1
|
Shikauchi Y, Uehara K, Okazaki YO, Kitajo K. Electroencephalographic responses before, during, and after upper limb paired associative stimulation. Data Brief 2025; 60:111467. [PMID: 40226202 PMCID: PMC11986603 DOI: 10.1016/j.dib.2025.111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Paired associative stimulation (PAS) is a non-invasive protocol involving repeated stimulus pairs to activate two cortical areas alternately, inducing Hebbian-like plasticity. However, its neurophysiological impacts remain unclear. To determine the changes that occur in the brain during PAS, brain activity during PAS must be measured and distinguished from the electromagnetic artifacts produced by the stimulation. Here, we present a novel dataset of electroencephalography (EEG) measurements during PAS with an inter-stimulus-interval of 25 ms (PAS25, expected to induce long-term potentiation-like changes) or 35 ms (PAS35, no expected change). This dataset includes raw data and pre-processed data with electromagnetic artefacts removed. The right ulnar nerve's electrical stimulation preceded transcranial magnetic stimulation to the left primary motor cortex in both cases. EEG was measured before and after the PAS sessions, with only electrical or magnetic stimulation. To demonstrate the quality of the data, we summarize the stability of the stimulation site and the event-related potentials before, during, and after PAS. This dataset will enable observing brain dynamics due to the accumulation of stimulations during PAS and differences in responsiveness to stimulations before and after PAS.
Collapse
Affiliation(s)
- Yumi Shikauchi
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
- Graduate School of Arts and Science, Department of General Systems Studies, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazumasa Uehara
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Neural Information Dynamics Laboratory, Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Yuka O. Okazaki
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Keiichi Kitajo
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
2
|
Therrien-Blanchet JM, Ferland MC, Badri M, Rousseau MA, Merabtine A, Boucher E, Hofmann LH, Boré A, Descoteaux M, Lepage JF, Théoret H. Multimodal response-predictor analysis for three non-invasive brain stimulation protocols. Brain Res 2025; 1850:149372. [PMID: 39645141 DOI: 10.1016/j.brainres.2024.149372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Non-invasive brain stimulation (NIBS) methods such as paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are used to modulate cortical excitability and reduce symptoms in a variety of psychiatric disorders. Recent studies have shown significant inter-individual variability in the physiological response to these techniques when they are applied over the hand representation of primary motor cortex (M1hand). The goal of the present study was to identify neurophysiological, neuroanatomical, and neurochemical baseline characteristics that may predict response to commonly used NIBS protocols using data from a previously published study (Therrien-Blanchet et al., 2023). To this end, PAS, anodal tDCS, and 20-Hz tACS were administered to healthy participants in a repeated measures design. Pre/Post differences in transcranial magnetic stimulation-induced input-output curves were used to quantify changes in corticospinal excitability. Primary predictors were late I-wave latency, cortical thickness (CT) of M1hand, and fractional anisotropy of the corticospinal tract (CSThand) originating from M1hand. Secondary exploratory analysis was performed with CT in areas outside motor cortex, diffusion MRI (dMRI) metrics of the CSThand, magnetic resonance spectroscopy measurements of GABA, glutamate, and n-acetyl aspartate of M1hand, baseline corticospinal excitability, and cranial circumference. Multiple regression analysis showed that none of the primary variables predicted intervention outcome for any of the NIBS protocols. Exploratory analysis revealed no significant correlation between predictor variables and PAS outcome. tDCS and tACS were significantly correlated with some baseline measures. These data suggest that modulation of cortical excitability following several NIBS protocols may not be easily predicted by baseline characteristics, underscoring the need for a better understanding of their mechanism of action. Significant exploratory associations need to be confirmed in larger samples and confirmatory designs.
Collapse
Affiliation(s)
| | | | - Meriem Badri
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | | | - Amira Merabtine
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Emelie Boucher
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Lydia Helena Hofmann
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Arnaud Boré
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke, Centre de Recherche du CHU Sherbrooke, Sherbrooke, Canada
| | - Hugo Théoret
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Ji Y, Yang C, Pang X, Yan Y, Wu Y, Geng Z, Hu W, Hu P, Wu X, Wang K. Repetitive transcranial magnetic stimulation in Alzheimer's disease: effects on neural and synaptic rehabilitation. Neural Regen Res 2025; 20:326-342. [PMID: 38819037 PMCID: PMC11317939 DOI: 10.4103/nrr.nrr-d-23-01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis. The Alzheimer's disease brain tends to be hyperexcitable and hypersynchronized, thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life, leaving patients incapacitated. Repetitive transcranial magnetic stimulation is a cost-effective, neuro-modulatory technique used for multiple neurological conditions. Over the past two decades, it has been widely used to predict cognitive decline; identify pathophysiological markers; promote neuroplasticity; and assess brain excitability, plasticity, and connectivity. It has also been applied to patients with dementia, because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult. However, its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies. This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment, evaluate its effects on synaptic plasticity, and identify the associated mechanisms. This review essentially focuses on changes in the pathology, amyloidogenesis, and clearance pathways, given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer's disease. Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription, which are closely related to the neural regeneration process, are also highlighted. Finally, we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation, with the aim to highlight future directions for better clinical translations.
Collapse
Affiliation(s)
- Yi Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Chaoyi Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xuerui Pang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Yibing Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Yue Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Wenjie Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
4
|
Brisson V, Tremblay P. Assessing the Impact of Transcranial Magnetic Stimulation on Speech Perception in Noise. J Cogn Neurosci 2024; 36:2184-2207. [PMID: 39023366 DOI: 10.1162/jocn_a_02224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Healthy aging is associated with reduced speech perception in noise (SPiN) abilities. The etiology of these difficulties remains elusive, which prevents the development of new strategies to optimize the speech processing network and reduce these difficulties. The objective of this study was to determine if sublexical SPiN performance can be enhanced by applying TMS to three regions involved in processing speech: the left posterior temporal sulcus, the left superior temporal gyrus, and the left ventral premotor cortex. The second objective was to assess the impact of several factors (age, baseline performance, target, brain structure, and activity) on post-TMS SPiN improvement. The results revealed that participants with lower baseline performance were more likely to improve. Moreover, in older adults, cortical thickness within the target areas was negatively associated with performance improvement, whereas this association was null in younger individuals. No differences between the targets were found. This study suggests that TMS can modulate sublexical SPiN performance, but that the strength and direction of the effects depend on a complex combination of contextual and individual factors.
