4 days. RESULTS Both primary and secondary outcome measures consistently showed no differences between LFMS-treated patients and those treated with sham, with the exception of a slight, non-significantly greater improvement than sham in the visual analogue scale (VAS) sad mood on LFMS-treated patients. LFMS treatment was relatively well tolerated. CONCLUSIONS We did not observe a significantly greater, rapid efficacy of LFMS compared to sham therapy. Future studies need to examine the possible therapeutic effects of more intensive forms of LFMS, as other forms of neurostimulation typically require longer duration of exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Manish Jha
- University of Texas Southwestern, United States
| | | | | | | |
Collapse
|
16
|
Grehl S, Martina D, Goyenvalle C, Deng ZD, Rodger J, Sherrard RM. In vitro Magnetic Stimulation: A Simple Stimulation Device to Deliver Defined Low Intensity Electromagnetic Fields. Front Neural Circuits 2016; 10:85. [PMID: 27857683 PMCID: PMC5093126 DOI: 10.3389/fncir.2016.00085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/10/2016] [Indexed: 01/10/2023] Open
Abstract
Non-invasive brain stimulation (NIBS) by electromagnetic fields appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although, in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits) so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined. Here, we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS) delivered at three frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modeling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency, which we have previously shown induces neural circuit reorganization. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-min stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially modified according to the stimulation delivered. Thus we describe a simple magnetic stimulation device that delivers defined stimulation parameters to different neural systems in vitro. Such devices are essential to further understanding of the fundamental effects of magnetic stimulation on biological tissue and optimize therapeutic application of human NIBS.
Collapse
Affiliation(s)
- Stephanie Grehl
- Sorbonne Universités, UPMC Univ Paris 06 & CNRS, IBPS-B2A, UMR 8256 Biological Adaptation and AgeingParis, France; Experimental and Regenerative Neuroscience, School of Animal Biology, the University of Western Australia, PerthWA, Australia
| | - David Martina
- Institut Langevin, ESPCI ParisTech & CNRS, UMR7587 INSERM ERL U979 Paris, France
| | - Catherine Goyenvalle
- Sorbonne Universités, UPMC Univ Paris 06 & CNRS, IBPS-B2A, UMR 8256 Biological Adaptation and Ageing Paris, France
| | - Zhi-De Deng
- Non-invasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, BethesdaMD, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, DurhamNC, USA
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Animal Biology, the University of Western Australia, Perth WA, Australia
| | - Rachel M Sherrard
- Sorbonne Universités, UPMC Univ Paris 06 & CNRS, IBPS-B2A, UMR 8256 Biological Adaptation and Ageing Paris, France
| |
Collapse
|
17
|
van Belkum SM, Bosker FJ, Kortekaas R, Beersma DGM, Schoevers RA. Treatment of depression with low-strength transcranial pulsed electromagnetic fields: A mechanistic point of view. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:137-43. [PMID: 27449361 DOI: 10.1016/j.pnpbp.2016.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mood disorders constitute a high burden for both patients and society. Notwithstanding the large arsenal of available treatment options, a considerable group of patients does not remit on current antidepressant treatment. There is an urgent need to develop alternative treatment strategies. Recently, low-strength transcranial pulsed electromagnetic field (tPEMF) stimulation has been purported as a promising strategy for such treatment-resistant depression (TRD). The mode of action of this new technique is however largely unknown. METHODS We searched PubMed for literature reports on the effects of tPEMF and for information regarding its working mechanism and biological substrate. RESULTS Most studies more or less connect with the major hypotheses of depression and concern the effects of tPEMF on brain metabolism, neuronal connectivity, brain plasticity, and the immune system. Relatively few studies paid attention to the possible chronobiologic effects of electromagnetic fields. LIMITATIONS We reviewed the literature of a new and still developing field. Some of the reports involved translational studies, which inevitably limits the reach of the conclusions. CONCLUSION Weak magnetic fields influence divergent neurobiological processes. The antidepressant effect of tPEMF may be specifically attributable to its effects on local brain activity and connectivity.
