1
|
Nguyen‐Duc J, de Riedmatten I, Spencer APC, Perot J, Olszowy W, Jelescu I. Mapping Activity and Functional Organisation of the Motor and Visual Pathways Using ADC-fMRI in the Human Brain. Hum Brain Mapp 2025; 46:e70110. [PMID: 39835608 PMCID: PMC11747996 DOI: 10.1002/hbm.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function. To demonstrate the specificity and value of ADC-fMRI, both ADC- and BOLD-fMRI data were collected at 3 T in human subjects during visual stimulation and motor tasks. The first aim of this study was to identify an acquisition design for ADC that minimises BOLD contributions. By examining the timings in responses, we report that ADC 0/1 timeseries (acquired with b values of 0 and 1 ms/μm 2 $$ {\upmu \mathrm{m}}^2 $$ ) exhibit residual vascular contamination, while ADC 0.2/1 timeseries (with b values of 0.2 and 1 ms/μm 2 $$ {\upmu \mathrm{m}}^2 $$ ) show minimal BOLD influence and higher sensitivity to neuromorphological coupling. Second, a general linear model was employed to identify activation clusters for ADC 0.2/1 and BOLD, from which the average ADC and BOLD responses were calculated. The negative ADC response exhibited a significantly reduced delay relative to the task onset and offset as compared to BOLD. This early onset further supports the notion that ADC is sensitive to neuromorphological rather than neurovascular coupling. Remarkably, in the group-level analysis, positive BOLD activation clusters were detected in the visual and motor cortices, while the negative ADC clusters mainly highlighted pathways in white matter connected to the motor cortex. In the averaged individual level analysis, negative ADC activation clusters were also present in the visual cortex. This finding confirmed the reliability of negative ADC as an indicator of brain function, even in regions with lower vascularisation such as white matter. Finally, we established that ADC-fMRI time courses yield the expected functional organisation of the visual system, including both grey and white matter regions of interest. Functional connectivity matrices were used to perform hierarchical clustering of brain regions, where ADC-fMRI successfully reproduced the expected structure of the dorsal and ventral visual pathways. This organisation was not replicated with the b = 0.2 ms/μm 2 $$ {\upmu \mathrm{m}}^2 $$ diffusion-weighted time courses, which can be seen as a proxy for BOLD (via T2-weighting). These findings underscore the robustness of ADC time courses in functional MRI studies, offering complementary insights into BOLD-fMRI regarding brain function and connectivity patterns.
Collapse
Affiliation(s)
- Jasmine Nguyen‐Duc
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Ines de Riedmatten
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Arthur P. C. Spencer
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Jean‐Baptiste Perot
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Wiktor Olszowy
- Data Science Unit, Science and ResearchDsm‐Firmenich AGKaiseraugstSwitzerland
| | - Ileana Jelescu
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
2
|
Peng SL, Huang SM, Chu LWL, Chiu SC. Anesthetic modulation of water diffusion: Insights from a diffusion tensor imaging study. Med Eng Phys 2023; 118:104015. [PMID: 37536836 DOI: 10.1016/j.medengphy.2023.104015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023]
Abstract
Diffusion tensor imaging (DTI) in animal models are essential for translational neuroscience studies. A critical step in animal studies is the use of anesthetics. Understanding the influence of specific anesthesia regimes on DTI-derived parameters, such as fractional anisotropy (FA) and mean diffusivity (MD), is imperative when comparing results between animal studies using different anesthetics. Here, the quantification of FA and MD under different anesthetic regimes, alpha-chloralose and isoflurane, is discussed. We also used a range of b-values to determine whether the anesthetic effect was b-value dependent. The first group of rats (n = 6) was anesthetized with alpha-chloralose (80 mg/kg), whereas the second group of rats (n = 7) was anesthetized with isoflurane (1.5%). DTI was performed with b-values of 500, 1500, and 1500s/mm2, and the MD and FA were assessed individually. Anesthesia-specific differences in MD were apparent, as manifested by the higher estimated MD under isoflurane anesthesia than that under alpha-chloralose anesthesia (P < 0.001). MD values increased with decreasing b-value in all regions studied, and the degree of increase when rats were anesthetized with isoflurane was more pronounced than that associated with alpha-chloralose (P < 0.05). FA quantitation was also influenced by anesthesia regimens to varying extents, depending on the brain regions and b-values. In conclusion, both scanning parameters and the anesthesia regimens significantly impacted the quantification of DTI indices.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Lok Wang Lauren Chu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