Collapse
Affiliation(s)
- Valérie Brisson
- Université Laval, School of Rehabilitation Sciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Pascale Tremblay
- Université Laval, School of Rehabilitation Sciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| |
Collapse
|
5
|
Hamzei F, Ritter A, Pohl K, Stäps P, Wieduwild E. Different Effect Sizes of Motor Skill Training Combined with Repetitive Transcranial versus Trans-Spinal Magnetic Stimulation in Healthy Subjects. Brain Sci 2024; 14:165. [PMID: 38391739 PMCID: PMC10887384 DOI: 10.3390/brainsci14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is used to enhance motor training (MT) performance. The use of rTMS is limited under certain conditions, such as after a stroke with severe damage to the corticospinal tract. This raises the question as to whether repetitive trans-spinal magnetic stimulation (rSMS) can also be used to improve MT. A direct comparison of the effect size between rTMS and rSMS on the same MT is still lacking. Before conducting the study in patients, we determined the effect sizes of different stimulation approaches combined with the same motor training in healthy subjects. Two experiments (E1 and E2) with 96 subjects investigated the effect size of combining magnetic stimulation with the same MT. In E1, high-frequency rTMS, rSMS, and spinal sham stimulation (sham-spinal) were applied once in combination with MT, while one group only received the same MT (without stimulation). In E2, rTMS, rSMS, and sham-spinal were applied in combination with MT over several days. In all subjects, motor tests and motor-evoked potentials were evaluated before and after the intervention period. rTMS had the greatest effect on MT, followed by rSMS and then sham-spinal. Daily stimulation resulted in additional training gains. This study suggests that rSMS increases excitability and also enhances MT performance. This current study provides a basis for further research to discover whether patients who cannot be treated effectively with rTMS would benefit from rSMS.
Collapse
Affiliation(s)
- Farsin Hamzei
- Section of Neurological Rehabilitation, Hans-Berger-Hospital of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Department of Neurology, Moritz Klinik, Hermann-Sachse-Straße 46, 07639 Bad Klosterlausnitz, Germany
| | - Alexander Ritter
- Section of Neurological Rehabilitation, Hans-Berger-Hospital of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Kristin Pohl
- Section of Neurological Rehabilitation, Hans-Berger-Hospital of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Department of Neurology, Moritz Klinik, Hermann-Sachse-Straße 46, 07639 Bad Klosterlausnitz, Germany
| | - Peggy Stäps
- Department of Neurology, Moritz Klinik, Hermann-Sachse-Straße 46, 07639 Bad Klosterlausnitz, Germany
| | - Eric Wieduwild
- Section of Neurological Rehabilitation, Hans-Berger-Hospital of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Department of Neurology, Moritz Klinik, Hermann-Sachse-Straße 46, 07639 Bad Klosterlausnitz, Germany
| |
Collapse
|
6
|
Dinse HR, Höffken O, Tegenthoff M. Cortical excitability in human somatosensory and visual cortex: implications for plasticity and learning - a minireview. Front Hum Neurosci 2023; 17:1235487. [PMID: 37662638 PMCID: PMC10469727 DOI: 10.3389/fnhum.2023.1235487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The balance of excitation and inhibition plays a key role in plasticity and learning. A frequently used, reliable approach to assess intracortical inhibition relies on measuring paired-pulse behavior. Moreover, recent developments of magnetic resonance spectroscopy allows measuring GABA and glutamate concentrations. We give an overview about approaches employed to obtain information about excitatory states in human participants and discuss their putative relation. We summarize paired-pulse techniques and basic findings characterizing paired-pulse suppression in somatosensory (SI) and (VI) visual areas. Paired-pulse suppression describes the effect of paired sensory stimulation at short interstimulus intervals where the cortical response to the second stimulus is significantly suppressed. Simultaneous assessments of paired-pulse suppression in SI and VI indicated that cortical excitability is not a global phenomenon, but instead reflects the properties of local sensory processing. We review studies using non-invasive brain stimulation and perceptual learning experiments that assessed both perceptual changes and accompanying changes of cortical excitability in parallel. Independent of the nature of the excitation/inhibition marker used these data imply a close relationship between altered excitability and altered performance. These results suggest a framework where increased or decreased excitability is linked with improved or impaired perceptual performance. Recent findings have expanded the potential role of cortical excitability by demonstrating that inhibition markers such as GABA concentrations, paired-pulse suppression or alpha power predict to a substantial degree subsequent perceptual learning outcome. This opens the door for a targeted intervention where subsequent plasticity and learning processes are enhanced by altering prior baseline states of excitability.
Collapse
|
7
|
Schapira G, Chang J, Kim Y, Ngo JP, Deblieck C, Bianco V, Edwards DJ, Dobkin BH, Wu AD, Iacoboni M. Intraclass Correlation in Paired Associative Stimulation and Metaplasticity. NEUROSCI 2022; 3:589-603. [PMID: 39483766 PMCID: PMC11523748 DOI: 10.3390/neurosci3040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 11/03/2024] Open
Abstract
Paired associative stimulation (PAS) is a widely used noninvasive brain stimulation protocol to assess neural plasticity. Its reproducibility, however, has been rarely tested and with mixed results. With two consecutive studies, we aimed to provide further tests and a more systematic assessment of PAS reproducibility. We measured intraclass correlation coefficients (ICCs)-a widely used tool to assess whether groups of measurements resemble each other-in two PAS studies on healthy volunteers. The first study included five PAS sessions recording 10 MEPS every 10 min for an hour post-PAS. The second study included two PAS sessions recording 50 MEPS at 20 and 50 min post-PAS, based on analyses from the first study. In both studies PAS sessions were spaced one week apart. Within sessions ICC was fair to excellent for both studies, yet between sessions ICC was poor for both studies. We suggest that long term meta-plasticity effects (longer than one week) may interfere with between sessions reproducibility.
