1
|
Kisker J, Johnsdorf M, Sagehorn M, Schöne B, Gruber T. Induced oscillatory brain responses under virtual reality conditions in the context of repetition priming. Exp Brain Res 2024; 242:525-541. [PMID: 38200371 PMCID: PMC10894769 DOI: 10.1007/s00221-023-06766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
In the human electroencephalogram (EEG), induced oscillatory responses in various frequency bands are regarded as valuable indices to examine the neural mechanisms underlying human memory. While the advent of virtual reality (VR) drives the investigation of mnemonic processing under more lifelike settings, the joint application of VR and EEG methods is still in its infancy (e.g., due to technical limitations impeding the signal acquisition). The objective of the present EEG study was twofold. First, we examined whether the investigation of induced oscillations under VR conditions yields equivalent results compared to standard paradigms. Second, we aimed at obtaining further insights into basic memory-related brain mechanisms in VR. To these ends, we relied on a standard implicit memory design, namely repetition priming, for which the to-be-expected effects are well-documented for conventional studies. Congruently, we replicated a suppression of the evoked potential after stimulus onset. Regarding the induced responses, we observed a modulation of induced alphaband in response to a repeated stimulus. Importantly, our results revealed a repetition-related suppression of the high-frequency induced gammaband response (>30 Hz), indicating the sharpening of a cortical object representation fostering behavioral priming effects. Noteworthy, the analysis of the induced gammaband responses required a number of measures to minimize the influence of external and internal sources of artefacts (i.e., the electrical shielding of the technical equipment and the control for miniature eye movements). In conclusion, joint VR-EEG studies with a particular focus on induced oscillatory responses offer a promising advanced understanding of mnemonic processing under lifelike conditions.
Collapse
Affiliation(s)
- Joanna Kisker
- Institute of Psychology, Osnabrück University, Osnabrück, Germany.
| | - Marike Johnsdorf
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Merle Sagehorn
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Benjamin Schöne
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
2
|
Lasnick OHM, Hoeft F. Sensory temporal sampling in time: an integrated model of the TSF and neural noise hypothesis as an etiological pathway for dyslexia. Front Hum Neurosci 2024; 17:1294941. [PMID: 38234592 PMCID: PMC10792016 DOI: 10.3389/fnhum.2023.1294941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Much progress has been made in research on the causal mechanisms of developmental dyslexia. In recent years, the "temporal sampling" account of dyslexia has evolved considerably, with contributions from neurogenetics and novel imaging methods resulting in a much more complex etiological view of the disorder. The original temporal sampling framework implicates disrupted neural entrainment to speech as a causal factor for atypical phonological representations. Yet, empirical findings have not provided clear evidence of a low-level etiology for this endophenotype. In contrast, the neural noise hypothesis presents a theoretical view of the manifestation of dyslexia from the level of genes to behavior. However, its relative novelty (published in 2017) means that empirical research focused on specific predictions is sparse. The current paper reviews dyslexia research using a dual framework from the temporal sampling and neural noise hypotheses and discusses the complementary nature of these two views of dyslexia. We present an argument for an integrated model of sensory temporal sampling as an etiological pathway for dyslexia. Finally, we conclude with a brief discussion of outstanding questions.
Collapse
Affiliation(s)
- Oliver H. M. Lasnick
- brainLENS Laboratory, Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
3
|
Peter A, Stauch BJ, Shapcott K, Kouroupaki K, Schmiedt JT, Klein L, Klon-Lipok J, Dowdall JR, Schölvinck ML, Vinck M, Schmid MC, Fries P. Stimulus-specific plasticity of macaque V1 spike rates and gamma. Cell Rep 2021; 37:110086. [PMID: 34879273 PMCID: PMC8674536 DOI: 10.1016/j.celrep.2021.110086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/28/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022] Open
Abstract
When a visual stimulus is repeated, average neuronal responses typically decrease, yet they might maintain or even increase their impact through increased synchronization. Previous work has found that many repetitions of a grating lead to increasing gamma-band synchronization. Here, we show in awake macaque area V1 that both repetition-related reductions in firing rate and increases in gamma are specific to the repeated stimulus. These effects show some persistence on the timescale of minutes. Gamma increases are specific to the presented stimulus location. Further, repetition effects on gamma and on firing rates generalize to images of natural objects. These findings support the notion that gamma-band synchronization subserves the adaptive processing of repeated stimulus encounters.
