1
|
Liu Z, Xie T, Ma N. Resting-State EEG Microstates Dynamics Associated with Interindividual Vulnerability to Sleep Deprivation. Nat Sci Sleep 2024; 16:1937-1948. [PMID: 39655315 PMCID: PMC11626958 DOI: 10.2147/nss.s485412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Sleep deprivation can induce severe deficits in vigilant maintenance and alternation in large-scale networks. However, differences in the dynamic brain networks after sleep deprivation across individuals have rarely been investigated. In the present study, we used EEG microstate analysis to investigate the effects of sleep deprivation and how it differentially affects resting-state brain activity in different individuals. Participants and Methods A total of 44 healthy adults participated in a within-participant design study involving baseline sleep and 24-hour sleep deprivation, with resting-state EEG recorded during wakefulness. The psychomotor vigilance task (PVT) was used to measure vigilant attention. Participants were median split as vulnerable or resilient according to their changes in the number of lapses between the baseline sleep and sleep deprivation conditions. Results Sleep deprivation caused decreases in microstates A, B, and D, and increases in microstate C. We also found increased transition probabilities of microstates C and D between each other, lower transition probabilities from microstates C and D to microstate B, and higher transition probabilities from microstates A and B to microstate C. Sleep-deprived vulnerable individuals showed decreased occurrence of microstate B and transition probability from microstate C to B after sleep deprivation, but not in resilient individuals. Conclusion The findings suggest that sleep deprivation critically affects dynamic brain-state properties and the differences in time parameters of microstates might be the underlying neural basis of interindividual vulnerability to sleep deprivation.
Collapse
Affiliation(s)
- Zehui Liu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631, People’s Republic of China
| | - Tian Xie
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631, People’s Republic of China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631, People’s Republic of China
| |
Collapse
|
2
|
Bai D, Hu J, Jülich S, Lei X. Impact of sleep deprivation on aperiodic activity: a resting-state EEG study. J Neurophysiol 2024; 132:1577-1588. [PMID: 39412560 DOI: 10.1152/jn.00304.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Sleep deprivation (SD) has been shown to have a negative impact on alertness, as evidenced by behavioral and electroencephalographic studies. Nevertheless, in prior studies utilizing conventional fixed-bandwidth spectral analysis the aperiodic and periodic components were often confused, and some important periodic parameters (i.e., center frequency, bandwidth) were ignored. Here, based on a large open-access dataset of SD, we employed a standardized process for multiple-electrode analysis and group inference. We found that, compared to the healthy sleep control state (SC), the aperiodic offset shifted overall after SD, primarily in the occipital region. This shift was associated with a reduction in subjective alertness. Regarding periodic components, we did not find any power change in the alpha rhythm, but there was an increase in bandwidth of alpha within different regions distributed in the occipital and temporal lobes. These findings highlight the potential significance and value of aperiodic parameters in behavioral and electrophysiological research.NEW & NOTEWORTHY Aperiodic and periodic components were separated in a large open-access EEG dataset of sleep deprivation. Aperiodic offsets increase after deprivation, particularly in the occipital region, reflecting a decline in self-reported vigilance. Parameterized alpha bandwidth, which was ignored in previous studies, is found to be relevant to sleep deprivation. Increase in bandwidth of alpha was focused in the occipital and temporal lobes.
Collapse
Affiliation(s)
- Duo Bai
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China
| | - Jingyi Hu
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China
| | - Simon Jülich
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China
| |
Collapse
|
3
|
Rowe RK, Schulz P, He P, Mannino GS, Opp MR, Sierks MR. Acute sleep deprivation in mice generates protein pathology consistent with neurodegenerative diseases. Front Neurosci 2024; 18:1436966. [PMID: 39114483 PMCID: PMC11303328 DOI: 10.3389/fnins.2024.1436966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Insufficient or disturbed sleep is strongly associated with adverse health conditions, including various neurodegenerative disorders. While the relationship between sleep and neurodegenerative disease is likely bidirectional, sleep disturbances often predate the onset of other hallmark clinical symptoms. Neuronal waste clearance is significantly more efficient during sleep; thus, disturbed sleep may lead to the accumulation of neuronal proteins that underlie neurodegenerative diseases. Key pathological features of neurodegenerative diseases include an accumulation of misfolded or misprocessed variants of amyloid beta (Aβ), tau, alpha synuclein (α-syn), and TarDNA binding protein 43 (TDP-43). While the presence of fibrillar protein aggregates of these neuronal proteins are characteristic of neurodegenerative diseases, the presence of small soluble toxic oligomeric variants of these different proteins likely precedes the formation of the hallmark aggregates. Methods We hypothesized that sleep deprivation would lead to accumulation of toxic oligomeric variants of Aβ, tau, α-syn, and TDP-43 in brain tissue of wild-type mice. Adult mice were subjected to 6 h of sleep deprivation (zeitgeber 0-6) for 5 consecutive days or were left undisturbed as controls. Following sleep deprivation, brains were collected, and protein pathology was assessed in multiple brain regions using an immunostain panel of reagents selectively targeting neurodegenerative disease-related variants of Aβ, tau, α-syn, and TDP-43. Results Overall, sleep deprivation elevated levels of all protein variants in at least one of the brain regions of interest. The reagent PDTDP, targeting a TDP-43 variant present in Parkinson's disease, was elevated throughout the brain. The cortex, caudoputamen, and corpus callosum brain regions showed the highest accumulation of pathology following sleep deprivation. Discussion These data provide a direct mechanistic link between sleep deprivation, and the hallmark protein pathologies of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Philip Schulz
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Ping He
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Grant S. Mannino
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mark R. Opp
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Michael R. Sierks
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
4
|
Jáuregui-Renaud K, Cooper-Bribiesca D, Miguel-Puga JA, Alcantara-Calderón Y, Roaro-Figueroa MF, Herrera-Ocampo M, Guzmán-Chacón MJ. Quality of Sleep and Mental Symptoms Contribute to Health-Related Quality of Life after COVID-19 Pneumonia, a Follow-Up Study of More than 2 Years. Biomedicines 2024; 12:1574. [PMID: 39062147 PMCID: PMC11275141 DOI: 10.3390/biomedicines12071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
A follow-up study was designed to assess correlations among physical signs, quality of sleep, common mental symptoms, and health-related quality of life after moderate to severe COVID-19 pneumonia. Daily changes in dyspnoea and pulse oximetry were recorded (200 days), and four evaluations (in >2 years) were performed on quality of sleep, mental symptoms, cognitive performance, and health-related quality of life. In a single center, 72 adults participated in the study (52.5 ± 13.7 years old), with no psychiatry/neurology/chronic lung/infectious diseases, chronic use of corticosteroids/immunosuppressive therapy, or pregnancy. Daily agendas showed delayed decreases in dyspnoea scores compared to pulse oximetry and heart rate recordings; however, changes in pulse oximetry were minimal. Slight changes in cognitive performance were related to the general characteristics of the participants (obesity and tobacco use) and with the severity of acute disease (MANCOVA, p < 0.001). Health-related quality of life gradually improved (MANCOVA, p < 0.004). During recovery, bad quality of sleep and mental symptoms (mainly attention/concentration) contributed to the subscores on health perception and vitality in the health-related quality of life assessment. Early mental support services including sleep hygiene could be beneficial during rehabilitation after acute COVID-19.
Collapse
Affiliation(s)
- Kathrine Jáuregui-Renaud
- Unidad de Investigación Médica en Otoneurología, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico; (D.C.-B.); (J.A.M.-P.)
| | - Davis Cooper-Bribiesca
- Unidad de Investigación Médica en Otoneurología, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico; (D.C.-B.); (J.A.M.-P.)
- Departamento de Psiquiatría, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico; (Y.A.-C.); (M.J.G.-C.)
| | - José Adán Miguel-Puga
- Unidad de Investigación Médica en Otoneurología, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico; (D.C.-B.); (J.A.M.-P.)
| | - Yadira Alcantara-Calderón
- Departamento de Psiquiatría, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico; (Y.A.-C.); (M.J.G.-C.)
| | - María Fernanda Roaro-Figueroa
- Programa de Apoyo y Fomento a la Investigación Estudiantil, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.F.R.-F.); (M.H.-O.)
| | - Mariana Herrera-Ocampo
- Programa de Apoyo y Fomento a la Investigación Estudiantil, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.F.R.-F.); (M.H.-O.)
| | - Melodie Jedid Guzmán-Chacón
- Departamento de Psiquiatría, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico; (Y.A.-C.); (M.J.G.-C.)
| |
Collapse
|
5
|
Peng C, Guo D, Liu L, Xiao D, Nie L, Liang H, Guo D, Yang H. Total sleep deprivation alters spontaneous brain activity in medical staff during routine clinical work: a resting-state functional MR imaging study. Front Neurosci 2024; 18:1377094. [PMID: 38638698 PMCID: PMC11025562 DOI: 10.3389/fnins.2024.1377094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Objectives To assess the effect of total sleep deprivation (TSD) on spontaneous brain activity in medical staff during routine clinical practice. Methods A total of 36 medical staff members underwent resting-state functional MRI (rs-fMRI) scans and neuropsychological tests twice, corresponding to rested wakefulness (RW) after normal sleep and 24 h of acute TSD. The rs-fMRI features, including the mean fractional amplitude of low-frequency fluctuation (mfALFF), z-score transformed regional homogeneity (zReHo), and functional connectivity (zFC), were compared between RW and TSD. Correlation coefficients between the change in altered rs-fMRI features and the change in altered scores of neuropsychological tests after TSD were calculated. Receiver operating characteristic (ROC) and logistic regression analyses were performed to evaluate the diagnostic efficacy of significantly altered rs-fMRI features in distinguishing between RW and TSD states. Results Brain regions, including right superior temporal gyrus, bilateral postcentral gyrus, left medial superior frontal gyrus, left middle temporal gyrus, right precentral gyrus, and left precuneus, showed significantly enhanced rs-fMRI features (mfALFF, zReHo, zFC) after TSD. Moreover, the changes in altered rs-fMRI features of the right superior temporal gyrus, bilateral postcentral gyrus, left middle temporal gyrus, and left precuneus were significantly correlated with the changes in several altered scores of neuropsychological tests. The combination of mfALFF (bilateral postcentral gyrus) and zFC (left medial superior frontal gyrus and left precuneus) showed the highest area under the curve (0.870) in distinguishing RW from TSD. Conclusion Spontaneous brain activity alterations occurred after TSD in routine clinical practice, which might explain the reduced performances of these participants in neurocognitive tests after TSD. These alterations might be potential imaging biomarkers for assessing the impact of TSD and distinguishing between RW and TSD states.
