1
|
Berto M, Reisinger P, Ricciardi E, Weisz N, Bottari D. Hemispheric asymmetries in the auditory cortex reflect discriminative responses to temporal details or summary statistics of stationary sounds. Cortex 2025; 184:79-95. [PMID: 39808954 DOI: 10.1016/j.cortex.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 01/16/2025]
Abstract
The processing of stationary sounds relies on both local features and compact representations. As local information is compressed into summary statistics, abstract representations emerge. Whether the brain is endowed with distinct neural architectures predisposed to such computations is unknown. In this magnetoencephalography (MEG) study, we employed a validated protocol to localize cortical correlates of local and summary auditory representations, exposing participants to sequences embedding triplets of synthetic sound textures systematically varying for either local details or summary statistics. Sounds varied for their duration and could be short (40 ms) or long (478 ms) to favor change detections based on local or summary statistics, respectively. Results clearly revealed distinct activation patterns for local features and summary auditory statistics. Neural activations diverged in magnitude, spatiotemporal distribution, and hemispheric lateralization. The right auditory cortex, comprising both primary and neighboring temporal and frontal regions were engaged to detect sound changes in both local features (for short sounds) and summary statistics (for long sounds). Conversely, the left auditory cortex was not selective to these auditory changes. However, the ventro-lateral portion of left frontal lobe, a region associated with sound recognition, was engaged in processing changes in summary statistics at a long sound duration. These findings highlight the involvement of distinct cortical pathways and hemispheric lateralization for the computation of local and summary acoustic information occurring at different temporal resolutions. SIGNIFICANT STATEMENT: We revealed hemispheric specializations for auditory computations at high (local) and low (summary statistics) temporal resolutions. The right hemisphere was engaged for both computations, while the left hemisphere responded more to summary statistics changes. These findings highlight the multifaceted functions of the right hemisphere in capturing acoustic properties of stationary sounds and the left hemisphere's involvement in processing abstract representations.
Collapse
Affiliation(s)
- Martina Berto
- Molecular Mind Lab, IMT School for Advanced Studies Lucca, Italy.
| | - Patrick Reisinger
- Department of Psychology and Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, Austria
| | | | - Nathan Weisz
- Department of Psychology and Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, Austria; Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Davide Bottari
- Molecular Mind Lab, IMT School for Advanced Studies Lucca, Italy.
| |
Collapse
|
2
|
van der Aa J, Fitch WT. Evidence for a shared cognitive mechanism underlying relative rhythmic and melodic perception. Front Psychol 2025; 15:1512262. [PMID: 39881697 PMCID: PMC11774853 DOI: 10.3389/fpsyg.2024.1512262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
Musical melodies and rhythms are typically perceived in a relative manner: two melodies are considered "the same" even if one is shifted up or down in frequency, as long as the relationships among the notes are preserved. Similar principles apply to rhythms, which can be slowed down or sped up proportionally in time and still be considered the same pattern. We investigated whether humans perceiving rhythms and melodies may rely upon the same or similar mechanisms to achieve this relative perception. We looked at the effects of changing relative information on both rhythm and melody perception using a same-different paradigm. Our manipulations changed stimulus contour and/or added a referent in the form of either a metrical pulse (bass-drum beat) for rhythm stimuli, or a melodic drone for melody stimuli. We found that these manipulations had similar effects on performance across rhythmic and melodic stimuli. To our knowledge, this is the first study showing that the addition of a drone note has significant effects on melody perception, warranting further investigation. Overall, our results are consistent with the hypothesis that relative perception of rhythm and melody rely upon shared relative perception mechanisms, alongside domain specific mechanisms. Further work is needed to explore the specific nature of this relationship and to pinpoint the cognitive and neural mechanisms involved.
Collapse
Affiliation(s)
- Jeroen van der Aa
- Department of Behavioral and Cognitive Biology, Vienna CogSciHub, University of Vienna, Vienna, Austria
| | - W. Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, Vienna CogSciHub, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Jiang J, Brotherhood EV, Core LB, Hardy CJ, Yong KX, Foulkes A, Warren JD. Preserved musical working memory and absolute pitch in posterior cortical atrophy. Cortex 2024; 181:1-11. [PMID: 39442325 DOI: 10.1016/j.cortex.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
Working memory for nonverbal auditory information is essential for everyday functioning but its cognitive organisation is not well understood. Here we addressed this issue in a musician, YA, with absolute pitch (AP, the uncommon ability to categorise and label individual musical pitches without an external reference) who developed posterior cortical atrophy. We assessed YA's AP ability and her working memory for pitch and rhythmic patterns using procedures modelled on a standard test of auditory verbal working memory (digit span), referenced to age-matched, cognitively-normal AP and non-AP possessing musicians. YA had retained AP and performed comparably to healthy older AP and non-AP musicians on all musical working memory tasks, despite impaired auditory verbal working memory. These findings suggest that the cognitive mechanisms for auditory verbal working memory, nonverbal (pitch and rhythm) working memory and AP are at least partly dissociable, and both musical working memory and AP can be spared despite posterior parietal degeneration.
Collapse
Affiliation(s)
- Jessica Jiang
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Emilie V Brotherhood
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy B Core
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris Jd Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Keir Xx Yong
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alexander Foulkes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
4
|
Shin HJ, Lee HJ, Kang D, Kim JI, Jeong E. Rhythm-based assessment and training for children with attention deficit hyperactivity disorder (ADHD): a feasibility study protocol. Front Hum Neurosci 2023; 17:1190736. [PMID: 37584031 PMCID: PMC10423996 DOI: 10.3389/fnhum.2023.1190736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023] Open
Abstract
Background The timing-related deficits in individuals with attention deficit hyperactivity disorder (ADHD) contribute to the symptom-related difficulties and cognitive impairments. Current assessment and training measurement only target specific aspects of the timing ability, highlighting the need for more advanced tools to address timing deficits in ADHD. The aim of this study is to develop and validate a rhythm-based assessment and training (RAT) program, which intends to provide a comprehensive understanding of and enhancement to the time-related abilities of children with ADHD, thereby demonstrating its clinical efficacy. Methods We will use randomized crossover trials in this study, with participants being randomly assigned to either start with the RAT and then proceed to cognitive training or start with cognitive training and then proceed to the RAT. Both groups will undergo pre- and post- evaluations. The evaluation will be administered immediately before and after the 4-week training period using diagnostic questionnaires, cognitive evaluation tools, and resting electroencephalography (EEG) measurements. Notably, EEG measurements will be conducted concurrently with the RAT evaluations. Discussion This study develops and evaluates the feasibility and effectiveness of a RAT while using EEG measurements to elucidate the underlying therapeutic mechanism of auditory rhythm at varying levels of complexity. The study will investigate the potential of RAT as a supplementary or alternative approach for managing ADHD. The multifaceted data collected will yield valuable insights to customize training agendas based on individual developmental stages and prognoses.
Collapse
Affiliation(s)
- Hye Jin Shin
- Department of Music and Science for Clinical Practice, Graduate School, Hanyang University, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Medical Center, Seoul, Republic of Korea
- College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Dahyun Kang
- Institute of Mental Health, Hanyang University, Seoul, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea
| | - Eunju Jeong
- Department of Music Therapy, Graduate School, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Basiński K, Quiroga-Martinez DR, Vuust P. Temporal hierarchies in the predictive processing of melody - From pure tones to songs. Neurosci Biobehav Rev 2023; 145:105007. [PMID: 36535375 DOI: 10.1016/j.neubiorev.2022.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Listening to musical melodies is a complex task that engages perceptual and memoryrelated processes. The processes underlying melody cognition happen simultaneously on different timescales, ranging from milliseconds to minutes. Although attempts have been made, research on melody perception is yet to produce a unified framework of how melody processing is achieved in the brain. This may in part be due to the difficulty of integrating concepts such as perception, attention and memory, which pertain to different temporal scales. Recent theories on brain processing, which hold prediction as a fundamental principle, offer potential solutions to this problem and may provide a unifying framework for explaining the neural processes that enable melody perception on multiple temporal levels. In this article, we review empirical evidence for predictive coding on the levels of pitch formation, basic pitch-related auditory patterns,more complex regularity processing extracted from basic patterns and long-term expectations related to musical syntax. We also identify areas that would benefit from further inquiry and suggest future directions in research on musical melody perception.
