1
|
Gallucci J, Pomarol-Clotet E, Voineskos AN, Guerrero-Pedraza A, Alonso-Lana S, Vieta E, Salvador R, Hawco C. Longer illness duration is associated with greater individual variability in functional brain activity in Schizophrenia, but not bipolar disorder. Neuroimage Clin 2022; 36:103269. [PMID: 36451371 PMCID: PMC9723315 DOI: 10.1016/j.nicl.2022.103269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Individuals with schizophrenia exhibit greater inter-patient variability in functional brain activity during neurocognitive task performance. Some studies have shown associations of age and illness duration with brain function; however, the association of these variables with variability in brain function activity is not known. In order to better understand the progressive effects of age and illness duration across disorders, we examined the relationship with individual variability in brain activity. METHODS Neuroimaging and behavioural data were extracted from harmonized datasets collectively including 212 control participants, 107 individuals with bipolar disorder, and 232 individuals with schizophrenia (total n = 551). Functional activity in response to an N-back working memory task (2-back vs 1-back) was examined. Individual variability was quantified via the correlational distance of fMRI activity between participants; mean correlational distance of one participant in relation to all others was defined as a 'variability score'. RESULTS Greater individual variability was found in the schizophrenia group compared to the bipolar disorder and control groups (p = 1.52e-09). Individual variability was significantly associated with aging (p = 0.027), however, this relationship was not different across diagnostic groups. In contrast, in the schizophrenia sample only, a longer illness duration was associated with increased variability (p = 0.027). CONCLUSION An increase in variability was observed in the schizophrenia group related to illness duration, beyond the effects of normal aging, implying illness-related deterioration of cognitive networks. This has clinical implications for considering long-term trajectories in schizophrenia and progressive neural and cognitive decline which may be amiable to novel treatments.
Collapse
Affiliation(s)
- Julia Gallucci
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Catalonia, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain
| | - Aristotle N. Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Catalonia, Spain,Benito Menni Complex Assistencial en Salut Mental, Barcelona, Catalonia, Spain
| | - Silvia Alonso-Lana
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Catalonia, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain,Research Centre and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades – Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Eduard Vieta
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain,Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Catalonia, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Catalonia, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Corresponding authors at: Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Spain.
| |
Collapse
|
2
|
Zovetti N, Bellani M, Chowdury A, Alessandrini F, Zoccatelli G, Perlini C, Ricciardi GK, Marzi CA, Diwadkar VA, Brambilla P. Inefficient white matter activity in Schizophrenia evoked during intra and inter-hemispheric communication. Transl Psychiatry 2022; 12:449. [PMID: 36244980 PMCID: PMC9573867 DOI: 10.1038/s41398-022-02200-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Intensive cognitive tasks induce inefficient regional and network responses in schizophrenia (SCZ). fMRI-based studies have naturally focused on gray matter, but appropriately titrated visuo-motor integration tasks reliably activate inter- and intra-hemispheric white matter pathways. Such tasks can assess network inefficiency without demanding intensive cognitive effort. Here, we provide the first application of this framework to the study of white matter functional responses in SCZ. Event-related fMRI data were acquired from 28 patients (nine females, mean age 43.3, ±11.7) and 28 age- and gender-comparable controls (nine females, mean age 42.1 ± 10.1), using the Poffenberger paradigm, a rapid visual detection task used to induce intra- (ipsi-lateral visual and motor cortex) or inter-hemispheric (contra-lateral visual and motor cortex) transfer. fMRI data were pre- and post-processed to reliably isolate activations in white matter, using probabilistic tractography-based white matter tracts. For intra- and inter-hemispheric transfer conditions, SCZ evinced hyper-activations in longitudinal and transverse white matter tracts, with hyper-activation in sub-regions of the corpus callosum primarily observed during inter-hemispheric transfer. Evidence for the functional inefficiency of white matter was observed in conjunction with small (~50 ms) but significant increases in response times. Functional inefficiencies in SCZ are (1) observable in white matter, with the degree of inefficiency contextually related to task-conditions, and (2) are evoked by simple detection tasks without intense cognitive processing. These cumulative results while expanding our understanding of this dys-connection syndrome, also extend the search of biomarkers beyond the traditional realm of fMRI studies of gray matter.