Collapse
Affiliation(s)
- Cong Peng
- The Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Dingbo Guo
- The Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Liuheng Liu
- The Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Dongling Xiao
- Department of Anatomy, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research, Beijing, China
| | | | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Yang
- The Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
6
|
Ivanov I, Miraglia B, Prodanova D, Newcorn JH. Sleep Disordered Breathing and Risk for ADHD: Review of Supportive Evidence and Proposed Underlying Mechanisms. J Atten Disord 2024; 28:686-698. [PMID: 38353411 DOI: 10.1177/10870547241232313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
BACKGROUND Accumulating evidence suggests that sleep disordered breathing (SDB) is under-recognized in youth and adults with ADHD. SDB may contribute to exacerbating pre-existing ADHD symptoms and may play a role in the development of cognitive deficits that may mimic ADHD symptoms. METHOD We conducted a focused review of publications on cross-prevalence, overlapping clinical and neurobiological characteristics and possible mechanisms linking SDB and ADHD. RESULTS Exiting studies suggest that co-occurrence of SDB and ADHD is as high as 50%, with frequent overlap of clinical symptoms such as distractibility and inattention. Mechanisms linking these conditions may include hypoxia during sleep, sleep fragmentation and activation of inflammation, all of which may affect brain structure and physiology to produce disturbances in attention. CONCLUSIONS The relationship between SDB and ADHD symptoms appear well-supported and suggests that more research is needed to better optimize procedures for SDB assessment in youth being evaluated and/or treated for ADHD.
Collapse
|
7
|
Abdelhack M, Zhukovsky P, Milic M, Harita S, Wainberg M, Tripathy SJ, Griffiths JD, Hill SL, Felsky D. Opposing brain signatures of sleep in task-based and resting-state conditions. Nat Commun 2023; 14:7927. [PMID: 38040769 PMCID: PMC10692207 DOI: 10.1038/s41467-023-43737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
Sleep and depression have a complex, bidirectional relationship, with sleep-associated alterations in brain dynamics and structure impacting a range of symptoms and cognitive abilities. Previous work describing these relationships has provided an incomplete picture by investigating only one or two types of sleep measures, depression, or neuroimaging modalities in parallel. We analyze the correlations between brainwide neural signatures of sleep, cognition, and depression in task and resting-state data from over 30,000 individuals from the UK Biobank and Human Connectome Project. Neural signatures of insomnia and depression are negatively correlated with those of sleep duration measured by accelerometer in the task condition but positively correlated in the resting-state condition. Our results show that resting-state neural signatures of insomnia and depression resemble that of rested wakefulness. This is further supported by our finding of hypoconnectivity in task but hyperconnectivity in resting-state data in association with insomnia and depression. These observations dispute conventional assumptions about the neurofunctional manifestations of hyper- and hypo-somnia, and may explain inconsistent findings in the literature.
Collapse
Affiliation(s)
- Mohamed Abdelhack
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Zhukovsky
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Boston, MA, USA
| | - Milos Milic
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shreyas Harita
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - John D Griffiths
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sean L Hill
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada.
| |
Collapse
|
8
|
Thondala B, Pawar H, Chauhan G, Panjwani U. The effect of non-pharmacological interventions on sleep quality in people with sleep disturbances: A systematic review and a meta-analysis. Chronobiol Int 2023; 40:1333-1353. [PMID: 37853577 DOI: 10.1080/07420528.2023.2262567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Sleep is the elixir of life. Both healthy populations and patients with chronic diseases experience sleep disturbances in their lifetime. Pharmacological agents to induce sleep in individuals with sleep disturbances pose side effects like tolerance and dependence, warranting the development of alternative non-pharmacological interventions with less or no adverse effects. However, deciphering comprehensive evidence on the translational potential of these alternative therapies remains difficult. In the current paper, we systematically reviewed the recent literature on the effect of non-pharmacological interventions (NPIs) on improving sleep quality in both healthy and diseased populations experiencing sleep disturbances. We searched PubMed, Science Direct, Cochrane Controlled Trials, and Web of Science databases from inception to June 2022 for randomized controlled trials and cohort studies evaluating the sleep quality of individuals. We performed a meta-analysis using the random effects model with Pittsburgh Sleep Quality Index (PSQI) as an outcome measure to evaluate the effect of five distinct NPIs on sleep quality in normal and people with different medical conditions. Subgroup analyses and sensitivity analyses were done for heterogeneity analysis and to check the consistency of results, respectively. In 16 trials reporting on 1885 subjects, that all NPIs like Resistance Training (SMD -0.29, 95% CI -0.64 to 0.05; p = 0.09); Yoga (SMD -0.48, 95% CI -0.72 to -0.25; p < 0.0001); Cognitive Behavioral Therapy (SMD -1.69, 95% CI -2.70 to -0.68; p = 0.001); Music (SMD -1.42, 95% CI -1.99 to -0.85; p < 0.00001); Light (SMD -0.43, 95% CI -0.77 to -0.09; p = 0.01) have substantially decreased the global PSQI scores. The findings of the randomized studies and a cohort study included in qualitative synthesis demonstrated that the global PSQI scores improved significantly as compared to the placebo groups. Despite the limitations of clinical heterogeneity in subjects, our results demonstrate a positive impact of the studied NPIs on sleep quality in individuals experiencing sleep disturbances. However, comprehensive double-blinded controlled trials are indispensable in the future, emphasizing the objective sleep quality and inter-individual differences in response to the intervention.
Collapse
Affiliation(s)
- Bhanuteja Thondala
- Department of Soldier Performance, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Harsh Pawar
- Department of Soldier Performance, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Garima Chauhan
- Department of Soldier Performance, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Usha Panjwani
- Department of Soldier Performance, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| |
Collapse
|
9
|
Stenson AR, Whitney P, Hinson JM, Hansen DA, Lawrence-Sidebottom D, Skeiky L, Riedy SM, Kurinec CA, Van Dongen HPA. Effects of total sleep deprivation on components of top-down attentional control using a flexible attentional control task. J Sleep Res 2023; 32:e13744. [PMID: 36205178 DOI: 10.1111/jsr.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
Sleep deprivation consistently decreases vigilant attention, which can lead to difficulty in performing a variety of cognitive tasks. However, sleep-deprived individuals may be able to compensate for degraded vigilant attention by means of top-down attentional control. We employed a novel task to measure the degree to which individuals overcome impairments in vigilant attention by using top-down attentional control, the Flexible Attentional Control Task (FACT). The FACT is a two-choice task that has trials with valid, invalid, and neutral cues, along with an unexpected switch in the probability of cue validity about halfway in the task. The task provides indices that isolate performance components reflecting vigilant attention and top-down attentional control. Twelve healthy young adults completed an in-laboratory study. After a baseline day, the subjects underwent 39 hours of total sleep deprivation (TSD), followed by a recovery day. The FACT was administered at 03:00, 11:00, and 19:00 during sleep deprivation (TSD condition) and at 11:00 and 19:00 after baseline sleep and at 11:00 after recovery sleep (rested condition). When rested, the subjects demonstrated both facilitation and interference effects on cued trials. While sleep deprived, the subjects showed vigilant attention deficits on neutral cue trials, and an impaired ability to reduce these deficits by using predictive contextual cues. Our results indicate that the FACT can dissociate vigilant attention from top-down attentional control. Furthermore, they show that during sleep deprivation, contextual cues help individuals to compensate partially for impairments in vigilant attention, but the effectiveness of top-down attentional control is diminished.