Collapse
Affiliation(s)
- S M van Belkum
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, CC 30, P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | - F J Bosker
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, CC 30, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - R Kortekaas
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, CC 30, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Neuroscience, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | - D G M Beersma
- Department Chronobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - R A Schoevers
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, CC 30, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Research School of Behavioural and Cognitive Neurosciences (BCN), Interdisciplinary Center for Psychopathology and Emotion regulation (ICPE), CC 30, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
18
|
Parham F, Portier CJ, Chang X, Mevissen M. The Use of Signal-Transduction and Metabolic Pathways to Predict Human Disease Targets from Electric and Magnetic Fields Using in vitro Data in Human Cell Lines. Front Public Health 2016; 4:193. [PMID: 27656641 PMCID: PMC5013261 DOI: 10.3389/fpubh.2016.00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/25/2016] [Indexed: 12/23/2022] Open
Abstract
Using in vitro data in human cell lines, several research groups have investigated changes in gene expression in cellular systems following exposure to extremely low frequency (ELF) and radiofrequency (RF) electromagnetic fields (EMF). For ELF EMF, we obtained five studies with complete microarray data and three studies with only lists of significantly altered genes. Likewise, for RF EMF, we obtained 13 complete microarray datasets and 5 limited datasets. Plausible linkages between exposure to ELF and RF EMF and human diseases were identified using a three-step process: (a) linking genes associated with classes of human diseases to molecular pathways, (b) linking pathways to ELF and RF EMF microarray data, and (c) identifying associations between human disease and EMF exposures where the pathways are significantly similar. A total of 60 pathways were associated with human diseases, mostly focused on basic cellular functions like JAK–STAT signaling or metabolic functions like xenobiotic metabolism by cytochrome P450 enzymes. ELF EMF datasets were sporadically linked to human diseases, but no clear pattern emerged. Individual datasets showed some linkage to cancer, chemical dependency, metabolic disorders, and neurological disorders. RF EMF datasets were not strongly linked to any disorders but strongly linked to changes in several pathways. Based on these analyses, the most promising area for further research would be to focus on EMF and neurological function and disorders.
Collapse
Affiliation(s)
- Fred Parham
- National Institute of Environmental Health Sciences, Research Triangle Park , Durham, NC , USA
| | | | - Xiaoqing Chang
- National Institute of Environmental Health Sciences, Research Triangle Park , Durham, NC , USA
| | - Meike Mevissen
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty , University of Bern, Bern , Switzerland
| |
Collapse
|
19
|
Leuchter AF, Cook IA, Feifel D, Goethe JW, Husain M, Carpenter LL, Thase ME, Krystal AD, Philip NS, Bhati MT, Burke WJ, Howland RH, Sheline YI, Aaronson ST, Iosifescu DV, O'Reardon JP, Gilmer WS, Jain R, Burgoyne KS, Phillips B, Manberg PJ, Massaro J, Hunter AM, Lisanby SH, George MS. Efficacy and Safety of Low-field Synchronized Transcranial Magnetic Stimulation (sTMS) for Treatment of Major Depression. Brain Stimul 2015; 8:787-94. [DOI: 10.1016/j.brs.2015.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 11/26/2022] Open
|
20
|
Peterchev AV, Deng ZD, Goetz SM. Advances in Transcranial Magnetic Stimulation Technology. Brain Stimul 2015. [DOI: 10.1002/9781118568323.ch10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Deng ZD, McClintock SM, Oey NE, Luber B, Lisanby SH. Neuromodulation for mood and memory: from the engineering bench to the patient bedside. Curr Opin Neurobiol 2015; 30:38-43. [PMID: 25222617 PMCID: PMC4342851 DOI: 10.1016/j.conb.2014.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 12/28/2022]
Abstract
Brain stimulation, in the form of electroconvulsive therapy (ECT), has long been a gold standard treatment for depression, but today, the field of neuromodulation is rapidly changing with the advent of newer and more precise tools to alter neuroplasticity and to treat brain-based disorders. Now there are new means to induce focal seizures, as with magnetic seizure therapy (MST), or modifications to ECT. There are also surgical approaches to target brain circuits via implanted stimulators placed in the brain or on cranial nerves. Finally, there are noninvasive subconvulsive approaches for the transcranial application of either electric or magnetic fields. Collectively, these tools have transformed the face of neurotherapeutics and informed our understanding of the brain basis of complex neurobehavioral conditions.