3
|
Nunes D, Gil R, Shemesh N. A rapid-onset diffusion functional MRI signal reflects neuromorphological coupling dynamics. Neuroimage 2021; 231:117862. [PMID: 33592243 DOI: 10.1016/j.neuroimage.2021.117862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Functional Magnetic Resonance Imaging (fMRI) has transformed our understanding of brain function in-vivo. However, the neurovascular coupling mechanisms underlying fMRI are somewhat "distant" from neural activity. Interestingly, evidence from Intrinsic Optical Signals (IOSs) indicates that neural activity is also coupled to (sub)cellular morphological modulations. Diffusion-weighted functional MRI (dfMRI) experiments have been previously proposed to probe such neuromorphological couplings, but the underlying mechanisms have remained highly contested. Here, we provide the first direct link between in vivo ultrafast dfMRI signals upon rat forepaw stimulation and IOSs in acute slices stimulated optogenetically. We reveal a hitherto unreported rapid onset (<100 ms) dfMRI signal component which (i) agrees with fast-rising IOSs dynamics; (ii) evidences a punctate quantitative correspondence to the stimulation period; and (iii) is rather insensitive to a vascular challenge. Our findings suggest that neuromorphological coupling can be detected via dfMRI signals, auguring well for future mapping of neural activity more directly compared with blood-oxygenation-level-dependent mechanisms.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal
| | - Rita Gil
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal.
| |
Collapse
|
4
|
Albers F, Wachsmuth L, Schache D, Lambers H, Faber C. Functional MRI Readouts From BOLD and Diffusion Measurements Differentially Respond to Optogenetic Activation and Tissue Heating. Front Neurosci 2019; 13:1104. [PMID: 31708721 PMCID: PMC6821691 DOI: 10.3389/fnins.2019.01104] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Functional blood-oxygenation-level-dependent (BOLD) MRI provides a brain-wide readout that depends on the hemodynamic response to neuronal activity. Diffusion fMRI has been proposed as an alternative to BOLD fMRI and has been postulated to directly rely on neuronal activity. These complementary functional readouts are versatile tools to be combined with optogenetic stimulation to investigate networks of the brain. The cell-specificity and temporal precision of optogenetic manipulations promise to enable further investigation of the origin of fMRI signals. The signal characteristics of the diffusion fMRI readout vice versa may better resolve network effects of optogenetic stimulation. However, the light application needed for optogenetic stimulation is accompanied by heat deposition within the tissue. As both diffusion and BOLD are sensitive to temperature changes, light application can lead to apparent activations confounding the interpretation of fMRI data. The degree of tissue heating, the appearance of apparent activation in different fMRI sequences and the origin of these phenomena are not well understood. Here, we disentangled apparent activations in BOLD and diffusion measurements in rats from physiological activation upon sensory or optogenetic stimulation. Both, BOLD and diffusion fMRI revealed similar signal shapes upon sensory stimulation that differed clearly from those upon heating. Apparent activations induced by high-intensity light application were dominated by T2∗-effects and resulted in mainly negative signal changes. We estimated that even low-intensity light application used for optogenetic stimulation reduces the BOLD response close to the fiber by up to 0.4%. The diffusion fMRI signal contained T2, T2∗ and diffusion components. The apparent diffusion coefficient, which reflects the isolated diffusion component, showed negative changes upon both optogenetic and electric forepaw stimulation. In contrast, positive changes were detected upon high-intensity light application and thus ruled out heating as a major contributor to the diffusion fMRI signal.