Collapse
Affiliation(s)
- Anthony R Stenson
- Department of Psychology, Washington State University, Pullman, Washington, USA
| | - Paul Whitney
- Department of Psychology, Washington State University, Pullman, Washington, USA.,Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | - John M Hinson
- Department of Psychology, Washington State University, Pullman, Washington, USA.,Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | - Devon A Hansen
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | | | - Lillian Skeiky
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Samantha M Riedy
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | - Courtney A Kurinec
- Department of Psychology, Washington State University, Pullman, Washington, USA.,Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | - Hans P A Van Dongen
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| |
Collapse
|
10
|
Zhang D, Zhang R, Zhou L, Zhou K, Chang C. The brain network underlying attentional blink predicts symptoms of attention deficit hyperactivity disorder in children. Cereb Cortex 2023; 33:2761-2773. [PMID: 35699600 DOI: 10.1093/cercor/bhac240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a chronic neuropsychiatric disease that can markedly impair educational, social, and occupational function throughout life. Behavioral deficits may provide clues to the underlying neurological impairments. Children with ADHD exhibit a larger attentional blink (AB) deficit in rapid serial visual presentation (RSVP) tasks than typically developing children, so we examined whether brain connectivity in the neural network associated with AB can predict ADHD symptoms and thus serve as potential biomarkers of the underlying neuropathology. We first employed a connectome-based predictive model analysis of adult resting-state functional magnetic resonance imaging data to identify a distributed brain network for AB. The summed functional connectivity (FC) strength within the AB network reliably predicted individual differences in AB magnitude measured by a classical dual-target RSVP task. Furthermore, the summed FC strength within the AB network predicted individual differences in ADHD Rating Scale scores from an independent dataset of pediatric patients. Our findings suggest that the individual AB network could serve as an applicable neuroimaging-based biomarker of AB deficit and ADHD symptoms.
Collapse
Affiliation(s)
- Dai Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066, Xueyuan Street, Nanshan District, Shenzhen 518073, China
| | - Ruotong Zhang
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Liqin Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Chunqi Chang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066, Xueyuan Street, Nanshan District, Shenzhen 518073, China
- Peng Cheng Laboratory, No. 2, Xingke Street, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
11
|
Wu Y, Lei Y, Chen P, Hu G, Lin B, Zhang C, Wu X, Wang L. Dissociable brainstem functional connectivity changes correlate with objective and subjective vigilance decline after total sleep deprivation in healthy male subjects. J Neurosci Res 2023; 101:1044-1057. [PMID: 36827444 DOI: 10.1002/jnr.25182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/15/2023] [Accepted: 02/07/2023] [Indexed: 02/26/2023]
Abstract
The maintenance of vigilance relies on the activation of the cerebral cortex by the arousal system centered on the brainstem. Previous studies have suggested that both objective and subjective vigilance are susceptible to sleep deprivation. This study aims to explore the alterations in brainstem arousal system functional connectivity (FC) and its involvement in these two types of vigilance decline following total sleep deprivation (TSD). Thirty-seven healthy male subjects underwent two counterbalanced resting-state fMRI scans, once in rested wakefulness (RW) and once after 36 h of TSD. The pontine tegmental area and caudal midbrain (PTA-cMidbrain), the core regions of the brainstem arousal system, were chosen as the seeds for FC analysis. The difference in PTA-cMidbrain FC between RW and TSD conditions was then investigated, as well as its associations with objective vigilance measured by psychomotor vigilance task (PVT) and subjective vigilance measured by Stanford Sleepiness Scale. The sleep-deprived subjects showed increased PTA-cMidbrain FC with the thalamus and cerebellum and decreased PTA-cMidbrain FC with the occipital, parietal, and sensorimotor regions. TSD-induced increases in PVT reaction time were negatively correlated with altered PTA-cMidbrain FC in the dorsolateral prefrontal cortex, extrastriate visual cortex, and precuneus. TSD-induced increases in subjective sleepiness were positively correlated with altered PTA-cMidbrain FC in default mode regions including the medial prefrontal cortex and precuneus. Our results suggest that different brainstem FC patterns underlie the objective and subjective vigilance declines induced by TSD.
Collapse
Affiliation(s)
- Yuxin Wu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yu Lei
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Pinhong Chen
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Gang Hu
- Department of Radiology, Seventh Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Bei Lin
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chaoyue Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xinhuai Wu
- Department of Radiology, Seventh Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Lubin Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Pan L, Mai Z, Wang J, Ma N. Altered vigilant maintenance and reorganization of rich-clubs in functional brain networks after total sleep deprivation. Cereb Cortex 2023; 33:1140-1154. [PMID: 35332913 DOI: 10.1093/cercor/bhac126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sleep deprivation strongly deteriorates the stability of vigilant maintenance. In previous neuroimaging studies of large-scale networks, neural variations in the resting state after sleep deprivation have been well documented, highlighting that large-scale networks implement efficient cognitive functions and attention regulation in a spatially hierarchical organization. However, alterations of neural networks during cognitive tasks have rarely been investigated. METHODS AND PURPOSES The present study used a within-participant design of 35 healthy right-handed adults and used task-based functional magnetic resonance imaging to examine the neural mechanism of attentional decline after sleep deprivation from the perspective of rich-club architecture during a psychomotor vigilance task. RESULTS We found that a significant decline in the hub disruption index was related to impaired vigilance due to sleep loss. The hierarchical rich-club architectures were reconstructed after sleep deprivation, especially in the default mode network and sensorimotor network. Notably, the relatively fast alert response compensation was correlated with the feeder organizational hierarchy that connects core (rich-club) and peripheral nodes. SIGNIFICANCES Our findings provide novel insights into understanding the relationship of alterations in vigilance and the hierarchical architectures of the human brain after sleep deprivation, emphasizing the significance of optimal collaboration between different functional hierarchies for regular attention maintenance.
Collapse
Affiliation(s)
- Leyao Pan
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Zifeng Mai
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
13
|
Chen Y, Pan L, Ma N. Altered effective connectivity of thalamus with vigilance impairments after sleep deprivation. J Sleep Res 2022; 31:e13693. [PMID: 35818163 DOI: 10.1111/jsr.13693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022]
Abstract
The thalamus is an essential gating hub to relay brainstem ascending arousal signals to attention-related networks, including the frontal-parietal attention network and default mode network, which plays an important role in attentional maintenance. Research has proved that sleep loss leads to impairment of attentional performance by affecting neural connectivity between thalamic and attention-related cortical regions. However, the effective connectivity between thalamic and cortical areas in the resting state remains unclear after sleep deprivation. The present study aimed to investigate the effect of sleep deprivation on the effective connectivity between thalamic and cortical areas, and explored whether the alteration of the effective connectivity can predict vigilance impairment after sleep deprivation. We implemented resting-state functional magnetic resonance imaging with 31 participants under both normally-rested and sleep-deprivation conditions. The Granger causality analysis was used to investigate the alteration of effective connectivity between thalamic and cortical areas, and the psychomotor vigilance task was used to measure vigilance. Correlation analysis investigated the relationship between the alteration in effective connectivity and vigilance performance. Sleep deprivation significantly decreased the effective connectivity from the thalamus to the nodes in the default mode network, and significantly increased in the effective connectivity from the thalamus to the nodes in the frontal-parietal attention network. Critically, increased thalamus-parietal effective connectivity was correlated with decreased lapses. The findings indicated sleep deprivation induced a robust alteration of the communication from the sub-cortical to cortical regions. The alteration of thalamus-parietal effective connectivity was anti-correlated with sustained attentional impairment after sleep deprivation.
Collapse
Affiliation(s)
- Yuefan Chen
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Leyao Pan
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
14
|
Fu W, Dai C, Chen J, Wang L, Song T, Peng Z, Xu M, Xu L, Tang Y, Shao Y. Altered insular functional connectivity correlates to impaired vigilant attention after sleep deprivation: A resting-state functional magnetic resonance imaging study. Front Neurosci 2022; 16:889009. [PMID: 35958999 PMCID: PMC9361853 DOI: 10.3389/fnins.2022.889009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives This study used resting-state functional magnetic resonance imaging (rs-fMRI) scans to assess the dominant effects of 36 h total sleep deprivation (TSD) on vigilant attention and changes in the resting-state network. Materials and methods Twenty-two healthy college students were enrolled in this study. Participants underwent two rs-fMRI scans, once in rested wakefulness (RW) and once after 36 h of TSD. We used psychomotor vigilance tasks (PVT) to measure vigilant attention. The region-of-interest to region-of-interest correlation was employed to analyze the relationship within the salience network (SN) and between other networks after 36 h of TSD. Furthermore, Pearson’s correlation analysis investigated the relationship between altered insular functional connectivity and PVT performance. Results After 36 h of TSD, participants showed significantly decreased vigilant attention. Additionally, TSD induced decreased functional connectivity between the visual and parietal regions, whereas, a significant increase was observed between the anterior cingulate cortex and insula. Moreover, changes in functional connectivity in the anterior cingulate cortex and insula showed a significant positive correlation with the response time to PVT. Conclusion Our results suggest that 36 h of TSD impaired vigilant visual attention, resulting in slower reaction times. The decrease in visual-parietal functional connectivity may be related to the decrease in the reception of information in the brain. Enhanced functional connectivity of the anterior cingulate cortex with the insula revealed that the brain network compensation occurs mainly in executive function.