Collapse
Affiliation(s)
- Zhi-De Deng
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Shawn M McClintock
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicodemus E Oey
- Duke-National University of Singapore Graduate Medical School, Singapore
| | - Bruce Luber
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Sarah H Lisanby
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
22
|
Rohan ML, Yamamoto RT, Ravichandran CT, Cayetano KR, Morales OG, Olson DP, Vitaliano G, Paul SM, Cohen BM. Rapid mood-elevating effects of low field magnetic stimulation in depression. Biol Psychiatry 2014; 76:186-93. [PMID: 24331545 DOI: 10.1016/j.biopsych.2013.10.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/18/2013] [Accepted: 10/12/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND We previously reported rapid mood elevation following an experimental magnetic resonance imaging procedure in depressed patients with bipolar disorder (BPD). This prompted the design, construction, and testing of a portable electromagnetic device that reproduces only the rapidly oscillating (1 kHz, <1 V/m) electromagnetic field of the experimental procedure, called low field magnetic stimulation (LFMS). METHODS We used a randomized, double blind, sham controlled treatment protocol to study the effects of LFMS in a large group of stably medicated, depressed patients with either BPD (n = 41) or major depressive disorder (n = 22). Subjects received a single, 20-minute treatment. Change in mood was assessed immediately afterward using a visual analog scale (VAS), the 17-item Hamilton Depression Rating Scale (HDRS-17), and the Positive and Negative Affect Schedule scales. RESULTS Substantial improvement (>10% of baseline) in mood was observed following LFMS treatment relative to sham treatment for both diagnostic subgroups for our primary outcomes, the VAS and the HDRS-17. These differences were not statistically significant in primary analyses stratifying by diagnosis but were significant in secondary analyses combining data across the two diagnostic groups (p = .01 VAS, p = .02 HDRS-17). Rapid improvement in mood was also observed using the Positive and Negative Affect Schedule scales as secondary measures (positive affect scale p = .02 BPD, p = .002 combined group). A finite element method calculation indicates a broad penetration of the LFMS electric field throughout the cerebral cortex. CONCLUSIONS Low field magnetic stimulation may produce rapid changes in mood using a previously unexplored range of electromagnetic fields.
Collapse
Affiliation(s)
- Michael L Rohan
- McLean Hospital and the Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts.
| | - Rinah T Yamamoto
- McLean Hospital and the Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts
| | - Caitlin T Ravichandran
- Departments of Neuroscience (Mind and Brain Institute), Psychiatry, and Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York
| | - Kenroy R Cayetano
- McLean Hospital and the Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts
| | - Oscar G Morales
- Departments of Neuroscience (Mind and Brain Institute), Psychiatry, and Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York
| | - David P Olson
- McLean Hospital and the Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts
| | - Gordana Vitaliano
- Departments of Neuroscience (Mind and Brain Institute), Psychiatry, and Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York
| | - Steven M Paul
- Departments of Neuroscience (Mind and Brain Institute), Psychiatry, and Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York
| | - Bruce M Cohen
- Departments of Neuroscience (Mind and Brain Institute), Psychiatry, and Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York
| |
Collapse
|
23
|
Deng ZD, Lisanby SH, Peterchev AV. Coil design considerations for deep transcranial magnetic stimulation. Clin Neurophysiol 2013; 125:1202-12. [PMID: 24411523 DOI: 10.1016/j.clinph.2013.11.038] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 10/06/2013] [Accepted: 11/09/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To explore the field characteristics and design tradeoffs of coils for deep transcranial magnetic stimulation (dTMS). METHODS We simulated parametrically two dTMS coil designs on a spherical head model using the finite element method, and compare them with five commercial TMS coils, including two that are FDA approved for the treatment of depression (ferromagnetic-core figure-8 and H1 coil). RESULTS Smaller coils have a focality advantage over larger coils; however, this advantage diminishes with increasing target depth. Smaller coils have the disadvantage of producing stronger field in the superficial cortex and requiring more energy. When the coil dimensions are large relative to the head size, the electric field decay in depth becomes linear, indicating that, at best, the electric field attenuation is directly proportional to the depth of the target. Ferromagnetic cores improve electrical efficiency for targeting superficial brain areas; however magnetic saturation reduces the effectiveness of the core for deeper targets, especially for highly focal coils. Distancing winding segments from the head, as in the H1 coil, increases the required stimulation energy. CONCLUSIONS Among standard commercial coils, the double cone coil offers high energy efficiency and balance between stimulated volume and superficial field strength. Direct TMS of targets at depths of ~4 cm or more results in superficial stimulation strength that exceeds the upper limit in current rTMS safety guidelines. Approaching depths of ~6 cm is almost certainly unsafe considering the excessive superficial stimulation strength and activated brain volume. SIGNIFICANCE Coil design limitations and tradeoffs are important for rational and safe exploration of dTMS.