Collapse
Affiliation(s)
- Franziska Albers
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Daniel Schache
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Henriette Lambers
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
5
|
Nunes D, Ianus A, Shemesh N. Layer-specific connectivity revealed by diffusion-weighted functional MRI in the rat thalamocortical pathway. Neuroimage 2019; 184:646-657. [PMID: 30267858 PMCID: PMC6264401 DOI: 10.1016/j.neuroimage.2018.09.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Investigating neural activity from a global brain perspective in-vivo has been in the domain of functional Magnetic Resonance Imaging (fMRI) over the past few decades. The intricate neurovascular couplings that govern fMRI's blood-oxygenation-level-dependent (BOLD) functional contrast are invaluable in mapping active brain regions, but they also entail significant limitations, such as non-specificity of the signal to active foci. Diffusion-weighted functional MRI (dfMRI) with relatively high diffusion-weighting strives to ameliorate this shortcoming as it offers functional contrasts more intimately linked with the underlying activity. Insofar, apart from somewhat smaller activation foci, dfMRI's contrasts have not been convincingly shown to offer significant advantages over BOLD-driven fMRI, and its activation maps relied on significant modelling. Here, we study whether dfMRI could offer a better representation of neural activity in the thalamocortical pathway compared to its (spin-echo (SE)) BOLD counterpart. Using high-end forepaw stimulation experiments in the rat at 9.4 T, and with significant sensitivity enhancements due to the use of cryocoils, we show for the first time that dfMRI signals exhibit layer specificity, and, additionally, display signals in areas devoid of SE-BOLD responses. We find that dfMRI signals in the thalamocortical pathway cohere with each other, namely, dfMRI signals in the ventral posterolateral (VPL) thalamic nucleus cohere specifically with layers IV and V in the somatosensory cortex. These activity patterns are much better correlated (compared with SE-BOLD signals) with literature-based electrophysiological recordings in the cortex as well as thalamus. All these findings suggest that dfMRI signals better represent the underlying neural activity in the pathway. In turn, these advanatages may have significant implications towards a much more specific and accurate mapping of neural activity in the global brain in-vivo.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Andrada Ianus
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Centre for Medical Image Computing, University College London, London, UK
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
6
|
Williams RJ, Reutens DC, Hocking J. Influence of BOLD Contributions to Diffusion fMRI Activation of the Visual Cortex. Front Neurosci 2016; 10:279. [PMID: 27445654 PMCID: PMC4923189 DOI: 10.3389/fnins.2016.00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/06/2016] [Indexed: 11/24/2022] Open
Abstract
Reliance on the hemodynamic response as a surrogate marker of neural activity imposes an intrinsic limit on the spatial specificity of functional MRI. An alternative approach based on diffusion-weighted functional MRI (DfMRI) has been reported as a contrast less reliant on hemodynamic effects, however current evidence suggests that both hemodynamic and unique neural sources contribute to the diffusion signal. Here we compare activation patterns obtained with the standard blood oxygenation level-dependent (BOLD) contrast to DfMRI in order to gain a deeper understanding of how the BOLD proportion contributes to the observable diffusion signal. Both individual and group-level activation patterns obtained with DfMRI and BOLD to a visual field stimulation paradigm were analyzed. At the individual level, the DfMRI contrast showed a strong, positive relationship between the volumes of cortex activated in response to quadrant- and hemi-field visual stimulation. This was not observed in the corresponding BOLD experiment. Overall, the DfMRI response indicated less between-subject variability, with random effects analyses demonstrating higher statistical values at the peak voxel for DfMRI. Furthermore, the spatial extent of the activation was more restricted to the primary visual region for DfMRI than BOLD. However, the diffusion signal was sensitive to the hemodynamic response in a manner dependent on experimental manipulation. It was also limited by its low signal-to-noise ratio (SNR), demonstrating lower sensitivity than BOLD. Together these findings both support DfMRI as a contrast that bears a closer spatial relationship to the underlying neural activity than BOLD, and raise important caveats regarding its utilization. Models explaining the DfMRI signal change need to consider the dynamic vascular contributions that may vary with neural activity.
Collapse
Affiliation(s)
- Rebecca J Williams
- Hotchkiss Brain Institute and Department of Radiology, University of CalgaryCalgary, AB, Canada; Centre for Advanced Imaging, The University of QueenslandSt. Lucia, QLD, Australia; Queensland Brain Institute, The University of QueenslandSt. Lucia, QLD, Australia; Centre for Clinical Research, The University of QueenslandBrisbane, QLD, Australia
| | - David C Reutens
- Centre for Advanced Imaging, The University of Queensland St. Lucia, QLD, Australia
| | - Julia Hocking
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology Kelvin Grove, QLD, Australia
| |
Collapse
|
7
|
Assessing the sensitivity of diffusion MRI to detect neuronal activity directly. Proc Natl Acad Sci U S A 2016; 113:E1728-37. [PMID: 26941239 DOI: 10.1073/pnas.1519890113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity.