Collapse
Affiliation(s)
- Giuditta Schapira
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Justin Chang
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yeun Kim
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jacqueline P. Ngo
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Choi Deblieck
- Antwerp Management School, University of Antwerp, 2000 Antwerpen, Belgium
| | - Valentina Bianco
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00185 Rome, Italy
| | - Dylan J. Edwards
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
| | - Bruce H. Dobkin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Allan D. Wu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Marco Iacoboni
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Ceccanti M, Cambieri C, Libonati L, Tartaglia G, Moret F, Garibaldi M, Inghilleri M. Effects of Skin Stimulation on Sensory-Motor Networks Excitability: Possible Implications for Physical Training in Amyotrophic Lateral Sclerosis. Front Neurol 2022; 13:868792. [PMID: 35693021 PMCID: PMC9174685 DOI: 10.3389/fneur.2022.868792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMany different trials were assessed for rehabilitation of patients with amyotrophic lateral sclerosis (ALS), with non-unique results. Beside the effects on muscle trophism, some of the encouraging results of physical training could be ascribed to the modulation of cortical excitability, which was found hyperexcited in ALS.ObjectiveThe effects of tactile skin stimulation in the modulation of the sensory-motor integrative networks in healthy subjects were assayed through the paired associative stimulation (PAS) protocol.MethodsIn total, 15 healthy subjects were enrolled. In the standard PAS session, the average amplitude of the motor evoked potential (MEP) after 10 stimuli of transcranial magnetic stimulation (TMS) was measured at the baseline and after the PAS protocol (0, 10, 20, 30, and 60 min). In the skin stimulation session, the average amplitude of the MEP was measured before and after 10 min of skin stimulation over the hand. Subsequently, each subject underwent the PAS stimulation and the measure of the average amplitude of the MEP (0, 10, 20, 30, and 60 min).ResultsThe tactile skin stimulation on healthy subjects increases the PAS-induced sensory-motor network hyperexcitability in healthy subjects.ConclusionSkin stimulation should be avoided in the physiotherapeutic approaches for patients with ALS, given the possible hyperexciting effects on the already upmodulated sensory-motor networks. They can be taken into account for diseases characterized by downregulation of cortical and transcortical networks.
Collapse
Affiliation(s)
- Marco Ceccanti
- Department of Human Neuroscience, Center for Rare Neuromuscular Diseases, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
- *Correspondence: Marco Ceccanti
| | - Chiara Cambieri
- Department of Human Neuroscience, Center for Rare Neuromuscular Diseases, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Laura Libonati
- Department of Human Neuroscience, Center for Rare Neuromuscular Diseases, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giorgio Tartaglia
- Department of Human Neuroscience, Center for Rare Neuromuscular Diseases, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federica Moret
- Department of Human Neuroscience, Center for Rare Neuromuscular Diseases, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Matteo Garibaldi
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Neuromuscular and Rare Disease Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Maurizio Inghilleri
- Department of Human Neuroscience, Center for Rare Neuromuscular Diseases, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Schmaußer M, Hoffmann S, Raab M, Laborde S. The effects of noninvasive brain stimulation on heart rate and heart rate variability: A systematic review and meta-analysis. J Neurosci Res 2022; 100:1664-1694. [PMID: 35582757 DOI: 10.1002/jnr.25062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 12/30/2022]
Abstract
Noninvasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are widely used to test the involvement of specific cortical regions in various domains such as cognition and emotion. Despite the capability of stimulation techniques to test causal directions, this approach has been only sparsely used to examine the cortical regulation of autonomic nervous system (ANS) functions such as heart rate (HR) and heart rate variability (HRV) and to test current models in this regard. In this preregistered (PROSPERO) systematic review and meta-analysis, we aimed to investigate, based on meta-regression, whether NIBS represents an effective method for modulating HR and HRV measures, and to evaluate whether the ANS is modulated by cortical mechanisms affected by NIBS. Here we have adhered to the PRISMA guidelines. In a series of four meta-analyses, a total of 131 effect sizes from 35 sham-controlled trials were analyzed using robust variance estimation random-effects meta-regression technique. NIBS was found to effectively modulate HR and HRV with small to medium effect sizes. Moderator analyses yielded significant differences in effects between stimulation of distinct cortical areas. Our results show that NIBS is a promising tool to investigate the cortical regulation of ANS, which may add to the existing brain imaging and animal study literature. Future research is needed to identify further factors modulating the size of effects. As many of the studies reviewed were found to be at high risk of bias, we recommend that methods to reduce potential risk of bias be used in the design and conduct of future studies.
Collapse
Affiliation(s)
| | - Sven Hoffmann
- Institute of Psychology, University of Hagen, Hagen, Germany
| | - Markus Raab
- Institute of Psychology, German Sport University, Cologne, Germany.,School of Applied Sciences, London South Bank University, London, UK
| | - Sylvain Laborde
- Institute of Psychology, German Sport University, Cologne, Germany.,UFR STAPS, EA 4260, Université de Caen Normandie, Caen, France
| |
Collapse
|
10
|
Suppa A, Asci F, Guerra A. Transcranial magnetic stimulation as a tool to induce and explore plasticity in humans. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:73-89. [PMID: 35034759 DOI: 10.1016/b978-0-12-819410-2.00005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activity-dependent synaptic plasticity is the main theoretical framework to explain mechanisms of learning and memory. Synaptic plasticity can be explored experimentally in animals through various standardized protocols for eliciting long-term potentiation and long-term depression in hippocampal and cortical slices. In humans, several non-invasive protocols of repetitive transcranial magnetic stimulation and transcranial direct current stimulation have been designed and applied to probe synaptic plasticity in the primary motor cortex, as reflected by long-term changes in motor evoked potential amplitudes. These protocols mimic those normally used in animal studies for assessing long-term potentiation and long-term depression. In this chapter, we first discuss the physiologic basis of theta-burst stimulation, paired associative stimulation, and transcranial direct current stimulation. We describe the current biophysical and theoretical models underlying the molecular mechanisms of synaptic plasticity and metaplasticity, defined as activity-dependent changes in neural functions that modulate subsequent synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), in the human motor cortex including calcium-dependent plasticity, spike-timing-dependent plasticity, the role of N-methyl-d-aspartate-related transmission and gamma-aminobutyric-acid interneuronal activity. We also review the putative microcircuits responsible for synaptic plasticity in the human motor cortex. We critically readdress the issue of variability in studies investigating synaptic plasticity and propose available solutions. Finally, we speculate about the utility of future studies with more advanced experimental approaches.
Collapse
Affiliation(s)
- Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy.
| | | | | |
Collapse
|
11
|
Christiansen L, Siebner HR. Tools to explore neuroplasticity in humans: Combining interventional neurophysiology with functional and structural magnetic resonance imaging and spectroscopy. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:105-119. [PMID: 35034728 DOI: 10.1016/b978-0-12-819410-2.00032-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This chapter summarizes how brain imaging can be used in combination with non-invasive transcranial stimulation to probe and induce neuroplasticity in the human brain. We aim to give a conceptual account and highlight exemplary studies. We showcase the scientific and clinical potentials of studies focusing on the combination of transcranial magnetic stimulation (TMS) with Magnetic Resonance Imaging (MRI) or Magnetic Resonance Spectroscopy (MRS). MRI and MRS can be used before brain stimulation to identify target networks and loci but also to inform individual dosing. After a brain stimulation session, MRI and MRS can be used to pinpoint how the stimulation protocol alters brain function, structure, or metabolism and relate these after-effects to behavioral and clinical outcomes. Complementing these "offline" approaches, TMS can also be applied "online" during MRI or MRS to delineate how stimulation acutely engages the stimulated brain regions and networks. In this case, it is critical to account for confounds introduced by off-target stimulation of peripheral structures of the nervous system that may not only confound MR-based readouts but also induce neuroplastic phenomena.