Collapse
Affiliation(s)
- Zhi-De Deng
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Sarah H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
24
|
Effect of MRI acoustic noise on cerebral fludeoxyglucose uptake in simultaneous MR-PET imaging. Invest Radiol 2013; 48:302-12. [PMID: 23462677 DOI: 10.1097/rli.0b013e3182839fbc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Integrated scanners capable of simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) data acquisition are now available for human use. Although the scanners' manufacturers have made substantial efforts to understand and minimize the mutual electromagnetic interference between the 2 modalities, the potential physiological inference has not been evaluated. In this study, we have studied the influence of the acoustic noise produced by the magnetic resonance (MR) gradients on brain fludeoxyglucose (FDG) uptake in the Siemens MR-BrainPET prototype. Although particular attention was paid to the primary auditory cortex (PAC), a brain-wide analysis was also performed. METHODS The effects of the MR on the PET count rate and image quantification were first investigated in phantoms. Next, 10 healthy volunteers underwent 2 simultaneous FDG-PET/MR scans in the supine position with the FDG injection occurring inside the MR-BrainPET, alternating between a "quiet" (control) environment in which no MR sequences were run during the FDG uptake phase (the first 40 minutes after radiotracer administration) and a "noisy" (test) environment in which MR sequences were run for the entire time. Cortical and subcortical regions of interest were derived from the high-resolution morphological MR data using FreeSurfer. The changes in the FDG uptake in the FreeSurfer-derived regions of interest between the 2 conditions were analyzed from parametric and static PET images, and on a voxel-by-voxel basis using SPM8 and FreeSurfer. RESULTS Only minimal to no electromagnetic interference was observed for most of the MR sequences tested, with a maximum drop in count rate of 1.5% and a maximum change in the measured activity of 1.1% in the corresponding images. The region of interest-based analysis showed statistically significant increases in the right PAC in both the parametric (9.13% [4.73%]) and static (4.18% [2.87%]) images. The SPM8 analysis showed no statistically significant clusters in any images when a P < 0.05 (corrected) was used; however, a P < 0.001 (uncorrected) resolved bilateral statistically significant clusters of increased FDG uptake in the area of the PAC for the parametric image (left, 8.37% [1.55%]; right, 8.20% [1.17%]) but only unilateral increase in the static image (left, 8.68% [3.89%]). CONCLUSIONS Although the operation of the BrainPET prototype is virtually unaffected by the MR scanner, the acoustic noise produced by the MR gradients causes a focal increase in the FDG uptake in the PAC, which could affect the interpretation of pathological (or brain-activation-related) changes in the FDG uptake in this region if the expected effects are of comparable amplitude.
Collapse
|
25
|
Kortekaas R, van Nierop LE, Baas VG, Konopka KH, Harbers M, van der Hoeven JH, van Wijhe M, Aleman A, Maurits NM. A novel magnetic stimulator increases experimental pain tolerance in healthy volunteers - a double-blind sham-controlled crossover study. PLoS One 2013; 8:e61926. [PMID: 23620795 PMCID: PMC3631254 DOI: 10.1371/journal.pone.0061926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 03/17/2013] [Indexed: 02/04/2023] Open
Abstract
The ‘complex neural pulse’TM (CNP) is a neuromodulation protocol employing weak pulsed electromagnetic fields (PEMF). A pioneering paper reported an analgesic effect in healthy humans after 30 minutes of CNP-stimulation using three nested whole head coils. We aimed to devise and validate a stimulator with a novel design entailing a multitude of small coils at known anatomical positions on a head cap, to improve applicability. The main hypothesis was that CNP delivery with this novel device would also increase heat pain thresholds. Twenty healthy volunteers were enrolled in this double-blind, sham-controlled, crossover study. Thirty minutes of PEMF (CNP) or sham was applied to the head. After one week the other treatment was given. Before and after each treatment, primary and secondary outcomes were measured. Primary outcome was heat pain threshold (HPT) measured with thermal quantitative sensory testing. Other outcomes were warmth detection threshold, and aspects of cognition, emotion and motor performance. As hypothesized heat pain threshold was significantly increased after the PEMF stimulation. All other outcomes were unaltered by the PEMF but there was a trend level reduction of cognitive performance after PEMF stimulation as measured by the digit-symbol substitution task. Results from this pilot study suggest that our device is able to stimulate the brain and to modulate its function. This is in agreement with previous studies that used similar magnetic field strengths to stimulate the brain. Specifically, pain control may be achieved with PEMF and for this analgesic effect, coil design does not appear to play a dominant role. In addition, the flexible configuration with small coils on a head cap improves clinical applicability.