Collapse
Affiliation(s)
- Niccolò Zovetti
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy.
| | - Asadur Chowdury
- grid.254444.70000 0001 1456 7807Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Franco Alessandrini
- grid.411475.20000 0004 1756 948XNeuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giada Zoccatelli
- grid.411475.20000 0004 1756 948XNeuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Cinzia Perlini
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Giuseppe K. Ricciardi
- Pathology and Diagnostics, Section of Neuroradiology, Hospital Trust Verona, Verona, Italy
| | - Carlo A. Marzi
- grid.5611.30000 0004 1763 1124Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy ,National Institute of Neuroscience, Verona, Italy
| | - Vaibhav A. Diwadkar
- grid.254444.70000 0001 1456 7807Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Gallucci J, Tan T, Schifani C, Dickie EW, Voineskos AN, Hawco C. Greater individual variability in functional brain activity during working memory performance in Schizophrenia Spectrum Disorders (SSD). Schizophr Res 2022; 248:21-31. [PMID: 35908378 DOI: 10.1016/j.schres.2022.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/14/2022] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
Heterogeneity has been a persistent challenge in understanding Schizophrenia Spectrum Disorders (SSD). Traditional case-control comparisons often show variable results, and may not map well onto individuals. To better understand heterogeneity and group differences in SSD compared to typically developing controls (TDC), we examined variability in functional brain activity during a working memory (WM) task with known deficits in SSD. Neuroimaging and behavioural data were extracted from two datasets collectively providing 34 TDC and 56 individuals with SSD (n = 90). Functional activity in response to an N-Back WM task (3-Back vs 1-Back) was examined between and within groups. Individual variability was calculated via the correlational distance of fMRI activity maps between participants; mean correlational distance from one participant to all others was defined as a 'variability score'. Greater individual variability in functional activity was found in SSD compared to TDC (p = 0.00090). At the group level, a case-control comparison suggested SSD had reduced activity in task positive and task negative networks. However, when SSD were divided into high and low variability subgroups, the low variability groups showed no differences relative to TDC while the high variability group showed little activity at the group level. Our results imply prior case-control differences may be driven by a subgroup of SSD who do not show specific impairments but instead show more 'idiosyncratic' activity patterns. In SSD but not TDC, variability was also related to cognitive performance and age. This novel approach focusing on individual variability has important implications for understanding the neurobiology of SSD.
Collapse
Affiliation(s)
- Julia Gallucci
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Thomas Tan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Christin Schifani
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Sadeghi D, Shoeibi A, Ghassemi N, Moridian P, Khadem A, Alizadehsani R, Teshnehlab M, Gorriz JM, Khozeimeh F, Zhang YD, Nahavandi S, Acharya UR. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 146:105554. [DOI: 10.1016/j.compbiomed.2022.105554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
|
5
|
Arsalidou M, Yaple Z, Jurcik T, Ushakov V. Cognitive Brain Signatures of Youth With Early Onset and Relatives With Schizophrenia: Evidence From fMRI Meta-analyses. Schizophr Bull 2020; 46:857-868. [PMID: 31978222 PMCID: PMC7345811 DOI: 10.1093/schbul/sbz130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Deficits in cognitive function are a major characteristic of schizophrenia. Many functional magnetic resonance imaging (fMRI) studies examine brain correlates of cognitive function in adults with schizophrenia, showing altered implication of associative areas such as the prefrontal cortex and temporal cortex. fMRI studies also examine brain representation of cognitive function in adolescents with early onset schizophrenia and those at risk of the disorder, yet results are often inconsistent. We compile and analyze data from eligible fMRI studies using quantitative meta-analyses to reveal concordant brain activity associated with adolescent relatives of patients with schizophrenia and those with early onset schizophrenia. Results show similar functional hubs of brain activity (eg, precuneus) yet in opposite hemispheres and clusters in ventrolateral rather than dorsolateral prefrontal cortices. Other areas of altered implication include the middle temporal gyrus, insula, and cerebellum. We discuss the findings in reference to the protracted maturation of the prefrontal cortex and possible effects due to the medication status of the two groups.
Collapse
Affiliation(s)
- Marie Arsalidou
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation,Department of Psychology, Faculty of Health, York University, Toronto, ON, Canada,To whom correspondence should be addressed; Armyanskiy per. 4, c2, Moscow, 101000, room 406; tel: 1786-505-9779, e-mail: ; ;
| | - Zachary Yaple
- Department of Psychology, National University of Singapore, Singapore
| | - Tomas Jurcik
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Vadim Ushakov
- Kurchatov Department of NBICS-nature-like technologies, National Research Centre Kurchatov Institute, Moscow, Russian Federation,Department of Cybernetics, National Research Nuclear University “MEPhI”, Moscow, Russian Federation
| |
Collapse
|
6
|
Falco D, Chowdury A, Rosenberg DR, Diwadkar VA, Bressler SL. From nodes to networks: How methods for defining nodes influence inferences regarding network interactions. Hum Brain Mapp 2019; 40:1458-1469. [PMID: 30536968 DOI: 10.1002/hbm.24459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/13/2018] [Accepted: 10/22/2018] [Indexed: 11/06/2022] Open
Abstract
Functional connectivity (FC) analysis of fMRI data typically rests on prior identification of network nodes from activation profiles. We compared Activation Likelihood Estimate (ALE) and the Experimentally Derived Estimate (EDE) approaches to network node identification and functional inference for both verbal and visual forms of working memory. ALE arrives at canonical activation maxima that are assumed to reliably represent peaks of brain activity underlying a psychological process (e.g., working memory). By comparison, EDEs of activation maxima are typically derived from individual participant data, and are thus sensitive to individual participant activation profiles. Here, nodes were localized by both ALE and EDE methods for each participant, and subsequently extracted time series were compared using connectivity analysis. Two sets of significance tests were performed: (1) correlations computed between nodal time series of each method were compared, and (2) correlations computed between network edges (functional connections) of each network node pair were compared. Large proportions of edge correlations significantly differed between methods. ALE effectively summarizes working memory network node locations across studies and subjects, but the sensitivity to individual functional loci suggest that EDE methods provide individualized estimates of network connectivity. We suggest that a hybrid method incorporating both ALE and EDE is optimal for network inference.
