1
|
Jacobi H, Weiler M, Sam G, Heiland S, Hayes JM, Bendszus M, Wick W, Hayes JC. Peripheral Nerve Involvement in Friedreich's Ataxia Characterized by Quantitative Magnetic Resonance Neurography. Eur J Neurol 2025; 32:e70121. [PMID: 40130461 PMCID: PMC11933833 DOI: 10.1111/ene.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Friedreich's ataxia (FRDA) affects both the central and peripheral nervous system. Peripheral nerve involvement manifests predominantly as a progressive sensory neuropathy caused by dorsal root ganglionopathy. An additional direct involvement of peripheral nerves leading to abnormal myelination is increasingly discussed. Here, we characterize lower extremity peripheral nerve involvement in FRDA by quantitative magnetic resonance neurography (MRN). METHODS Sixteen genetically confirmed FRDA patients and 16 age-/sex-matched controls were prospectively enrolled. Patients underwent neurologic examinations and nerve conduction studies (NCS). Large-coverage MRN of sciatic and tibial nerves was conducted utilizing dual-echo turbo-spin-echo sequences with spectral fat saturation for T2-relaxometry, and two gradient-echo sequences with and without off-resonance saturation rapid frequency pulses for magnetization transfer contrast imaging. Microstructural and morphometric MRN markers including T2-relaxation time (T2app), proton spin density (ρ), magnetization transfer ratio (MTR), and cross-sectional area (CSA) were calculated to characterize nerve lesions. RESULTS Tibial nerve ρ and T2app were markedly decreased in FRDA at the thigh (ρ: 368.4 ± 11.0 a.u.; T2app: 59.5 ± 1.8 ms) and lower leg (ρ: 337.3 ± 12.6 a.u.; T2app: 53.9 ± 1.4 ms) versus controls (thigh, ρ: 458.9 ± 9.5 a.u., p < 0.0001; T2app: 66.3 ± 0.8 ms, p = 0.0019; lower leg, ρ: 449.9 ± 12.1 a.u., p < 0.0001; T2app: 62.4 ± 1.2 ms, p < 0.0001) and correlated well with clinical scores, disease duration, and NCS. MTR and CSA did not differentiate between FRDA and controls. CONCLUSION Our study results provide a profound characterization of peripheral nerve involvement in FRDA. The identified good correlation between ρ and T2app with clinical symptom scores and NCS suggests that parameters of T2 relaxometry may become relevant biomarkers to monitor disease progression and therapeutic responses in potential future clinical trials.
Collapse
Affiliation(s)
- Heike Jacobi
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | - Markus Weiler
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | - Georges Sam
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | - Sabine Heiland
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
- Division of Experimental Radiology, Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - John M. Hayes
- Department of NeurologyUniversity of MichiganAnn ArborUSA
| | - Martin Bendszus
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Wolfgang Wick
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit NeurooncologyGerman Cancer Research Center/DKTKHeidelbergGermany
| | - Jennifer C. Hayes
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
- Department of RadiologyUniversity of MichiganAnn ArborUSA
| |
Collapse
|
2
|
Huang Y, Chen T, Hu Y, Li Z. Muscular MRI and magnetic resonance neurography in spinal muscular atrophy. Clin Radiol 2024; 79:673-680. [PMID: 38945793 DOI: 10.1016/j.crad.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease caused by the degeneration of the α-motor neurons in the anterior horn of the spinal cord. SMA is clinically characterized by progressive and symmetrical muscle weakness and muscle atrophy and ends up with systemic multisystem abnormalities. Quantitative MRI (qMRI) has the advantages of non-invasiveness, objective sensitivity, and high reproducibility, and has important clinical value in evaluating the severity of neuromuscular diseases and monitoring the efficacy of treatment. This article summarizes the clinical use of muscular MRI and magnetic resonance neurography in assessing the progress of SMA.
Collapse
Affiliation(s)
- Y Huang
- Department of Radiology, Shenzhen Childrens Hospital, Shantou University Medical College Affiliated Shenzhen Childrens Hospital, Shenzhen, China
| | - T Chen
- Department of Radiology, Shenzhen Childrens Hospital, Shantou University Medical College Affiliated Shenzhen Childrens Hospital, Shenzhen, China; Department of Radiology, Shenzhen Children's Hospital, China Medical University, Shenzhen, China
| | - Y Hu
- Department of Radiology, Shenzhen Childrens Hospital, Shantou University Medical College Affiliated Shenzhen Childrens Hospital, Shenzhen, China; Department of Radiology, Shenzhen Children's Hospital, China Medical University, Shenzhen, China
| | - Z Li
- Department of Radiology, Shenzhen Childrens Hospital, Shantou University Medical College Affiliated Shenzhen Childrens Hospital, Shenzhen, China.
| |
Collapse
|
3
|
Shih NC, Kurniawan ND, Cabeen RP, Korobkova L, Wong E, Chui HC, Clark KA, Miller CA, Hawes D, Jones KT, Sepehrband F. Microstructural mapping of dentate gyrus pathology in Alzheimer's disease: A 16.4 Tesla MRI study. Neuroimage Clin 2023; 37:103318. [PMID: 36630864 PMCID: PMC9841366 DOI: 10.1016/j.nicl.2023.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The dentate gyrus (DG) is an integral portion of the hippocampal formation, and it is composed of three layers. Quantitative magnetic resonance (MR) imaging has the capability to map brain tissue microstructural properties which can be exploited to investigate neurodegeneration in Alzheimer's disease (AD). However, assessing subtle pathological changes within layers requires high resolution imaging and histological validation. In this study, we utilized a 16.4 Tesla scanner to acquire ex vivo multi-parameter quantitative MRI measures in human specimens across the layers of the DG. Using quantitative diffusion tensor imaging (DTI) and multi-parameter MR measurements acquired from AD (N = 4) and cognitively normal control (N = 6) tissues, we performed correlation analyses with histological measurements. Here, we found that quantitative MRI measures were significantly correlated with neurofilament and phosphorylated Tau density, suggesting sensitivity to layer-specific changes in the DG of AD tissues.