Collapse
Affiliation(s)
- Rudie Kortekaas
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Leuchter AF, Cook IA, Jin Y, Phillips B. The relationship between brain oscillatory activity and therapeutic effectiveness of transcranial magnetic stimulation in the treatment of major depressive disorder. Front Hum Neurosci 2013; 7:37. [PMID: 23550274 PMCID: PMC3581824 DOI: 10.3389/fnhum.2013.00037] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 02/01/2013] [Indexed: 12/11/2022] Open
Abstract
Major depressive disorder (MDD) is marked by disturbances in brain functional connectivity. This connectivity is modulated by rhythmic oscillations of brain electrical activity, which enable coordinated functions across brain regions. Oscillatory activity plays a central role in regulating thinking and memory, mood, cerebral blood flow, and neurotransmitter levels, and restoration of normal oscillatory patterns is associated with effective treatment of MDD. Repetitive transcranial magnetic stimulation (rTMS) is a robust treatment for MDD, but the mechanism of action (MOA) of its benefits for mood disorders remains incompletely understood. Benefits of rTMS have been tied to enhanced neuroplasticity in specific brain pathways. We summarize here the evidence that rTMS entrains and resets thalamocortical oscillators, normalizes regulation and facilitates reemergence of intrinsic cerebral rhythms, and through this mechanism restores normal brain function. This entrainment and resetting may be a critical step in engendering neuroplastic changes and the antidepressant effects of rTMS. It may be possible to modify the method of rTMS administration to enhance this MOA and achieve better antidepressant effectiveness. We propose that rTMS can be administered: (1) synchronized to a patient's individual alpha frequency (IAF), or synchronized rTMS (sTMS); (2) as a low magnetic field strength sinusoidal waveform; and, (3) broadly to multiple brain areas simultaneously. We present here the theory and evidence indicating that these modifications could enhance the therapeutic effectiveness of rTMS for the treatment of MDD.
Collapse
Affiliation(s)
- Andrew F Leuchter
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| | | | | | | |
Collapse
|
27
|
Paulus W, Peterchev AV, Ridding M. Transcranial electric and magnetic stimulation: technique and paradigms. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:329-42. [PMID: 24112906 DOI: 10.1016/b978-0-444-53497-2.00027-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Transcranial electrical and magnetic stimulation techniques encompass a broad physical variety of stimuli, ranging from static magnetic fields or direct current stimulation to pulsed magnetic or alternating current stimulation with an almost infinite number of possible stimulus parameters. These techniques are continuously refined by new device developments, including coil or electrode design and flexible control of the stimulus waveforms. They allow us to influence brain function acutely and/or by inducing transient plastic after-effects in a range from minutes to days. Manipulation of stimulus parameters such as pulse shape, intensity, duration, and frequency, and location, size, and orientation of the electrodes or coils enables control of the immediate effects and after-effects. Physiological aspects such as stimulation at rest or during attention or activation may alter effects dramatically, as does neuropharmacological drug co-application. Non-linear relationships between stimulus parameters and physiological effects have to be taken into account.