Collapse
Affiliation(s)
- Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany.
| | - Benjamin Johannes Stauch
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany
| | - Katharine Shapcott
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt, Germany
| | - Kleopatra Kouroupaki
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Joscha Tapani Schmiedt
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Liane Klein
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Johanna Klon-Lipok
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Jarrod Robert Dowdall
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany
| | - Marieke Louise Schölvinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michael Christoph Schmid
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; University of Fribourg, Faculty of Science and Medicine, Chemin du Musée 5, 1700 Fribourg, Switzerland; Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle NE2 4HH, UK
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Stauch BJ, Peter A, Schuler H, Fries P. Stimulus-specific plasticity in human visual gamma-band activity and functional connectivity. eLife 2021; 10:e68240. [PMID: 34473058 PMCID: PMC8412931 DOI: 10.7554/elife.68240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Under natural conditions, the visual system often sees a given input repeatedly. This provides an opportunity to optimize processing of the repeated stimuli. Stimulus repetition has been shown to strongly modulate neuronal-gamma band synchronization, yet crucial questions remained open. Here we used magnetoencephalography in 30 human subjects and find that gamma decreases across ≈10 repetitions and then increases across further repetitions, revealing plastic changes of the activated neuronal circuits. Crucially, increases induced by one stimulus did not affect responses to other stimuli, demonstrating stimulus specificity. Changes partially persisted when the inducing stimulus was repeated after 25 minutes of intervening stimuli. They were strongest in early visual cortex and increased interareal feedforward influences. Our results suggest that early visual cortex gamma synchronization enables adaptive neuronal processing of recurring stimuli. These and previously reported changes might be due to an interaction of oscillatory dynamics with established synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- Benjamin J Stauch
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
- Brain Imaging Center, Goethe University FrankfurtFrankfurtGermany
| | - Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
| | - Heike Schuler
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
- Brain Imaging Center, Goethe University FrankfurtFrankfurtGermany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| |
Collapse
|
5
|
Hsu SM. A neural-based account of sequential bias during perceptual judgment. Psychon Bull Rev 2021; 28:1051-1059. [PMID: 33742422 DOI: 10.3758/s13423-021-01894-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 11/08/2022]
Abstract
Sequential effects are prominent and pervasive phenomena that exist in most perceptual judgments. Of importance, these effects reflect dynamic aspects in our judgment bias induced by the recent context. When making successive judgments in response to a sequence of stimuli, two opposing consequences have frequently been observed: assimilation effects - current stimuli judged as being closer to preceding stimuli than they actually are, and contrast effects - current stimuli judged as being further from preceding stimuli than they actually are. Although several cognitive accounts have been previously proposed, there is still a lack of consensus on the underlying mechanism, particularly regarding the insights of the temporal dynamics. Building upon accumulating human M/EEG findings, I propose a framework to explain how sequential bias is generated, unfolded over time, and eventually incorporated into the formation of current biased judgment. By bringing sequential effects closer to a biologically plausible framework, this synthetic view could account for how the opposing consequences of sequential effects differentially evolve, distinguish the effects from other perceptual phenomena with similar behavioral outcomes (such as aftereffects and priming), and illuminate how perceptual judgment is adaptively adjusted under the impact of temporal context.
Collapse
Affiliation(s)
- Shen-Mou Hsu
- Imaging Center for Integrated Body, Mind and Culture Research, National Taiwan University, No.49, Fanglan Rd., Da'an Dist., Taipei, 10617, Taiwan, Republic of China.
| |
Collapse
|
6
|
The steady-state visual evoked potential (SSVEP) reflects the activation of cortical object representations: evidence from semantic stimulus repetition. Exp Brain Res 2020; 239:545-555. [PMID: 33315126 PMCID: PMC7936959 DOI: 10.1007/s00221-020-05992-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
We applied high-density EEG to examine steady-state visual evoked potentials (SSVEPs) during a perceptual/semantic stimulus repetition design. SSVEPs are evoked oscillatory cortical responses at the same frequency as visual stimuli flickered at this frequency. In repetition designs, stimuli are presented twice with the repetition being task irrelevant. The cortical processing of the second stimulus is commonly characterized by decreased neuronal activity (repetition suppression). The behavioral consequences of stimulus repetition were examined in a companion reaction time pre-study using the same experimental design as the EEG study. During the first presentation of a stimulus, we confronted participants with drawings of familiar object images or object words, respectively. The second stimulus was either a repetition of the same object image (perceptual repetition; PR) or an image depicting the word presented during the first presentation (semantic repetition; SR)—all flickered at 15 Hz to elicit SSVEPs. The behavioral study revealed priming effects in both experimental conditions (PR and SR). In the EEG, PR was associated with repetition suppression of SSVEP amplitudes at left occipital and repetition enhancement at left temporal electrodes. In contrast, SR was associated with SSVEP suppression at left occipital and central electrodes originating in bilateral postcentral and occipital gyri, right middle frontal and right temporal gyrus. The conclusion of the presented study is twofold. First, SSVEP amplitudes do not only index perceptual aspects of incoming sensory information but also semantic aspects of cortical object representation. Second, our electrophysiological findings can be interpreted as neuronal underpinnings of perceptual and semantic priming.