Collapse
Affiliation(s)
- Nien-Chu Shih
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nyoman D Kurniawan
- Center for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| | - Ryan P Cabeen
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura Korobkova
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089. USA
| | - Ellen Wong
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kristi A Clark
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Carol A Miller
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Debra Hawes
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Kymry T Jones
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Farshid Sepehrband
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
4
|
Quantification and Proximal-to-Distal Distribution Pattern of Tibial Nerve Lesions in Relapsing-Remitting Multiple Sclerosis : Assessment by MR Neurography. Clin Neuroradiol 2022; 33:383-392. [PMID: 36264352 DOI: 10.1007/s00062-022-01219-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Recent studies suggest an involvement of the peripheral nervous system (PNS) in multiple sclerosis (MS). Here, we characterize the proximal-to-distal distribution pattern of peripheral nerve lesions in relapsing-remitting MS (RRMS) by quantitative magnetic resonance neurography (MRN). METHODS A total of 35 patients with RRMS were prospectively included and underwent detailed neurologic and electrophysiologic examinations. Additionally, 30 age- and sex-matched healthy controls were recruited. 3T MRN with anatomical coverage from the proximal thigh down to the tibiotalar joint was conducted using dual-echo 2‑dimensional relaxometry sequences with spectral fat saturation. Quantification of PNS involvement was performed by evaluating microstructural (proton spin density (ρ), T2-relaxation time (T2app)), and morphometric (cross-sectional area, CSA) MRN markers in every axial slice. RESULTS In patients with RRMS, tibial nerve lesions at the thigh and the lower leg were characterized by a decrease in T2app and an increase in ρ compared to controls (T2app thigh: p < 0.0001, T2app lower leg: p = 0.0040; ρ thigh: p < 0.0001; ρ lower leg: p = 0.0098). An additional increase in nerve CSA was only detectable at the thigh, while the semi-quantitative marker T2w-signal was not altered in RRMS in both locations. A slight proximal-to-distal gradient was observed for T2app and T2-signal, but not for ρ. CONCLUSION PNS involvement in RRMS is characterized by a decrease in T2app and an increase in ρ, occurring with proximal predominance at the thigh and the lower leg. Our results indicate microstructural alterations in the extracellular matrix of peripheral nerves in RRMS and may contribute to a better understanding of the pathophysiologic relevance of PNS involvement.
Collapse
|
5
|
Kollmer J, Weiler M, Sam G, Faber J, Hayes JM, Heiland S, Bendszus M, Wick W, Jacobi H. Quantitative magnetic resonance neurographic characterization of peripheral nerve involvement in manifest and pre‐ataxic spinocerebellar ataxia type 3. Eur J Neurol 2022; 29:1782-1790. [DOI: 10.1111/ene.15305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer Kollmer
- Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany
| | - Markus Weiler
- Department of Neurology Heidelberg University Hospital Heidelberg Germany
| | - Georges Sam
- Department of Neurology Heidelberg University Hospital Heidelberg Germany
| | - Jennifer Faber
- Department of Neurology Bonn University Hospital Bonn Germany
- German Center for Neurodegenerative Diseases Bonn Germany
| | - John M. Hayes
- Department of Neurology University of Michigan Ann Arbor USA
| | - Sabine Heiland
- Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany
- Division of Experimental Radiology Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany
| | - Martin Bendszus
- Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany
| | - Wolfgang Wick
- Department of Neurology Heidelberg University Hospital Heidelberg Germany
- Clinical Cooperation Unit Neurooncology German Cancer Research Center/DKTK Heidelberg Germany
| | - Heike Jacobi
- Department of Neurology Heidelberg University Hospital Heidelberg Germany
| |
Collapse
|
6
|
Kollmer J, Bendszus M. Magnetic Resonance Neurography: Improved Diagnosis of Peripheral Neuropathies. Neurotherapeutics 2021; 18:2368-2383. [PMID: 34859380 PMCID: PMC8804110 DOI: 10.1007/s13311-021-01166-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Peripheral neuropathies account for the most frequent disorders seen by neurologists, and causes are manifold. The traditional diagnostic gold-standard consists of clinical neurologic examinations supplemented by nerve conduction studies. Due to well-known limitations of standard diagnostics and atypical clinical presentations, establishing the correct diagnosis can be challenging but is critical for appropriate therapies. Magnetic resonance neurography (MRN) is a relatively novel technique that was developed for the high-resolution imaging of the peripheral nervous system. In focal neuropathies, whether traumatic or due to nerve entrapment, MRN has improved the diagnostic accuracy by directly visualizing underlying nerve lesions and providing information on the exact lesion localization, extension, and spatial distribution, thereby assisting surgical planning. Notably, the differentiation between distally located, complete cross-sectional nerve lesions, and more proximally located lesions involving only certain fascicles within a nerve can hold difficulties that MRN can overcome, when basic technical requirements to achieve sufficient spatial resolution are implemented. Typical MRN-specific pitfalls are essential to understand in order to prevent overdiagnosing neuropathies. Heavily T2-weighted sequences with fat saturation are the most established sequences for MRN. Newer techniques, such as T2-relaxometry, magnetization transfer contrast imaging, and diffusion tensor imaging, allow the quantification of nerve lesions and have become increasingly important, especially when evaluating diffuse, non-focal neuropathies. Innovative studies in hereditary, metabolic or inflammatory polyneuropathies, and motor neuron diseases have contributed to a better understanding of the underlying pathomechanism. New imaging biomarkers might be used for an earlier diagnosis and monitoring of structural nerve injury under causative treatments in the future.
Collapse
Affiliation(s)
- Jennifer Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Rother C, Bumb JM, Weiler M, Brault A, Sam G, Hayes JM, Pietsch A, Karimian-Jazi K, Jende JME, Heiland S, Kiefer F, Bendszus M, Kollmer J. Characterization and quantification of alcohol-related polyneuropathy by magnetic resonance neurography. Eur J Neurol 2021; 29:573-582. [PMID: 34564924 DOI: 10.1111/ene.15127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND We characterized and quantified peripheral nerve damage in alcohol-dependent patients (ADP) by magnetic resonance neurography (MRN) in correlation with clinical and electrophysiologic findings. METHODS Thirty-one adult patients with a history of excessive alcohol consumption and age-/sex-matched healthy controls were prospectively examined. After detailed neurologic and electrophysiologic testing, the patient group was subdivided into ADP with alcohol-related polyneuropathy (ALN) and without ALN (Non-ALN). 3T MRN with anatomical coverage from the proximal thigh down to the tibiotalar joint was performed using dual-echo 2-dimensional relaxometry sequences with spectral fat saturation. Detailed quantification of nerve injury by morphometric (cross-sectional area [CSA]) and microstructural MRN markers (proton spin density [ρ], apparent T2-relaxation-time [T2app ]) was conducted in all study participants. RESULTS MRN detected nerve damage in ADP with and without ALN. A proximal-to-distal gradient was identified for nerve T2-weighted (T2w)-signal and T2app in ADP, indicating a proximal predominance of nerve lesions. While all MRN markers differentiated significantly between ADP and controls, microstructural markers were able to additionally differentiate between subgroups: tibial nerve ρ at thigh level was increased in ALN (p < 0.0001) and in Non-ALN (p = 0.0052) versus controls, and T2app was higher in ALN versus controls (p < 0.0001) and also in ALN versus Non-ALN (p = 0.0214). T2w-signal and CSA were only higher in ALN versus controls. CONCLUSIONS MRN detects and quantifies peripheral nerve damage in ADP in vivo even in the absence of clinically overt ALN. Microstructural markers (T2app , ρ) are most suitable for differentiating between ADP with and without manifest ALN, and may help to elucidate the underlying pathomechanism in ALN.