Collapse
Affiliation(s)
- Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Göttingen, Germany.
| | | | | |
Collapse
|
28
|
Al-Harbi KS, Qureshi NA. Neuromodulation therapies and treatment-resistant depression. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2012; 5:53-65. [PMID: 23152710 PMCID: PMC3496963 DOI: 10.2147/mder.s33198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Patients with treatment-resistant depression (TRD) who showed partial response to pharmacological and psychotherapeutic interventions need a trial of neuromodulation therapies (NTs). Objective This paper aims to review evidence-based data on the use of NTs in TRD. Method Using keywords and combined-word strategy, multiple computer searches of PubMed, Google Scholar, Quertle(R), and Medline were conducted for retrieving relevant articles published in English-language peer-reviewed journals (2000–2012). Those papers that addressed NTs in TRD were retained for extensive review. Results Despite methodological challenges, a range of 30%–93% of TRD patients showed substantial improvement to one of the NTs. One hundred–percent improvement was reported in two single-case studies on deep brain stimulation. Some studies reported no benefits from transcranial direct current stimulation. NTs were reported to have good clinical efficacy, better safety margin, and benign side-effect profile. Data are limited regarding randomized clinical trials, long-term efficacy, and cost-effectiveness of these approaches. Both modified electroconvulsive therapy and magnetic seizure therapy were associated with reversible but disturbing neurocognitive adverse effects. Besides clinical utility, NTs including approaches on the horizon may unlock the biological basis underlying mood disorders including TRD. Conclusion NTs are promising in patients with TRD, as the majority of them show good clinical response measured by standardized depression scales. NTs need further technological refinements and optimization together with continuing well-designed studies that recruit larger numbers of participants with TRD.
Collapse
|
29
|
Peterchev AV, Wagner TA, Miranda PC, Nitsche MA, Paulus W, Lisanby SH, Pascual-Leone A, Bikson M. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul 2012; 5:435-53. [PMID: 22305345 PMCID: PMC3346863 DOI: 10.1016/j.brs.2011.10.001] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/05/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. METHODS This paper provides fundamental definitions and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. RESULTS The biologic effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biologic effects of EM stimulation. CONCLUSIONS We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated.
Collapse
Affiliation(s)
- Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Deng ZD, Lisanby SH, Peterchev AV. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 2012; 6:1-13. [PMID: 22483681 DOI: 10.1016/j.brs.2012.02.005] [Citation(s) in RCA: 588] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Various transcranial magnetic stimulation (TMS) coil designs are available or have been proposed. However, key coil characteristics such as electric field focality and attenuation in depth have not been adequately compared. Knowledge of the coil focality and depth characteristics can help TMS researchers and clinicians with coil selection and interpretation of TMS studies. OBJECTIVE To quantify the electric field focality and depth of penetration of various TMS coils. METHODS The electric field distributions induced by 50 TMS coils were simulated in a spherical human head model using the finite element method. For each coil design, we quantified the electric field penetration by the half-value depth, d(1/2), and focality by the tangential spread, S(1/2), defined as the half-value volume (V(1/2)) divided by the half-value depth, S(1/2) = V(1/2)/d(1/2). RESULTS The 50 TMS coils exhibit a wide range of electric field focality and depth, but all followed a depth-focality tradeoff: coils with larger half-value depth cannot be as focal as more superficial coils. The ranges of achievable d(1/2) are similar between coils producing circular and figure-8 electric field patterns, ranging 1.0-3.5 cm and 0.9-3.4 cm, respectively. However, figure-8 field coils are more focal, having S(1/2) as low as 5 cm(2) compared to 34 cm(2) for circular field coils. CONCLUSIONS For any coil design, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electrical field spread. Novel coil designs should be benchmarked against comparison coils with consistent metrics such as d(1/2) and S(1/2).
Collapse
Affiliation(s)
- Zhi-De Deng
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
| | | | | |
Collapse
|
31
|
Rosa MA, Lisanby SH. Somatic treatments for mood disorders. Neuropsychopharmacology 2012; 37:102-16. [PMID: 21976043 PMCID: PMC3238088 DOI: 10.1038/npp.2011.225] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 12/22/2022]
Abstract
Somatic treatments for mood disorders represent a class of interventions available either as a stand-alone option, or in combination with psychopharmacology and/or psychotherapy. Here, we review the currently available techniques, including those already in clinical use and those still under research. Techniques are grouped into the following categories: (1) seizure therapies, including electroconvulsive therapy and magnetic seizure therapy, (2) noninvasive techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and cranial electric stimulation, (3) surgical approaches, including vagus nerve stimulation, epidural electrical stimulation, and deep brain stimulation, and (4) technologies on the horizon. Additionally, we discuss novel approaches to the optimization of each treatment, and new techniques that are under active investigation.