Collapse
|
8
|
Williams RJ, Reutens DC, Hocking J. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI. Brain Behav 2015; 5:e00408. [PMID: 26664792 PMCID: PMC4667755 DOI: 10.1002/brb3.408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/25/2015] [Accepted: 09/06/2015] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. METHODS Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. RESULTS At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. CONCLUSIONS DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Collapse
Affiliation(s)
- Rebecca J Williams
- Centre for Advanced Imaging The University of Queensland St Lucia Qld 4067 Australia ; Queensland Brain Institute The University of Queensland St Lucia Qld 4067 Australia ; Centre for Clinical Research The University of Queensland Brisbane Qld 4006 Australia ; Hotchkiss Brain Institute and Department of Radiology University of Calgary Calgary AB T2N 4N1 Canada
| | - David C Reutens
- Centre for Advanced Imaging The University of Queensland St Lucia Qld 4067 Australia
| | - Julia Hocking
- School of Psychology and Counselling Queensland University of Technology Kelvin Grove Qld 4059 Australia
| |
Collapse
|
9
|
Fujiwara S, Uhrig L, Amadon A, Jarraya B, Le Bihan D. Quantification of iron in the non-human primate brain with diffusion-weighted magnetic resonance imaging. Neuroimage 2014; 102 Pt 2:789-97. [PMID: 25192653 DOI: 10.1016/j.neuroimage.2014.08.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/23/2014] [Accepted: 08/26/2014] [Indexed: 01/12/2023] Open
Abstract
Pathological iron deposits in the brain, especially within basal ganglia, are linked to severe neurodegenerative disorders like Parkinson's disease. As iron induces local changes in magnetic susceptibility, its presence can be visualized with magnetic resonance imaging (MRI). The usual approach, based on iron induced changes in magnetic relaxation (T2/T2'), is often prone, however, to confounding artifacts and lacks specificity. Here, we propose a new method to quantify and map iron deposits using water diffusion MRI. This method is based on the differential sensitivity of two image acquisition schemes to the local magnetic field gradients induced by iron deposits and their cross-term with gradient pulses used for diffusion encoding. Iron concentration could be imaged and estimated with high accuracy in the brain cortex, the thalamus, the substantia nigra and the globus pallidus of macaques, showing iron distributions in agreement with literature. Additionally, iron maps could clearly show a dramatic increase in iron content upon injection of an UltraSmall Particle Iron Oxide (USPIO) contrast agent, notably in the cortex and the thalamus, reflecting regional differences in blood volume. The method will benefit clinical investigations on the effect of iron deposits in the brain or other organs, as iron deposits are increasingly seen as a biomarker for a wide range of diseases, notably, neurodegenerative diseases in the pre-symptomatic stage. It also has the potential for quantifying variations in blood volume induced by brain activation in fMRI studies using USPIOs.
Collapse
Affiliation(s)
- Shunro Fujiwara
- Neurospin, Bâtiment 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France; Department of Neurosurgery, Iwate Medical University, 19-1 Uchimaru, Morioka, 0208505 Iwate, Japan
| | - Lynn Uhrig
- Neurospin, Bâtiment 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France; Equipe Avenir INSERM Bettencourt Schueller, Institut Fédératif de Recherche n°49, NeuroSpin, Bât. 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France
| | - Alexis Amadon
- Neurospin, Bâtiment 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France
| | - Béchir Jarraya
- Neurospin, Bâtiment 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France; Equipe Avenir INSERM Bettencourt Schueller, Institut Fédératif de Recherche n°49, NeuroSpin, Bât. 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France; Department of Neurosurgery, Neuromodulation unit, Foch Hospital, University of Versailles-Saint Quentin, 40 rue Worth, 92150 Suresnes, France
| | - Denis Le Bihan
- Neurospin, Bâtiment 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Kuroiwa D, Obata T, Kawaguchi H, Autio J, Hirano M, Aoki I, Kanno I, Kershaw J. Signal contributions to heavily diffusion-weighted functional magnetic resonance imaging investigated with multi-SE-EPI acquisitions. Neuroimage 2014; 98:258-65. [PMID: 24780698 DOI: 10.1016/j.neuroimage.2014.04.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/14/2014] [Accepted: 04/18/2014] [Indexed: 11/19/2022] Open
Abstract
Diffusion-weighted (DW) functional magnetic resonance imaging (fMRI) signal changes have been noted as a promising marker of neural activity. Although there is no agreement on the signal origin, the blood oxygen level dependent (BOLD) effect has figured as one of the most likely sources. In order to investigate possible BOLD and non-BOLD contributions to the signal, DW fMRI was performed on normal volunteers using a sequence with two echo-planar acquisitions after pulsed-gradient spin-echo. Along with the changes to the signal amplitude (ΔS/S) measured at both echo-times, this sequence allowed changes to the transverse relaxation rate (ΔR2) to be estimated for multiple b-values during hypercapnia (HC) and visual stimulation (VS). ΔS/S and ΔR2 observed during HC were relatively insensitive to increasing b-value. On the other hand, ΔS/S demonstrated a clear dependence on b-value at both echo-times for VS. In addition, ΔR2 during the latter half of VS was significantly more negative at b=1400s/mm(2) than for the time-courses at lower b-value, but ΔR2 during the post-stimulus undershoot was independent of b-value. The results have been discussed in terms of two models: the standard intravascular-extravascular model for fMRI and a three-compartment model (one intra- and two extravascular compartments). Within these interpretations the results suggest that the majority of the response is linked to changes in transverse relaxation, but possible contributions from other sources may not be ruled out.