Collapse
Affiliation(s)
- Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Sasaki R, Kojima S, Onishi H. Do Brain-Derived Neurotrophic Factor Genetic Polymorphisms Modulate the Efficacy of Motor Cortex Plasticity Induced by Non-invasive Brain Stimulation? A Systematic Review. Front Hum Neurosci 2021; 15:742373. [PMID: 34650418 PMCID: PMC8505675 DOI: 10.3389/fnhum.2021.742373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Techniques of non-invasive brain stimulation (NIBS) of the human primary motor cortex (M1) are widely used in basic and clinical research to induce neural plasticity. The induction of neural plasticity in the M1 may improve motor performance ability in healthy individuals and patients with motor deficit caused by brain disorders. However, several recent studies revealed that various NIBS techniques yield high interindividual variability in the response, and that the brain-derived neurotrophic factor (BDNF) genotype (i.e., Val/Val and Met carrier types) may be a factor contributing to this variability. Here, we conducted a systematic review of all published studies that investigated the effects of the BDNF genotype on various forms of NIBS techniques applied to the human M1. The motor-evoked potential (MEP) amplitudes elicited by single-pulse transcranial magnetic stimulation (TMS), which can evaluate M1 excitability, were investigated as the main outcome. A total of 1,827 articles were identified, of which 17 (facilitatory NIBS protocol, 27 data) and 10 (inhibitory NIBS protocol, 14 data) were included in this review. More than two-thirds of the data (70.4–78.6%) on both NIBS protocols did not show a significant genotype effect of NIBS on MEP changes. Conversely, most of the remaining data revealed that the Val/Val type is likely to yield a greater MEP response after NIBS than the Met carrier type in both NIBS protocols (21.4–25.9%). Finally, to aid future investigation, we discuss the potential effect of the BDNF genotype based on mechanisms and methodological issues.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
13
|
Kishore A, James P, Popa T, Thejaus A, Rajeswari P, Sarma G, Krishnan S, Meunier S. Plastic responsiveness of motor cortex to paired associative stimulation depends on cerebellar input. Clin Neurophysiol 2021; 132:2493-2502. [PMID: 34454278 DOI: 10.1016/j.clinph.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The extent of plastic responses of motor cortex (M1) to paired associative stimulation (PAS) varies among healthy subjects. Continuous theta-burst stimulation (cTBS) of cerebellum enhances the mean PAS-induced plasticity in groups of healthy subjects. We tested whether the initial status of Responder or Non -Responder to PAS, influenced the effect of cerebellar stimulation on PAS-induced plasticity. METHODS We assessed in 19 young healthy volunteers (8 Responders, 11 Non-Responders to PAS), how cTBS and iTBS (intermittent TBS) applied to the cerebellum before a PAS protocol influenced the plastic responsiveness of M1 to PAS. We tested whether the PAS-induced plastic effects could be depotentiated by a short cTBS protocol applied to M1 shortly after PAS and whether cerebellar stimulation influenced GABA-ergic intracortical inhibition and M1 plasticity in parallel. RESULTS Cerebellar cTBS restored the M1 response to PAS in Non-Responders while cerebellar iTBS turned the potentiating response to PAS to a depressive response in both groups. The depotentiation protocol abolished both responses. CONCLUSION Non-Responder status to PAS is a state of M1 amenable to bidirectional plastic modulation when primed by a change in cerebello-thalamic drive. SIGNIFICANCE The meaning of lack of responsiveness to certain protocols probing plasticity should be reconsidered.
Collapse
Affiliation(s)
- Asha Kishore
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India.
| | - Praveen James
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Arun Thejaus
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Parvathy Rajeswari
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Gangadhara Sarma
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Sabine Meunier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelleépinière, ICM, F-75013 Paris, France
| |
Collapse
|
14
|
Altered motor cortical plasticity in patients with hepatic encephalopathy: A paired associative stimulation study. Clin Neurophysiol 2021; 132:2332-2341. [PMID: 34454259 DOI: 10.1016/j.clinph.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatic encephalopathy (HE) is a potentially reversible brain dysfunction caused by liver failure. Altered synaptic plasticity is supposed to play a major role in the pathophysiology of HE. Here, we used paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), a transcranial magnetic stimulation (TMS) protocol, to test synaptic plasticity of the motor cortex in patients with manifest HE. METHODS 23 HE-patients and 23 healthy controls were enrolled in the study. Motor evoked potential (MEP) amplitudes were assessed as measure for cortical excitability. Time courses of MEP amplitude changes after the PAS25 intervention were compared between both groups. RESULTS MEP-amplitudes increased after PAS25 in the control group, indicating PAS25-induced synaptic plasticity in healthy controls, as expected. In contrast, MEP-amplitudes within the HE group did not change and were lower than in the control group, indicating no induction of plasticity. CONCLUSIONS Our study revealed reduced synaptic plasticity of the primary motor cortex in HE. SIGNIFICANCE Reduced synaptic plasticity in HE provides a link between pathological changes on the molecular level and early clinical symptoms of the disease. This decrease may be caused by disturbances in the glutamatergic neurotransmission due to the known hyperammonemia in HE patients.
Collapse
|
15
|
Age-related changes in motor cortex plasticity assessed with non-invasive brain stimulation: an update and new perspectives. Exp Brain Res 2021; 239:2661-2678. [PMID: 34269850 DOI: 10.1007/s00221-021-06163-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
It is commonly accepted that the brains capacity to change, known as plasticity, declines into old age. Recent studies have used a variety of non-invasive brain stimulation (NIBS) techniques to examine this age-related decline in plasticity in the primary motor cortex (M1), but the effects seem inconsistent and difficult to unravel. The purpose of this review is to provide an update on studies that have used different NIBS techniques to assess M1 plasticity with advancing age and offer some new perspective on NIBS strategies to boost plasticity in the ageing brain. We find that early studies show clear differences in M1 plasticity between young and older adults, but many recent studies with motor training show no decline in use-dependent M1 plasticity with age. For NIBS-induced plasticity in M1, some protocols show more convincing differences with advancing age than others. Therefore, our view from the NIBS literature is that it should not be automatically assumed that M1 plasticity declines with age. Instead, the effects of age are likely to depend on how M1 plasticity is measured, and the characteristics of the elderly population tested. We also suggest that NIBS performed concurrently with motor training is likely to be most effective at producing improvements in M1 plasticity and motor skill learning in older adults. Proposed NIBS techniques for future studies include combining multiple NIBS protocols in a co-stimulation approach, or NIBS strategies to modulate intracortical inhibitory mechanisms, in an effort to more effectively boost M1 plasticity and improve motor skill learning in older adults.