Collapse
Affiliation(s)
- Dimitri Falco
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida
| | - Asadur Chowdury
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan
| | - Steven L Bressler
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida.,Department of Psychology, Florida Atlantic University, Boca Raton, Florida
| |
Collapse
|
7
|
Diwadkar VA, Re M, Cecchetto F, Garzitto M, Piccin S, Bonivento C, Maieron M, D'Agostini S, Balestrieri M, Brambilla P. Attempts at memory control induce dysfunctional brain activation profiles in Generalized Anxiety Disorder: An exploratory fMRI study. Psychiatry Res Neuroimaging 2017; 266:42-52. [PMID: 28599173 DOI: 10.1016/j.pscychresns.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/04/2017] [Accepted: 05/21/2017] [Indexed: 02/08/2023]
Abstract
Suppression of aversive memories through memory control has historically been proposed as a central psychological defense mechanism. Inability to suppress memories is considered a central psychological trait in several psychiatric disorders, including Generalized Anxiety Disorder (GAD). Yet, few studies have attempted the focused identification of dysfunctional brain activation profiles when patients with Generalized Anxiety Disorders attempt memory control. Using a well-characterized behavioral paradigm we studied brain activation profiles in a group of adult GAD patients and well-matched healthy controls (HC). Participants learned word-association pairs before imaging. During fMRI when presented with one word of the pair, they were instructed to either suppress memory of, or retrieve the paired word. Subsequent behavioral testing indicated both GAD and HC were able to engage in the task, but attempts at memory control (suppression or retrieval) during fMRI revealed vastly different activation profiles. GAD were characterized by substantive hypo-activation signatures during both types of memory control, with effects particularly strong during suppression in brain regions including the dorsal anterior cingulate and the ventral prefrontal cortex. Attempts at memory control in GAD fail to engage brain regions to the same extent HC, providing a putative neuronal signature for a well-established psychological characteristic of the illness.
Collapse
Affiliation(s)
- Vaibhav A Diwadkar
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Tolan Park Medical Building, Suite 5B, 3901 Chrysler Service Drive, Detroit, MI 48301, USA
| | - Marta Re
- DISM, University of Udine, Udine 33100, Italy
| | | | - Marco Garzitto
- Scientific Institute IRCCS "Eugenio Medea", San Vito al Tagliamento, Pordenone, Italy
| | - Sara Piccin
- Scientific Institute IRCCS "Eugenio Medea", San Vito al Tagliamento, Pordenone, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Friedman AL, Burgess A, Ramaseshan K, Easter P, Khatib D, Chowdury A, Arnold PD, Hanna GL, Rosenberg DR, Diwadkar VA. Brain network dysfunction in youth with obsessive-compulsive disorder induced by simple uni-manual behavior: The role of the dorsal anterior cingulate cortex. Psychiatry Res 2017; 260:6-15. [PMID: 27992792 PMCID: PMC5302006 DOI: 10.1016/j.pscychresns.2016.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
Abstract
In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a "motor set") or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD.
Collapse
Affiliation(s)
- Amy L Friedman
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Ashley Burgess
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Karthik Ramaseshan
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Phil Easter
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Dalal Khatib
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Asadur Chowdury
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Paul D Arnold
- Dept. of Psychiatry and Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Alberta, Canada
| | - Gregory L Hanna
- Dept. of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David R Rosenberg
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Vaibhav A Diwadkar
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
9
|
Zhang R, Picchioni M, Allen P, Toulopoulou T. Working Memory in Unaffected Relatives of Patients With Schizophrenia: A Meta-Analysis of Functional Magnetic Resonance Imaging Studies. Schizophr Bull 2016; 42:1068-77. [PMID: 26738528 PMCID: PMC4903055 DOI: 10.1093/schbul/sbv221] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Working memory deficits, a core cognitive feature of schizophrenia may arise from dysfunction in the frontal and parietal cortices. Numerous studies have also found abnormal neural activation during working memory tasks in patients' unaffected relatives. The aim of this study was to systematically identify and anatomically localize the evidence for those activation differences across all eligible studies. Fifteen functional magnetic resonance imaging (fMRI) manuscripts, containing 16 samples of 289 unaffected relatives of patients with schizophrenia, and 358 healthy controls were identified that met our inclusion criteria: (1) used a working memory task; and (2) reported standard space coordinates. Activation likelihood estimation (ALE) identified convergence across studies. Compared to healthy controls, patients' unaffected relatives showed decreases in neural activation in the right middle frontal gyrus (BA9), as well as right inferior frontal gyrus (BA44). Increased activation was seen in relatives in the right frontopolar (BA10), left inferior parietal lobe (BA40), and thalamus bilaterally. These results suggest that the familial risk of schizophrenia is expressed in changes in neural activation in the unaffected relatives in the cortical-subcortical working memory network that includes, but is not restricted to the middle prefrontal cortex.