Collapse
Affiliation(s)
- Krzysztof Basiński
- Division of Quality of Life Research, Medical University of Gdańsk, Poland
| | - David Ricardo Quiroga-Martinez
- Helen Wills Neuroscience Institute & Department of Psychology, University of California Berkeley, USA; Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Denmark
| |
Collapse
|
6
|
Guinamard A, Clément S, Goemaere S, Mary A, Riquet A, Dellacherie D. Musical abilities in children with developmental cerebellar anomalies. Front Syst Neurosci 2022; 16:886427. [PMID: 36061946 PMCID: PMC9436271 DOI: 10.3389/fnsys.2022.886427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental Cerebellar Anomalies (DCA) are rare diseases (e.g., Joubert syndrome) that affect various motor and non-motor functions during childhood. The present study examined whether music perception and production are affected in children with DCA. Sixteen children with DCA and 37 healthy matched control children were tested with the Montreal Battery for Evaluation of Musical Abilities (MBEMA) to assess musical perception. Musical production was assessed using two singing tasks: a pitch-matching task and a melodic reproduction task. Mixed model analyses showed that children with DCA were impaired on the MBEMA rhythm perception subtest, whereas there was no difference between the two groups on the melodic perception subtest. Children with DCA were also impaired in the melodic reproduction task. In both groups, singing performance was positively correlated with rhythmic and melodic perception scores, and a strong correlation was found between singing ability and oro-bucco-facial praxis in children with DCA. Overall, children with DCA showed impairments in both music perception and production, although heterogeneity in cerebellar patient’s profiles was highlighted by individual analyses. These results confirm the role of the cerebellum in rhythm processing as well as in the vocal sensorimotor loop in a developmental perspective. Rhythmic deficits in cerebellar patients are discussed in light of recent work on predictive timing networks including the cerebellum. Our results open innovative remediation perspectives aiming at improving perceptual and/or production musical abilities while considering the heterogeneity of patients’ clinical profiles to design music-based therapies.
Collapse
Affiliation(s)
- Antoine Guinamard
- Univ. Lille, ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Émotions, Cognition, Lille, France
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
- *Correspondence: Antoine Guinamard,
| | - Sylvain Clément
- Univ. Lille, ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Émotions, Cognition, Lille, France
| | - Sophie Goemaere
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
- CHU Lille, Centre Régional de Diagnostic des Troubles d’Apprentissage, Lille, France
| | - Alice Mary
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
| | - Audrey Riquet
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
| | - Delphine Dellacherie
- Univ. Lille, ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Émotions, Cognition, Lille, France
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
- Delphine Dellacherie,
| |
Collapse
|
7
|
Scharinger M, Knoop CA, Wagner V, Menninghaus W. Neural processing of poems and songs is based on melodic properties. Neuroimage 2022; 257:119310. [PMID: 35569784 DOI: 10.1016/j.neuroimage.2022.119310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
The neural processing of speech and music is still a matter of debate. A long tradition that assumes shared processing capacities for the two domains contrasts with views that assume domain-specific processing. We here contribute to this topic by investigating, in a functional magnetic imaging (fMRI) study, ecologically valid stimuli that are identical in wording and differ only in that one group is typically spoken (or silently read), whereas the other is sung: poems and their respective musical settings. We focus on the melodic properties of spoken poems and their sung musical counterparts by looking at proportions of significant autocorrelations (PSA) based on pitch values extracted from their recordings. Following earlier studies, we assumed a bias of poem-processing towards the left and a bias for song-processing on the right hemisphere. Furthermore, PSA values of poems and songs were expected to explain variance in left- vs. right-temporal brain areas, while continuous liking ratings obtained in the scanner should modulate activity in the reward network. Overall, poem processing compared to song processing relied on left temporal regions, including the superior temporal gyrus, whereas song processing compared to poem processing recruited more right temporal areas, including Heschl's gyrus and the superior temporal gyrus. PSA values co-varied with activation in bilateral temporal regions for poems, and in right-dominant fronto-temporal regions for songs. Continuous liking ratings were correlated with activity in the default mode network for both poems and songs. The pattern of results suggests that the neural processing of poems and their musical settings is based on their melodic properties, supported by bilateral temporal auditory areas and an additional right fronto-temporal network known to be implicated in the processing of melodies in songs. These findings take a middle ground in providing evidence for specific processing circuits for speech and music in the left and right hemisphere, but simultaneously for shared processing of melodic aspects of both poems and their musical settings in the right temporal cortex. Thus, we demonstrate the neurobiological plausibility of assuming the importance of melodic properties in spoken and sung aesthetic language alike, along with the involvement of the default mode network in the aesthetic appreciation of these properties.
Collapse
Affiliation(s)
- Mathias Scharinger
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany; Research Group Phonetics, Institute of German Linguistics, Philipps-University Marburg, Pilgrimstein 16, Marburg 35032, Germany; Center for Mind, Brain and Behavior, Universities of Marburg and Gießen, Germany.
| | - Christine A Knoop
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany; Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Valentin Wagner
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany; Experimental Psychology Unit, Helmut Schmidt University / University of the Federal Armed Forces Hamburg, Germany
| | - Winfried Menninghaus
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| |
Collapse
|
8
|
Li Q, Gong D, Zhang Y, Zhang H, Liu G. The bottom-up information transfer process and top-down attention control underlying tonal working memory. Front Neurosci 2022; 16:935120. [PMID: 35979330 PMCID: PMC9376259 DOI: 10.3389/fnins.2022.935120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Tonal working memory has been less investigated by neuropsychological and neuroimaging studies and even less in terms of tonal working memory load. In this study, we analyzed the dynamic cortical processing process of tonal working memory with an original surface-space-based multivariate pattern analysis (sf-MVPA) method and found that this process constituted a bottom-up information transfer process. Then, the local cortical activity pattern, local cortical response strength, and cortical functional connectivity under different tonal working memory loads were investigated. No brain area’s local activity pattern or response strength was significantly different under different memory loads. Meanwhile, the interactions between the auditory cortex (AC) and an attention control network were linearly correlated with the memory load. This finding shows that the neural mechanism underlying the tonal working memory load does not arise from changes in local activity patterns or changes in the local response strength, but from top-down attention control. Our results indicate that the implementation of tonal working memory is based on the cooperation of the bottom-up information transfer process and top-down attention control.
Collapse
Affiliation(s)
- Qiang Li
- College of Education Science, Guizhou Education University, Guiyang, China
| | - Dinghong Gong
- Office of Academic Affairs, Guizhou Education University, Guiyang, China
| | - Yuan Zhang
- College of Education Science, Guizhou Education University, Guiyang, China
| | - Hongyi Zhang
- College of Education Science, Guizhou Education University, Guiyang, China
| | - Guangyuan Liu
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
- *Correspondence: Guangyuan Liu,
| |
Collapse
|
9
|
Pomerleau-Turcotte J, Moreno Sala MT, Dubé F, Vachon F. Experiential and Cognitive Predictors of Sight-Singing Performance in Music Higher Education. JOURNAL OF RESEARCH IN MUSIC EDUCATION 2022; 70:206-227. [PMID: 35783001 PMCID: PMC9242514 DOI: 10.1177/00224294211049425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/16/2021] [Indexed: 06/15/2023]
Abstract
Sight-singing is prevalent in aural skill classes, where learners differ in experience and cognitive abilities. In this research, we investigated whether musical experience, level of study, and working memory capacity (WMC) can predict sight-singing performance and if there is a correlation between WMC and performance among some subgroups of participants. We hypothesized that more experienced students and those with a higher WMC might sight-sing better than those with less experience and lesser WMC. We also hypothesized that the relationship between WMC and sight-singing performance would be more salient for less experienced and less proficient sight-singers. We surveyed 56 subjects about their experience with music, assessed their WMC, and evaluated their performance on a short sight-singing task. The results showed that the age when students began learning music could predict sight-singing performance independently from the number of years of experience and the educational level, suggesting a possible developmental component to sight-singing skill. We also found a negative relationship between WMC and pitch score in the low-performing group and between rhythm and pitch score, suggesting that pitch and rhythm are processed differently. Teachers should be aware of how students' backgrounds might be related to performance and encourage them to develop strong automated skills, such as reading music or singing basic tonal patterns.