Collapse
|
16
|
Freedberg M, Cunningham CA, Fioriti CM, Murillo J, Reeves JA, Taylor PA, Sarlls JE, Wassermann EM. Multiple parietal pathways are associated with rTMS-induced hippocampal network enhancement and episodic memory changes. Neuroimage 2021; 237:118199. [PMID: 34033914 DOI: 10.1016/j.neuroimage.2021.118199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) of the inferior parietal cortex (IPC) increases resting-state functional connectivity (rsFC) of the hippocampus with the precuneus and other posterior cortical areas and causes proportional improvement of episodic memory. The anatomical pathway(s) responsible for the propagation of these effects from the IPC is unknown and may not be direct. In order to assess the relative contributions of candidate pathways from the IPC to the MTL via the parahippocampal cortex and precuneus, to the effects of rTMS on rsFC and memory improvement, we used diffusion tensor imaging to measure the extent to which individual differences in fractional anisotropy (FA) in these pathways accounted for individual differences in response. FA in the IPC-parahippocampal pathway and several MTL pathways predicted changes in rsFC. FA in both parahippocampal and hippocampal pathways was related to changes in episodic, but not procedural, memory. These results implicate pathways to the MTL in the enhancing effect of parietal rTMS on hippocampal rsFC and memory.
Collapse
Affiliation(s)
- Michael Freedberg
- Behavioral Neurology Unit, NINDS, 9000 Rockville Pike, 10 Center Drive, Rm. 7-5659, Bethesda 20892, MD, USA.
| | - Catherine A Cunningham
- Behavioral Neurology Unit, NINDS, 9000 Rockville Pike, 10 Center Drive, Rm. 7-5659, Bethesda 20892, MD, USA
| | - Cynthia M Fioriti
- Behavioral Neurology Unit, NINDS, 9000 Rockville Pike, 10 Center Drive, Rm. 7-5659, Bethesda 20892, MD, USA.
| | - Jorge Murillo
- Behavioral Neurology Unit, NINDS, 9000 Rockville Pike, 10 Center Drive, Rm. 7-5659, Bethesda 20892, MD, USA.
| | - Jack A Reeves
- Behavioral Neurology Unit, NINDS, 9000 Rockville Pike, 10 Center Drive, Rm. 7-5659, Bethesda 20892, MD, USA.
| | - Paul A Taylor
- Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, MD, USA.
| | | | - Eric M Wassermann
- Behavioral Neurology Unit, NINDS, 9000 Rockville Pike, 10 Center Drive, Rm. 7-5659, Bethesda 20892, MD, USA.
| |
Collapse
|
17
|
Zulkifly MFM, Merkohitaj O, Paulus W, Brockmöller J. The roles of caffeine and corticosteroids in modulating cortical excitability after paired associative stimulation (PAS) and transcranial alternating current stimulation (tACS) in caffeine-naïve and caffeine-adapted subjects. Psychoneuroendocrinology 2021; 127:105201. [PMID: 33740589 DOI: 10.1016/j.psyneuen.2021.105201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022]
Abstract
The modulatory effects of non-invasive brain stimulation (NIBS) are highly variable between subjects. This variability may be due to uncontrolled caffeine consumption and circadian rhythms. Therefore, here we studied if caffeine consumption, systemically available caffeine measured in saliva, and daytime have effects on the excitability and plasticity of the motor cortex. Since both, time of the day and caffeine may mediate their effects via cortisol, we also quantified corticosteroids in saliva. Experiment 1 was performed in caffeine-naïve participants (n = 30) and compared the effects of PAS or tACS with different stimulation intensities on the motor cortex with or without caffeine 200 mg administered in a double-blind fashion. Experiment 2 was performed in regular caffeine consumers (n = 30) and compared the influence of time of day on the effects of tACS (true or sham) on the motor cortex also with or without caffeine administered in a double-blind fashion. Caffeine increased the saliva corticosteroid concentrations in both experimental groups, and corticosteroid concentrations were higher in the morning in caffeine consumers. Gender also affected corticosteroid concentrations. There was a positive correlation between caffeine concentrations and baseline cortical excitability in caffeine-adapted participants, and a negative correlation between poststimulation caffeine concentrations and motor evoked potential (MEP) amplitudes after sham stimulation in caffeine-naïve subjects. No correlations were found between poststimulation caffeine or corticosteroid concentrations, and plasticity aftereffects. PAS and tACS did not elicit changes in the corticosteroid concentrations. We conclude that moderate caffeine consumption alters cortical excitability but not plasticity aftereffects. This study was registered in the ClinicalTrials.gov with these registration IDs: 1) NCT03720665 https://clinicaltrials.gov/ct2/results?cond=NCT03720665&term=&cntry=&state=&city=&dist= 2) NCT04011670 https://clinicaltrials.gov/ct2/results?cond=&term=NCT04011670&cntry=&state=&city=&dist=.
Collapse
Affiliation(s)
- Mohd Faizal Mohd Zulkifly
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany; Brain and Behaviour Cluster, Department of Neurosciences, School of Medical Science, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
| | - Ornela Merkohitaj
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, Germany
| |
Collapse
|
18
|
Clinical and Functional Connectivity Outcomes of 5-Hz Repetitive Transcranial Magnetic Stimulation as an Add-on Treatment in Cocaine Use Disorder: A Double-Blind Randomized Controlled Trial. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:745-757. [PMID: 33508499 DOI: 10.1016/j.bpsc.2021.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cocaine use disorder (CUD) is a global condition lacking effective treatment. Repetitive transcranial magnetic stimulation (rTMS) may reduce craving and frequency of cocaine use, but little is known about its efficacy and neural effects. We sought to elucidate short- and long-term clinical benefits of 5-Hz rTMS as an add-on to standard treatment in patients with CUD and discern underlying functional connectivity effects using magnetic resonance imaging. METHODS A total of 44 patients with CUD were randomly assigned to complete the 2-week double-blind randomized controlled trial (acute phase) (sham [n = 20, 2 female] and active [n = 24, 4 female]), in which they received two daily sessions of rTMS on the left dorsolateral prefrontal cortex (PFC). Subsequently, 20 patients with CUD continued to an open-label maintenance phase for 6 months (two weekly sessions for up to 6 mo). RESULTS rTMS plus standard treatment for 2 weeks significantly reduced craving (baseline: 3.9 ± 3.6; 2 weeks: 1.5 ± 2.4, p = .013, d = 0.77) and impulsivity (baseline: 64.8 ± 16.8; 2 weeks: 53.1 ± 17.4, p = .011, d = 0.79) in the active group. We also found increased functional connectivity between the left dorsolateral PFC and ventromedial PFC and between the ventromedial PFC and right angular gyrus. Clinical and functional connectivity effects were maintained for 3 months, but they dissipated by 6 months. We did not observe reduction in positive results for cocaine in urine; however, self-reported frequency and grams consumed for 6 months were reduced. CONCLUSIONS With this randomized controlled trial, we show that 5-Hz rTMS has potential promise as an adjunctive treatment for CUD and merits further research.