Collapse
Affiliation(s)
- Ruibin Zhang
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Marco Picchioni
- St Andrew’s Academic Department, Northampton, UK;,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, London, UK
| | - Paul Allen
- Department of Psychology, University of Roehampton, London, UK;,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Timothea Toulopoulou
- Department of Psychology, The University of Hong Kong, Hong Kong, China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, Bilkent University, Ankara, Turkey; Department of Basic and Clinical Neuroscience, The Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
10
|
Solé-Padullés C, Castro-Fornieles J, de la Serna E, Romero S, Calvo A, Sánchez-Gistau V, Padrós-Fornieles M, Baeza I, Bargalló N, Frangou S, Sugranyes G. Altered Cortico-Striatal Connectivity in Offspring of Schizophrenia Patients Relative to Offspring of Bipolar Patients and Controls. PLoS One 2016; 11:e0148045. [PMID: 26885824 PMCID: PMC4757444 DOI: 10.1371/journal.pone.0148045] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/12/2016] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) share clinical features, genetic risk factors and neuroimaging abnormalities. There is evidence of disrupted connectivity in resting state networks in patients with SZ and BD and their unaffected relatives. Resting state networks are known to undergo reorganization during youth coinciding with the period of increased incidence for both disorders. We therefore focused on characterizing resting state network connectivity in youth at familial risk for SZ or BD to identify alterations arising during this period. We measured resting-state functional connectivity in a sample of 106 youth, aged 7-19 years, comprising offspring of patients with SZ (N = 27), offspring of patients with BD (N = 39) and offspring of community control parents (N = 40). We used Independent Component Analysis to assess functional connectivity within the default mode, executive control, salience and basal ganglia networks and define their relationship to grey matter volume, clinical and cognitive measures. There was no difference in connectivity within any of the networks examined between offspring of patients with BD and offspring of community controls. In contrast, offspring of patients with SZ showed reduced connectivity within the left basal ganglia network compared to control offspring, and they showed a positive correlation between connectivity in this network and grey matter volume in the left caudate. Our findings suggest that dysconnectivity in the basal ganglia network is a robust correlate of familial risk for SZ and can be detected during childhood and adolescence.
Collapse
Affiliation(s)
| | - Josefina Castro-Fornieles
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, SGR489, Institute of Neuroscience, Hospital Clínic of Barcelona, Barcelona, Spain
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre Consortium (CIBERSAM), Barcelona, Spain
| | - Elena de la Serna
- Biomedical Research Networking Centre Consortium (CIBERSAM), Barcelona, Spain
| | - Soledad Romero
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, SGR489, Institute of Neuroscience, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre Consortium (CIBERSAM), Barcelona, Spain
| | - Anna Calvo
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Imaging Core facility, Hospital Clinic of Barcelona, Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), GIB-UB, Barcelona, Spain
| | - Vanessa Sánchez-Gistau
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, SGR489, Institute of Neuroscience, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre Consortium (CIBERSAM), Barcelona, Spain
| | - Marta Padrós-Fornieles
- Department of Child and Adolescent Psychiatry and Psychology, SGR489, Institute of Neuroscience, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Inmaculada Baeza
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, SGR489, Institute of Neuroscience, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre Consortium (CIBERSAM), Barcelona, Spain
| | - Núria Bargalló
- Biomedical Research Networking Centre Consortium (CIBERSAM), Barcelona, Spain
- Magnetic Resonance Imaging Core facility, Hospital Clinic of Barcelona, Barcelona, Spain
- Centre for Diagnostic Imaging (CDI), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, United States of America
| | - Gisela Sugranyes
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, SGR489, Institute of Neuroscience, Hospital Clínic of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Chronological age and its impact on associative learning proficiency and brain structure in middle adulthood. Behav Brain Res 2015; 297:329-37. [PMID: 26462573 DOI: 10.1016/j.bbr.2015.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The rate of biological change in middle-adulthood is relatively under-studied. Here, we used behavioral testing in conjunction with structural magnetic resonance imaging to examine the effects of chronological age on associative learning proficiency and on brain regions that previous functional MRI studies have closely related to the domain of associative learning. METHODS Participants (n=66) completed a previously established associative learning paradigm, and consented to be scanned using structural magnetic resonance imaging. Age-related effects were investigated both across sub-groups in the sample (younger vs. older) and across the entire sample (using regression approaches). RESULTS Chronological age had substantial effects on learning proficiency (independent of IQ and Education Level), with older adults showing a decrement compared to younger adults. In addition, decreases in estimated gray matter volume were observed in multiple brain regions including the hippocampus and the dorsal prefrontal cortex, both of which are strongly implicated in associative learning. CONCLUSION The results suggest that middle adulthood may be a more dynamic period of life-span change than previously believed. The conjunctive application of narrowly focused tasks, with conjointly acquired structural MRI data may allow us to enrich the search for, and the interpretation of, age-related changes in cross-sectional samples.