Collapse
Affiliation(s)
| | | | - Francis Dubé
- Faculté de musique, Université Laval, Québec, QC, Canada
| | | |
Collapse
|
10
|
Færøvik U, Specht K, Vikene K. Suppression, Maintenance, and Surprise: Neuronal Correlates of Predictive Processing Specialization for Musical Rhythm. Front Neurosci 2021; 15:674050. [PMID: 34512236 PMCID: PMC8429816 DOI: 10.3389/fnins.2021.674050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
Auditory repetition suppression and omission activation are opposite neural phenomena and manifestations of principles of predictive processing. Repetition suppression describes the temporal decrease in neural activity when a stimulus is constant or repeated in an expected temporal fashion; omission activity is the transient increase in neural activity when a stimulus is temporarily and unexpectedly absent. The temporal, repetitive nature of musical rhythms is ideal for investigating these phenomena. During an fMRI session, 10 healthy participants underwent scanning while listening to musical rhythms with two levels of metric complexity, and with beat omissions with different positional complexity. Participants first listened to 16-s-long presentations of continuous rhythms, before listening to a longer continuous presentation with beat omissions quasi-randomly introduced. We found deactivation in bilateral superior temporal gyri during the repeated presentation of the normal, unaltered rhythmic stimulus, with more suppression of activity in the left hemisphere. Omission activation of bilateral middle temporal gyri was right lateralized. Persistent activity was found in areas including the supplementary motor area, caudate nucleus, anterior insula, frontal areas, and middle and posterior cingulate cortex, not overlapping with either listening, suppression, or omission activation. This suggests that the areas are perhaps specialized for working memory maintenance. We found no effect of metric complexity for either the normal presentation or omissions, but we found evidence for a small effect of omission position—at an uncorrected threshold—where omissions in the more metrical salient position, i.e., the first position in the bar, showed higher activation in anterior cingulate/medial superior frontal gyrus, compared to omissions in the less salient position, in line with the role of the anterior cingulate cortex for saliency detection. The results are consistent with findings in our previous studies on Parkinson’s disease, but are put into a bigger theoretical frameset.
Collapse
Affiliation(s)
- Ulvhild Færøvik
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Department of Education, The Arctic University of Norway, Tromsø, Norway.,Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| | - Kjetil Vikene
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
11
|
Anderson KS, Gosselin N, Sadikot AF, Laguë-Beauvais M, Kang ESH, Fogarty AE, Marcoux J, Dagher J, de Guise E. Pitch and Rhythm Perception and Verbal Short-Term Memory in Acute Traumatic Brain Injury. Brain Sci 2021; 11:1173. [PMID: 34573194 PMCID: PMC8469559 DOI: 10.3390/brainsci11091173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Music perception deficits are common following acquired brain injury due to stroke, epilepsy surgeries, and aneurysmal clipping. Few studies have examined these deficits following traumatic brain injury (TBI), resulting in an under-diagnosis in this population. We aimed to (1) compare TBI patients to controls on pitch and rhythm perception during the acute phase; (2) determine whether pitch and rhythm perception disorders co-occur; (3) examine lateralization of injury in the context of pitch and rhythm perception; and (4) determine the relationship between verbal short-term memory (STM) and pitch and rhythm perception. Music perception was examined using the Scale and Rhythm tests of the Montreal Battery of Evaluation of Amusia, in association with CT scans to identify lesion laterality. Verbal short-term memory was examined using Digit Span Forward. TBI patients had greater impairment than controls, with 43% demonstrating deficits in pitch perception, and 40% in rhythm perception. Deficits were greater with right hemisphere damage than left. Pitch and rhythm deficits co-occurred 31% of the time, suggesting partly dissociable networks. There was a dissociation between performance on verbal STM and pitch and rhythm perception 39 to 42% of the time (respectively), with most individuals (92%) demonstrating intact verbal STM, with impaired pitch or rhythm perception. The clinical implications of music perception deficits following TBI are discussed.
Collapse
Affiliation(s)
- Kirsten S Anderson
- Psychology Department, University of Montreal, Montreal, QC H2V 2S9, Canada
- Centre de Recherche Interdisciplinaire en Réadaptation du Montréal Métropolitain (CRIR), Montreal, QC H3S 1M9, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), and Centre for Research on Brain, Language, and Music (CRBLM), Montreal, QC H2V2S9, Canada
| | - Nathalie Gosselin
- Psychology Department, University of Montreal, Montreal, QC H2V 2S9, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), and Centre for Research on Brain, Language, and Music (CRBLM), Montreal, QC H2V2S9, Canada
| | - Abbas F Sadikot
- Neurology and Neurosurgery Department, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Maude Laguë-Beauvais
- Neurology and Neurosurgery Department, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Traumatic Brain Injury Program, McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Esther S H Kang
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Alexandra E Fogarty
- Department of Neurology, Division of Physical Medicine and Rehabilitation, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Judith Marcoux
- Neurology and Neurosurgery Department, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Traumatic Brain Injury Program, McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Jehane Dagher
- Centre de Recherche Interdisciplinaire en Réadaptation du Montréal Métropolitain (CRIR), Montreal, QC H3S 1M9, Canada
- Traumatic Brain Injury Program, McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Elaine de Guise
- Psychology Department, University of Montreal, Montreal, QC H2V 2S9, Canada
- Centre de Recherche Interdisciplinaire en Réadaptation du Montréal Métropolitain (CRIR), Montreal, QC H3S 1M9, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
12
|
Zhu R, Luo Y, Wang Z, You X. Modality effects in verbal working memory updating: Transcranial direct current stimulation over human inferior frontal gyrus and posterior parietal cortex. Brain Cogn 2020; 145:105630. [PMID: 33091807 DOI: 10.1016/j.bandc.2020.105630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022]
Abstract
Verbal working memory (VWM) involves visual and auditory verbal information. Neuroimaging studies have shown significant modality effects for VWM in the left posterior parietal cortex (PPC). The left inferior frontal gyrus (IFG) is more sensitive to auditory and phonological information. However, much less is known about the effects of transcranial direct current stimulation (tDCS) over the left PPC and IFG on different sensory modalities of VWM (auditory vs. visual). Therefore, the present study aimed to examine whether tDCS over the left PPC and IFG affects visual and auditory VWM updating performance using a single-blind design. Fifty-one healthy participants were randomly assigned to three tDCS groups (left PPC/left IFG/sham) and were asked to complete both the visual and auditory letter 3-back tasks. Results showed that stimulating the left PPC enhanced the response efficiency of visual, but not auditory, VWM compared with the sham condition. Anodal stimulation to the left IFG improved the response efficiency of both tasks. The present study revealed a modality effect of VWM in the left PPC, while the left IFG had a causal role in VWM updating of different sensory modalities.
Collapse
Affiliation(s)
- Rongjuan Zhu
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Yangmei Luo
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Ziyu Wang
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Xuqun You
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
13
|
Cerebral Substrates for Controlling Rhythmic Movements. Brain Sci 2020; 10:brainsci10080514. [PMID: 32756401 PMCID: PMC7465184 DOI: 10.3390/brainsci10080514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022] Open
Abstract
Our daily lives are filled with rhythmic movements, such as walking, sports, and dancing, but the mechanisms by which the brain controls rhythmic movements are poorly understood. In this review, we examine the literature on neuropsychological studies of patients with focal brain lesions, and functional brain imaging studies primarily using finger-tapping tasks. These studies suggest a close connection between sensory and motor processing of rhythm, with no apparent distinction between the two functions. Thus, we conducted two functional brain imaging studies to survey the rhythm representations relatively independent of sensory and motor functions. First, we determined brain activations related to rhythm processing in a sensory modality-independent manner. Second, we examined body part-independent brain activation related to rhythm reproduction. Based on previous literature, we discuss how brain areas contribute rhythmic motor control. Furthermore, we also discuss the mechanisms by which the brain controls rhythmic movements.