Collapse
|
7
|
Rangarajan V, Jacques C, Knight RT, Weiner KS, Grill-Spector K. Diverse Temporal Dynamics of Repetition Suppression Revealed by Intracranial Recordings in the Human Ventral Temporal Cortex. Cereb Cortex 2020; 30:5988-6003. [PMID: 32583847 DOI: 10.1093/cercor/bhaa173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/13/2023] Open
Abstract
Repeated stimulus presentations commonly produce decreased neural responses-a phenomenon known as repetition suppression (RS) or adaptation-in ventral temporal cortex (VTC) of humans and nonhuman primates. However, the temporal features of RS in human VTC are not well understood. To fill this gap in knowledge, we utilized the precise spatial localization and high temporal resolution of electrocorticography (ECoG) from nine human subjects implanted with intracranial electrodes in the VTC. The subjects viewed nonrepeated and repeated images of faces with long-lagged intervals and many intervening stimuli between repeats. We report three main findings: 1) robust RS occurs in VTC for activity in high-frequency broadband (HFB), but not lower-frequency bands; 2) RS of the HFB signal is associated with lower peak magnitude (PM), lower total responses, and earlier peak responses; and 3) RS effects occur early within initial stages of stimulus processing and persist for the entire stimulus duration. We discuss these findings in the context of early and late components of visual perception, as well as theoretical models of repetition suppression.
Collapse
Affiliation(s)
- Vinitha Rangarajan
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - Corentin Jacques
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Robert T Knight
- Department of Psychology, University of California, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA 94305, USA.,Neurosciences Program, Stanford University, Stanford, CA 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Huang W, Chen X, Jin R, Lau N. Detecting cognitive hacking in visual inspection with physiological measurements. APPLIED ERGONOMICS 2020; 84:103022. [PMID: 31987510 DOI: 10.1016/j.apergo.2019.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/19/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Cyber threats are targeting vulnerabilities of human workers performing tasks in manufacturing processes, including visual inspection to bias their decision-making, thereby sabotaging product quality. This article examines the use of priming as a form of "cognitive hacking" to adversely affect quality inspection decisions in manufacturing, and investigates physiological measurements as means to detect such intrusion. In a within-subject design experiment, twenty participants inspected surface roughness of a manufactured component with and without exposure to priming on the display of an inspection logging system. The results show that the presence of primes impacted accuracy on surface roughness, cortical activities at parietal lobe P4, and eye gaze for inspecting components. The experiment provides supporting evidence that basic hacking of a worker display can be an effective method to alter decision making in inspection. The findings also illustrate that cortical activities and eye gaze can be useful indicators of cognitive hacking. A major implication of the study results is that physiological indicators can be effective at revealing unconscious cognitive influence in visual inspection.
Collapse
Affiliation(s)
- Wenyan Huang
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, USA
| | - Xiaoyu Chen
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, USA
| | - Ran Jin
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, USA
| | - Nathan Lau
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
9
|
Neural dynamics of visual and semantic object processing. PSYCHOLOGY OF LEARNING AND MOTIVATION 2019. [DOI: 10.1016/bs.plm.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Graetz S, Daume J, Friese U, Gruber T. Alterations in oscillatory cortical activity indicate changes in mnemonic processing during continuous item recognition. Exp Brain Res 2018; 237:573-583. [PMID: 30488235 DOI: 10.1007/s00221-018-5439-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/18/2018] [Indexed: 01/09/2023]
Abstract
The classification of repeating stimuli as either old or new is a general mechanism of everyday perception. However, the cortical mechanisms underlying this process are not fully understood. In general, mnemonic processes are thought to rely on changes in oscillatory brain activity across several frequencies as well as their interaction. Lower frequencies, mainly theta-band (3-7 Hz) and alpha-band (8-14 Hz) activity, are attributed to executive control and resource management, respectively; whereas recent studies revealed higher frequencies, e.g. gamma-band (> 25 Hz) activity, to reflect the activation of cortical object representations. Furthermore, low-frequency phase to high-frequency amplitude coupling (PAC) was recently found to coordinate the involved mnemonic networks. To further unravel the processes behind memorization of repeatedly presented stimuli, we applied a continuous item recognition task with up to five presentations per item (mean time between repetitions ~ 10 s) while recording high-density EEG. We examined spectral amplitude modulations as well as PAC. We observed theta amplitudes reaching a peak at second presentation, a reduction of alpha suppression after second presentation, decreased response time, as well as reduced theta-gamma PAC (3 to 7 to - 30 to 45 Hz) at frontal sites after third presentation. We conclude a shift from an explicit- to an implicit-like mnemonic processing, occurring around third presentation, with theta power to signify encoding of repetition-based episodic information and PAC as a neural correlate of the coordination of local neural networks.