Collapse
Affiliation(s)
- Weiwei Fu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Cimin Dai
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jie Chen
- School of Psychology, Beijing Sport University, Beijing, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Tao Song
- School of Psychology, Beijing Sport University, Beijing, China
| | - Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Mengmeng Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yuguo Tang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Yuguo Tang,
| | - Yongcong Shao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Psychology, Beijing Sport University, Beijing, China
- Yongcong Shao,
| |
Collapse
|
15
|
Wassan S, Xi C, Shen T, Gulati K, Ibraheem K, Amir Latif Rajpoot RM. The Impact of Online Learning System on Students Affected with Stroke Disease. Behav Neurol 2022; 2022:4847066. [PMID: 35178124 PMCID: PMC8843983 DOI: 10.1155/2022/4847066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Stroke, also known as a cerebrovascular accident, is a medical emergency that causes temporary or permanent behavioral dysfunction in people. Sleep deprivation affects our brains in a variety of ways. The advantages of sleep much justify the risks of not having enough sleep. Sleep deprivation (SD) includes a variety of factors, including prolonged awake. Neuroimaging investigates SD's impact on attention, working memory, mood, and hippocampal learning. We analyzed how this data enriches our mechanistic understanding of these alterations and the clinical illnesses linked with sleep disruption. We have used Cronbach's alpha to test the reliability of a scale, so we then have 19 individual attributes responding to 174 participants via survey. The evaluated result shows the reliability statistics; the value for Cronbach's alpha is .962, which is very excellent as it reaches 1. So, there is very strong reliability. If the value falls under .6, we look back to the mean and standard deviation table and remove the attribute with low values for mean or standard deviation and try the remaining attributes. Cronbach's alpha tells us which attribute or item to delete to increase the reliability, and we also have analyzed the correlation among the class students while watching the same video lecture. We have collected data for at least ten students watching the same video using a webcam. Once the data is collected, we then have applied some correlation techniques to determine the class students' behavior towards the same video lecture. This way, we can see the overall behavior of the class upon a specific video lecture. The study further reveals that subjective happiness is influenced by its efficiency, entertainment value, and effectiveness. Does the research offer an original emphasis on analyzing how does lack of sleep affect our brains? Sleep loss frameworks are minimal compared to the benefits of sleep.
Collapse
Affiliation(s)
| | - Chen Xi
- Business School, Nanjing University, China
| | - Tian Shen
- School of International Education, Nanjing University of CM, China
| | - Kamal Gulati
- Amity University, Noida, Uttar, Pradesh, India
- Stratford University, Virginia, USA
| | - Kinza Ibraheem
- Department of Computer Science COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | | |
Collapse
|
16
|
Duan H, Wang YJ, Lei X. The effect of sleep deprivation on empathy for pain: An ERP study. Neuropsychologia 2021; 163:108084. [PMID: 34762907 DOI: 10.1016/j.neuropsychologia.2021.108084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/23/2021] [Accepted: 11/06/2021] [Indexed: 02/04/2023]
Abstract
Empathy for pain has a strong adaptive function. It plays a protective role in survival and exerts a vital impact on successful social interaction. Sleep loss, however, is commonplace in current society, and people are increasingly plagued by it. Previous studies have investigated whether sleep loss affects empathy for pain, yet the results were undecided. We aimed to determine whether this effect is existed and further explore the temporal and frequency dynamics of neural activities involved in this effect by recording the electroencephalogram (EEG) signals. We recruited 25 healthy adults (11 females) who were required to perform a pain judgement and unpleasantness rating about the presented nociceptive and neutral pictures after nocturnal sleep (NS) and sleep deprivation (SD), and their neuronal activities were recorded by event-related potentials (ERPs). Results showed a significantly decreased amplitude in the early components (N2, N340) of vicarious pain processing after SD. In further time-frequency (TF) analysis, a reduced energy occurred in theta2 (5-7 Hz) band under SD condition. Moreover, the decreased theta2 was positively correlated with the subjective ratings of both other's pain and self-unpleasantness only under SD condition. Our results indicated that SD impairs affective sharing of empathy for pain.
Collapse
Affiliation(s)
- Huimin Duan
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Ya-Jie Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
17
|
Mao T, Dinges D, Deng Y, Zhao K, Yang Z, Lei H, Fang Z, Yang FN, Galli O, Goel N, Basner M, Rao H. Impaired Vigilant Attention Partly Accounts for Inhibition Control Deficits After Total Sleep Deprivation and Partial Sleep Restriction. Nat Sci Sleep 2021; 13:1545-1560. [PMID: 34557048 PMCID: PMC8455079 DOI: 10.2147/nss.s314769] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/26/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Sleep loss impairs a range of neurobehavioral functions, particularly vigilant attention and arousal. However, the detrimental effects of sleep deprivation on inhibition control and its relationship to vigilant attention impairments remain unclear. This study examined the extent to which vigilant attention deficits contribute to inhibition control performance after one night of total sleep deprivation (TSD) and two nights of partial sleep restriction (PSR). PARTICIPANTS AND METHODS We analyzed data from N = 49 participants in a one-night of TSD experiment, N=16 participants in a control experiment without sleep loss, and N = 16 participants in a two-nights of PSR experiment (time in bed, TIB = 6 h for each night). Throughout waking periods in each condition, participants completed the psychomotor vigilance test (PVT), which measures vigilant attention, and the Go/No-Go task, which measures inhibition control. RESULTS After TSD and PSR, participants displayed significantly slower reaction times (RT) and more lapses in PVT performance, as well as slower Go RT and more errors of omission during the Go/No-Go task. PVT deficits accounted for 18.0% of the change in Go RT and 12.4% of the change in errors of omission in the TSD study, and 23.7% of the change in Go RT and 20.3% of the change in errors of omission in the PSR study. CONCLUSION Both TSD and PSR impaired inhibition control during the Go/No-Go task, which can be partly accounted for by vigilant attention deficits during the PVT. These findings support the key role of vigilant attention in maintaining overall neurobehavioral function after sleep loss.
Collapse
Affiliation(s)
- Tianxin Mao
- Key Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Shanghai International Studies University, Shanghai, People’s Republic of China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Dinges
- Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Yao Deng
- Key Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Shanghai International Studies University, Shanghai, People’s Republic of China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ke Zhao
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zijing Yang
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Hui Lei
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhuo Fang
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fan Nils Yang
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Olga Galli
- Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Mathias Basner
- Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Hengyi Rao
- Key Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Shanghai International Studies University, Shanghai, People’s Republic of China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Fifel K, Deboer T. Heterogenous electrophysiological responses of functionally distinct striatal subregions to circadian and sleep-related homeostatic processes. Sleep 2021; 45:6369544. [PMID: 34516641 DOI: 10.1093/sleep/zsab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Basal Ganglia (BG) are a set of subcortical nuclei that are involved in the control of a wide variety of motor, cognitive and affective behaviors. Although many behavioral abnormalities associated with BG dysfunction overlap with the clinical picture precipitated by the lack of sleep, the impact of sleep alterations on neuronal activity in BG is unknown. Using wildtype C57BI mice, we investigated the circadian and sleep-related homeostatic modulation of neuronal activity in the 3 functional subdivisions of the striatum (i.e. sensorimotor, associative and limbic striatum). We found no circadian modulation of activity in both ventral and dorso-medial striatum while the dorso-lateral striatum displayed a significant circadian rhythm with increased firing rates during the subjective dark, active phase. By combining neuronal activity recordings with electroencephalogram (EEG) recordings, we found a strong modulation of neuronal activity by the nature of vigilance states with increased activity during wakefulness and rapid eye movement sleep relative to non-rapid eye movement sleep in all striatal subregions. Depriving animals of sleep for 6 hours induced significant, but heterogenous alterations in the neuronal activity across striatal subregions. Notably, these alterations lasted for up to 48 hours in the sensorimotor striatum and persisted even after the normalization of cortical EEG power densities. Our results show that vigilance and sleep states as well as their disturbances significantly affect neuronal activity within the striatum. We propose that these changes in neuronal activity underlie both the well-established links between sleep alterations and several disorders involving BG dysfunction as well as the maladaptive changes in behavior induced in healthy subjects following sleep loss.
Collapse
Affiliation(s)
- Karim Fifel
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
19
|
Xu S, Akioma M, Yuan Z. Relationship between circadian rhythm and brain cognitive functions. FRONTIERS OF OPTOELECTRONICS 2021; 14:278-287. [PMID: 36637731 PMCID: PMC9743892 DOI: 10.1007/s12200-021-1090-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/02/2021] [Indexed: 05/31/2023]
Abstract
Circadian rhythms are considered a masterstroke of natural selection, which gradually increase the adaptability of species to the Earth's rotation. Importantly, the nervous system plays a key role in allowing organisms to maintain circadian rhythmicity. Circadian rhythms affect multiple aspects of cognitive functions (mainly via arousal), particularly those needed for effort-intensive cognitive tasks, which require considerable top-down executive control. These include inhibitory control, working memory, task switching, and psychomotor vigilance. This mini review highlights the recent advances in cognitive functioning in the optical and multimodal neuroimaging fields; it discusses the processing of brain cognitive functions during the circadian rhythm phase and the effects of the circadian rhythm on the cognitive component of the brain and the brain circuit supporting cognition.