Collapse
|
14
|
Abstract
Bimanual mirror-symmetrical movement (MSM) is relatively easy to control movement. Different MSM tasks may have different activations and interhemispheric interactions. The purpose of this study is to compare anatomo-physiological features such as hemispheric activations and dominance of two different MSMs, namely melody-playing and rhythm. We examined functional MRI (fMRI) recordings in a group of fifteen right-handed pianists performing two separate tasks: bimanual rhythm and bimanual melody-playing on two different keyboards with standard key order for right hand and reversed for left hand, which allows homolog fingers' movements. Activations and laterality indices on fMRI were examined. The results show that significant cerebellar activations (especially in anterior cerebellum) in both groups. Significant primary sensorimotor cortical activations are observed in the melody-playing group. While there are also bilaterally symmetric activations, and laterality indices suggest overall lateralization towards the left hemisphere in both groups. Activations in the left fronto-parietal cortex, left putamen and left thalamus in conjunction with right cerebellar activations suggest that the left cortico-thalamo-cerebellar loop may be a dominant loop. Dynamic causal modeling (DCM) indicates the presence of causal influences from the left to the right cerebral cortex. In conclusion, melody-playing with bimanual MSM is a complex in-phase task and may help activate the bilateral cortical areas, and left hemisphere is dominant according to laterality indices and DCM results. On the other hand, bimanual rhythm is a simpler in-phase task and may help activate subcortical areas, which might be independent of the voluntary cortical task.
Collapse
|
15
|
Vikene K, Skeie GO, Specht K. Subjective judgments of rhythmic complexity in Parkinson's disease: Higher baseline, preserved relative ability, and modulated by tempo. PLoS One 2019; 14:e0221752. [PMID: 31479488 PMCID: PMC6719828 DOI: 10.1371/journal.pone.0221752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
Previous research has demonstrated that people with Parkinson's disease (PD) have difficulties with the perceptual discrimination of rhythms, relative to healthy controls. It is not however clear if this applies only to simpler rhythms (a so called "beat-based" deficit), or if it is a more generalized deficit that also applies to more complex rhythms. Further insight into how people with PD process and perceive rhythm can refine our understanding of the well known problems of temporal processing in the disease. In this study, we wanted to move beyond simple/complex-dichotomy in previous studies, and further investigate the effect of tempo on the perception of musical rhythms. To this end, we constructed ten musical rhythms with a varied degree of complexity across three different tempi. Nineteen people with PD and 19 healthy controls part-took in an internet based listening survey and rated 10 different musical rhythms for complexity and likeability. In what we believe is the first study to do so, we asked for the participants subjective ratings of individual rhythms and not their capacity to directly compare or discriminate between them. We found an overall between-group difference in complexity judgments that was modulated by tempo, but not level of complexity. People with PD rated all rhythms as more complex across tempi, with significant group differences in complexity ratings at 120 and 150bpm, but not at 90bpm. Our analysis found a uniform elevated baseline for complexity judgments in the PD-group, and a strong association between the two groups' rank-ordering the rhythms for complexity. This indicates a preserved ability to discriminate between relative levels of complexity. Finally, the two groups did not significantly differ in their subjective scoring of likeability, demonstrating a dissimilarity between judgment of complexity and judgment of likeability between the two groups. This indicates different cognitive operations for the two types of judgment, and we speculate that Parkinson's disease affects judgment of complexity but not judgment of likeability.
Collapse
Affiliation(s)
- Kjetil Vikene
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| | - Geir Olve Skeie
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- The Grieg Academy - Department of Music, University of Bergen, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
- Department of Education, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
16
|
Sihvonen AJ, Särkämö T, Rodríguez-Fornells A, Ripollés P, Münte TF, Soinila S. Neural architectures of music - Insights from acquired amusia. Neurosci Biobehav Rev 2019; 107:104-114. [PMID: 31479663 DOI: 10.1016/j.neubiorev.2019.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022]
Abstract
The ability to perceive and produce music is a quintessential element of human life, present in all known cultures. Modern functional neuroimaging has revealed that music listening activates a large-scale bilateral network of cortical and subcortical regions in the healthy brain. Even the most accurate structural studies do not reveal which brain areas are critical and causally linked to music processing. Such questions may be answered by analysing the effects of focal brain lesions in patients´ ability to perceive music. In this sense, acquired amusia after stroke provides a unique opportunity to investigate the neural architectures crucial for normal music processing. Based on the first large-scale longitudinal studies on stroke-induced amusia using modern multi-modal magnetic resonance imaging (MRI) techniques, such as advanced lesion-symptom mapping, grey and white matter morphometry, tractography and functional connectivity, we discuss neural structures critical for music processing, consider music processing in light of the dual-stream model in the right hemisphere, and propose a neural model for acquired amusia.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Department of Neurosciences, University of Helsinki, Finland; Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Finland.
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Finland
| | - Antoni Rodríguez-Fornells
- Department of Cognition, University of Barcelona, Cognition & Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Institució Catalana de recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Pablo Ripollés
- Department of Psychology, New York University and Music and Audio Research Laboratory, New York University, USA
| | - Thomas F Münte
- Department of Neurology and Institute of Psychology II, University of Lübeck, Germany
| | - Seppo Soinila
- Division of Clinical Neurosciences, Turku University Hospital, Department of Neurology, University of Turku, Finland
| |
Collapse
|
17
|
Vikene K, Skeie GO, Specht K. Abnormal phasic activity in saliency network, motor areas, and basal ganglia in Parkinson's disease during rhythm perception. Hum Brain Mapp 2018; 40:916-927. [PMID: 30375107 PMCID: PMC6587836 DOI: 10.1002/hbm.24421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Behavioral studies indicate that persons with Parkinson's disease have complexity dependent problems with the discrimination of auditory rhythms. Furthermore, neuroimaging studies show that rhythm processing activates many brain areas that overlap with areas affected by Parkinson's disease (PD). This study sought to investigate the neural correlates of rhythm processing in PD and healthy controls, with a particular focus on rhythmic complexity. We further aimed to investigate differences in brain activation during initial phases of rhythm processing. Functional magnetic resonance imaging was used to scan 15 persons with Parkinson's disease and 15 healthy controls while they listened to musical rhythms with two different levels of complexity. Rhythmic complexity had no significant effect on brain activations, but patients and controls showed differences in areas related to temporal auditory processing, notably bilateral planum temporale and inferior parietal lobule. We found indications of a particular sequential or phasic activation pattern of brain activity, where activity in caudate nucleus in the basal ganglia was time‐displaced by activation in the saliency network—comprised of anterior cingulate cortex and bilateral anterior insula—and cortical and subcortical motor areas, during the initial phases of listening to rhythms. We relate our findings to core PD pathology, and discuss the overall, rhythm processing related hyperactivity in PD as a possible dysfunction in specific basal ganglia mechanisms, and the phasic activation pattern in PD as a reflection of a lack of preparatory activation of task‐relevant brain networks for rhythm processing in PD.
Collapse
Affiliation(s)
- Kjetil Vikene
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Geir-Olve Skeie
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Department of Education, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
18
|
Särkämö T, Sihvonen AJ. Golden oldies and silver brains: Deficits, preservation, learning, and rehabilitation effects of music in ageing-related neurological disorders. Cortex 2018; 109:104-123. [PMID: 30312779 DOI: 10.1016/j.cortex.2018.08.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 08/31/2018] [Indexed: 01/15/2023]
Abstract
During the last decades, there have been major advances in mapping the brain regions that underlie our ability to perceive, experience, and produce music and how musical training can shape the structure and function of the brain. This progress has fueled and renewed clinical interest towards uncovering the neural basis for the impaired or preserved processing of music in different neurological disorders and how music-based interventions can be used in their rehabilitation and care. This article reviews our contribution to and the state-of-the-art of this field. We will provide a short overview outlining the key brain networks that participate in the processing of music and singing in the healthy brain and then present recent findings on the following key music-related research topics in neurological disorders: (i) the neural architecture underlying deficient processing of music (amusia), (ii) the preservation of singing in aphasia and music-evoked emotions and memories in Alzheimer's disease, (iii) the mnemonic impact of songs as a verbal learning tool, and (iv) the cognitive, emotional, and neural efficacy of music-based interventions and activities in the rehabilitation and care of major ageing-related neurological illnesses (stroke, Alzheimer's disease, and Parkinson's disease).