Collapse
Affiliation(s)
- Sebastian Graetz
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Neuer Graben 29, 49074, Osnabrück, Germany.
| | - Jonathan Daume
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Uwe Friese
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Neuer Graben 29, 49074, Osnabrück, Germany
| | - Thomas Gruber
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Neuer Graben 29, 49074, Osnabrück, Germany
| |
Collapse
|
11
|
Corlier J, Rimsky-Robert D, Valderrama M, Lehongre K, Adam C, Clémenceau S, Charpier S, Bastin J, Kahane P, Lachaux JP, Navarro V, Le Van Quyen M. Self-induced intracerebral gamma oscillations in the human cortex. Brain 2016; 139:3084-3091. [DOI: 10.1093/brain/aww246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/22/2016] [Accepted: 08/08/2016] [Indexed: 11/13/2022] Open
|
12
|
Oscillatory brain activity during multisensory attention reflects activation, disinhibition, and cognitive control. Sci Rep 2016; 6:32775. [PMID: 27604647 PMCID: PMC5015072 DOI: 10.1038/srep32775] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/28/2016] [Indexed: 11/25/2022] Open
Abstract
In this study, we used a novel multisensory attention paradigm to investigate attention-modulated cortical oscillations over a wide range of frequencies using magnetencephalography in healthy human participants. By employing a task that required the evaluation of the congruence of audio-visual stimuli, we promoted the formation of widespread cortical networks including early sensory cortices as well as regions associated with cognitive control. We found that attention led to increased high-frequency gamma-band activity and decreased lower frequency theta-, alpha-, and beta-band activity in early sensory cortex areas. Moreover, alpha-band coherence decreased in visual cortex. Frontal cortex was found to exert attentional control through increased low-frequency phase synchronisation. Crossmodal congruence modulated beta-band coherence in mid-cingulate and superior temporal cortex. Together, these results offer an integrative view on the concurrence of oscillations at different frequencies during multisensory attention.
Collapse
|
13
|
Craddock M, Martinovic J, Müller MM. Accounting for microsaccadic artifacts in the EEG using independent component analysis and beamforming. Psychophysiology 2015; 53:553-65. [PMID: 26636986 DOI: 10.1111/psyp.12593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
Neuronal activity in the gamma-band range was long considered a marker of object representation. However, scalp-recorded EEG activity in this range is contaminated by a miniature saccade-related muscle artifact. Independent component analysis (ICA) has been proposed as a method of removal of such artifacts. Alternatively, beamforming, a source analysis method in which potential sources of activity across the whole brain are scanned independently through the use of adaptive spatial filters, offers a promising method of accounting for the artifact without relying on its explicit removal. We present here the application of ICA-based correction to a previously published dataset. Then, using beamforming, we examine the effect of ICA correction on the scalp-recorded EEG signal and the extent to which genuine activity is recoverable before and after ICA correction. We find that beamforming attributes much of the scalp-recorded gamma-band signal before correction to deep frontal sources, likely the eye muscles, which generate the artifact related to each miniature saccade. Beamforming confirms that what is removed by ICA is predominantly this artifactual signal, and that what remains after correction plausibly originates in the visual cortex. Thus, beamforming allows researchers to confirm whether their removal procedures successfully removed the artifact. Our results demonstrate that ICA-based correction brings about general improvements in signal-to-noise ratio suggesting it should be used along with, rather than be replaced by, beamforming.
Collapse
Affiliation(s)
- Matt Craddock
- Institute of Psychology, University of Leipzig, Leipzig, Germany.,School of Psychology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
14
|
Allenmark F, Hsu YF, Roussel C, Waszak F. Repetition priming results in sensitivity attenuation. Brain Res 2015; 1626:211-7. [PMID: 25819554 PMCID: PMC4673104 DOI: 10.1016/j.brainres.2015.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 11/28/2022]
Abstract
Repetition priming refers to the change in the ability to perform a task on a stimulus as a consequence of a former encounter with that very same item. Usually, repetition results in faster and more accurate performance. In the present study, we used a contrast discrimination protocol to assess perceptual sensitivity and response bias of Gabor gratings that are either repeated (same orientation) or alternated (different orientation). We observed that contrast discrimination performance is worse, not better, for repeated than for alternated stimuli. In a second experiment, we varied the probability of stimulus repetition, thus testing whether the repetition effect is due to bottom-up or top-down factors. We found that it is top-down expectation that determines the effect. We discuss the implication of these findings for repetition priming and related phenomena as sensory attenuation. This article is part of a Special Issue entitled SI: Prediction and Attention.