Collapse
Affiliation(s)
- Shiyang Xu
- Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Miriam Akioma
- Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhen Yuan
- Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
20
|
Abstract
OBJECTIVES Oscillopsia is a disabling condition for patients with bilateral vestibular hypofunction (BVH). When the vestibulo-ocular reflex is bilaterally impaired, its ability to compensate for rapid head movements must be supported by refixation saccades. The objective of this study is to assess the relationship between saccadic strategies and perceived oscillopsia. DESIGN To avoid the possibility of bias due to remaining vestibular function, we classified patients into two groups according to their gain values in the video head impulse test. One group comprised patients with extremely low gain (0.2 or below) in both sides, and a control group contained BVH patients with gain between 0.2 and 0.6 bilaterally. Binary logistic regression (BLR) was used to determine the variables predicting oscillopsia. RESULTS Twenty-nine patients were assigned to the extremely low gain group and 23 to the control group. The BLR model revealed the PR score (saccades synchrony measurement) to be the best predictor of oscillopsia. Receiver operating characteristic analysis determined that the most efficient cutoff point for the probabilities saved with the BLR was 0.518, yielding a sensitivity of 86.6% and specificity of 84.2%. CONCLUSIONS BVH patients with higher PR values (nonsynchronized saccades) were more prone to oscillopsia independent of their gain values. We suggest that the PR score can be considered a useful measurement of compensation.
Collapse
|
21
|
Zhou L, Tang Z, Zuo Z, Zhou K. Neural Mechanism Underlying the Sleep Deprivation-Induced Abnormal Bistable Perception. Cereb Cortex 2021; 32:583-592. [PMID: 34322696 DOI: 10.1093/cercor/bhab235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022] Open
Abstract
Quality sleep is vital for physical and mental health. No matter whether sleep problems are a consequence of or contributory factor to mental disorders, people with psychosis often suffer from severe sleep disturbances. Previous research has shown that acute sleep deprivation (SD) can cause transient brain dysfunction and lead to various cognitive impairments in healthy individuals. However, the relationship between sleep disturbance and bistable perception remains unclear. Here, we investigated whether the bistable perception could be affected by SD and elucidated the functional brain changes accompanying SD effects on bistable perception using functional magnetic resonance imaging. We found that the 28-h SD resulted in slower perceptual transitions in healthy individuals. The reduced perceptual transition was accompanied by the decreased activations in rivalry-related frontoparietal areas, including the right superior parietal lobule, right frontal eye field, and right temporoparietal junction. We speculated that SD might disrupt the normal function of these regions crucial for bistable perception, which mediated the slower rivalry-related perceptual transitions in behavior. Our findings revealed the neural changes underlying the abnormal bistable perception following the SD. It also suggested that SD might offer a new window to understand the neural mechanisms underlying the bistable perception.
Collapse
|
22
|
Qi J, Li BZ, Zhang Y, Pan B, Gao YH, Zhan H, Liu Y, Shao YC, Weng XC, Zhang X. Disrupted Small-world Networks are Associated with Decreased Vigilant Attention after Total Sleep Deprivation. Neuroscience 2021; 471:51-60. [PMID: 34293415 DOI: 10.1016/j.neuroscience.2021.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Sleep deprivation critically affects vigilant attention. Previous neuroimaging studies have revealed altered inter-regional functional connectivity after sleep deprivation, which may disrupt topological properties of brain functional networks. However, little is known about alterations in the topology of intrinsic connectivity and its involvement in attention performance after sleep deprivation. In the current study, we investigated the topological properties of brain networks derived from resting-state functional magnetic resonance imaging of 26 healthy men in rested wakefulness (RW) state and after 36 h of total sleep deprivation (TSD). In the predefined sparsity threshold range, both global and nodal network properties were evaluated based on graph theory analysis. Vigilant attention was assessed using the psychomotor vigilance test (PVT) before and after TSD. Furthermore, Pearson's correlation analyses were conducted to explore the association between altered network properties and changed PVT performance after TSD. At the global level, the brain functional networks in the TSD state showed a significantly lower small-world coefficient than RW, with decreased global efficiency. At the nodal level, the altered regions were selectively distributed in frontoparietal networks, sensorimotor networks, temporal regions, and salience networks. More specifically, the altered clustering coefficient in the posterior superior temporal sulcus (pSTS) and insula, and altered local efficiency in pSTS were further associated with PVT performance after TSD. Our results suggest that the topological properties of brain functional networks are disrupted, and aberrant topology of temporal networks and salience networks may act as neural signatures underlying the vigilant attention impairments after TSD.
Collapse
Affiliation(s)
- Jing Qi
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Neurology, The Second Medical Center, Sleep Medicine Research Center, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo-Zhi Li
- Department of Neurology, The Second Medical Center, Sleep Medicine Research Center, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Zhang
- The Eighth Medical Center of the General Hospital of People's Liberation Army, Beijing 100091, China
| | - Bei Pan
- Airforce Medical Center, PLA, Beijing 100142, China
| | - Yu-Hong Gao
- National Clinical Research Centre for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Zhan
- Airforce Medical Center, PLA, Beijing 100142, China
| | - Yong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Cong Shao
- School of Psychology, Beijing Sport University, Beijing 100084, China; School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xie-Chuan Weng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Xi Zhang
- Department of Neurology, The Second Medical Center, Sleep Medicine Research Center, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
23
|
Li B, Zhang L, Zhang Y, Chen Y, Peng J, Shao Y, Zhang X. Decreased Functional Connectivity Between the Right Precuneus and Middle Frontal Gyrus Is Related to Attentional Decline Following Acute Sleep Deprivation. Front Neurosci 2020; 14:530257. [PMID: 33408600 PMCID: PMC7779587 DOI: 10.3389/fnins.2020.530257] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Acute sleep deprivation (SD) seriously affects cognitive functions, such as attention, memory, and response inhibition. Previous neuroimaging studies have demonstrated a close relationship between the functional activities of the precuneus (PC) and the function of alert attention. However, the specific effect of the PC on attention decline after acute SD has not been elucidated. In this study, we used resting-state functional magnetic resonance imaging (fMRI) to study the relationship between the changes of the PC functional connectivity and alertness decline after total SD. METHODS Thirty healthy, right-handed adult men participated in the experiment. Alert attention and functional connectivity were assessed by the Psychomotor Vigilance Test and a resting-state fMRI scan before and after total SD. The region of interest to region of interest ("ROI-to-ROI") correlation was employed to analyze the relationship between the PC and other brain regions after acute SD. RESULTS Participants showed decreased alert attention after total SD. In addition, SD induced decreased functional connectivity between the right PC and the right middle frontal gyrus (MFG). Moreover, there was a significant correlation between the decreased PC functional connectivity and alertness decline after total SD. CONCLUSION Our findings suggest that the interruption of the connection between the right PC and the right MFG is related to the observed decline in alert attention after acute SD. These results provide evidence further elucidating the cognitive impairment model of SD.
Collapse
Affiliation(s)
- Bozhi Li
- Department of Neurology, The Second Medical Center, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Liwei Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- Department of Psychology Medical, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Jiaxi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xi Zhang
- Department of Neurology, The Second Medical Center, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Trockel MT, Menon NK, Rowe SG, Stewart MT, Smith R, Lu M, Kim PK, Quinn MA, Lawrence E, Marchalik D, Farley H, Normand P, Felder M, Dudley JC, Shanafelt TD. Assessment of Physician Sleep and Wellness, Burnout, and Clinically Significant Medical Errors. JAMA Netw Open 2020; 3:e2028111. [PMID: 33284339 PMCID: PMC12064096 DOI: 10.1001/jamanetworkopen.2020.28111] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Importance Sleep-related impairment in physicians is an occupational hazard associated with long and sometimes unpredictable work hours and may contribute to burnout and self-reported clinically significant medical error. Objective To assess the associations between sleep-related impairment and occupational wellness indicators in physicians practicing at academic-affiliated medical centers and the association of sleep-related impairment with self-reported clinically significant medical errors, before and after adjusting for burnout. Design, Setting, and Participants This cross-sectional study used physician wellness survey data collected from 11 academic-affiliated medical centers between November 2016 and October 2018. Analysis was completed in January 2020. A total of 19 384 attending physicians and 7257 house staff physicians at participating institutions were invited to complete a wellness survey. The sample of responders was used for this study. Exposures Sleep-related impairment. Main Outcomes and Measures Association between sleep-related impairment and occupational wellness indicators (ie, work exhaustion, interpersonal disengagement, overall burnout, and professional fulfillment) was hypothesized before data collection. Assessment of the associations of sleep-related impairment and burnout with self-reported clinically significant medical errors (ie, error within the last year resulting in patient harm) was planned after data collection. Results Of all physicians invited to participate in the survey, 7700 of 19 384 attending physicians (40%) and 3695 of 7257 house staff physicians (51%) completed sleep-related impairment items, including 5279 women (46%), 5187 men (46%), and 929 (8%) who self-identified as other gender or elected not to answer. Because of institutional variation in survey domain inclusion, self-reported medical error responses from 7538 physicians were available for analyses. Spearman correlations of sleep-related impairment with interpersonal disengagement (r = 0.51; P < .001), work exhaustion (r = 0.58; P < .001), and overall burnout (r = 0.59; P < .001) were large. Sleep-related impairment correlation with professional fulfillment (r = -0.40; P < .001) was moderate. In a multivariate model adjusted for gender, training status, medical specialty, and burnout level, compared with low sleep-related impairment levels, moderate, high, and very high levels were associated with increased odds of self-reported clinically significant medical error, by 53% (odds ratio, 1.53; 95% CI, 1.12-2.09), 96% (odds ratio, 1.96; 95% CI, 1.46-2.63), and 97% (odds ratio, 1.97; 95% CI, 1.45-2.69), respectively. Conclusions and Relevance In this study, sleep-related impairment was associated with increased burnout, decreased professional fulfillment, and increased self-reported clinically significant medical error. Interventions to mitigate sleep-related impairment in physicians are warranted.