Collapse
Affiliation(s)
- Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Finland.
| | - Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Finland; Faculty of Medicine, University of Turku, Finland
| |
Collapse
|
19
|
Caclin A, Tillmann B. Musical and verbal short-term memory: insights from neurodevelopmental and neurological disorders. Ann N Y Acad Sci 2018; 1423:155-165. [PMID: 29744897 DOI: 10.1111/nyas.13733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 12/28/2022]
Abstract
Auditory short-term memory (STM) is a fundamental ability to make sense of auditory information as it unfolds over time. Whether separate STM systems exist for different types of auditory information (music and speech, in particular) is a matter of debate. The present paper reviews studies that have investigated both musical and verbal STM in healthy individuals and in participants with neurodevelopmental and neurological disorders. Overall, the results are in favor of only partly shared networks for musical and verbal STM. Evidence for a distinction in STM for the two materials stems from (1) behavioral studies in healthy participants, in particular from the comparison between nonmusicians and musicians; (2) behavioral studies in congenital amusia, where a selective pitch STM deficit is observed; and (3) studies in brain-damaged patients with cases of double dissociation. In this review we highlight the need for future studies comparing STM for the same perceptual dimension (e.g., pitch) in different materials (e.g., music and speech), as well as for studies aiming at a more insightful characterization of shared and distinct mechanisms for speech and music in the different components of STM, namely encoding, retention, and retrieval.
Collapse
Affiliation(s)
- Anne Caclin
- Lyon Neuroscience Research Center (CRNL), Brain Dynamics and Cognition Team (DYCOG) and Auditory Cognition and Psychoacoustics Team, INSERM, U1028, CNRS, UMR5292, Lyon, France
- Université Lyon 1, Lyon, France
| | - Barbara Tillmann
- Lyon Neuroscience Research Center (CRNL), Brain Dynamics and Cognition Team (DYCOG) and Auditory Cognition and Psychoacoustics Team, INSERM, U1028, CNRS, UMR5292, Lyon, France
- Université Lyon 1, Lyon, France
| |
Collapse
|
20
|
The right inferior frontal gyrus processes nested non-local dependencies in music. Sci Rep 2018; 8:3822. [PMID: 29491454 PMCID: PMC5830458 DOI: 10.1038/s41598-018-22144-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/16/2018] [Indexed: 12/01/2022] Open
Abstract
Complex auditory sequences known as music have often been described as hierarchically structured. This permits the existence of non-local dependencies, which relate elements of a sequence beyond their temporal sequential order. Previous studies in music have reported differential activity in the inferior frontal gyrus (IFG) when comparing regular and irregular chord-transitions based on theories in Western tonal harmony. However, it is unclear if the observed activity reflects the interpretation of hierarchical structure as the effects are confounded by local irregularity. Using functional magnetic resonance imaging (fMRI), we found that violations to non-local dependencies in nested sequences of three-tone musical motifs in musicians elicited increased activity in the right IFG. This is in contrast to similar studies in language which typically report the left IFG in processing grammatical syntax. Effects of increasing auditory working demands are moreover reflected by distributed activity in frontal and parietal regions. Our study therefore demonstrates the role of the right IFG in processing non-local dependencies in music, and suggests that hierarchical processing in different cognitive domains relies on similar mechanisms that are subserved by domain-selective neuronal subpopulations.
Collapse
|
21
|
Schaal NK, Kretschmer M, Keitel A, Krause V, Pfeifer J, Pollok B. The Significance of the Right Dorsolateral Prefrontal Cortex for Pitch Memory in Non-musicians Depends on Baseline Pitch Memory Abilities. Front Neurosci 2017; 11:677. [PMID: 29270105 PMCID: PMC5723654 DOI: 10.3389/fnins.2017.00677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
Pitch memory is a resource which is shared by music and language. Neuroimaging studies have shown that the right dorsolateral prefrontal cortex (DLPFC) is activated during pitch memory processes. The present study investigated the causal significance of this brain area for pitch memory in non-musicians by applying cathodal and sham transcranial direct current stimulation (tDCS) over the right DLPFC and examining the impact on offline pitch and visual memory span performances. On the overall sample (N = 22) no significant modulation effect of cathodal stimulation on the pitch span task was found. However, when dividing the sample by means of a median split of pre-test pitch memory abilities into a high and low performing group, a selective effect of significantly impaired pitch memory after cathodal tDCS in good performers was revealed. The visual control task was not affected by the stimulation in either group. The results support previous neuroimaging studies that the right DLPFC is involved in pitch memory processes in non-musicians and highlights the importance of baseline pitch memory abilities for the modulatory effect of tDCS.
Collapse
Affiliation(s)
- Nora K Schaal
- Department of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marina Kretschmer
- Department of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ariane Keitel
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vanessa Krause
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jasmin Pfeifer
- Amsterdam Center for Language and Communication, University of Amsterdam, Amsterdam, Netherlands.,Institute for Language and Information, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bettina Pollok
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
22
|
Abstract
Abstract
The mini-review provides an overview on the differences between the right and left hemispheres of the brain. Recent studies highlight the contribution of the two hemispheres to the physical and mental control, and the interaction language-music. We focused the attention on the behaviour of the right and left hemispheres about the music and on what happens when music areas are damaged.
Collapse
Affiliation(s)
- Giulia Gizzi
- Department of Psychology, University of Torino, Torino , Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, Perugia , Italy
| |
Collapse
|
23
|
Särkämö T. Music for the ageing brain: Cognitive, emotional, social, and neural benefits of musical leisure activities in stroke and dementia. DEMENTIA 2017; 17:670-685. [DOI: 10.1177/1471301217729237] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Music engages an extensive network of auditory, cognitive, motor, and emotional processing regions in the brain. Coupled with the fact that the emotional and cognitive impact of music is often well preserved in ageing and dementia, music is a powerful tool in the care and rehabilitation of many ageing-related neurological diseases. In addition to formal music therapy, there has been a growing interest in self- or caregiver-implemented musical leisure activities or hobbies as a widely applicable means to support psychological wellbeing in ageing and in neurological rehabilitation. This article reviews the currently existing evidence on the cognitive, emotional, and neural benefits of musical leisure activities in normal ageing as well as in the rehabilitation and care of two of the most common and ageing-related neurological diseases: stroke and dementia.
Collapse
|
24
|
Sihvonen AJ, Ripollés P, Rodríguez-Fornells A, Soinila S, Särkämö T. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery. Front Neurosci 2017; 11:426. [PMID: 28790885 PMCID: PMC5524924 DOI: 10.3389/fnins.2017.00426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 01/25/2023] Open
Abstract
Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV) and white matter volume (WMV) changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90), we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered) amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered) amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of the lesions and longitudinal structural changes associated with different recovery trajectories of acquired amusia.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Faculty of Medicine, University of TurkuTurku, Finland.,Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Pablo Ripollés
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de LlobregatBarcelona, Spain.,Department of Cognition, Development and Education Psychology, University of BarcelonaBarcelona, Spain.,Poeppel Lab, Department of Psychology, New York UniversityNew York, NY, United States
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de LlobregatBarcelona, Spain.,Department of Cognition, Development and Education Psychology, University of BarcelonaBarcelona, Spain.,Catalan Institution for Research and Advanced Studies, Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain
| | - Seppo Soinila
- Division of Clinical Neurosciences, Turku University Hospital and Department of Neurology, University of TurkuTurku, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| |
Collapse
|
25
|
Hou J, Song B, Chen ACN, Sun C, Zhou J, Zhu H, Beauchaine TP. Review on Neural Correlates of Emotion Regulation and Music: Implications for Emotion Dysregulation. Front Psychol 2017; 8:501. [PMID: 28421017 PMCID: PMC5376620 DOI: 10.3389/fpsyg.2017.00501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
Previous studies have examined the neural correlates of emotion regulation and the neural changes that are evoked by music exposure. However, the link between music and emotion regulation is poorly understood. The objectives of this review are to (1) synthesize what is known about the neural correlates of emotion regulation and music-evoked emotions, and (2) consider the possibility of therapeutic effects of music on emotion dysregulation. Music-evoked emotions can modulate activities in both cortical and subcortical systems, and across cortical-subcortical networks. Functions within these networks are integral to generation and regulation of emotions. Since dysfunction in these networks are observed in numerous psychiatric disorders, a better understanding of neural correlates of music exposure may lead to more systematic and effective use of music therapy in emotion dysregulation.