Collapse
Affiliation(s)
- Christian Rother
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Malte Bumb
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Markus Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Brault
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Georges Sam
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Adriana Pietsch
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Internal Medicine, Spital Walenstadt, Walenstadt, Switzerland
| | | | - Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
8
|
Fortanier E, Ogier AC, Delmont E, Lefebvre MN, Viout P, Guye M, Bendahan D, Attarian S. Quantitative assessment of sciatic nerve changes in Charcot-Marie-Tooth type 1A patients using magnetic resonance neurography. Eur J Neurol 2020; 27:1382-1389. [PMID: 32391944 DOI: 10.1111/ene.14303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/23/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE Nerve tissue alterations have rarely been quantified in Charcot-Marie-Tooth type 1A (CMT1A) patients. The aim of the present study was to quantitatively assess the magnetic resonance imaging (MRI) anomalies of the sciatic and tibial nerves in CMT1A disease using quantitative neurography MRI. It was also intended to seek for correlations with clinical variables. METHODS Quantitative neurography MRI was used in order to assess differences in nerve volume, proton density and magnetization transfer ratio in the lower limbs of CMT1A patients and healthy controls. Disease severity was evaluated using the Charcot-Marie-Tooth Neuropathy Score version 2, Charcot-Marie-Tooth examination scores and Overall Neuropathy Limitations Scale scores. Electrophysiological measurements were performed in order to assess the compound motor action potential and the Motor Unit Number Index. Clinical impairment was evaluated using muscle strength measurements and Charcot-Marie-Tooth examination scores. RESULTS A total of 32 CMT1A patients were enrolled and compared to 13 healthy subjects. The 3D nerve volume, magnetization transfer ratio and proton density were significantly different in CMT1A patients for the whole sciatic and tibial nerve volume. The sciatic nerve volume was significantly correlated with the whole set of clinical scores whereas no correlation was found between the tibial nerve volume and the clinical scores. CONCLUSION Nerve injury could be quantified in vivo using quantitative neurography MRI and the corresponding biomarkers were correlated with clinical disability in CMT1A patients. The sensitivity of the selected metrics will have to be assessed through repeated measurements over time during longitudinal studies to evaluate structural nerve changes under treatment.
Collapse
Affiliation(s)
- E Fortanier
- Neurology Department, APHM, Reference Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - A C Ogier
- CNRS, Center for Magnetic Resonance in Biology, UMR 7339, Aix-Marseille University, Marseille, France.,CNRS, LIS, Aix Marseille University, Toulon University, Marseille, France
| | - E Delmont
- Neurology Department, APHM, Reference Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France.,UMR 7286, Aix-Marseille University, Marseille, France
| | - M-N Lefebvre
- APHM, CIC-CPCET, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - P Viout
- CNRS, Center for Magnetic Resonance in Biology, UMR 7339, Aix-Marseille University, Marseille, France
| | - M Guye
- CNRS, Center for Magnetic Resonance in Biology, UMR 7339, Aix-Marseille University, Marseille, France
| | - D Bendahan
- CNRS, Center for Magnetic Resonance in Biology, UMR 7339, Aix-Marseille University, Marseille, France
| | - S Attarian
- Neurology Department, APHM, Reference Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France.,Inserm, GMGF, Aix-Marseille University, Marseille, France
| |
Collapse
|
9
|
Kollmer J, Hilgenfeld T, Ziegler A, Saffari A, Sam G, Hayes JM, Pietsch A, Jost M, Heiland S, Bendszus M, Wick W, Weiler M. Quantitative MR neurography biomarkers in 5q-linked spinal muscular atrophy. Neurology 2019; 93:e653-e664. [PMID: 31292223 DOI: 10.1212/wnl.0000000000007945] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To characterize and quantify peripheral nerve lesions and muscle degeneration in clinically, genetically, and electrophysiologically well-classified, nonpediatric patients with 5q-linked spinal muscular atrophy (SMA) by high-resolution magnetic resonance neurography (MRN). METHODS Thirty-one adult patients with genetically confirmed 5q-linked SMA types II, IIIa, and IIIb and 31 age- and sex-matched healthy volunteers were prospectively investigated. All patients received neurologic, physiotherapeutic, and electrophysiologic assessments. MRN at 3.0T with anatomic coverage from the lumbosacral plexus and proximal thigh down to the tibiotalar joint was performed with dual-echo 2D relaxometry sequences with spectral fat saturation and a 3D T2-weighted inversion recovery sequence. Detailed quantification of nerve injury by morphometric and microstructural MRN markers and qualitative classification of fatty muscle degeneration were conducted. RESULTS Established clinical scores and compound muscle action potentials discriminated well between the 3 SMA types. MRN revealed that peroneal and tibial nerve cross-sectional area (CSA) at the thigh and lower leg level as well as spinal nerve CSA were markedly decreased throughout all 3 groups, indicating severe generalized peripheral nerve atrophy. While peroneal and tibial nerve T2 relaxation time was distinctly increased at all analyzed anatomic regions, the proton spin density was clearly decreased. Marked differences in fatty muscle degeneration were found between the 3 groups and for all analyzed compartments. CONCLUSIONS MRN detects and quantifies peripheral nerve involvement in SMA types II, IIIa, and IIIb with high sensitivity in vivo. Quantitative MRN parameters (T2 relaxation time, proton spin density, CSA) might serve as novel imaging biomarkers in SMA to indicate early microstructural nerve tissue changes in response to treatment.