Collapse
|
19
|
Guerra A, Asci F, Zampogna A, D'Onofrio V, Petrucci S, Ginevrino M, Berardelli A, Suppa A. Gamma-transcranial alternating current stimulation and theta-burst stimulation: inter-subject variability and the role of BDNF. Clin Neurophysiol 2020; 131:2691-2699. [DOI: 10.1016/j.clinph.2020.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
|
20
|
Pellegrini M, Zoghi M, Jaberzadeh S. A Checklist to Reduce Response Variability in Studies Using Transcranial Magnetic Stimulation for Assessment of Corticospinal Excitability: A Systematic Review of the Literature. Brain Connect 2020; 10:53-71. [PMID: 32093486 DOI: 10.1089/brain.2019.0715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Response variability between individuals (interindividual variability) and within individuals (intraindividual variability) is an important issue in the transcranial magnetic stimulation (TMS) literature. This has raised questions of the validity of TMS to assess changes in corticospinal excitability (CSE) in a predictable and reliable manner. Several participant-specific factors contribute to this observed response variability with a current lack of consensus on the degree each factor contributes. This highlights a need for consistency and structure in reporting study designs and methodologies. Currently, there is no summarized review of the participant-specific factors that can be controlled and may contribute to response variability. This systematic review aimed to develop a checklist of methodological measures taken by previously published research to increase the homogeneity of participant selection criteria, preparation of participants before experimental testing, participant scheduling, and the instructions given to participants throughout experimental testing to minimize their effect on response variability. Seven databases were searched in full. Studies were included if CSE was measured via TMS and included methodological measures to increase the homogeneity of the participants. Eighty-four studies were included. Twenty-three included measures to increase participant selection homogeneity, 21 included measures to increase participant preparation homogeneity, while 61 included measures to increase participant scheduling and instructions during experimental testing homogeneity. These methodological measures were summarized into a user-friendly checklist with considerations, suggestions, and rationale/justification for their inclusion. This may provide the framework for further insights into ways to reduce response variability in TMS research.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, Discipline of Physiotherapy, School of Allied Health, La Trobe University, Melbourne, Victoria, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Puonti O, Van Leemput K, Saturnino GB, Siebner HR, Madsen KH, Thielscher A. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling. Neuroimage 2020; 219:117044. [PMID: 32534963 PMCID: PMC8048089 DOI: 10.1016/j.neuroimage.2020.117044] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
Transcranial brain stimulation (TBS) has been established as a method for modulating and mapping the function of the human brain, and as a potential treatment tool in several brain disorders. Typically, the stimulation is applied using a one-size-fits-all approach with predetermined locations for the electrodes, in electric stimulation (TES), or the coil, in magnetic stimulation (TMS), which disregards anatomical variability between individuals. However, the induced electric field distribution in the head largely depends on anatomical features implying the need for individually tailored stimulation protocols for focal dosing. This requires detailed models of the individual head anatomy, combined with electric field simulations, to find an optimal stimulation protocol for a given cortical target. Considering the anatomical and functional complexity of different brain disorders and pathologies, it is crucial to account for the anatomical variability in order to translate TBS from a research tool into a viable option for treatment. In this article we present a new method, called CHARM, for automated segmentation of fifteen different head tissues from magnetic resonance (MR) scans. The new method compares favorably to two freely available software tools on a five-tissue segmentation task, while obtaining reasonable segmentation accuracy over all fifteen tissues. The method automatically adapts to variability in the input scans and can thus be directly applied to clinical or research scans acquired with different scanners, sequences or settings. We show that an increase in automated segmentation accuracy results in a lower relative error in electric field simulations when compared to anatomical head models constructed from reference segmentations. However, also the improved segmentations and, by implication, the electric field simulations are affected by systematic artifacts in the input MR scans. As long as the artifacts are unaccounted for, this can lead to local simulation differences up to 30% of the peak field strength on reference simulations. Finally, we exemplarily demonstrate the effect of including all fifteen tissue classes in the field simulations against the standard approach of using only five tissue classes and show that for specific stimulation configurations the local differences can reach 10% of the peak field strength.
Collapse
Affiliation(s)
- Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Koen Van Leemput
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA
| | - Guilherme B Saturnino
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
22
|
Guidali G, Carneiro MI, Bolognini N. Paired Associative Stimulation drives the emergence of motor resonance. Brain Stimul 2020; 13:627-636. [DOI: 10.1016/j.brs.2020.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 01/30/2020] [Indexed: 11/25/2022] Open
|
23
|
Langenbach BP, Baumgartner T, Cazzoli D, Müri RM, Knoch D. Inhibition of the right dlPFC by theta burst stimulation does not alter sustainable decision-making. Sci Rep 2019; 9:13852. [PMID: 31554883 PMCID: PMC6761266 DOI: 10.1038/s41598-019-50322-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/05/2019] [Indexed: 11/25/2022] Open
Abstract
Intergenerational sustainability is probably humankind’s most pressing challenge, exacerbated by the fact that the present generation has to incur costs in order to benefit future generations. However, people often fail to restrict their consumption, despite reporting strong pro-environmental attitudes. Recent theorising sees self-control processes as key component of sustainable decision-making and correlational studies support this view, yet causal evidence is lacking. Using TMS, we here disrupted an area known to be involved in self-control processes, the right dorsolateral prefrontal cortex (dlPFC), to provide causal evidence as to whether diminished self-control leads to less intergenerational sustainability. Participants then engaged in a behavioural economic paradigm to measure sustainable decision-making towards the next generation. This adequately powered study could not find an effect of inhibiting the right dlPFC on intergenerational sustainability. This result holds when controlling for a number of relevant covariates like gender, trait self-control, pro-environmental attitudes, or cortical thickness at the stimulation site. We seek to explain this result methodologically and theoretically, and speculate about other brain areas that could be more strongly related to intergenerational sustainability, e.g. the mentalising network.