Collapse
Affiliation(s)
- Daigo Kuroiwa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takayuki Obata
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan; Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hiroshi Kawaguchi
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Joonas Autio
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Masaya Hirano
- MR Engineering, GE Healthcare, Asahigaoka 4-7-127, Hino, Tokyo 191-8503, Japan
| | - Ichio Aoki
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Iwao Kanno
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Jeff Kershaw
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
11
|
Mandl RCW, Schnack HG, Zwiers MP, Kahn RS, Hulshoff Pol HE. Functional diffusion tensor imaging at 3 Tesla. Front Hum Neurosci 2013; 7:817. [PMID: 24409133 PMCID: PMC3847896 DOI: 10.3389/fnhum.2013.00817] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/11/2013] [Indexed: 11/13/2022] Open
Abstract
In a previous study we reported on a non-invasive functional diffusion tensor imaging (fDTI) method to measure neuronal signals directly from subtle changes in fractional anisotropy along white matter tracts. We hypothesized that these fractional anisotropy changes relate to morphological changes of glial cells induced by axonal activity. In the present study we set out to replicate the results of the previous study with an improved fDTI scan acquisition scheme. A group of twelve healthy human participants were scanned on a 3 Tesla MRI scanner. Activation was revealed in the contralateral thalamo-cortical tract and optic radiations during tactile and visual stimulation, respectively. Mean percent signal change in FA was 3.47% for the tactile task and 3.79% for the visual task, while for the MD the mean percent signal change was only -0.10 and -0.09%. The results support the notion of different response functions for tactile and visual stimuli. With this study we successfully replicated our previous findings using the same types of stimuli but on a different group of healthy participants and at different field-strength. The successful replication of our first fDTI results suggests that the non-invasive fDTI method is robust enough to study the functional neural networks in the human brain within a practically feasible time period.
Collapse
Affiliation(s)
- René C W Mandl
- 1Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Hugo G Schnack
- 1Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Marcel P Zwiers
- 2Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour Centre for Cognitive Neuroimaging Nijmegen, Netherlands
| | - René S Kahn
- 1Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Hilleke E Hulshoff Pol
- 1Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
12
|
Williams RJ, McMahon KL, Hocking J, Reutens DC. Comparison of block and event-related experimental designs in diffusion-weighted functional MRI. J Magn Reson Imaging 2013; 40:367-75. [PMID: 24923816 DOI: 10.1002/jmri.24353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/31/2013] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. MATERIALS AND METHODS Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s(2)) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. RESULTS The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 ± 0.88 sec). CONCLUSION The hemodynamic contribution to DfMRI may increase with the use of block designs.
Collapse
Affiliation(s)
- Rebecca J Williams
- University of Queensland, Centre for Advanced Imaging, Brisbane, Australia; University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | | | | | | |
Collapse
|
13
|
Water diffusion in brain cortex closely tracks underlying neuronal activity. Proc Natl Acad Sci U S A 2013; 110:11636-41. [PMID: 23801756 DOI: 10.1073/pnas.1303178110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuronal activity results in a local increase in blood flow. This concept serves as the basis for functional MRI. Still, this approach remains indirect and may fail in situations interfering with the neurovascular coupling mechanisms (drugs, anesthesia). Here we establish that water molecular diffusion is directly modulated by underlying neuronal activity using a rat forepaw stimulation model under different conditions of neuronal stimulation and neurovascular coupling. Under nitroprusside infusion, a neurovascular-coupling inhibitor, the diffusion response and local field potentials were maintained, whereas the hemodynamic response was abolished. As diffusion MRI reflects interactions of water molecules with obstacles (e.g., cell membranes), the observed changes point to a dynamic modulation of the neural tissue structure upon activation, which remains to be investigated. These findings represent a significant shift in concept from the current electrochemical and neurovascular coupling principles used for brain imaging, and open unique avenues to investigate mechanisms underlying brain function.