Collapse
Affiliation(s)
- Jennifer Kollmer
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany.
| | - Tim Hilgenfeld
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Andreas Ziegler
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Afshin Saffari
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Georges Sam
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - John M Hayes
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Adriana Pietsch
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Marie Jost
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Sabine Heiland
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Martin Bendszus
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Wolfgang Wick
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Markus Weiler
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany.
| |
Collapse
|
10
|
Kollmer J, Weiler M, Purrucker J, Heiland S, Schönland SO, Hund E, Kimmich C, Hayes JM, Hilgenfeld T, Pham M, Bendszus M, Hegenbart U. MR neurography biomarkers to characterize peripheral neuropathy in AL amyloidosis. Neurology 2018; 91:e625-e634. [DOI: 10.1212/wnl.0000000000006002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
ObjectiveTo detect, localize, and quantify peripheral nerve lesions in amyloid light chain (AL) amyloidosis by magnetic resonance neurography (MRN) in correlation with clinical and electrophysiologic findings.MethodsWe prospectively examined 20 patients with AL-polyneuropathy (PNP) and 25 age- and sex-matched healthy volunteers. After detailed neurologic and electrophysiologic testing, the patient group was subdivided into mild and moderate PNP. MRN in a 3.0 tesla scanner with anatomical coverage from the lumbosacral plexus and proximal thigh down to the tibiotalar joint was performed by using T2-weighted and dual-echo 2-dimensional sequences with spectral fat saturation and a 3-dimensional, T2-weighted inversion recovery sequence. Besides evaluation of nerve T2-weighted signal, detailed quantification of nerve injury by morphometric (nerve caliber) and microstructural MRN markers (proton spin density, T2 relaxation time) was conducted.ResultsNerve T2-weighted signal increase correlated with disease severity: moderate (420.2 ± 60.1) vs mild AL-PNP (307.2 ± 17.9; p = 0.0003) vs controls (207.0 ± 6.4; p < 0.0001). Proton spin density was also higher in moderate (tibial: 525.5 ± 53.0; peroneal: 553.6 ± 64.5; sural: 492.0 ± 56.6) and mild AL-PNP (tibial: 431.6 ± 22.0; peroneal: 457.6 ± 21.7; sural: 404.8 ± 25.2) vs controls (tibial: 310.5 ± 14.1; peroneal: 313.6 ± 11.6; sural: 261.7 ± 11.0; p < 0.0001 for all nerves). T2 relaxation time was elevated in moderate AL-PNP only (tibial: p = 0.0106; peroneal: p = 0.0070; sural: p = 0.0190). Tibial nerve caliber was higher in moderate (58.0 ± 8.8 mm3) vs mild AL-PNP (46.5 ± 2.5 mm3; p = 0.008) vs controls (39.1 ± 1.2 mm3; p < 0.0001).ConclusionsMRN detects and quantifies peripheral nerve injury in AL-PNP in vivo with high sensitivity and in close correlation with the clinical stage. Quantitative parameters are feasible new imaging biomarkers for the detection of early AL-PNP and might help to monitor microstructural nerve tissue changes under treatment.
Collapse
|
11
|
Kollmer J, Sahm F, Hegenbart U, Purrucker JC, Kimmich C, Schönland SO, Hund E, Heiland S, Hayes JM, Kristen AV, Röcken C, Pham M, Bendszus M, Weiler M. Sural nerve injury in familial amyloid polyneuropathy: MR neurography vs clinicopathologic tools. Neurology 2017; 89:475-484. [PMID: 28679600 DOI: 10.1212/wnl.0000000000004178] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To detect and quantify lesions of the small-caliber sural nerve (SN) in symptomatic and asymptomatic transthyretin familial amyloid polyneuropathy (TTR-FAP) by high-resolution magnetic resonance neurography (MRN) in correlation with electrophysiologic and histopathologic findings. METHODS Twenty-five patients with TTR-FAP, 10 asymptomatic carriers of the mutated transthyretin gene (mutTTR), and 35 age- and sex-matched healthy controls were prospectively included in this cross-sectional case-control study. All participants underwent 3T MRN with high-structural resolution (fat-saturated, T2-weighted, and double-echo sequences). Total imaging time was ≈45 minutes per patient. Manual SN segmentation was performed from its origin at the sciatic nerve bifurcation to the lower leg with subsequent evaluation of quantitative microstructural and morphometric parameters. Additional time needed for postprocessing was ≈1.5 hours per participant. Detailed neurologic and electrophysiologic examinations were conducted in the TTR group. RESULTS T2 signal and proton spin density (ρ) reliably differentiated between TTR-FAP (198.0 ± 13.3, 429.6 ± 15.25), mutTTR carriers (137.0 ± 16.9, p = 0.0009; 354.7 ± 21.64, p = 0.0029), and healthy controls (90.0 ± 3.4, 258.2 ± 9.10; p < 0.0001). Marked differences between mutTTR carriers and controls were found for T2 signal (p = 0.0065) and ρ (p < 0.0001). T2 relaxation time was higher in patients with TTR-FAP only (p = 0.015 vs mutTTR carriers, p = 0.0432 vs controls). SN caliber was higher in patients with TTR-FAP vs controls and in mutTTR carriers vs controls (p < 0.0001). Amyloid deposits were histopathologically detectable in 10 of 14 SN specimens. CONCLUSIONS SN injury in TTR-FAP is detectable and quantifiable in vivo by MRN even in asymptomatic mutTTR carriers. Differences in SN T2 signal between controls and asymptomatic mutTTR carriers are derived mainly from an increase of ρ, which overcomes typical limitations of established diagnostic methods as a highly sensitive imaging biomarker for early detection of peripheral nerve lesions. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that MRN accurately identifies asymptomatic mutTTR carriers.