Collapse
Affiliation(s)
- Benedikt P Langenbach
- University of Bern, Institute of Psychology, Department of Social Psychology and Social Neuroscience, Fabrikstrasse 8, 3012, Bern, Switzerland
| | - Thomas Baumgartner
- University of Bern, Institute of Psychology, Department of Social Psychology and Social Neuroscience, Fabrikstrasse 8, 3012, Bern, Switzerland
| | - Dario Cazzoli
- University Hospital Bern, Department of Neurology, University Neurorehabilitation, Freiburgstrasse 10, 3010, Bern, Switzerland.,Bern University Hospital and University of Bern, Department of Neurology, University Neurorehabilitation, Freiburgstrasse 10, Bern, Switzerland.,University of Bern, ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, Murtenstrasse 50, Bern, Switzerland
| | - René M Müri
- University Hospital Bern, Department of Neurology, University Neurorehabilitation, Freiburgstrasse 10, 3010, Bern, Switzerland.,Bern University Hospital and University of Bern, Department of Neurology, University Neurorehabilitation, Freiburgstrasse 10, Bern, Switzerland.,University of Bern, ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, Murtenstrasse 50, Bern, Switzerland
| | - Daria Knoch
- University of Bern, Institute of Psychology, Department of Social Psychology and Social Neuroscience, Fabrikstrasse 8, 3012, Bern, Switzerland.
| |
Collapse
|
24
|
Minkova L, Peter J, Abdulkadir A, Schumacher LV, Kaller CP, Nissen C, Klöppel S, Lahr J. Determinants of Inter-Individual Variability in Corticomotor Excitability Induced by Paired Associative Stimulation. Front Neurosci 2019; 13:841. [PMID: 31474818 PMCID: PMC6702284 DOI: 10.3389/fnins.2019.00841] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a well-established tool in probing cortical plasticity in vivo. Changes in corticomotor excitability can be induced using paired associative stimulation (PAS) protocol, in which TMS over the primary motor cortex is conditioned with an electrical peripheral nerve stimulation of the contralateral hand. PAS with an inter-stimulus interval of 25 ms induces long-term potentiation (LTP)-like effects in cortical excitability. However, the response to a PAS protocol tends to vary substantially across individuals. In this study, we used univariate and multivariate data-driven methods to investigate various previously proposed determinants of inter-individual variability in PAS efficacy, such as demographic, cognitive, clinical, neurophysiological, and neuroimaging measures. Forty-one right-handed participants, comprising 22 patients with amnestic mild cognitive impairment (MCI) and 19 healthy controls (HC), underwent the PAS protocol. Prior to stimulation, demographic, genetic, clinical, as well as structural and resting-state functional MRI data were acquired. The two groups did not differ in any of the variables, except by global cognitive status. Univariate analysis showed that only 61% of all participants were classified as PAS responders, irrespective of group membership. Higher PAS response was associated with lower TMS intensity and with higher resting-state connectivity within the sensorimotor network, but only in responders, as opposed to non-responders. We also found an overall positive correlation between PAS response and structural connectivity within the corticospinal tract, which did not differ between groups. A multivariate random forest (RF) model identified age, gender, education, IQ, global cognitive status, sleep quality, alertness, TMS intensity, genetic factors, and neuroimaging measures (functional and structural connectivity, gray matter (GM) volume, and cortical thickness as poor predictors of PAS response. The model resulted in low accuracy of the RF classifier (58%; 95% CI: 42 - 74%), with a higher relative importance of brain connectivity measures compared to the other variables. We conclude that PAS variability in our sample was not well explained by factors known to influence PAS efficacy, emphasizing the need for future replication studies.
Collapse
Affiliation(s)
- Lora Minkova
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jessica Peter
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Ahmed Abdulkadir
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Lena V Schumacher
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph P Kaller
- Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Neuroradiology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Nissen
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University Hospital of Psychiatry and Psychotherapy, University Psychiatric Services, University of Bern, Bern, Switzerland.,Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Center for Geriatrics and Gerontology Freiburg, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jacob Lahr
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Motor-cortex excitability and response variability following paired-associative stimulation: a proof-of-concept study comparing individualized and fixed inter-stimulus intervals. Exp Brain Res 2019; 237:1727-1734. [DOI: 10.1007/s00221-019-05542-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
|
26
|
Filmer HL, Ehrhardt SE, Shaw TB, Mattingley JB, Dux PE. The efficacy of transcranial direct current stimulation to prefrontal areas is related to underlying cortical morphology. Neuroimage 2019; 196:41-48. [PMID: 30978491 DOI: 10.1016/j.neuroimage.2019.04.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 11/28/2022] Open
Abstract
Applying a weak electrical current to the cortex can have effects on a range of behaviours. Techniques such as transcranial direct current stimulation (tDCS) have been widely used in both research and clinical settings. However, there is significant variability across individuals in terms of their responsiveness to stimulation, which poses practical challenges to the application of tDCS, but also provides a unique opportunity to study the link between the brain and behaviour. Here, we assessed the role of individual differences in cortical morphology - specifically in prefrontal cortical regions of interest - for determining the influence of tDCS on decision-making performance. Specifically, we employed magnetic resonance imaging (MRI) and a previously replicated paradigm in which we modulated learning in a simple decision-making task by applying tDCS to the left prefrontal cortex in human subjects of both sexes. Cortical thickness of the left (but not right) prefrontal cortex accounted for almost 35% of the variance in stimulation efficacy across subjects. This is the first demonstration that variations in cortical architecture are associated with reliable differences in the effects of tDCS on cognition. Our findings have important implications for predicting the likely efficacy of different non-invasive brain stimulation treatments on a case by case basis.
Collapse
Affiliation(s)
- Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, 4072, Australia.
| | - Shane E Ehrhardt
- School of Psychology, The University of Queensland, St Lucia, 4072, Australia
| | - Thomas B Shaw
- Centre for Advanced Imaging, The University of Queensland, St Lucia, 4072, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, St Lucia, 4072, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, 4072, Australia; Canadian Institute for Advanced Research, Canada
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
27
|
Functional and structural asymmetry in primary motor cortex in Asperger syndrome: a navigated TMS and imaging study. Brain Topogr 2019; 32:504-518. [PMID: 30949863 PMCID: PMC6477009 DOI: 10.1007/s10548-019-00704-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/25/2019] [Indexed: 12/27/2022]
Abstract
Motor functions are frequently impaired in Asperger syndrome (AS). In this study, we examined the motor cortex structure and function using navigated transcranial magnetic stimulation (nTMS) and voxel-based morphometry (VBM) and correlated the results with the box and block test (BBT) of manual dexterity and physical activity in eight boys with AS, aged 8–11 years, and their matched controls. With nTMS, we found less focused cortical representation areas of distinct hand muscles in AS. There was hemispheric asymmetry in the motor maps, silent period duration and active MEP latency in the AS group, but not in controls. Exploratory VBM analysis revealed less gray matter in the left postcentral gyrus, especially in the face area, and less white matter in the precentral area in AS as compared to controls. On the contrary, in the right leg area, subjects with AS displayed an increased density of gray matter. The structural findings of the left hemisphere correlated negatively with BBT score in controls, whereas the structure of the right hemisphere in the AS group correlated positively with motor function as assessed by BBT. These preliminary functional (neurophysiological and behavioral) findings are indicative of asymmetry, and co-existing structural alterations may reflect the motor impairments causing the deteriorations in manual dexterity and other motor functions commonly encountered in children with AS.