Collapse
|
14
|
Aso T, Urayama SI, Fukuyama H, Le Bihan D. Comparison of diffusion-weighted fMRI and BOLD fMRI responses in a verbal working memory task. Neuroimage 2013; 67:25-32. [DOI: 10.1016/j.neuroimage.2012.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 10/04/2012] [Accepted: 11/02/2012] [Indexed: 11/25/2022] Open
|
15
|
Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain. Neuroimage 2012; 64:448-57. [PMID: 23000787 DOI: 10.1016/j.neuroimage.2012.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/06/2012] [Accepted: 09/11/2012] [Indexed: 01/15/2023] Open
Abstract
Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measurements of food intake and body weight. We report here, the direct, non-invasive visualization of hypothalamic activation by fasting using diffusion weighted magnetic resonance imaging, in the mouse brain as well as in a preliminary study in the human brain. The brain of fed or fasted mice or humans were imaged at 7 or 1.5 Tesla, respectively, by diffusion weighted magnetic resonance imaging using a complete range of b values (10<b<2000s.mm(-2)). The diffusion weighted image data sets were registered and analyzed pixel by pixel using a biexponential model of diffusion, or a model-free Linear Discriminant Analysis approach. Biexponential fittings revealed statistically significant increases in the slow diffusion parameters of the model, consistent with a neurocellular swelling response in the fasted hypothalamus. Increased resolution approaches allowed the detection of increases in the diffusion parameters within the Arcuate Nucleus, Ventromedial Nucleus and Dorsomedial Nucleus. Independently, Linear Discriminant Analysis was able to classify successfully the diffusion data sets from mice and humans between fed and fasted states. Present results are consistent with increased glutamatergic neurotransmission during orexigenic firing, a process resulting in increased ionic accumulation and concomitant osmotic neurocellular swelling. This swelling response is spatially extendable through surrounding astrocytic networks until it becomes MRI detectable. Present findings open new avenues for the direct, non-invasive, evaluation of appetite disorders and other hypothalamic pathologies helping potentially in the development of the corresponding therapies.
Collapse
|
16
|
Le Bihan D, Joly O, Aso T, Uhrig L, Poupon C, Tani N, Iwamuro H, Urayama SI, Jarraya B. Brain tissue water comes in two pools: Evidence from diffusion and R2’ measurements with USPIOs in non human primates. Neuroimage 2012; 62:9-16. [DOI: 10.1016/j.neuroimage.2012.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/05/2012] [Accepted: 05/04/2012] [Indexed: 11/28/2022] Open
|
17
|
Le Bihan D. Diffusion, confusion and functional MRI. Neuroimage 2011; 62:1131-6. [PMID: 21985905 DOI: 10.1016/j.neuroimage.2011.09.058] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 02/06/2023] Open
Abstract
Diffusion MRI has been introduced in 1985 and has had a very successful life on its own. While it has become a standard for imaging stroke and white matter disorders, the borders between diffusion MRI and the general field of fMRI have always remained fuzzy. First, diffusion MRI has been used to obtain images of brain function, based on the idea that diffusion MRI could also be made sensitive to blood flow, through the intravoxel incoherent motion (IVIM) concept. Second, the IVIM concept helped better understand the contribution from different vasculature components to the BOLD fMRI signal. Third, it has been shown recently that a genuine fMRI signal can be obtained with diffusion MRI. This "DfMRI" signal is notably different from the BOLD fMRI signal, especially for its much faster response to brain activation both at onset and offset, which points out to structural changes in the neural tissues, perhaps such as cell swelling, occurring in activated neural tissue. This short article reviews the major steps which have paved the way for this exciting development, underlying how technical progress with MRI equipment has each time been instrumental to expand the horizon of diffusion MRI toward the field of fMRI.
Collapse
|