Collapse
Affiliation(s)
| | | | | | | | - Randall Smith
- Stanford University School of Medicine, Palo Alto, California
| | - Ming Lu
- Stanford University School of Medicine, Palo Alto, California
| | - Peter K. Kim
- Physician Affiliate Group of New York, New York, New York
| | | | | | | | | | | | - Mila Felder
- Advocate Christ Medical Center, Oak Lawn, Illinois
| | - Jessica C. Dudley
- Brigham and Women's Hospital–Partners HealthCare, Boston, Massachusetts
| | | |
Collapse
|
25
|
The impact of tiredness on virtual reality robotic surgical skills. Wideochir Inne Tech Maloinwazyjne 2020; 15:298-304. [PMID: 32489490 PMCID: PMC7233167 DOI: 10.5114/wiitm.2020.93201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction The effect of tiredness has been proved for the surgeons’ musculature performing laparoscopic or robotic procedures (physical stress). Mental stress after robotic surgery has been reported as well. It is still unclear how much the surgical skills are altered and which types of skills are more affected at the final steps of long, complex robotic surgical procedures. Aim To evaluate to what extent the surgeon’s skills are influenced by long procedures, using the objective assessment of different surgical skills by a virtual reality robotic simulator. Material and methods Fifteen surgeons were asked to perform a continuous 4 h virtual robotic surgical simulator training session. At the beginning of simulator training and at the end of each of the 4 h of training, three exercises of increasing difficulty were selected to be performed in order to assess the surgeons’ skills. Results There were statistically significant differences between the initial and final overall scores for all the three exercises, the final outcomes being inferior. The specific metrics for each exercise slightly improved within 1 h from the beginning and thereafter decreased to a statistically significantly inferior value. Conclusions The specific metrics on the virtual reality robotic surgical simulator were altered after a 4-hour console training period. Further larger and more complex studies are necessary to evaluate the translation from the simulator to real-life robotic surgery.
Collapse
|
26
|
Åkerstedt T, Lekander M, Nilsonne G, Tamm S, d'Onofrio P, Kecklund G, Fischer H, Schwarz J, Petrovic P, Månsson KNT. Gray Matter Volume Correlates of Sleepiness: A Voxel-Based Morphometry Study in Younger and Older Adults. Nat Sci Sleep 2020; 12:289-298. [PMID: 32547279 PMCID: PMC7247733 DOI: 10.2147/nss.s240493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/14/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Subjectively experienced sleepiness is a problem in society, possibly linked with gray matter (GM) volume. Given a different sleep pattern, aging may affect such associations, possibly due to shrinking brain volume. PURPOSE The purpose of the present study was to investigate the association between subjectively rated sleepiness and GM volume in thalamus, insula, hippocampus, and orbitofrontal cortex of young and older adults, after a normal night's sleep. METHODS Eighty-four healthy individuals participated (46 aged 20-30 years, and 38 aged 65-75 years). Morphological brain data were collected in a 3T magnetic resonance imaging (MRI) scanner. Sleepiness was rated multiple times during the imaging sessions. RESULTS In older, relative to younger, adults, clusters within bilateral mid-anterior insular cortex and right thalamus were negatively associated with sleepiness. Adjustment for the immediately preceding total sleep time eliminated the significant associations. CONCLUSION Self-rated momentary sleepiness in a monotonous situation appears to be negatively associated with GM volume in clusters within both thalamus and insula in older individuals, and total sleep time seems to play a role in this association. Possibly, this suggests that larger GM volume in these clusters may be protective against sleepiness in older individuals. This notion needs confirmation in further studies.
Collapse
Affiliation(s)
- Torbjörn Åkerstedt
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Gustav Nilsonne
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Sandra Tamm
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Paolo d'Onofrio
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Göran Kecklund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Johanna Schwarz
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Predrag Petrovic
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer N T Månsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| |
Collapse
|
27
|
Abstract
Abnormal sleep architecture and white matter hyperintensities (WMHs) may be involved in cognitive impairment. There is little evidence on the connections between WMHs and chronic insomnia disorder (CID). Therefore, we evaluated the severity of WMHs and polysomnography parameters as well as cognitive tests to explore the underlying connections. There was no significant difference in sex, age, or educational attainment (years) between the two groups. The data showed significant decreases in total sleep time, sleep efficiency, and percentage of time spent in stage nonrapid eye movement sleep 3 in the CID group, but this group also showed prolonged sleep latency and increased percentages of time spent in stages nonrapid eye movement sleep 1 and nonrapid eye movement sleep 2 and wake after sleep onset. Moreover, chronic insomniacs showed poor performance on the attention, intelligence, and memory tests, as well as visual recognition and visual regeneration. Importantly, WMHs were observed to be associated with sleep latency, percentage of time spent in stage nonrapid eye movement sleep 1, and percentage of time spent in stage nonrapid eye movement sleep 3. In conclusion, our findings suggest that there are certain underlying correlations between WMHs and sleep architecture. Abnormal sleep architecture and WMHs could be involved in the impairment of cognitive function in CID. However, it remains unclear whether WMHs are a pre-existing abnormality or a consequence of CID.
Collapse
|
28
|
Does sleep deprivation alter virtual reality-based robotic surgical skills? Wideochir Inne Tech Maloinwazyjne 2019; 15:97-105. [PMID: 32117491 PMCID: PMC7020731 DOI: 10.5114/wiitm.2019.90565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction Robotic surgery is widely used in many surgical specialities, and there has been no study to assess the impact of sleep deprivation on the complex environment of robotic surgery. Aim To compare specific metrics of selected robotic simulator exercises on sleep-deprived and non-sleep-deprived surgical residents. Material and methods We enrolled 20 volunteers, residents in surgery, evaluated before and after an 18-hour overnight shift, regarding their results on virtual robotic surgery simulator – the sleep deprivation (SD) group. As a control group, the same subjects were evaluated 5–7 days after the post-shift evaluation, without having a shift overnight and at least 7 h of sleep the previous night – the non-sleep-deprivation (nSD) group. Results A statistically significant difference between the pre-shift and post-shift overall results for all exercises in the SD group and no statistical differences for the nSD group were observed. As the difficulty of the exercises increased, statistical differences were observed on specific metrics for all exercises between the pre-shift and post-shift as well as between the post-shift and the morning after a normal sleep period overnight. In a subgroup analysis, the overall results revealed a stronger statistical difference between pre-shift and post-shift for residents with more intense sleep deprivation (< 3 h of sleep vs. > 3 h of sleep). Conclusions Sleep deprivation leads to impairment of surgical skills assessed by robotic virtual simulator. The more complex and skill demanding the exercise, the higher the difference between sleep deprived and non-deprived residents.
Collapse
|
29
|
Abstract
OBJECTIVES Reduction in the amount of information (storage capacity) retained in working memory (WM) has been associated with sleep loss. The present study examined whether reduced WM capacity is also related to poor everyday sleep quality and, more importantly, whether the effects of sleep quality could be dissociated from the effects of depressed mood and age on WM. METHODS In two studies, WM was assessed using a short-term recall task, producing behavioral measures for both the amount of retained WM information (capacity) and how precise the retained WM representations were (precision). Self-report measures of sleep quality and depressed mood were obtained using questionnaires. RESULTS In a sample of college students, Study 1 found that poor sleep quality and depressed mood could independently predict reduced WM capacity, but not WM precision. Study 2 generalized these sleep- and mood-related WM capacity effects to a community sample (aged 21-77 years) and further showed that age was associated with reduced WM precision. CONCLUSIONS Together, these findings demonstrate dissociable effects of three health-related factors (sleep, mood, and age) on WM representations and highlighte the importance of assessing different aspects of WM representations (e.g., capacity and precision) in future neuropsychological research.
Collapse
|
30
|
Banfi T, Coletto E, d'Ascanio P, Dario P, Menciassi A, Faraguna U, Ciuti G. Effects of Sleep Deprivation on Surgeons Dexterity. Front Neurol 2019; 10:595. [PMID: 31244758 PMCID: PMC6579828 DOI: 10.3389/fneur.2019.00595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022] Open
Abstract
Sleep deprivation is an ordinary aspect in the global society and its prevalence is increasing. Chronic and acute sleep deprivation have been linked to diabetes and heart diseases as well as depression and enhanced impulsive behaviors. Surgeons are often exposed to long hour on call and few hours of sleep in the previous days. Nevertheless, few studies have focused their attention on the effects of sleep deprivation on surgeons and more specifically on the effects of sleep deprivation on surgical dexterity, often relying on virtual surgical simulators. A better understanding of the consequences of sleep loss on the key surgical skill of dexterity can shed light on the possible risks associated to a sleepy surgeon. In this paper, the authors aim to provide a comprehensive review of the relationship between sleep deprivation and surgical dexterity.