Collapse
Affiliation(s)
- Jiancheng Hou
- Center for Educational Neuroscience, School of Psychology and Cognitive Science, East China Normal UniversityShanghai, China.,Department of Radiology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, USA
| | - Bei Song
- Center for Educational Neuroscience, School of Psychology and Cognitive Science, East China Normal UniversityShanghai, China.,Music Conservatory of HarbinHarbin, China
| | - Andrew C N Chen
- Center for Higher Brain Functions and Institute for Brain Disorders, Capital Medical UniversityBeijing, China
| | - Changan Sun
- School of Education and Public Administration, Suzhou University of Science and TechnologySuzhou, China
| | - Jiaxian Zhou
- Center for Educational Neuroscience, School of Psychology and Cognitive Science, East China Normal UniversityShanghai, China
| | - Haidong Zhu
- Department of Psychology, Shihezi UniversityShihezi, China
| | | |
Collapse
|
26
|
Schaal NK, Pollok B, Banissy MJ. Hemispheric differences between left and right supramarginal gyrus for pitch and rhythm memory. Sci Rep 2017; 7:42456. [PMID: 28198386 PMCID: PMC5309738 DOI: 10.1038/srep42456] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 12/28/2016] [Indexed: 11/24/2022] Open
Abstract
Functional brain imaging studies and non-invasive brain stimulation methods have shown the importance of the left supramarginal gyrus (SMG) for pitch memory. The extent to which this brain region plays a crucial role in memory for other auditory material remains unclear. Here, we sought to investigate the role of the left and right SMG in pitch and rhythm memory in non-musicians. Anodal or sham transcranial direct current stimulation (tDCS) was applied over the left SMG (Experiment 1) and right SMG (Experiment 2) in two different sessions. In each session participants completed a pitch and rhythm recognition memory task immediately after tDCS. A significant facilitation of pitch memory was revealed when anodal stimulation was applied over the left SMG. No significant effects on pitch memory were found for anodal tDCS over the right SMG or sham condition. For rhythm memory the opposite pattern was found; anodal tDCS over the right SMG led to an improvement in performance, but anodal tDCS over the left SMG had no significant effect. These results highlight a different hemispheric involvement of the SMG in auditory memory processing depending on auditory material that is encoded.
Collapse
Affiliation(s)
- Nora K. Schaal
- Department of Experimental Psychology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Michael J. Banissy
- Department of Psychology, Goldsmiths, University of London, SE14 6NW, London, UK
| |
Collapse
|
27
|
Golden HL, Clark CN, Nicholas JM, Cohen MH, Slattery CF, Paterson RW, Foulkes AJM, Schott JM, Mummery CJ, Crutch SJ, Warren JD. Music Perception in Dementia. J Alzheimers Dis 2017; 55:933-949. [PMID: 27802226 PMCID: PMC5260961 DOI: 10.3233/jad-160359] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite much recent interest in music and dementia, music perception has not been widely studied across dementia syndromes using an information processing approach. Here we addressed this issue in a cohort of 30 patients representing major dementia syndromes of typical Alzheimer's disease (AD, n = 16), logopenic aphasia (LPA, an Alzheimer variant syndrome; n = 5), and progressive nonfluent aphasia (PNFA; n = 9) in relation to 19 healthy age-matched individuals. We designed a novel neuropsychological battery to assess perception of musical patterns in the dimensions of pitch and temporal information (requiring detection of notes that deviated from the established pattern based on local or global sequence features) and musical scene analysis (requiring detection of a familiar tune within polyphonic harmony). Performance on these tests was referenced to generic auditory (timbral) deviance detection and recognition of familiar tunes and adjusted for general auditory working memory performance. Relative to healthy controls, patients with AD and LPA had group-level deficits of global pitch (melody contour) processing while patients with PNFA as a group had deficits of local (interval) as well as global pitch processing. There was substantial individual variation within syndromic groups. Taking working memory performance into account, no specific deficits of musical temporal processing, timbre processing, musical scene analysis, or tune recognition were identified. The findings suggest that particular aspects of music perception such as pitch pattern analysis may open a window on the processing of information streams in major dementia syndromes. The potential selectivity of musical deficits for particular dementia syndromes and particular dimensions of processing warrants further systematic investigation.
Collapse
Affiliation(s)
- Hannah L Golden
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Camilla N Clark
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer M Nicholas
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Miriam H Cohen
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Catherine F Slattery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Ross W Paterson
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Alexander J M Foulkes
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Catherine J Mummery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
28
|
Royal I, Vuvan DT, Zendel BR, Robitaille N, Schönwiesner M, Peretz I. Activation in the Right Inferior Parietal Lobule Reflects the Representation of Musical Structure beyond Simple Pitch Discrimination. PLoS One 2016; 11:e0155291. [PMID: 27195523 PMCID: PMC4873218 DOI: 10.1371/journal.pone.0155291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/27/2016] [Indexed: 11/25/2022] Open
Abstract
Pitch discrimination tasks typically engage the superior temporal gyrus and the right inferior frontal gyrus. It is currently unclear whether these regions are equally involved in the processing of incongruous notes in melodies, which requires the representation of musical structure (tonality) in addition to pitch discrimination. To this aim, 14 participants completed two tasks while undergoing functional magnetic resonance imaging, one in which they had to identify a pitch change in a series of non-melodic repeating tones and a second in which they had to identify an incongruous note in a tonal melody. In both tasks, the deviants activated the right superior temporal gyrus. A contrast between deviants in the melodic task and deviants in the non-melodic task (melodic > non-melodic) revealed additional activity in the right inferior parietal lobule. Activation in the inferior parietal lobule likely represents processes related to the maintenance of tonal pitch structure in working memory during pitch discrimination.
Collapse
Affiliation(s)
- Isabelle Royal
- Département de psychologie, Université de Montréal, Québec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Québec, Canada
- Center of Research on Brain, Language and Music (CRBLM), McGill University, Québec, Canada
- * E-mail:
| | - Dominique T. Vuvan
- Département de psychologie, Université de Montréal, Québec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Québec, Canada
- Center of Research on Brain, Language and Music (CRBLM), McGill University, Québec, Canada
| | - Benjamin Rich Zendel
- International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Québec, Canada
- Faculty of Medicine, Division of Community Health and Humanities, Memorial University of Newfoundland
| | - Nicolas Robitaille
- International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Québec, Canada
| | - Marc Schönwiesner
- Département de psychologie, Université de Montréal, Québec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Québec, Canada
- Center of Research on Brain, Language and Music (CRBLM), McGill University, Québec, Canada
| | - Isabelle Peretz
- Département de psychologie, Université de Montréal, Québec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Québec, Canada
- Center of Research on Brain, Language and Music (CRBLM), McGill University, Québec, Canada
| |
Collapse
|
29
|
Oikkonen J, Kuusi T, Peltonen P, Raijas P, Ukkola-Vuoti L, Karma K, Onkamo P, Järvelä I. Creative Activities in Music--A Genome-Wide Linkage Analysis. PLoS One 2016; 11:e0148679. [PMID: 26909693 PMCID: PMC4766096 DOI: 10.1371/journal.pone.0148679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022] Open
Abstract
Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose a common genetic background for music-related creative behaviour and musical abilities at chromosome 4.