Collapse
|
12
|
Transcriptional regulation of GAD1 GABA synthesis gene in the prefrontal cortex of subjects with schizophrenia. Schizophr Res 2015; 167:28-34. [PMID: 25458568 PMCID: PMC4417100 DOI: 10.1016/j.schres.2014.10.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022]
Abstract
Expression of GAD1 GABA synthesis enzyme is highly regulated by neuronal activity and reaches mature levels in the prefrontal cortex not before adolescence. A significant portion of cases diagnosed with schizophrenia show deficits in GAD1 RNA and protein levels in multiple areas of adult cerebral cortex, possibly reflecting molecular or cellular defects in subtypes of GABAergic interneurons essential for network synchronization and cognition. Here, we review 20years of progress towards a better understanding of disease-related regulation of GAD1 gene expression. For example, deficits in cortical GAD1 RNA in some cases of schizophrenia are associated with changes in the epigenetic architecture of the promoter, affecting DNA methylation patterns and nucleosomal histone modifications. These localized chromatin defects at the 5' end of GAD1 are superimposed by disordered locus-specific chromosomal conformations, including weakening of long-range promoter-enhancer loopings and physical disconnection of GAD1 core promoter sequences from cis-regulatory elements positioned 50 kilobases further upstream. Studies on the 3-dimensional architecture of the GAD1 locus in neurons, including developmentally regulated higher order chromatin compromised by the disease process, together with exploration of locus-specific epigenetic interventions in animal models, could pave the way for future treatments of psychosis and schizophrenia.
Collapse
|
13
|
Jiang S, Yan H, Chen Q, Tian L, Lu T, Tan HY, Yan J, Zhang D. Cerebral Inefficient Activation in Schizophrenia Patients and Their Unaffected Parents during the N-Back Working Memory Task: A Family fMRI Study. PLoS One 2015; 10:e0135468. [PMID: 26270056 PMCID: PMC4536207 DOI: 10.1371/journal.pone.0135468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/22/2015] [Indexed: 01/18/2023] Open
Abstract
Background It has been suggested that working memory deficits is a core feature of symptomatology of schizophrenia, which can be detected in patients and their unaffected relatives. The impairment of working memory has been found related to the abnormal activity of human brain regions in many functional magnetic resonance imaging (fMRI) studies. This study investigated how brain region activation was altered in schizophrenia and how it was inherited independently from performance deficits. Method The authors used fMRI method during N-back task to assess working memory related cortical activation in four groups (N = 20 in each group, matching task performance, age, gender and education): schizophrenic patients, their unaffected biological parents, young healthy controls for the patients and older healthy controls for their parents. Results Compared to healthy controls, patients showed an exaggerated response in the right dorsolateral prefrontal cortex (brodmann area [BA] 46) and bilateral ventrolateral prefrontal cortex, and had reduced activation in bilateral dorsolateral prefrontal cortex (BA 9). In the conjunction analysis, the effect of genetic risk (parents versus older control) shared significantly overlapped activation with effect of disease (patients versus young control) in the right middle frontal gyrus (BA 46) and left inferior parietal gyrus (BA 40). Conclusions Physiological inefficiency of dorsal prefrontal cortex and compensation involvement of ventral prefrontal cortex in working memory function may one physiological characteristics of schizophrenia. And relatively inefficient activation in dorsolateral prefrontal cortex probably can be a promising intermediate phenotype for schizophrenia.