Collapse
Affiliation(s)
- Jennifer Kollmer
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany.
| | - Felix Sahm
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany
| | - Ute Hegenbart
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany
| | - Jan C Purrucker
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany
| | - Christoph Kimmich
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany
| | - Stefan O Schönland
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany
| | - Ernst Hund
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany
| | - Sabine Heiland
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany
| | - John M Hayes
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany
| | - Arnt V Kristen
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany
| | - Christoph Röcken
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany
| | - Mirko Pham
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany
| | - Martin Bendszus
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany
| | - Markus Weiler
- From the Department of Neuroradiology (J.K., S.H., M.P., M.B.), Amyloidosis Center Heidelberg (J.K., U.H., J.C.P., C.K., S.O.S., E.H., A.V.K., M.W.), Department of Neuropathology (F.S.), Medical Department V (U.H., C.K., S.O.S.), Department of Neurology (J.C.P., E.H., M.W.), Division of Experimental Radiology (S.H.), Department of Neuroradiology, and Medical Department III (A.V.K.), Heidelberg University Hospital; CCU Neuropathology (F.S.), German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Department of Pathology (C.R.), University of Kiel; and Department of Neuroradiology (M.P.), Würzburg University Hospital, Germany.
| |
Collapse
|
12
|
Keser Z, Hasan KM, Mwangi BI, Kamali A, Ucisik-Keser FE, Riascos RF, Yozbatiran N, Francisco GE, Narayana PA. Diffusion tensor imaging of the human cerebellar pathways and their interplay with cerebral macrostructure. Front Neuroanat 2015; 9:41. [PMID: 25904851 PMCID: PMC4389543 DOI: 10.3389/fnana.2015.00041] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/16/2015] [Indexed: 12/22/2022] Open
Abstract
Cerebellar white matter (WM) connections to the central nervous system are classified functionally into the Spinocerebellar (SC), vestibulocerebellar (VC), and cerebrocerebellar subdivisions. The SC pathways project from spinal cord to cerebellum, whereas the VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC) pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC) pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI). Ten right-handed healthy subjects (7 males and 3 females, age range 20–51 years) were studied. DT-MRI data were acquired with a voxel size = 2 mm × 2 mm × 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC), parieto-ponto-cerebellar (PPC), temporo-ponto-cerebellar (TPC) and occipito-ponto-cerebellar (OPC). The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas) were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM), cerebral WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~25.8 ± 7.3 mL, or a percentage of 1.6 ± 0.45 of the total intracranial volume (ICV).
Collapse
Affiliation(s)
- Zafer Keser
- Department of Physical Medicine and Rehabilitation and TIRR Memorial Hermann Neuro-Recovery Research Center, University of Texas Health Science Center Houston Houston, TX, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Radiology, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Benson I Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center Houston, TX, USA
| | - Arash Kamali
- Department of Diagnostic Radiology, Division of Neuroradiology, Johns Hopkins University Baltimore, MD, USA
| | - Fehime Eymen Ucisik-Keser
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Roy F Riascos
- Department of Diagnostic and Interventional Radiology, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Nuray Yozbatiran
- Department of Physical Medicine and Rehabilitation and TIRR Memorial Hermann Neuro-Recovery Research Center, University of Texas Health Science Center Houston Houston, TX, USA
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation and TIRR Memorial Hermann Neuro-Recovery Research Center, University of Texas Health Science Center Houston Houston, TX, USA
| | - Ponnada A Narayana
- Department of Diagnostic and Interventional Radiology, University of Texas Health Science Center at Houston Houston, TX, USA
| |
Collapse
|
13
|
Syka M, Keller J, Klempíř J, Rulseh AM, Roth J, Jech R, Vorisek I, Vymazal J. Correlation between relaxometry and diffusion tensor imaging in the globus pallidus of Huntington's disease patients. PLoS One 2015; 10:e0118907. [PMID: 25781024 PMCID: PMC4362949 DOI: 10.1371/journal.pone.0118907] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/18/2015] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder with progressive impairment of motor, behavioral and cognitive functions. The clinical features of HD are closely related to the degeneration of the basal ganglia, predominantly the striatum. The main striatal output structure, the globus pallidus, strongly accumulates metalloprotein-bound iron, which was recently shown to influence the diffusion tensor scalar values. To test the hypothesis that this effect dominates in the iron-rich basal ganglia of HD patients, we examined the globus pallidus using DTI and T2 relaxometry sequences. Quantitative magnetic resonance (MR), clinical and genetic data (number of CAG repeats) were obtained from 14 HD patients. MR parameters such as the T2 relaxation rate (RR), fractional anisotropy (FA) and mean diffusivity (MD) were analysed. A positive correlation was found between RR and FA (R2=0.84), between CAG and RR (R2=0.59) and between CAG and FA (R2=0.44). A negative correlation was observed between RR and MD (R2=0.66). A trend towards correlation between CAG and MD was noted. No correlation between MR and clinical parameters was found. Our results indicate that especially magnetic resonance FA measurements in the globus pallidus of HD patients may be strongly affected by metalloprotein-bound iron accumulation.
Collapse
Affiliation(s)
- Michael Syka
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne´s University Hospital, Brno, Czech Republic
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- * E-mail:
| | - Jiří Keller
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
- Department of Neurology, 3rd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jiří Klempíř
- Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
- Institute of Anatomy, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Aaron M. Rulseh
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
- Department of Radiology, 1st Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| | - Ivan Vorisek
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
14
|
Mwangi B, Soares JC, Hasan KM. Visualization and unsupervised predictive clustering of high-dimensional multimodal neuroimaging data. J Neurosci Methods 2014; 236:19-25. [PMID: 25117552 DOI: 10.1016/j.jneumeth.2014.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neuroimaging machine learning studies have largely utilized supervised algorithms - meaning they require both neuroimaging scan data and corresponding target variables (e.g. healthy vs. diseased) to be successfully 'trained' for a prediction task. Noticeably, this approach may not be optimal or possible when the global structure of the data is not well known and the researcher does not have an a priori model to fit the data. NEW METHOD We set out to investigate the utility of an unsupervised machine learning technique; t-distributed stochastic neighbour embedding (t-SNE) in identifying 'unseen' sample population patterns that may exist in high-dimensional neuroimaging data. Multimodal neuroimaging scans from 92 healthy subjects were pre-processed using atlas-based methods, integrated and input into the t-SNE algorithm. Patterns and clusters discovered by the algorithm were visualized using a 2D scatter plot and further analyzed using the K-means clustering algorithm. COMPARISON WITH EXISTING METHODS t-SNE was evaluated against classical principal component analysis. CONCLUSION Remarkably, based on unlabelled multimodal scan data, t-SNE separated study subjects into two very distinct clusters which corresponded to subjects' gender labels (cluster silhouette index value=0.79). The resulting clusters were used to develop an unsupervised minimum distance clustering model which identified 93.5% of subjects' gender. Notably, from a neuropsychiatric perspective this method may allow discovery of data-driven disease phenotypes or sub-types of treatment responders.