Collapse
Affiliation(s)
- Jaana Oikkonen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Tuire Kuusi
- Sibelius Academy, University of the Arts Helsinki, Helsinki, Finland
| | - Petri Peltonen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Liisa Ukkola-Vuoti
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Kai Karma
- Sibelius Academy, University of the Arts Helsinki, Helsinki, Finland
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
de Fleurian R, Blackwell T, Ben-Tal O, Müllensiefen D. Information-Theoretic Measures Predict the Human Judgment of Rhythm Complexity. Cogn Sci 2016; 41:800-813. [DOI: 10.1111/cogs.12347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/16/2015] [Accepted: 12/07/2015] [Indexed: 11/30/2022]
Affiliation(s)
| | - Tim Blackwell
- Department of Computing; Goldsmiths, University of London
| | | | | |
Collapse
|
31
|
Schaal NK, Pfeifer J, Krause V, Pollok B. From amusic to musical?--Improving pitch memory in congenital amusia with transcranial alternating current stimulation. Behav Brain Res 2015; 294:141-8. [PMID: 26254878 DOI: 10.1016/j.bbr.2015.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022]
Abstract
Brain imaging studies highlighted structural differences in congenital amusia, a life-long perceptual disorder that is associated with pitch perception and pitch memory deficits. A functional anomaly characterized by decreased low gamma oscillations (30-40 Hz range) in the right dorsolateral prefrontal cortex (DLPFC) during pitch memory has been revealed recently. Thus, the present study investigates whether applying transcranial alternating current stimulation (tACS) at 35 Hz to the right DLPFC would improve pitch memory. Nine amusics took part in two tACS sessions (either 35 Hz or 90 Hz) and completed a pitch and visual memory task before and during stimulation. 35 Hz stimulation facilitated pitch memory significantly. No modulation effects were found with 90 Hz stimulation or on the visual task. While amusics showed a selective impairment of pitch memory before stimulation, the performance during 35 Hz stimulation was not significantly different to healthy controls anymore. Taken together, the study shows that modulating the right DLPFC with 35 Hz tACS in congenital amusia selectively improves pitch memory performance supporting the hypothesis that decreased gamma oscillations within the DLPFC are causally involved in disturbed pitch memory and highlight the potential use of tACS to interact with cognitive processes.
Collapse
Affiliation(s)
- Nora K Schaal
- Department of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Jasmin Pfeifer
- Amsterdam Center for Language and Communication, University of Amsterdam, The Netherlands; Institute for Language and Information, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vanessa Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
32
|
Rabinovich MI, Tristan I, Varona P. Hierarchical nonlinear dynamics of human attention. Neurosci Biobehav Rev 2015; 55:18-35. [DOI: 10.1016/j.neubiorev.2015.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 12/04/2014] [Accepted: 04/01/2015] [Indexed: 12/17/2022]
|
33
|
Tellmann S, Bludau S, Eickhoff S, Mohlberg H, Minnerop M, Amunts K. Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of their co-activation patterns. Front Neuroanat 2015; 9:54. [PMID: 26029057 PMCID: PMC4429588 DOI: 10.3389/fnana.2015.00054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/19/2015] [Indexed: 12/22/2022] Open
Abstract
The cerebellar nuclei are involved in several brain functions, including the modulation of motor and cognitive performance. To differentiate their participation in these functions, and to analyze their changes in neurodegenerative and other diseases as revealed by neuroimaging, stereotaxic maps are necessary. These maps reflect the complex spatial structure of cerebellar nuclei with adequate spatial resolution and detail. Here we report on the cytoarchitecture of the dentate, interposed (emboliform and globose) and fastigial nuclei, and introduce 3D probability maps in stereotaxic MNI-Colin27 space as a prerequisite for subsequent meta-analysis of their functional involvement. Histological sections of 10 human post mortem brains were therefore examined. Differences in cell density were measured and used to distinguish a dorsal from a ventral part of the dentate nucleus. Probabilistic maps were calculated, which indicate the position and extent of the nuclei in 3D-space, while considering their intersubject variability. The maps of the interposed and the dentate nuclei differed with respect to their interaction patterns and functions based on meta-analytic connectivity modeling and quantitative functional decoding, respectively. For the dentate nucleus, significant (p < 0.05) co-activations were observed with thalamus, supplementary motor area (SMA), putamen, BA 44 of Broca's region, areas of superior and inferior parietal cortex, and the superior frontal gyrus (SFG). In contrast, the interposed nucleus showed more limited co-activations with SMA, area 44, putamen, and SFG. Thus, the new stereotaxic maps contribute to analyze structure and function of the cerebellum. These maps can be used for anatomically reliable and precise identification of degenerative alteration in MRI-data of patients who suffer from various cerebellar diseases.
Collapse
Affiliation(s)
- Stefanie Tellmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University and JARA-BrainAachen, Germany
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
| | - Simon Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
- Institute for Clinical Neuroscience and Medical Psychology, Heinrich Heine UniversityDüsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Heinrich Heine UniversityDüsseldorf, Germany
| |
Collapse
|
34
|
|
35
|
Lake JI, LaBar KS, Meck WH. Hear it playing low and slow: how pitch level differentially influences time perception. Acta Psychol (Amst) 2014; 149:169-77. [PMID: 24746941 DOI: 10.1016/j.actpsy.2014.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022] Open
Abstract
Variations in both pitch and time are important in conveying meaning through speech and music, however, research is scant on perceptual interactions between these two domains. Using an ordinal comparison procedure, we explored how different pitch levels of flanker tones influenced the perceived duration of empty interstimulus intervals (ISIs). Participants heard monotonic, isochronous tone sequences (ISIs of 300, 600, or 1200 ms) composed of either one or five standard ISIs flanked by 500 Hz tones, followed by a final interval (FI) flanked by tones of either the same (500 Hz), higher (625 Hz), or lower (400 Hz) pitch. The FI varied in duration around the standard ISI duration. Participants were asked to determine if the FI was longer or shorter in duration than the preceding intervals. We found that an increase in FI flanker tone pitch level led to the underestimation of FI durations while a decrease in FI flanker tone pitch led to the overestimation of FI durations. The magnitude of these pitch-level effects decreased as the duration of the standard interval was increased, suggesting that the effect was driven by differences in mode-switch latencies to start/stop timing. Temporal context (One vs. Five Standard ISIs) did not have a consistent effect on performance. We propose that the interaction between pitch and time may have important consequences in understanding the ways in which meaning and emotion are communicated.
Collapse
|
36
|
Schaal N, Krause V, Lange K, Banissy M, Williamson V, Pollok B. Pitch Memory in Nonmusicians and Musicians: Revealing Functional Differences Using Transcranial Direct Current Stimulation. Cereb Cortex 2014; 25:2774-82. [DOI: 10.1093/cercor/bhu075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
37
|
Särkämö T, Ripollés P, Vepsäläinen H, Autti T, Silvennoinen HM, Salli E, Laitinen S, Forsblom A, Soinila S, Rodríguez-Fornells A. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study. Front Hum Neurosci 2014; 8:245. [PMID: 24860466 PMCID: PMC4029020 DOI: 10.3389/fnhum.2014.00245] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/03/2014] [Indexed: 12/28/2022] Open
Abstract
Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.
Collapse
Affiliation(s)
- Teppo Särkämö
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki , Helsinki , Finland ; Finnish Centre of Interdisciplinary Music Research, University of Helsinki , Helsinki , Finland
| | - Pablo Ripollés
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Spain ; Department of Basic Psychology, University of Barcelona , Barcelona , Spain
| | - Henna Vepsäläinen
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki , Helsinki , Finland
| | - Taina Autti
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Heli M Silvennoinen
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Eero Salli
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | | | - Anita Forsblom
- Department of Music, University of Jyväskylä , Jyväskylä , Finland
| | - Seppo Soinila
- Department of Neurology, Turku University Hospital , Turku , Finland
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Spain ; Department of Basic Psychology, University of Barcelona , Barcelona , Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Spain
| |
Collapse
|
38
|
Schaal NK, Williamson VJ, Banissy MJ. Anodal transcranial direct current stimulation over the supramarginal gyrus facilitates pitch memory. Eur J Neurosci 2013; 38:3513-8. [DOI: 10.1111/ejn.12344] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Nora K. Schaal
- Department of Psychology, Goldsmiths; University of London; London UK
- Institut für Experimentelle Psychologie; Heinrich-Heine-Universität Düsseldorf; Universitätsstraße 1 Düsseldorf 40225 Germany
| | | | - Michael J. Banissy
- Department of Psychology, Goldsmiths; University of London; London UK
- Institute of Cognitive Neuroscience; University College London; London UK
| |
Collapse
|
39
|
Pecenka N, Engel A, Keller PE. Neural correlates of auditory temporal predictions during sensorimotor synchronization. Front Hum Neurosci 2013; 7:380. [PMID: 23970857 PMCID: PMC3748321 DOI: 10.3389/fnhum.2013.00380] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/02/2013] [Indexed: 11/13/2022] Open
Abstract
Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events) and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS) and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons). Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1) a distributed network of cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex) and (2) medial cortical areas (medial prefrontal cortex, posterior cingulate cortex). While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.