Collapse
Affiliation(s)
- Fredrik Allenmark
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France & Centre National de la Recherche Scientifique (CNRS; Laboratoire Psychologie de la Perception, UMR 8242), Paris, France
| | - Yi-Fang Hsu
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France & Centre National de la Recherche Scientifique (CNRS; Laboratoire Psychologie de la Perception, UMR 8242), Paris, France; Department of Educational Psychology and Counselling, National Taiwan Normal University, 10610 Taipei, Taiwan
| | - Cedric Roussel
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France & Centre National de la Recherche Scientifique (CNRS; Laboratoire Psychologie de la Perception, UMR 8242), Paris, France
| | - Florian Waszak
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France & Centre National de la Recherche Scientifique (CNRS; Laboratoire Psychologie de la Perception, UMR 8242), Paris, France.
| |
Collapse
|
15
|
Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia. Biol Psychiatry 2015; 77:1010-9. [PMID: 25847179 DOI: 10.1016/j.biopsych.2015.02.034] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 01/22/2015] [Accepted: 02/24/2015] [Indexed: 12/30/2022]
Abstract
Impairments in working memory (WM) and other cognitive functions are cardinal neuropsychological symptoms in schizophrenia (ScZ). The prefrontal cortex (PFC) is important for mediating and executing these functions. Functional neuroimaging and molecular studies have consistently shown PFC abnormalities in ScZ. In addition, recent studies have suggested that impairments in oscillatory activity, especially in the gamma band (approximately 30-80 Hz), reflect disturbed cortical information processing in this patient group. Here we review evidence that dysfunctional gamma-band responses (GBR) in the PFC could be a factor contributing to WM and other cognitive deficits in ScZ. We provide an overview of noninvasive electrophysiological studies reporting frontal GBR abnormalities in ScZ patients during WM and other cognitive tasks. In agreement with the often-reported hypofrontality in functional neuroimaging studies, the majority of reviewed studies revealed reduced amplitudes or reduced phase locking of GBR over frontal areas in this patient group. Clinical implications derived from these findings and possibilities to foster future studies on GBR abnormalities in ScZ patients, are discussed. Since oscillatory activity in the gamma band has previously been linked to a variety of neurotransmitters, such as the gamma-aminobutyric acid-ergic system, the study of prefrontal GBR could also have implications for pharmacologic approaches in the treatment of WM and other cognitive deficits in ScZ.
Collapse
|
16
|
Pinal D, Zurrón M, Díaz F, Sauseng P. Stuck in default mode: inefficient cross-frequency synchronization may lead to age-related short-term memory decline. Neurobiol Aging 2015; 36:1611-1618. [DOI: 10.1016/j.neurobiolaging.2015.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 11/26/2022]
|
17
|
EEG manifestations of nondual experiences in meditators. Conscious Cogn 2015; 31:1-11. [DOI: 10.1016/j.concog.2014.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/26/2014] [Accepted: 10/01/2014] [Indexed: 11/17/2022]
|
18
|
Ko PC, Duda B, Hussey EP, Mason EJ, Ally BA. The temporal dynamics of visual object priming. Brain Cogn 2014; 91:11-20. [PMID: 25164991 PMCID: PMC4252596 DOI: 10.1016/j.bandc.2014.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 11/24/2022]
Abstract
Priming reflects an important means of learning that is mediated by implicit memory. Importantly, priming occurs for previously viewed objects (item-specific priming) and their category relatives (category-wide priming). Two distinct neural mechanisms are known to mediate priming, including the sharpening of a neural object representation and the retrieval of stimulus-response mappings. Here, we investigated whether the relationship between these neural mechanisms could help explain why item-specific priming generates faster responses than category-wide priming. Participants studied pictures of everyday objects, and then performed a difficult picture identification task while we recorded event-related potentials (ERP). The identification task gradually revealed random line segments of previously viewed items (Studied), category exemplars of previously viewed items (Exemplar), and items that were not previously viewed (Unstudied). Studied items were identified sooner than Unstudied items, showing evidence of item-specific priming, and importantly Exemplar items were also identified sooner than Unstudied items, showing evidence of category-wide priming. Early activity showed sustained neural suppression of parietal activity for both types of priming. However, these neural suppression effects may have stemmed from distinct processes because while category-wide neural suppression was correlated with priming behavior, item-specific neural suppression was not. Late activity, examined with response-locked ERPs, showed additional processes related to item-specific priming including neural suppression in occipital areas and parietal activity that was correlated with behavior. Together, we conclude that item-specific and category-wide priming are mediated by separate, parallel neural mechanisms in the context of the current paradigm. Temporal differences in behavior are determined by the timecourses of these distinct processes.