Collapse
Affiliation(s)
- Tommaso Banfi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Erika Coletto
- Norwich Research Park Innovation Centre, Quadram Institute of Bioscience, Norwich, United Kingdom
| | - Paola d'Ascanio
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Ugo Faraguna
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| |
Collapse
|
31
|
Massar SAA, Lim J, Huettel SA. Sleep deprivation, effort allocation and performance. PROGRESS IN BRAIN RESEARCH 2019; 246:1-26. [PMID: 31072557 DOI: 10.1016/bs.pbr.2019.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sleep deprivation causes physiological alterations (e.g., decreased arousal, intrusion of micro-sleeps), that negatively affect performance on a wide range of cognitive domains. These effects indicate that cognitive performance relies on a capacity-limited system that may be more challenged in the absence of sleep. Additionally, sleep loss can result in a lower willingness to exert effort in the pursuit of performance goals. Such deficits in motivation may interact with the effects of capacity limitations to further stifle cognitive performance. When sleep-deprived, cognitive performance is experienced as more effortful, and intrinsic motivation to perform dwindles. On the other hand, increasing motivation extrinsically (e.g., by monetary incentives) can inspire individuals to allocate more task-related effort, and can partially counter performance deficits associated with sleep deprivation. In this chapter, we review current research on the interplay between sleep deprivation, effort and performance. We integrate these findings into an effort-based decision-making framework in which sleep-related performance impairments may result from a voluntary decision to withdraw effort. We conclude with practical implications of this framework for performance in healthy populations (e.g., work productivity) and clinical conditions.
Collapse
Affiliation(s)
- Stijn A A Massar
- Centre for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.
| | - Julian Lim
- Centre for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Scott A Huettel
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC, United States.
| |
Collapse
|
32
|
Elvsåshagen T, Mutsaerts HJ, Zak N, Norbom LB, Quraishi SH, Pedersen PØ, Malt UF, Westlye LT, van Someren EJ, Bjørnerud A, Groote IR. Cerebral blood flow changes after a day of wake, sleep, and sleep deprivation. Neuroimage 2018; 186:497-509. [PMID: 30471387 DOI: 10.1016/j.neuroimage.2018.11.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022] Open
Abstract
Elucidating the neurobiological effects of sleep and wake is an important goal of the neurosciences. Whether and how human cerebral blood flow (CBF) changes during the sleep-wake cycle remain to be clarified. Based on the synaptic homeostasis hypothesis of sleep and wake, we hypothesized that a day of wake and a night of sleep deprivation would be associated with gray matter resting CBF (rCBF) increases and that sleep would be associated with rCBF decreases. Thirty-eight healthy adult males (age 22.1 ± 2.5 years) underwent arterial spin labeling perfusion magnetic resonance imaging at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (n = 19) or a night of sleep (n = 19). All analyses were adjusted for hematocrit and head motion. rCBF increased from morning to evening and decreased after a night of sleep. These effects were most prominent in bilateral hippocampus, amygdala, thalamus, and in the occipital and sensorimotor cortices. Group × time interaction analyses for evening versus next morning revealed significant interaction in bilateral lateral and medial occipital cortices and in bilateral insula, driven by rCBF increases in the sleep deprived individuals and decreases in the sleepers, respectively. Furthermore, group × time interaction analyses for first morning versus next morning showed significant effects in medial and lateral occipital cortices, in anterior cingulate gyrus, and in the insula, in both hemispheres. These effects were mainly driven by CBF increases from TP1 to TP3 in the sleep deprived individuals. There were no associations between the rCBF changes and sleep characteristics, vigilant attention, or subjective sleepiness that remained significant after adjustments for multiple analyses. Altogether, these results encourage future studies to clarify mechanisms underlying sleep-related rCBF changes.
Collapse
Affiliation(s)
- Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Norway; Department of Neurology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway.
| | - Henri Jmm Mutsaerts
- Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Radiology, Amsterdam University Medical Center, the Netherlands
| | - Nathalia Zak
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Norway
| | - Linn B Norbom
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Norway
| | | | - Per Ø Pedersen
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Research and Education, Oslo University Hospital, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Norway; Department of Psychology, University of Oslo, Norway
| | - Eus Jw van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Center, the Netherlands; Department of Integrative Neurophysiology, Amsterdam University Medical Center, the Netherlands
| | - Atle Bjørnerud
- Department of Psychology, University of Oslo, Norway; Department of Physics, University of Oslo, Norway; The Intervention Center, Oslo University Hospital, Norway
| | | |
Collapse
|
33
|
Gaggioni G, Ly JQ, Chellappa SL, Coppieters ‘t Wallant D, Rosanova M, Sarasso S, Luxen A, Salmon E, Middleton B, Massimini M, Schmidt C, Casali A, Phillips C, Vandewalle G. Human fronto-parietal response scattering subserves vigilance at night. Neuroimage 2018; 175:354-364. [DOI: 10.1016/j.neuroimage.2018.03.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 01/17/2023] Open
|
34
|
Saj A, Verdon V, Hauert CA, Vuilleumier P. Dissociable components of spatial neglect associated with frontal and parietal lesions. Neuropsychologia 2018; 115:60-69. [DOI: 10.1016/j.neuropsychologia.2018.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/03/2018] [Accepted: 02/16/2018] [Indexed: 12/19/2022]
|
35
|
Yoon HK, Dev SI, Sutherland AN, Eyler LT. Disruptions in resting state functional connectivity in euthymic bipolar patients with insomnia symptoms. Psychiatry Res Neuroimaging 2018; 275:1-4. [PMID: 29572076 PMCID: PMC5899934 DOI: 10.1016/j.pscychresns.2018.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/07/2018] [Accepted: 03/02/2018] [Indexed: 11/22/2022]
Abstract
Insomnia is prevalent in bipolar disorder (BD) even during periods of euthymic mood. We compared resting state brain activity and cognitive function between euthymic BD with and without insomnia, and secondarily to healthy individuals. BD patients with insomnia symptoms showed a significantly lower functional connectivity within the task-positive network, compared to those without insomnia. They also showed significantly slower cognitive processing speed. These two features of BD with insomnia appeared relatively independent of each other. Preliminary findings suggest that exploration of the mechanisms of sleep disturbance in BD could lead to improved understanding and treatment of inattention in BD.
Collapse
Affiliation(s)
- Ho-Kyoung Yoon
- Department of Psychiatry, University of California, San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Sheena I Dev
- Department of Psychiatry, University of California, San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Ashley N Sutherland
- Department of Psychiatry, University of California, San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
36
|
Maire M, Reichert CF, Gabel V, Viola AU, Phillips C, Berthomier C, Borgwardt S, Cajochen C, Schmidt C. Human brain patterns underlying vigilant attention: impact of sleep debt, circadian phase and attentional engagement. Sci Rep 2018; 8:970. [PMID: 29343686 PMCID: PMC5772468 DOI: 10.1038/s41598-017-17022-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/20/2017] [Indexed: 01/31/2023] Open
Abstract
Sleepiness and cognitive function vary over the 24-h day due to circadian and sleep-wake-dependent mechanisms. However, the underlying cerebral hallmarks associated with these variations remain to be fully established. Using functional magnetic resonance imaging (fMRI), we investigated brain responses associated with circadian and homeostatic sleep-wake-driven dynamics of subjective sleepiness throughout day and night. Healthy volunteers regularly performed a psychomotor vigilance task (PVT) in the MR-scanner during a 40-h sleep deprivation (high sleep pressure) and a 40-h multiple nap protocol (low sleep pressure). When sleep deprived, arousal-promoting thalamic activation during optimal PVT performance paralleled the time course of subjective sleepiness with peaks at night and troughs on the subsequent day. Conversely, task-related cortical activation decreased when sleepiness increased as a consequence of higher sleep debt. Under low sleep pressure, we did not observe any significant temporal association between PVT-related brain activation and subjective sleepiness. Thus, a circadian modulation in brain correlates of vigilant attention was only detectable under high sleep pressure conditions. Our data indicate that circadian and sleep homeostatic processes impact on vigilant attention via specific mechanisms; mirrored in a decline of cortical resources under high sleep pressure, opposed by a subcortical “rescuing” at adverse circadian times.
Collapse
Affiliation(s)
- Micheline Maire
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Virginie Gabel
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Antoine U Viola
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.,PPRS, Paris, France
| | | | | | - Stefan Borgwardt
- Medical Image Analysis Center, University Hospital of Basel, Basel, Switzerland.,Department of Psychiatry, University Hospital of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland. .,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
| | - Christina Schmidt
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
37
|
Abstract
How does a lack of sleep affect our brains? In contrast to the benefits of sleep, frameworks exploring the impact of sleep loss are relatively lacking. Importantly, the effects of sleep deprivation (SD) do not simply reflect the absence of sleep and the benefits attributed to it; rather, they reflect the consequences of several additional factors, including extended wakefulness. With a focus on neuroimaging studies, we review the consequences of SD on attention and working memory, positive and negative emotion, and hippocampal learning. We explore how this evidence informs our mechanistic understanding of the known changes in cognition and emotion associated with SD, and the insights it provides regarding clinical conditions associated with sleep disruption.
Collapse
|
38
|
Poh JH, Chee MWL. Degradation of neural representations in higher visual cortex by sleep deprivation. Sci Rep 2017; 7:45532. [PMID: 28361948 PMCID: PMC5374525 DOI: 10.1038/srep45532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/01/2017] [Indexed: 11/09/2022] Open
Abstract
A night of total sleep deprivation (TSD) impairs selective attention and is accompanied by attenuated activation within ventral visual cortex (VVC). However, finer details of how TSD compromises selectivity of visual processing remain unclear. Drawing from prior work in cognitive aging, we predicted that TSD would result in dedifferentiation of neural responses for faces and houses within the VVC. Instead, we found preservation of category selectivity. This was observed both in voxels highly selective for each category, and also across multiple voxels evaluated using MVPA. Based on prior findings of impaired attentional modulation following TSD, we also predicted reduced biasing of neural representations towards the attended category when participants viewed ambiguous face/house images. When participants were well rested, attention to houses (or faces) caused activation patterns to more closely resemble those elicited by isolated house (face) images than face (house) images. During TSD, attention to faces enhanced neural similarity to both target (face) and distractor (house) representations, signifying reduced suppression of irrelevant information. Degraded sensory processing reflected in reduced VVC activation following TSD, thus appears to be a result of impaired top-down modulation of sensory representations instead of degraded selectivity of maximally category sensitive voxels, or the dedifferentiation of neural activation patterns.