Collapse
Affiliation(s)
- Sisi Jiang
- Peking University Sixth Hospital, Beijing, 100191, China
- Peking University Institute of Mental Health, Beijing,100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Hao Yan
- Peking University Sixth Hospital, Beijing, 100191, China
- Peking University Institute of Mental Health, Beijing,100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, Maryland, United States of America
| | - Lin Tian
- Peking University Sixth Hospital, Beijing, 100191, China
- Peking University Institute of Mental Health, Beijing,100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Beijing, 100191, China
- Peking University Institute of Mental Health, Beijing,100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Hao-Yang Tan
- Lieber Institute for Brain Development, Baltimore, Maryland, United States of America
- Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jun Yan
- Peking University Sixth Hospital, Beijing, 100191, China
- Peking University Institute of Mental Health, Beijing,100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Dai Zhang
- Peking University Sixth Hospital, Beijing, 100191, China
- Peking University Institute of Mental Health, Beijing,100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
Diwadkar VA, Burgess A, Hong E, Rix C, Arnold PD, Hanna GL, Rosenberg DR. Dysfunctional Activation and Brain Network Profiles in Youth with Obsessive-Compulsive Disorder: A Focus on the Dorsal Anterior Cingulate during Working Memory. Front Hum Neurosci 2015; 9:149. [PMID: 25852529 PMCID: PMC4362304 DOI: 10.3389/fnhum.2015.00149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/03/2015] [Indexed: 01/05/2023] Open
Abstract
Brain network dysfunction is emerging as a central biomarker of interest in psychiatry, in large part, because psychiatric conditions are increasingly seen as disconnection syndromes. Understanding dysfunctional brain network profiles in task-active states provides important information on network engagement in an experimental context. This in turn may be predictive of many of the cognitive and behavioral deficits associated with complex behavioral phenotypes. Here we investigated brain network profiles in youth with obsessive-compulsive disorder (OCD), contrasting them with a group of age-comparable controls. Network interactions were assessed during simple working memory: in particular, we focused on the modulation by the dorsal anterior cingulate cortex (dACC) of cortical, striatal, and thalamic regions. The focus on the dACC was motivated by its hypothesized role in the pathophysiology of OCD. However, its task-active network signatures have not been investigated before. Network interactions were modeled using psychophysiological interaction, a simple directional model of seed to target brain interactions. Our results indicate that OCD is characterized by significantly increased dACC modulation of cortical, striatal, and thalamic targets during working memory, and that this aberrant increase in OCD patients is maintained regardless of working memory demand. The results constitute compelling evidence of dysfunctional brain network interactions in OCD and suggest that these interactions may be related to a combination of network inefficiencies and dACC hyper-activity that has been associated with the phenotype.
Collapse
Affiliation(s)
- Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine , Detroit, MI , USA
| | - Ashley Burgess
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine , Detroit, MI , USA
| | - Ella Hong
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine , Detroit, MI , USA
| | - Carrie Rix
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine , Detroit, MI , USA
| | - Paul D Arnold
- Department of Psychiatry, Hospital for Sick Children, University of Toronto , Toronto, ON , Canada
| | - Gregory L Hanna
- Department of Psychiatry, University of Michigan , Ann Arbor, MI , USA
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine , Detroit, MI , USA
| |
Collapse
|
15
|
Soloff P, White R, Diwadkar VA. Impulsivity, aggression and brain structure in high and low lethality suicide attempters with borderline personality disorder. Psychiatry Res 2014; 222:131-9. [PMID: 24656768 PMCID: PMC4034388 DOI: 10.1016/j.pscychresns.2014.02.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 11/05/2013] [Accepted: 02/07/2014] [Indexed: 01/18/2023]
Abstract
Impulsivity and aggressiveness are trait dispositions associated with the vulnerability to suicidal behavior across diagnoses. They are associated with structural and functional abnormalities in brain networks involved in regulation of mood, impulse and behavior. They are also core characteristics of borderline personality disorder (BPD), a disorder defined, in part, by recurrent suicidal behavior. We assessed the relationships between personality traits, brain structure and lethality of suicide attempts in 51 BPD attempters using multiple regression analyses on structural MRI data. BPD was diagnosed by the Diagnostic Interview for Borderline Patients-revised, impulsivity by the Barratt Impulsiveness Scale (BIS), aggression by the Brown-Goodwin Lifetime History of Aggression (LHA), and high lethality by a score of 4 or more on the Lethality Rating Scale (LRS). Sixteen High Lethality attempters were compared to 35 Low Lethality attempters, with no significant differences noted in gender, co-morbidity, childhood abuse, BIS or LHA scores. Degree of medical lethality (LRS) was negatively related to gray matter volumes across multiple fronto-temporal-limbic regions. Effects of impulsivity and aggression on gray matter volumes discriminated High from Low Lethality attempters and differed markedly within lethality groups. Lethality of suicide attempts in BPD may be related to the mediation of these personality traits by specific neural networks.