Collapse
Affiliation(s)
- Philip C Ko
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, United States.
| | - Bryant Duda
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, United States
| | - Erin P Hussey
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, United States
| | - Emily J Mason
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, United States
| | - Brandon A Ally
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, United States; Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, United States; Department of Psychology, Vanderbilt University, Nashville, TN 37232, United States
| |
Collapse
|
19
|
Miozzo M, Pulvermüller F, Hauk O. Early Parallel Activation of Semantics and Phonology in Picture Naming: Evidence from a Multiple Linear Regression MEG Study. Cereb Cortex 2014; 25:3343-55. [PMID: 25005037 PMCID: PMC4585490 DOI: 10.1093/cercor/bhu137] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The time course of brain activation during word production has become an area of increasingly intense investigation in cognitive neuroscience. The predominant view has been that semantic and phonological processes are activated sequentially, at about 150 and 200-400 ms after picture onset. Although evidence from prior studies has been interpreted as supporting this view, these studies were arguably not ideally suited to detect early brain activation of semantic and phonological processes. We here used a multiple linear regression approach to magnetoencephalography (MEG) analysis of picture naming in order to investigate early effects of variables specifically related to visual, semantic, and phonological processing. This was combined with distributed minimum-norm source estimation and region-of-interest analysis. Brain activation associated with visual image complexity appeared in occipital cortex at about 100 ms after picture presentation onset. At about 150 ms, semantic variables became physiologically manifest in left frontotemporal regions. In the same latency range, we found an effect of phonological variables in the left middle temporal gyrus. Our results demonstrate that multiple linear regression analysis is sensitive to early effects of multiple psycholinguistic variables in picture naming. Crucially, our results suggest that access to phonological information might begin in parallel with semantic processing around 150 ms after picture onset.
Collapse
Affiliation(s)
| | - Friedemann Pulvermüller
- Freie Universität Berlin, Berlin, Germany Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, UK
| | - Olaf Hauk
- Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, UK
| |
Collapse
|
20
|
Engell AD, McCarthy G. Repetition suppression of face-selective evoked and induced EEG recorded from human cortex. Hum Brain Mapp 2014; 35:4155-62. [PMID: 24677530 DOI: 10.1002/hbm.22467] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/17/2013] [Accepted: 01/07/2014] [Indexed: 01/02/2023] Open
Abstract
In functional MRI studies, repetition suppression refers to the reduction of hemodynamic activation to repeated stimulus presentation. For example, the repeated presentation of a face reduces the hemodynamic response evoked by faces in the fusiform gyrus. The neural events that underlie repetition suppression are not well understood. Indeed, in contrast to the hemodynamic response, the face-specific N200 recorded from subdural electrodes on the ventral occipitotemporal cortex, primarily along the fusiform gyrus, has been reported to be insensitive to face-identity repetition. We have previously described a face-specific broadband gamma (30-100 Hz) response at ventral face-specific N200 sites that is functionally dissociable from the N200. In this study, we investigate whether gamma and other components of the electroencephalogram spectrum are affected by face-identity repetition independently of the N200. Participants viewed sequentially presented identical faces. At sites on and around the fusiform gyrus, we found that face repetition modulated alpha (8-12 Hz), low-gamma (30-60 Hz), and high-gamma (60-100 Hz) synchrony, but not the N200. These findings provide evidence of a spatially co-localized progression of face processing. Whereas the N200 reflects an initial obligatory response that is less sensitive to face-identity repetition, the subsequent spectral fluctuations reflect more elaborative face processing and are thus sensitive to face novelty. It is notable that the observed modulations were different for different frequency bands. We observed repetition suppression of broadband gamma, but repetition enhancement of alpha synchrony. This difference is discussed with regard to an existing model of repetition suppression and behavioral repetition priming.
Collapse
Affiliation(s)
- Andrew D Engell
- Human Neuroscience Laboratory, Department of Psychology, Yale University, New Haven, Connecticut
| | | |
Collapse
|
21
|
Stimulus repetition modulates gamma-band synchronization in primate visual cortex. Proc Natl Acad Sci U S A 2014; 111:3626-31. [PMID: 24554080 DOI: 10.1073/pnas.1309714111] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When a sensory stimulus repeats, neuronal firing rate and functional MRI blood oxygen level-dependent responses typically decline, yet perception and behavioral performance either stay constant or improve. An additional aspect of neuronal activity is neuronal synchronization, which can enhance the impact of neurons onto their postsynaptic targets independent of neuronal firing rates. We show that stimulus repetition leads to profound changes of neuronal gamma-band (∼40-90 Hz) synchronization. Electrocorticographic recordings in two awake macaque monkeys demonstrated that repeated presentations of a visual grating stimulus resulted in a steady increase of visually induced gamma-band activity in area V1, gamma-band synchronization between areas V1 and V4, and gamma-band activity in area V4. Microelectrode recordings in area V4 of two additional monkeys under the same stimulation conditions allowed a direct comparison of firing rates and gamma-band synchronization strengths for multiunit activity (MUA), as well as for isolated single units, sorted into putative pyramidal cells and putative interneurons. MUA and putative interneurons showed repetition-related decreases in firing rate, yet increases in gamma-band synchronization. Putative pyramidal cells showed no repetition-related firing rate change, but a decrease in gamma-band synchronization for weakly stimulus-driven units and constant gamma-band synchronization for strongly driven units. We propose that the repetition-related changes in gamma-band synchronization maintain the interareal stimulus signaling and sharpen the stimulus representation by gamma-synchronized pyramidal cell spikes.