Collapse
Affiliation(s)
- Moacyr A Rosa
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Sarah H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
32
|
Abstract
OBJECTIVE The aim of this study was to review the current state of development and application of a wide range of brain stimulation approaches in the treatment of psychiatric disorders. METHOD The approaches reviewed include forms of minimally invasive magnetic and electrical stimulation, seizure induction, implanted devices and several highly novel approaches in early development. RESULTS An extensive range of brain stimulation approaches are now being widely used in the treatment of patients with psychiatric disorders, or actively investigated for this use. Both vagal nerve stimulation (VNS) and repetitive transcranial magnetic stimulation (rTMS) have been introduced into clinical practice in some countries. A small body of research suggests that VNS has some potentially long-lasting antidepressant effects in a minority of patients treated. rTMS has now been extensively investigated for over 15 years, with a large body of research now supporting its antidepressant effects. Further rTMS research needs to focus on defining the most appropriate stimulation methods and exploring its longer term use in maintenance protocols. Very early data suggest that magnetic seizure therapy (MST) has promise in the treatment of patients referred for electroconvulsive therapy: MST appears to have fewer side effects and may have similar efficacy. A number of other approaches including surgical and alternative forms of electrical stimulation appear to alter brain activity in a promising manner, but are in need of evaluation in more substantive patient samples. CONCLUSIONS It appears likely that the range of psychiatric treatments available for patients will grow over the coming years to progressively include a number of novel brain stimulation techniques.
Collapse
Affiliation(s)
- Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University School of Psychology and Psychiatry, Melbourne, Victoria, Australia. paul.fi
| |
Collapse
|
33
|
Volkow ND, Tomasi D, Wang GJ, Vaska P, Fowler JS, Telang F, Alexoff D, Logan J, Wong C. Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. JAMA 2011; 305:808-13. [PMID: 21343580 PMCID: PMC3184892 DOI: 10.1001/jama.2011.186] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. OBJECTIVE To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. DESIGN, SETTING, AND PARTICIPANTS Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ((18)F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ("on" condition) and once with both cell phones deactivated ("off" condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm(3)) and P < .05 (corrected for multiple comparisons) were considered significant. MAIN OUTCOME MEASURE Brain glucose metabolism computed as absolute metabolism (μmol/100 g per minute) and as normalized metabolism (region/whole brain). RESULTS Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 μmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). CONCLUSIONS In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, 6001 Executive Blvd, Room 5274, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
George MS. Transcranial magnetic stimulation for the treatment of depression. Expert Rev Neurother 2011; 10:1761-72. [PMID: 20977332 DOI: 10.1586/ern.10.95] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Repeated daily left prefrontal transcranial magnetic stimulation (TMS) was first proposed as a potential treatment for depression in 1993. Multiple studies from researchers around the world since then have repeatedly demonstrated that TMS has antidepressant effects greater than sham treatment, and that these effects are clinically meaningful. A large industry-sponsored trial, published in 2007, resulted in US FDA approval in October 2008. Most recently, a large NIH-sponsored trial, with a more rigorous sham technique, found that a course of treatment (3-5 weeks) was statistically and clinically significant in reducing depression. However, consistently showing statistically and clinically significant antidepressant effects, and gaining regulatory approval, is merely the beginning for this new treatment. As with any new treatment involving a radically different approach, there are many unanswered questions about TMS, and the field is still rapidly evolving. These unanswered questions include the appropriate scalp location, understanding the mechanisms of action, refining the 'dose' (frequency, train, number of stimuli/day and pattern of delivery), understanding whether and how TMS can be combined with medications or talking/exposure therapy, or both, and how to deliver maintenance TMS. This article summarizes the available clinical information, and discusses key areas where more research is needed. TMS reflects a paradigm shift in treating depression. It is a safe, relatively noninvasive, focal brain stimulation treatment that does not involve seizures or implanted wires, and does not have drug-drug interactions or systemic side effects.
Collapse
Affiliation(s)
- Mark S George
- Institute of Psychiatry, Medical University of South Carolina, 502 N, 67 President St, Charleston, SC 29425, USA.
| |
Collapse
|
35
|
Brain Stimulation. From the editor-in-chief's desk. Brain Stimul 2010; 3:129-30. [PMID: 20633441 DOI: 10.1016/j.brs.2010.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|