Collapse
Affiliation(s)
- Benson Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA.
| | - Jair C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Khader M Hasan
- The University of Texas Health Science Center at Houston, Department of Diagnostic & Interventional Imaging, Houston, TX, USA
| |
Collapse
|
15
|
Wu M, Lu LH, Lowes A, Yang S, Passarotti AM, Zhou XJ, Pavuluri MN. Development of superficial white matter and its structural interplay with cortical gray matter in children and adolescents. Hum Brain Mapp 2014; 35:2806-16. [PMID: 24038932 PMCID: PMC6869421 DOI: 10.1002/hbm.22368] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/11/2013] [Accepted: 07/01/2013] [Indexed: 11/09/2022] Open
Abstract
Healthy human brain undergoes significant changes during development. The developmental trajectory of superficial white matter (SWM) is less understood relative to cortical gray matter (GM) and deep white matter. In this study, a multimodal imaging strategy was applied to vertexwise map SWM microstructure and cortical thickness to characterize their developmental pattern and elucidate SWM-GM associations in children and adolescents. Microscopic changes in SWM were evaluated with water diffusion parameters including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 133 healthy subjects aged 10-18 years. Results demonstrated distinct maturational patterns in SWM and GM. SWM showed increasing FA and decreasing MD and RD underneath bilateral motor sensory cortices and superior temporal auditory cortex, suggesting increasing myelination. A second developmental pattern in SWM was increasing FA and AD in bilateral orbitofrontal regions and insula, suggesting improved axonal coherence. These SWM patterns diverge from the more widespread GM maturation, suggesting that cortical thickness changes in adolescence are not explained by the encroachment of SWM myelin into the GM-WM boundary. Interestingly, age-independent intrinsic association between SWM and cortical GM seems to follow functional organization of polymodal and unimodal brain regions. Unimodal sensory areas showed positive correlation between GM thickness and FA whereas polymodal regions showed negative correlation. Axonal coherence and differences in interstitial neuron composition between unimodal and polymodal regions may account for these SWM-GM association patterns. Intrinsic SWM-GM relationships unveiled by neuroimaging in vivo can be useful for examining psychiatric disorders with known WM/GM disturbances.
Collapse
Affiliation(s)
- Minjie Wu
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research and Colbeth Clinic, Department of PsychiatryUniversity of Illinois at ChicagoIllinois
- Department of PsychiatryUniversity of Illinois at ChicagoIllinois
| | - Lisa H. Lu
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research and Colbeth Clinic, Department of PsychiatryUniversity of Illinois at ChicagoIllinois
- Department of PsychologyRoosevelt UniversityIllinois
| | - Allison Lowes
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research and Colbeth Clinic, Department of PsychiatryUniversity of Illinois at ChicagoIllinois
- Department of PsychiatryUniversity of Illinois at ChicagoIllinois
| | - Shaolin Yang
- Department of PsychiatryUniversity of Illinois at ChicagoIllinois
- Departments of Radiology and BioengineeringUniversity of Illinois at ChicagoIllinois
| | - Alessandra M. Passarotti
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research and Colbeth Clinic, Department of PsychiatryUniversity of Illinois at ChicagoIllinois
- Department of PsychiatryUniversity of Illinois at ChicagoIllinois
| | - Xiaohong J. Zhou
- Departments of Radiology and BioengineeringUniversity of Illinois at ChicagoIllinois
- Department of NeurosurgeryUniversity of Illinois at ChicagoIllinois
- Center for Magnetic Resonance ResearchUniversity of Illinois at ChicagoIllinois
| | - Mani N. Pavuluri
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research and Colbeth Clinic, Department of PsychiatryUniversity of Illinois at ChicagoIllinois
- Department of PsychiatryUniversity of Illinois at ChicagoIllinois
| |
Collapse
|
16
|
Hasan KM, Moeller FG, Narayana PA. DTI-based segmentation and quantification of human brain lateral ventricular CSF volumetry and mean diffusivity: validation, age, gender effects and biophysical implications. Magn Reson Imaging 2014; 32:405-12. [PMID: 24582546 DOI: 10.1016/j.mri.2014.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/18/2014] [Accepted: 01/19/2014] [Indexed: 12/21/2022]
Abstract
The human brain lateral ventricular (LV) cerebrospinal fluid (CSF) volume has been used as a neuroimaging marker of brain changes in health and disease. The LV CSF diffusivity may offer a useful quality assurance measure and become a potential noninvasive marker of deep brain temperature. In this work we sought to validate a method for human brain lateral ventricular (LV) cerebrospinal fluid (CSF) using diffusion tensor imaging (DTI) contrast to provide LV volume and corresponding DTI metrics. We compared LV volume obtained using DTI with that obtained using validated segmentations of the LV on T1-weighted data. DTI and T1-weighted data were acquired at 3T on 49 healthy males and 56 age-matched females aged 18-59 years. We showed histogram distributions of LV DTI metrics to establish quality assurance measures. We also analyzed the age and gender effects of LV volume and diffusivity. LV volumes estimated using both T1-weighted and DTI correlated strongly in males and females (ICC=0.99; median Dice index ~80%). The LV-to-intracranial volume percentage increased significantly with age only in males, using the DTI-based approach (r=0.39; p=0.005). LV CSF Mean diffusivity was greater in males than females ((~1.2%; p=0.03). Mean diffusivity of lateral ventricular CSF decreased significantly with age in healthy adults (r=-0.30; p=0.02). Our results highlight the importance of age and gender-based analyses and the potential of LV diffusivity measures as a quantitative marker.