Collapse
|
22
|
Pammer K. Temporal sampling in vision and the implications for dyslexia. Front Hum Neurosci 2014; 7:933. [PMID: 24596549 PMCID: PMC3925989 DOI: 10.3389/fnhum.2013.00933] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/23/2013] [Indexed: 11/17/2022] Open
Abstract
It has recently been suggested that dyslexia may manifest as a deficit in the neural synchrony underlying language-based codes (Goswami, 2011), such that the phonological deficits apparent in dyslexia occur as a consequence of poor synchronisation of oscillatory brain signals to the sounds of language. There is compelling evidence to support this suggestion, and it provides an intriguing new development in understanding the aetiology of dyslexia. It is undeniable that dyslexia is associated with poor phonological coding, however, reading is also a visual task, and dyslexia has also been associated with poor visual coding, particularly visuo-spatial sensitivity. It has been hypothesized for some time that specific frequency oscillations underlie visual perception. Although little research has been done looking specifically at dyslexia and cortical frequency oscillations, it is possible to draw on converging evidence from visual tasks to speculate that similar deficits could occur in temporal frequency oscillations in the visual domain in dyslexia. Thus, here the plausibility of a visual correlate of the Temporal Sampling Framework is considered, leading to specific hypotheses and predictions for future research. A common underlying neural mechanism in dyslexia, may subsume qualitatively different manifestations of reading difficulty, which is consistent with the heterogeneity of the disorder, and may open the door for a new generation of exciting research.
Collapse
Affiliation(s)
- Kristen Pammer
- The Research School of Psychology, The Australian National University Canberra, ACT, Australia
| |
Collapse
|
23
|
Pammer K. Brain mechanisms and reading remediation: more questions than answers. SCIENTIFICA 2014; 2014:802741. [PMID: 24527259 PMCID: PMC3913493 DOI: 10.1155/2014/802741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/13/2013] [Indexed: 05/30/2023]
Abstract
Dyslexia is generally diagnosed in childhood and is characterised by poor literacy skills with associated phonological and perceptual problems. Compensated dyslexic readers are adult readers who have a documented history of childhood dyslexia but as adults can read and comprehend written text well. Uncompensated dyslexic readers are adults who similarly have a documented history of reading impairment but remain functionally reading-impaired all their lives. There is little understanding of the neurophysiological basis for how or why some children become compensated, while others do not, and there is little knowledge about neurophysiological changes that occur with remedial programs for reading disability. This paper will review research looking at reading remediation, particularly in the context of the underlying neurophysiology.
Collapse
Affiliation(s)
- Kristen Pammer
- The Department of Psychology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
24
|
Matsumoto A, Kakigi R. Subliminal semantic priming changes the dynamic causal influence between the left frontal and temporal cortex. J Cogn Neurosci 2013; 26:165-74. [PMID: 24001009 DOI: 10.1162/jocn_a_00472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- National Institute of Information and Communications Technology, Kobe, Japan
| | | |
Collapse
|
25
|
Capotosto P, Babiloni C, Romani GL, Corbetta M. Resting-state modulation of α rhythms by interference with angular gyrus activity. J Cogn Neurosci 2013; 26:107-19. [PMID: 23937690 DOI: 10.1162/jocn_a_00460] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The default mode network is active during restful wakefulness and suppressed during goal-driven behavior. We hypothesize that inhibitory interference with spontaneous ongoing, that is, not task-driven, activity in the angular gyrus (AG), one of the core regions of the default mode network, will enhance the dominant idling EEG alpha rhythms observed in the resting state. Fifteen right-handed healthy adult volunteers underwent to this study. Compared with sham stimulation, magnetic stimulation (1 Hz for 1 min) over both left and right AG, but not over FEF or intraparietal sulcus, core regions of the dorsal attention network, enhanced the dominant alpha power density (8-10 Hz) in occipitoparietal cortex. Furthermore, right AG-rTMS enhanced intrahemispheric alpha coherence (8-10 Hz). These results suggest that AG plays a causal role in the modulation of dominant low-frequency alpha rhythms in the resting-state condition.