Collapse
Affiliation(s)
- Jia-Hou Poh
- Centre for Cognitive Neuroscience Duke-NUS Medical School, 8 College Road, Singapore, 169857.,NUS Graduate School for Integrative Sciences &Engineering, 28 Medical Drive, Singapore, 117456
| | - Michael W L Chee
- Centre for Cognitive Neuroscience Duke-NUS Medical School, 8 College Road, Singapore, 169857
| |
Collapse
|
39
|
Degradation of cortical representations during encoding following sleep deprivation. Neuroimage 2017; 153:131-138. [PMID: 28161311 DOI: 10.1016/j.neuroimage.2017.01.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
A night of total sleep deprivation (TSD) reduces task-related activation of fronto-parietal and higher visual cortical areas. As this reduction in activation corresponds to impaired attention and perceptual processing, it might also be associated with poorer memory encoding. Related animal work has established that cortical columns stochastically enter a 'down' state in sleep deprivation, leading to predictions that neural representations are less stable and distinctive following TSD. To test these predictions participants incidentally encoded scene images while undergoing fMRI, either during rested wakefulness (RW) or after TSD. In scene-selective PPA, TSD reduced stability of neural representations across repetition. This was accompanied by poorer subsequent memory. Greater representational stability benefitted subsequent memory in RW but not TSD. Even for items subsequently recognized, representational distinctiveness was lower in TSD, suggesting that quality of encoding is degraded. Reduced representational stability and distinctiveness are two novel mechanisms by which TSD can contribute to poorer memory formation.
Collapse
|
40
|
Abstract
Thalamocortical connectivity is believed to underlie basic alertness, motor, sensory information processing, and attention processes. This connectivity appears to be disrupted by total sleep deprivation, but it is not known whether it is affected by normal variations in general daytime sleepiness in nonsleep deprived persons. Healthy adult participants completed the Epworth Sleepiness Scale and underwent resting-state functional MRI. Functional connectivity between the thalamus and other regions of the cortex was examined and correlated with Epworth Sleepiness Scale scores. Greater sleepiness was associated with inverse (i.e. lower or more negative) connectivity between the bilateral thalamus and cortical regions involved in somatosensory and motor functions, potentially reflecting the disengagement of sensory and motor processing from the stream of consciousness.
Collapse
|
41
|
Ramanathan DS, Gulati T, Ganguly K. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation. PLoS Biol 2015; 13:e1002263. [PMID: 26382320 PMCID: PMC4575076 DOI: 10.1371/journal.pbio.1002263] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM) sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized) did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning. During non-REM sleep in rats, consolidation and offline improvements of a recently learned motor skill are linked to synchronous reactivation of task-related neural ensembles. Sleep has been shown to help in consolidating learned motor tasks. In other words, sleep can induce “offline” gains in a new motor skill even in the absence of further training. However, how sleep induces this change has not been clearly identified. One hypothesis is that consolidation of memories during sleep occurs by “reactivation” of neurons engaged during learning. In this study, we tested this hypothesis by recording populations of neurons in the motor cortex of rats while they learned a new motor skill and during sleep both before and after the training session. We found that subsets of task-relevant neurons formed highly synchronized ensembles during learning. Interestingly, these same neural ensembles were reactivated during subsequent sleep blocks, and the degree of reactivation was correlated with several metrics of motor memory consolidation. Specifically, after sleep, the speed at which animals performed the task while maintaining accuracy was increased, and the activity of the neuronal assembles were more tightly bound to motor action. Further analyses showed that reactivation events occurred episodically and in conjunction with spindle-oscillations—common bursts of brain activity seen during sleep. This observation is consistent with previous findings in humans that spindle-oscillations correlate with consolidation of learned tasks. Our study thus provides insight into the neuronal network mechanism supporting consolidation of motor memory during sleep and may lead to novel interventions that can enhance skill learning in both healthy and injured nervous systems.
Collapse
Affiliation(s)
- Dhakshin S. Ramanathan
- Neurology and Rehabilitation Service, San Francisco VA Medical Center, San Francisco, California, United States of America
- Psychiatry Service, San Francisco VA Medical Center, San Francisco, California, United States of America
- Department of Psychiatry, University of California, San Francisco, San Francisco, California, United States of America
| | - Tanuj Gulati
- Neurology and Rehabilitation Service, San Francisco VA Medical Center, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Karunesh Ganguly
- Neurology and Rehabilitation Service, San Francisco VA Medical Center, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
|
43
|
Limitations on visual information processing in the sleep-deprived brain and their underlying mechanisms. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2014.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Ma N, Dinges DF, Basner M, Rao H. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. Sleep 2015; 38:233-240. [PMID: 25409102 PMCID: PMC4288604 DOI: 10.5665/sleep.4404] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/15/2014] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. DESIGN Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. METHODS The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. RESULTS The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. CONCLUSION Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity.
Collapse
Affiliation(s)
- Ning Ma
- Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David F. Dinges
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mathias Basner
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hengyi Rao
- Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
45
|
Abstract
Sleep loss can alter extrinsic, task-related functional MRI signals involved in attention, memory, and executive function. However, the effects of sleep loss on brain structure have not been well characterized. Recent studies with patients with sleep disorders and animal models have demonstrated reduction of regional brain structure in the hippocampus and thalamus. In this study, using T1-weighted MRI, we examined the change of regional gray matter volume in healthy adults after long-term total sleep deprivation (~72 h). Regional volume changes were explored using voxel-based morphometry with a paired two-sample t-test. The results revealed significant loss of gray matter volume in the thalamus but not in the hippocampus. No overall decrease in whole brain gray matter volume was noted after sleep deprivation. As expected, sleep deprivation significantly reduced visual vigilance as assessed by the continuous performance test, and this decrease was correlated significantly with reduced regional gray matter volume in thalamic regions. This study provides the first evidence for sleep loss-related changes in gray matter in the healthy adult brain.
Collapse
|
46
|
Patanaik A, Zagorodnov V, Kwoh CK, Chee MWL. Predicting vulnerability to sleep deprivation using diffusion model parameters. J Sleep Res 2014; 23:576-84. [DOI: 10.1111/jsr.12166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/22/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Amiya Patanaik
- School of Computer Engineering; Nanyang Technological University; Singapore Singapore
| | - Vitali Zagorodnov
- School of Computer Engineering; Nanyang Technological University; Singapore Singapore
| | - Chee Keong Kwoh
- School of Computer Engineering; Nanyang Technological University; Singapore Singapore
| | - Michael W. L. Chee
- Cognitive Neuroscience Laboratory; Duke-NUS Graduate Medical School; Singapore Singapore
| |
Collapse
|
47
|
Kong D, Asplund CL, Chee MW. Sleep deprivation reduces the rate of rapid picture processing. Neuroimage 2014; 91:169-76. [DOI: 10.1016/j.neuroimage.2014.01.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022] Open
|
48
|
Adaptation of visual tracking synchronization after one night of sleep deprivation. Exp Brain Res 2013; 232:121-31. [DOI: 10.1007/s00221-013-3725-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
|
49
|
Chee MWL, MBBS, FRCP (Edin). Imaging the Sleep Deprived Brain: A Brief Review. ACTA ACUST UNITED AC 2013. [DOI: 10.13078/jksrs.13001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Asplund CL, Chee MWL. Time-on-task and sleep deprivation effects are evidenced in overlapping brain areas. Neuroimage 2013; 82:326-35. [PMID: 23747456 DOI: 10.1016/j.neuroimage.2013.05.119] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/08/2013] [Accepted: 05/26/2013] [Indexed: 01/13/2023] Open
Abstract
Both sleep deprivation and extended task engagement (time-on-task) have been shown to degrade performance in tasks evaluating sustained attention. Here we used pulsed arterial spin labeling (pASL) to study participants engaged in a demanding selective attention task. The participants were imaged twice, once after a normal night of sleep and once after approximately 24h of total sleep deprivation. We compared task-related changes in BOLD signal alongside ASL-based cerebral blood flow (CBF) changes. We also collected resting baseline CBF data prior to and following task performance. Both BOLD fMRI and ASL identified spatially congruent task activation in ventral visual cortex and fronto-parietal regions. Sleep deprivation and time-on-task caused a decline of both measures in ventral visual cortex. BOLD fMRI also revealed such declines in fronto-parietal cortex. Only early visual cortex showed a significant upward shift in resting baseline CBF following sleep deprivation, suggesting that the neural consequences of both SD and ToT are primarily evident in task-evoked signals. We conclude that BOLD fMRI is preferable to pASL in studies evaluating sleep deprivation given its better signal to noise characteristics and the relative paucity of state differences in baseline CBF.
Collapse
Affiliation(s)
- Christopher L Asplund
- Centre for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | | |
Collapse
|