Collapse
Affiliation(s)
- Khader M Hasan
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center, Houston, TX, USA.
| | - F Gerard Moeller
- Medical School, Department Interventional Imaging, The University of Texas Health Science Center, Houston, TX, USA
| | - Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
17
|
Warntjes JBM, Engström M, Tisell A, Lundberg P. Brain characterization using normalized quantitative magnetic resonance imaging. PLoS One 2013; 8:e70864. [PMID: 23940653 PMCID: PMC3733841 DOI: 10.1371/journal.pone.0070864] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 06/26/2013] [Indexed: 12/24/2022] Open
Abstract
Objectives To present a method for generating reference maps of typical brain characteristics of groups of subjects using a novel combination of rapid quantitative Magnetic Resonance Imaging (qMRI) and brain normalization. The reference maps can be used to detect significant tissue differences in patients, both locally and globally. Materials and Methods A rapid qMRI method was used to obtain the longitudinal relaxation rate (R1), the transverse relaxation rate (R2) and the proton density (PD). These three tissue properties were measured in the brains of 32 healthy subjects and in one patient diagnosed with Multiple Sclerosis (MS). The maps were normalized to a standard brain template using a linear affine registration. The differences of the mean value ofR1, R2 and PD of 31 healthy subjects in comparison to the oldest healthy subject and in comparison to an MS patient were calculated. Larger anatomical structures were characterized using a standard atlas. The vector sum of the normalized differences was used to show significant tissue differences. Results The coefficient of variation of the reference maps was high at the edges of the brain and the ventricles, moderate in the cortical grey matter and low in white matter and the deep grey matter structures. The elderly subject mainly showed significantly lower R1 and R2 and higher PD values along all sulci. The MS patient showed significantly lower R1 and R2 and higher PD values at the edges of the ventricular system as well as throughout the periventricular white matter, at the internal and external capsules and at each of the MS lesions. Conclusion Brain normalization of rapid qMRI is a promising new method to generate reference maps of typical brain characteristics and to automatically detect deviating tissue properties in the brain.
Collapse
Affiliation(s)
- Jan B. M. Warntjes
- Center for Medical Image Science and Visualization, CMIV, Linköping University, Linköping, Sweden
- Clinical Physiology, Department of Medical and Health Sciences, Linköping University, Department of Clinical Physiology, UHL, County Council of Östergötland, Linköping, Sweden
- * E-mail:
| | - Maria Engström
- Center for Medical Image Science and Visualization, CMIV, Linköping University, Linköping, Sweden
- Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Anders Tisell
- Center for Medical Image Science and Visualization, CMIV, Linköping University, Linköping, Sweden
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Department of Radiation Physics, UHL, County Council of Östergötland, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization, CMIV, Linköping University, Linköping, Sweden
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Department of Radiation Physics, UHL, County Council of Östergötland, Linköping, Sweden
| |
Collapse
|
18
|
Kumar R, Harper RM. Response. J Magn Reson Imaging 2013; 38:506-7. [DOI: 10.1002/jmri.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 02/26/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Rajesh Kumar
- Department of Neurobiology; David Geffen School of Medicine at UCLA; Los Angeles; California
| | | |
Collapse
|
19
|
Hasan KM, Walimuni IS, Frye RE. Global cerebral and regional multimodal neuroimaging markers of the neurobiology of autism: development and cognition. J Child Neurol 2013; 28:874-85. [PMID: 22899798 DOI: 10.1177/0883073812452917] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Quantitative magnetic resonance imaging (MRI) studies of the microstructure and macrostructure in children with autism report contradictory results due, in part, to the autistic population heterogeneity from factors such as variation in intellect and inadequately accounting for age-related changes in brain development. In this report, the authors compared global and regional volumetry, relaxometry, anisotropy, and diffusometry of gray and white matter in 10 autism spectrum disorder children relative to the age-related trajectories obtained from 38 typically developing controls while controlling for nonverbal intellect using a validated quantitative MRI method. The normalized hippocampus volume increased with age in both autistic and typically developing individuals with limbic structures larger in autistic patients. Hippocampus volume, but not diffusivity or relaxation time, was larger in autistic children. Hippocampus volume was inversely correlated with nonverbal intellect across control individuals. The pattern of hippocampal abnormalities suggests a disturbance in early brain development in autistic children independent of intellect.
Collapse
Affiliation(s)
- Khader M Hasan
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
20
|
Hasan KM. Voxel-based relaxometry across the human lifespan. J Magn Reson Imaging 2013; 38:504-5. [PMID: 23589469 DOI: 10.1002/jmri.24134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/26/2013] [Indexed: 11/07/2022] Open
|
21
|
Simpkin CJ, Morgan VA, Giles SL, Riches SF, Parker C, deSouza NM. Relationship between T2 relaxation and apparent diffusion coefficient in malignant and non-malignant prostate regions and the effect of peripheral zone fractional volume. Br J Radiol 2013; 86:20120469. [PMID: 23426849 DOI: 10.1259/bjr.20120469] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To establish whether T2 relaxation and apparent diffusion coefficient (ADC) in normal prostate and tumour are related and to investigate the effects of glandular compression from an enlarged transition zone (TZ) on peripheral zone (PZ) T2 and ADC by correlating them with the peripheral zone fractional volume (PZFV). METHODS 48 consecutive patients prospectively underwent multiecho T2 weighted (T2W) (echo times 20, 40, 60, 80, 100 ms) and diffusion-weighted (b=0, 100, 300, 500, 800 s mm(-2)) endorectal MRI. In 43 evaluable patients, single slice whole PZ, TZ and tumour (focal hypointense signal on T2W images in a biopsy-positive octant) regions of interest were transferred to T2 and ADC maps by slice matching. T2 and ADC values were correlated, and PZ values were correlated with PZFV. RESULTS T2 and ADC values were significantly different among groups [T2 mean±standard deviation (SD) PZ, 149±49 ms; TZ, 125±26 ms; tumour, 97±23 ms; PZ vs TZ, p=0.002; PZ vs tumour, p<0.0001; TZ vs tumour, p<0.0001; ADC×10(-6) mm(2) s(-1) mean±SD PZ, 1680±215; TZ, 1478±139; tumour, 1030±205; p<0.0001]. Significant positive correlations existed between T2 and ADC for PZ, TZ, PZ and TZ together, but not for tumour (r=0.515, p<0.0001; r=0.300, p=0.03; r=0.526, p<0.0001; and r=0.239, p=0.32, respectively). No significant correlation existed between PZFV and PZ T2 (r=0.10, p=0.5) or ADC (r=0.03, p=0.8). CONCLUSION The correlation between T2 and ADC that exists in normal prostate is absent in tumour. PZ compression by an enlarged TZ does not alter PZ T2 or ADC to affect tumour-PZ contrast. ADVANCES IN KNOWLEDGE Microstructural features of tumours alter diffusivity independently of their effects on T2 relaxation.