Collapse
|
26
|
Isolating shape from semantics in haptic-visual priming. Exp Brain Res 2013; 227:311-22. [DOI: 10.1007/s00221-013-3489-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/14/2013] [Indexed: 11/26/2022]
|
27
|
Hassler U, Friese U, Martens U, Trujillo-Barreto N, Gruber T. Repetition priming effects dissociate between miniature eye movements and induced gamma-band responses in the human electroencephalogram. Eur J Neurosci 2013; 38:2425-33. [DOI: 10.1111/ejn.12244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Uwe Hassler
- Institute of Psychology; Osnabrück University; Seminarstrasse 20 49074 Osnabrück Germany
| | - Uwe Friese
- Department of Neurophysiology and Pathophysiology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Ulla Martens
- Institute of Psychology; Osnabrück University; Seminarstrasse 20 49074 Osnabrück Germany
| | | | - Thomas Gruber
- Institute of Psychology; Osnabrück University; Seminarstrasse 20 49074 Osnabrück Germany
| |
Collapse
|
28
|
Repetition suppression and effects of familiarity on blood oxygenation level dependent signal and gamma-band activity. Neuroreport 2013; 23:757-61. [PMID: 22850486 DOI: 10.1097/wnr.0b013e328356b173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We used an identical repetition priming paradigm in functional MRI (fMRI) and magnetoencephalography (MEG) to investigate brain networks modulated by stimulus repetition and familiarity. In particular, pictures of familiar or unfamiliar objects were presented sequentially, with stimulus repetitions occurring within few trials. The results of both studies indicated close agreement between the pattern found in fMRI-BOLD (blood oxygenation level dependent) responses and in source localizations of induced gamma-band activity derived from MEG. In both studies, the brain regions that were significantly associated with repetition suppression in response to familiar visual objects encompassed bilaterally the medial and lateral occipital cortex, inferior occipitotemporal regions including the left fusiform cortex, as well as parietal areas. Modulations by stimulus familiarity occurred mainly within this network. Overall, we found noticeable correspondences between the results of fMRI-BOLD signals and MEG gamma-band activity, suggesting that both methods can be used in analogous ways to study the neural basis of repetition priming and object recognition.
Collapse
|
29
|
Friese U, Köster M, Hassler U, Martens U, Trujillo-Barreto N, Gruber T. Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. Neuroimage 2012; 66:642-7. [PMID: 23142278 DOI: 10.1016/j.neuroimage.2012.11.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Although previous studies have established that successful memory encoding is associated with increased synchronization of theta-band and gamma-band oscillations, it is unclear if there is a functional relationship between oscillations in these frequency bands. Using scalp-recorded EEG in healthy human participants, we demonstrate that cross-frequency coupling between frontal theta phase and posterior gamma power is enhanced during the encoding of visual stimuli which participants later on remember versus items which participants subsequently forget ("subsequent memory effect," SME). Conventional wavelet analyses and source localizations revealed SMEs in spectral power of theta-, alpha-, and gamma-band. Successful compared to unsuccessful encoding was reflected in increased theta-band activity in right frontal cortex as well as increased gamma-band activity in parietal-occipital regions. Moreover, decreased alpha-band activity in prefrontal and occipital cortex was also related to successful encoding. Overall, these findings support the idea that during the formation of new memories frontal cortex regions interact with cortical representations in posterior areas.
Collapse
Affiliation(s)
- Uwe Friese
- University Medical Center Hamburg-Eppendorf, Department of Neurophysiology and Pathophysiology, Hamburg, Germany; Institute of Psychology, University of Osnabrueck, Germany.
| | - Moritz Köster
- Institute of Psychology, University of Osnabrueck, Germany; Institute of Cognitive Science, University of Osnabrueck, Germany
| | - Uwe Hassler
- Institute of Psychology, University of Osnabrueck, Germany
| | - Ulla Martens
- Institute of Psychology, University of Osnabrueck, Germany
| | | | - Thomas Gruber
- Institute of Psychology, University of Osnabrueck, Germany
| |
Collapse
|
30
|
False recognition of objects in visual scenes: findings from a combined direct and indirect memory test. Mem Cognit 2012; 41:60-8. [PMID: 22976882 DOI: 10.3758/s13421-012-0242-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report an extension of the procedure devised by Weinstein and Shanks (Memory & Cognition 36:1415-1428, 2008) to study false recognition and priming of pictures. Participants viewed scenes with multiple embedded objects (seen items), then studied the names of these objects and the names of other objects (read items). Finally, participants completed a combined direct (recognition) and indirect (identification) memory test that included seen items, read items, and new items. In the direct test, participants recognized pictures of seen and read items more often than new pictures. In the indirect test, participants' speed at identifying those same pictures was improved for pictures that they had actually studied, and also for falsely recognized pictures whose names they had read. These data provide new evidence that a false-memory induction procedure can elicit memory-like representations that are difficult to distinguish from "true" memories of studied pictures.
Collapse
|
31
|
Martens U, Gruber T. Sharpening and formation: two distinct neuronal mechanisms of repetition priming. Eur J Neurosci 2012; 36:2989-95. [DOI: 10.1111/j.1460-9568.2012.08222.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|