Collapse
Affiliation(s)
- Paul Soloff
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, 3811 O׳Hara Street, Pittsburgh, PA 15213, USA.
| | - Richard White
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Vaibhav A. Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
16
|
Cooper D, Barker V, Radua J, Fusar-Poli P, Lawrie SM. Multimodal voxel-based meta-analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia. Psychiatry Res 2014; 221:69-77. [PMID: 24239093 DOI: 10.1016/j.pscychresns.2013.07.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 07/03/2013] [Accepted: 07/25/2013] [Indexed: 01/03/2023]
Abstract
Computational brain-imaging studies of individuals at familial high risk for psychosis have provided interesting results, but interpreting these findings can be a challenge due to a number of factors. We searched the literature for studies reporting whole brain voxel-based morphometry (VBM) or functional magnetic resonance imaging (fMRI) findings in people at familial high risk for schizophrenia compared with a control group. A voxel-wise meta-analysis with the effect-size version of Signed Differential Mapping (ES-SDM) identified regional abnormalities of functional brain response. Similarly, an ES-SDM meta-analysis was conducted on VBM studies. A multi-modal imaging meta-analysis was used to highlight brain regions with both structural and functional abnormalities. Nineteen studies met the inclusion criteria, in which a total of 815 familial high-risk individuals were compared to 685 controls. Our fMRI results revealed a number of regions of altered activation. VBM findings demonstrated both increases and decreases in grey matter density of relatives in a variety of brain regions. The multimodal analysis revealed relatives had decreased grey matter with hyper-activation in the left inferior frontal gyrus/amygdala, and decreased grey matter with hypo-activation in the thalamus. We found several regions of altered activation or structure in familial high-risk individuals. Reliable fMRI findings in the right posterior superior temporal gyrus further confirm that alteration in this area is a potential marker of risk.
Collapse
Affiliation(s)
- Deborah Cooper
- Division of Psychiatry, School of Clinical Sciences, Kennedy Tower, Royal Edinburgh Hospital, Morningside, Edinburgh, EH10 5HF, UK.
| | - Victoria Barker
- Division of Psychiatry, School of Clinical Sciences, Kennedy Tower, Royal Edinburgh Hospital, Morningside, Edinburgh, EH10 5HF, UK
| | - Joaquim Radua
- Institute of Psychiatry, King's College London, London, UK; FIDMAG Research Unit, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | | | - Stephen M Lawrie
- Division of Psychiatry, School of Clinical Sciences, Kennedy Tower, Royal Edinburgh Hospital, Morningside, Edinburgh, EH10 5HF, UK
| |
Collapse
|
17
|
Diwadkar VA, Bakshi N, Gupta G, Pruitt P, White R, Eickhoff SB. Dysfunction and Dysconnection in Cortical-Striatal Networks during Sustained Attention: Genetic Risk for Schizophrenia or Bipolar Disorder and its Impact on Brain Network Function. Front Psychiatry 2014; 5:50. [PMID: 24847286 PMCID: PMC4023040 DOI: 10.3389/fpsyt.2014.00050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/28/2014] [Indexed: 01/08/2023] Open
Abstract
Abnormalities in the brain's attention network may represent early identifiable neurobiological impairments in individuals at increased risk for schizophrenia or bipolar disorder. Here, we provide evidence of dysfunctional regional and network function in adolescents at higher genetic risk for schizophrenia or bipolar disorder [henceforth higher risk (HGR)]. During fMRI, participants engaged in a sustained attention task with variable demands. The task alternated between attention (120 s), visual control (passive viewing; 120 s), and rest (20 s) epochs. Low and high demand attention conditions were created using the rapid presentation of two- or three-digit numbers. Subjects were required to detect repeated presentation of numbers. We demonstrate that the recruitment of cortical and striatal regions are disordered in HGR: relative to typical controls (TC), HGR showed lower recruitment of the dorsal prefrontal cortex, but higher recruitment of the superior parietal cortex. This imbalance was more dramatic in the basal ganglia. There, a group by task demand interaction was observed, such that increased attention demand led to increased engagement in TC, but disengagement in HGR. These activation studies were complemented by network analyses using dynamic causal modeling. Competing model architectures were assessed across a network of cortical-striatal regions, distinguished at a second level using random-effects Bayesian model selection. In the winning architecture, HGR were characterized by significant reductions in coupling across both frontal-striatal and frontal-parietal pathways. The effective connectivity analyses indicate emergent network dysconnection, consistent with findings in patients with schizophrenia. Emergent patterns of regional dysfunction and dysconnection in cortical-striatal pathways may provide functional biological signatures in the adolescent risk-state for psychiatric illness.