Collapse
Affiliation(s)
- C J Simpkin
- Cancer Research UK/EPSRC Imaging Centre, Institute of Cancer Research, Sutton, UK
| | | | | | | | | | | |
Collapse
|
22
|
Hasan KM, Molfese DL, Walimuni IS, Stuebing KK, Papanicolaou AC, Narayana PA, Fletcher JM. Diffusion tensor quantification and cognitive correlates of the macrostructure and microstructure of the corpus callosum in typically developing and dyslexic children. NMR IN BIOMEDICINE 2012; 25:1263-1270. [PMID: 22411286 PMCID: PMC3520134 DOI: 10.1002/nbm.2797] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/16/2012] [Accepted: 02/09/2012] [Indexed: 05/31/2023]
Abstract
Noninvasive quantitative MRI methods, such as diffusion tensor imaging (DTI), can offer insights into the structure-function relationships in human developmental brain disorders. In this article, we quantified the macrostructural and microstructural attributes of the corpus callosum (CC) in children with dyslexia and in typically developing readers of comparable age and gender. Diffusion anisotropy, and mean, radial and axial diffusivities of cross-sectional CC subregions were computed using a validated DTI methodology. The normalized posterior CC area was enlarged in children with dyslexia relative to that in typically developing children. Moreover, the callosal microstructural attributes, such as the mean diffusivity of the posterior middle sector of the CC, correlated significantly with measures of word reading and reading comprehension. Reading group differences in fractional anisotropy, mean diffusivity and radial diffusivity were observed in the posterior CC (CC5). This study demonstrates the utility of regional DTI measurements of the CC in understanding the neurobiology of reading disorders.
Collapse
Affiliation(s)
- Khader M Hasan
- Department of Diagnostic and Interventional Imaging, University of Texas at Houston, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Hasan KM, Walimuni IS, Abid H, Wolinsky JS, Narayana PA. Multi-modal quantitative MRI investigation of brain tissue neurodegeneration in multiple sclerosis. J Magn Reson Imaging 2012; 35:1300-11. [PMID: 22241681 DOI: 10.1002/jmri.23539] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 11/22/2011] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate the utility of multimodal quantitative MRI (qMRI) and atlas-based methods to identify characteristics of lesion-driven injury and neurodegeneration in relapsing remitting multiple sclerosis (RRMS). MATERIALS AND METHODS This work is health insurance portability and accountability act compliant. High resolution T1-weighted, dual echo, and fluid-attenuated inversion recovery and diffusion tensor MRI images were prospectively acquired on 68 RRMS patients (range, 25-58 years) and 68 age-matched controls. The data were analyzed using standardized human brain atlas-based tissue segmentation procedures to obtain regional volumes and their corresponding T2 relaxation times and DTI maps. RESULTS Group-averaged brain atlas-based qMRI maps of T2, fractional anisotropy and diffusivities are visually presented and compared between controls and RRMS. The analysis shows a widespread injury in RRMS. Atrophy of the corpus callosum (CC) was substantial in RRMS. The qMRI attributes of the neocortex in combination with the CC such as T2 and diffusivities were elevated and correlated with disability. CONCLUSION Using a standardized multimodal qMRI acquisition and analyses that accounted for lesion distribution we demonstrate that cerebral pathology is widespread in RRMS. Our analysis of CC and neocortex qMRI metrics in relation to disability points to a neurodegenerative injury component that is independent from lesions.
Collapse
Affiliation(s)
- Khader M Hasan
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | | | | | | | | |
Collapse
|
24
|
Multimodal quantitative magnetic resonance imaging of thalamic development and aging across the human lifespan: implications to neurodegeneration in multiple sclerosis. J Neurosci 2012; 31:16826-32. [PMID: 22090508 DOI: 10.1523/jneurosci.4184-11.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human brain thalami play essential roles in integrating cognitive, sensory, and motor functions. In multiple sclerosis (MS), quantitative magnetic resonance imaging (qMRI) measurements of the thalami provide important biomarkers of disease progression, but late development and aging confound the interpretation of data collected from patients over a wide age range. Thalamic tissue volume loss due to natural aging and its interplay with lesion-driven pathology has not been investigated previously. In this work, we used standardized thalamic volumetry combined with diffusion tensor imaging, T2 relaxometry, and lesion mapping on large cohorts of controls (N = 255, age range = 6.2-69.1 years) and MS patients (N = 109, age range = 20.8-68.5 years) to demonstrate early age- and lesion-independent thalamic neurodegeneration.
Collapse
|
25
|
Hasan KM, Walimuni IS, Abid H, Datta S, Wolinsky JS, Narayana PA. Human brain atlas-based multimodal MRI analysis of volumetry, diffusimetry, relaxometry and lesion distribution in multiple sclerosis patients and healthy adult controls: implications for understanding the pathogenesis of multiple sclerosis and consolidation of quantitative MRI results in MS. J Neurol Sci 2011; 313:99-109. [PMID: 21978603 DOI: 10.1016/j.jns.2011.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/31/2011] [Accepted: 09/13/2011] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) is the most common immune-mediated disabling neurological disease of the central nervous system. The pathogenesis of MS is not fully understood. Histopathology implicates both demyelination and axonal degeneration as the major contributors to the accumulation of disability. The application of several in vivo quantitative magnetic resonance imaging (MRI) methods to both lesioned and normal-appearing brain tissue has not yet provided a solid conclusive support of the hypothesis that MS might be a diffuse disease. In this work, we adopted FreeSurfer to provide standardized macrostructure or volumetry of lesion free normal-appearing brain tissue in combination with multiple quantitative MRI metrics (T(2) relaxation time, diffusion tensor anisotropy and diffusivities) that characterize tissue microstructural integrity. By incorporating a large number of healthy controls, we have attempted to separate the natural age-related change from the disease-induced effects. Our work shows elevation in diffusivity and relaxation times and reduction in volume in a number of normal-appearing white matter and gray matter structures in relapsing-remitting multiple sclerosis patients. These changes were related in part with the spatial distribution of lesions. The whole brain lesion load and age-adjusted expanded disability status score showed strongest correlations in regions such as corpus callosum with qMRI metrics that are believed to be specific markers of axonal dysfunction, consistent with histologic data of others indicating axonal loss that is independent of focal lesions. Our results support that MS at least in part has a neurodegenerative component.
Collapse
Affiliation(s)
- Khader M Hasan
- The University of Texas Health Science Center at Houston, Department of Diagnostic & Interventional Imaging, 6431 Fannin Street, MSB 2.100, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|