Collapse
Affiliation(s)
- Nadine Pecenka
- Music Cognition and Action Group, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | | | | |
Collapse
|
40
|
Albouy P, Mattout J, Bouet R, Maby E, Sanchez G, Aguera PE, Daligault S, Delpuech C, Bertrand O, Caclin A, Tillmann B. Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex. Brain 2013; 136:1639-61. [DOI: 10.1093/brain/awt082] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
41
|
Ellis RJ, Bruijn B, Norton AC, Winner E, Schlaug G. Training-mediated leftward asymmetries during music processing: a cross-sectional and longitudinal fMRI analysis. Neuroimage 2013; 75:97-107. [PMID: 23470982 DOI: 10.1016/j.neuroimage.2013.02.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/25/2022] Open
Abstract
Practicing a musical instrument has a profound impact on the structure and function of the human brain. The present fMRI study explored how relative hemispheric asymmetries in task-related activity during music processing (same/different discrimination) are shaped by musical training (quantified as cumulative hours of instrument practice), using both a large (N=84) cross-sectional data set of children and adults, and a smaller (N=20) two time-point longitudinal data set of children tracked over 3 to 5 years. The cross-sectional analysis revealed a significant leftward asymmetry in task-related activation, with peaks in Heschl's gyrus and supramarginal gyrus (SMG). The SMG peak was further characterized by a leftward asymmetry in the partial correlation strength with subjects' cumulative hours of practice, controlling for subjects' age and task performance. This SMG peak was found to exhibit a similar pattern of response in the longitudinal data set (in this case, with subjects' cumulative hours of practice over the course of the study), controlling for age, scan interval, and amount of instrument practice prior to the first scan. This study presents novel insights into the ways musical instrument training shapes task-related asymmetries in neural activity during music processing.
Collapse
Affiliation(s)
- Robert J Ellis
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Palmer 127, Boston, MA 02215, USA
| | - Bente Bruijn
- Medical Faculty AMC-UvA, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Andrea C Norton
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Palmer 127, Boston, MA 02215, USA
| | - Ellen Winner
- Department of Psychology, Boston College, McGuinn Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | - Gottfried Schlaug
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Palmer 127, Boston, MA 02215, USA.
| |
Collapse
|
42
|
Seger CA, Spiering BJ, Sares AG, Quraini SI, Alpeter C, David J, Thaut MH. Corticostriatal contributions to musical expectancy perception. J Cogn Neurosci 2013; 25:1062-77. [PMID: 23410032 DOI: 10.1162/jocn_a_00371] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This study investigates the functional neuroanatomy of harmonic music perception with fMRI. We presented short pieces of Western classical music to nonmusicians. The ending of each piece was systematically manipulated in the following four ways: Standard Cadence (expected resolution), Deceptive Cadence (moderate deviation from expectation), Modulated Cadence (strong deviation from expectation but remaining within the harmonic structure of Western tonal music), and Atonal Cadence (strongest deviation from expectation by leaving the harmonic structure of Western tonal music). Music compared with baseline broadly recruited regions of the bilateral superior temporal gyrus (STG) and the right inferior frontal gyrus (IFG). Parametric regressors scaled to the degree of deviation from harmonic expectancy identified regions sensitive to expectancy violation. Areas within the BG were significantly modulated by expectancy violation, indicating a previously unappreciated role in harmonic processing. Expectancy violation also recruited bilateral cortical regions in the IFG and anterior STG, previously associated with syntactic processing in other domains. The posterior STG was not significantly modulated by expectancy. Granger causality mapping found functional connectivity between IFG, anterior STG, posterior STG, and the BG during music perception. Our results imply the IFG, anterior STG, and the BG are recruited for higher-order harmonic processing, whereas the posterior STG is recruited for basic pitch and melodic processing.
Collapse
|
43
|
Neural correlates of lyrical improvisation: an FMRI study of freestyle rap. Sci Rep 2012; 2:834. [PMID: 23155479 PMCID: PMC3498928 DOI: 10.1038/srep00834] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/19/2012] [Indexed: 11/20/2022] Open
Abstract
The neural correlates of creativity are poorly understood. Freestyle rap provides a unique opportunity to study spontaneous lyrical improvisation, a multidimensional form of creativity at the interface of music and language. Here we use functional magnetic resonance imaging to characterize this process. Task contrast analyses indicate that improvised performance is characterized by dissociated activity in medial and dorsolateral prefrontal cortices, providing a context in which stimulus-independent behaviors may unfold in the absence of conscious monitoring and volitional control. Connectivity analyses reveal widespread improvisation-related correlations between medial prefrontal, cingulate motor, perisylvian cortices and amygdala, suggesting the emergence of a network linking motivation, language, affect and movement. Lyrical improvisation appears to be characterized by altered relationships between regions coupling intention and action, in which conventional executive control may be bypassed and motor control directed by cingulate motor mechanisms. These functional reorganizations may facilitate the initial improvisatory phase of creative behavior.
Collapse
|
44
|
Konoike N, Kotozaki Y, Miyachi S, Miyauchi CM, Yomogida Y, Akimoto Y, Kuraoka K, Sugiura M, Kawashima R, Nakamura K. Rhythm information represented in the fronto-parieto-cerebellar motor system. Neuroimage 2012; 63:328-38. [DOI: 10.1016/j.neuroimage.2012.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/30/2012] [Accepted: 07/02/2012] [Indexed: 11/30/2022] Open
|
45
|
Oechslin MS, Van De Ville D, Lazeyras F, Hauert CA, James CE. Degree of musical expertise modulates higher order brain functioning. ACTA ACUST UNITED AC 2012; 23:2213-24. [PMID: 22832388 DOI: 10.1093/cercor/bhs206] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Using functional magnetic resonance imaging, we show for the first time that levels of musical expertise stepwise modulate higher order brain functioning. This suggests that degree of training intensity drives such cerebral plasticity. Participants (non-musicians, amateurs, and expert musicians) listened to a comprehensive set of specifically composed string quartets with hierarchically manipulated endings. In particular, we implemented 2 irregularities at musical closure that differed in salience but were both within the tonality of the piece (in-key). Behavioral sensitivity scores (d') of both transgressions perfectly separated participants according to their level of musical expertise. By contrasting brain responses to harmonic transgressions against regular endings, functional brain imaging data showed compelling evidence for stepwise modulation of brain responses by both violation strength and expertise level in a fronto-temporal network hosting universal functions of working memory and attention. Additional independent testing evidenced an advantage in visual working memory for the professionals, which could be predicted by musical training intensity. The here introduced findings of brain plasticity demonstrate the progressive impact of musical training on cognitive brain functions that may manifest well beyond the field of music processing.
Collapse
Affiliation(s)
- Mathias S Oechslin
- Geneva Neuroscience Center, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
46
|
Schneiders JA, Opitz B, Tang H, Deng Y, Xie C, Li H, Mecklinger A. The impact of auditory working memory training on the fronto-parietal working memory network. Front Hum Neurosci 2012; 6:173. [PMID: 22701418 PMCID: PMC3373207 DOI: 10.3389/fnhum.2012.00173] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/29/2012] [Indexed: 11/13/2022] Open
Abstract
Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously.
Collapse
|
47
|
Myskiw JC, Izquierdo I. Posterior parietal cortex and long-term memory: some data from laboratory animals. Front Integr Neurosci 2012; 6:8. [PMID: 22375107 PMCID: PMC3287050 DOI: 10.3389/fnint.2012.00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/14/2012] [Indexed: 11/13/2022] Open
Abstract
The posterior parietal cortex (PPC) was long viewed as just involved in the perception of spatial relationships between the body and its surroundings and of movements related to them. In recent years the PPC has been shown to participate in many other cognitive processes, among which working memory and the consolidation and retrieval of episodic memory. The neurotransmitter and other molecular processes involved have been determined to a degree in rodents. More research will no doubt determine the extent to which these findings can be extrapolated to primates, including humans. In these there appears to be a paradox: imaging studies strongly suggest an important participation of the PPC in episodic memory, whereas lesion studies are much less suggestive, let alone conclusive. The data on the participation of the PPC in episodic memory so far do not permit any conclusion as to what aspect of consolidation and retrieval it handles in addition to those dealt with by the hippocampus and basolateral amygdala, if any.
Collapse
Affiliation(s)
- Jociane C Myskiw
- Instituto Nacional de Neurociência Translacional, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Porto Alegre RS, Brazil
| | | |
Collapse
|