Collapse
Affiliation(s)
- Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University , Detroit, MI , USA
| | - Neil Bakshi
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University , Detroit, MI , USA
| | - Gita Gupta
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University , Detroit, MI , USA
| | - Patrick Pruitt
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University , Detroit, MI , USA
| | - Richard White
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University , Detroit, MI , USA
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany ; Institute of Neuroscience and Medicine (INM-1), Research Center Jülich , Jülich , Germany
| |
Collapse
|
18
|
Soloff PH, Pruitt P, Sharma M, Radwan J, White R, Diwadkar VA. Structural brain abnormalities and suicidal behavior in borderline personality disorder. J Psychiatr Res 2012; 46:516-25. [PMID: 22336640 PMCID: PMC3307855 DOI: 10.1016/j.jpsychires.2012.01.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/24/2011] [Accepted: 01/05/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND Structural brain abnormalities have been demonstrated in subjects with BPD in prefrontal and fronto-limbic regions involved in the regulation of emotion and impulsive behavior, executive cognitive function and episodic memory. Impairment in these cognitive functions is associated with increased vulnerability to suicidal behavior. We compared BPD suicide attempters and non-attempters, high and low lethality attempters to healthy controls to identify neural circuits associated with suicidal behavior in BPD. METHODS Structural MRI scans were obtained on 68 BPD subjects (16 male, 52 female), defined by IPDE and DIB/R criteria, and 52 healthy controls (HC: 28 male, 24 female). Groups were compared by diagnosis, attempt status, and attempt lethality. ROIs were defined for areas reported to have structural or metabolic abnormalities in BPD, and included: mid-inf. orbitofrontal cortex, mid-sup temporal cortex, anterior cingulate, insula, hippocampus, amygdala, fusiform, lingual and parahippocampal gyri. Data were analyzed using optimized voxel-based morphometry implemented with DARTEL in SPM5, co-varied for age and gender, corrected for cluster extent (p < .001). RESULTS Compared to HC, BPD attempters had significantly diminished gray matter concentrations in 8 of 9 ROIs, non-attempters in 5 of 9 ROIs. Within the BPD sample, attempters had diminished gray matter in Lt. insula compared to non-attempters. High lethality attempters had significant decreases in Rt. mid-sup. temporal gyrus, Rt. mid-inf. orbitofrontal gyrus, Rt. insular cortex, Lt. fusiform gyrus, Lt. lingual gyrus and Rt. parahippocampal gyrus compared to low lethality attempters. CONCLUSIONS Specific structural abnormalities discriminate BPD attempters from non-attempters and high from low lethality attempters.
Collapse
Affiliation(s)
- Paul H Soloff
- Department of Psychiatry, University of Pittsburgh School of Medicine, United States.
| | | | | | | | | | | |
Collapse
|
19
|
Barbour T, Pruitt P, Diwadkar VA. fMRI responses to emotional faces in children and adolescents at genetic risk for psychiatric illness share some of the features of depression. J Affect Disord 2012; 136:276-85. [PMID: 22222174 PMCID: PMC5166711 DOI: 10.1016/j.jad.2011.11.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/17/2011] [Indexed: 01/23/2023]
Abstract
BACKGROUND Fronto-limbic regions of the brain including the sub-genual (sgPFC) and medial prefrontal (mPFC) cortices are central to processing emotionally salient and hedonic stimuli (Mayberg, 2009) and implicated in depression. The relevance of cortico-limbic models of emotion and reward processing in children with genetic risk for psychiatric disorders has not been assessed. METHODS Here we studied adolescents at risk for schizophrenia (HRS) and controls (HC) using an event-related fMRI continuous affective appraisal task. HRS were divided into sub-groups based on the presence or absence of negative symptoms (Miller et al., 2003), HRS_NS+ and HRS_NS- respectively. Brain responses to positive, negative and neutral emotional stimuli were estimated. RESULTS Consistent with observations in the depressive phenotype, for positively valenced stimuli, HRS_NS+ (relative to HC and HRS_NS-) were characterized by hypo-responsivity of the sgPFC and the mPFC, but hyper-responsivity of the mid-brain. sgPFC and mPFC signals were coupled across groups. LIMITATIONS Such studies can benefit from larger sample sizes, though our observed effect sizes were in the moderate to large range. CONCLUSIONS Children and adolescents at risk for psychiatric illness and who evince reliably present negative symptoms show brain responses to socially rewarding stimuli similar to those observed in depression. Studies in at-risk children and adolescents may be important in understanding how early manifestations of depression-like characteristics impact brain function.
Collapse
Affiliation(s)
- Tracy Barbour
- Psychiatry & Behavioral Neuroscience, Wayne State University SOM
| | - Patrick Pruitt
- Psychiatry & Behavioral Neuroscience, Wayne State University SOM
| | - Vaibhav A. Diwadkar
- Psychiatry & Behavioral Neuroscience, Wayne State University SOM
- Address Correspondence: Vaibhav A. Diwadkar, PhD, Assistant Professor, Division of Brain Research & Imaging Neuroscience, Dept of Psychiatry & Behavioral Neuroscience, Wayne State University School of Medicine, UHC 9B, 4201 St. Antoine Blvd., Detroit MI 48201, , Ph: 313.577.0164, Fax: 313.577.5900
| |
Collapse
|