Collapse
|
28
|
Ovadia-Caro S, Khalil AA, Sehm B, Villringer A, Nikulin VV, Nazarova M. Predicting the Response to Non-invasive Brain Stimulation in Stroke. Front Neurol 2019; 10:302. [PMID: 31001190 PMCID: PMC6454031 DOI: 10.3389/fneur.2019.00302] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/11/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Smadar Ovadia-Caro
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed A. Khalil
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, The Ministry of Healthcare of the Russian Federation, Federal State Budget Institution, Moscow, Russia
| |
Collapse
|
29
|
Brickwedde M, Krüger MC, Dinse HR. Somatosensory alpha oscillations gate perceptual learning efficiency. Nat Commun 2019; 10:263. [PMID: 30651567 PMCID: PMC6335466 DOI: 10.1038/s41467-018-08012-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Cognition and perception are closely coupled to alpha power, but whether there is a link between alpha power and perceptual learning efficacy is unknown. Here we show that somatosensory alpha power can be successfully up- and down-regulated with short-term neurofeedback training, which in turn controls subsequent tactile perceptual learning. We find that neurofeedback-induced increases in alpha power lead to enhanced learning, whereas reductions in alpha power impede learning. As a consequence, interindividual learning variability is substantially reduced. No comparable impact is observed for oscillatory power in theta, beta, and lower gamma frequency bands. Our results demonstrate that high pre-learning alpha levels are a requirement for reaching high learning efficiency. These data provide further evidence that alpha oscillations shape the functional architecture of the brain network by gating neural resources and thereby modulating levels of preparedness for upcoming processing.
Collapse
Affiliation(s)
- Marion Brickwedde
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, 44780, Bochum, Germany
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Marie C Krüger
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, 44780, Bochum, Germany
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Hubert R Dinse
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, 44780, Bochum, Germany.
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany.
| |
Collapse
|
30
|
Abstract
OBJECTIVE Chronic pain disorder (CPD) has been associated with brain changes, especially in limbic circuits. However, in most patients with chronic pain, depression or anxiety is a common comorbidity. In this exploratory and naturalistic study, we investigated brain cortical thickness (CTh) differences between patients with CPD and healthy controls, with consideration of concurrent psychiatric symptoms. METHODS Twenty-three patients with CPD and 23 age- and sex-matched healthy volunteers were included in this study. CTh was estimated using Freesurfer on high-resolution three-dimensional T1-weighted images acquired with a 3T scanner. Group differences were investigated using an analysis of covariance model that included age, sex, and Beck Depression Inventory I and Trait Anxiety Inventory scores as covariates. The relationship between CTh and Toronto Alexithymia Scale (TAS-20) scores was also investigated in patients. Data were corrected for multiplicity using the False Discovery Rate approach (q < .05). RESULTS The comparison between groups using demographics and Beck Depression Inventory I scores as covariates showed thinner cortex in patients compared with controls, after correction for multiplicity in the left precentral (F(1,42) = 21.9, p < .05) and postcentral gyri (F(1,42) = 26.9, p < .05) and in the left inferior temporal sulcus (F(1,42) = 19.6, p < .05). Moreover, using the Trait Anxiety Inventory as covariate, a trend toward significance (p < .001 uncorrected) was seen for the left precentral gyrus (F(1,42) = 13.8), right middle frontal (F(1,42) = 14.3) and inferior parietal gyri (F(1,42) = 13.4), and right anterior temporal pole (F(1,42) = 15.9). CONCLUSIONS The results indicate that brain morphological differences between patients with chronic pain disorder and healthy controls are localized to regions that correspond to sensory as well as affective dimensions of pain processing.
Collapse
|
31
|
Dayan E, López-Alonso V, Liew SL, Cohen LG. Distributed cortical structural properties contribute to motor cortical excitability and inhibition. Brain Struct Funct 2018; 223:3801-3812. [DOI: 10.1007/s00429-018-1722-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 07/20/2018] [Indexed: 01/03/2023]
|
32
|
Ferris JK, Neva JL, Francisco BA, Boyd LA. Bilateral Motor Cortex Plasticity in Individuals With Chronic Stroke, Induced by Paired Associative Stimulation. Neurorehabil Neural Repair 2018; 32:671-681. [DOI: 10.1177/1545968318785043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: In the chronic phase after stroke, cortical excitability differs between the cerebral hemispheres; the magnitude of this asymmetry depends on degree of motor impairment. It is unclear whether these asymmetries also affect capacity for plasticity in corticospinal tract excitability or whether hemispheric differences in plasticity are related to chronic sensorimotor impairment. Methods: Response to paired associative stimulation (PAS) was assessed bilaterally in 22 individuals with chronic hemiparesis. Corticospinal excitability was measured as the area under the motor-evoked potential (MEP) recruitment curve (AUC) at baseline, 5 minutes, and 30 minutes post-PAS. Percentage change in contralesional AUC was calculated and correlated with paretic motor and somatosensory impairment scores. Results: PAS induced a significant increase in AUC in the contralesional hemisphere ( P = .041); in the ipsilesional hemisphere, there was no significant effect of PAS ( P = .073). Contralesional AUC showed significantly greater change in individuals without an ipsilesional MEP ( P = .029). Percentage change in contralesional AUC between baseline and 5 m post-PAS correlated significantly with FM score ( r = −0.443; P = .039) and monofilament thresholds ( r = 0.444, P = .044). Discussion: There are differential responses to PAS within each cerebral hemisphere. Contralesional plasticity was increased in individuals with more severe hemiparesis, indicated by both the absence of an ipsilesional MEP and a greater degree of motor and somatosensory impairment. These data support a body of research showing compensatory changes in the contralesional hemisphere after stroke; new therapies for individuals with chronic stroke could exploit contralesional plasticity to help restore function.
Collapse
Affiliation(s)
| | - Jason L. Neva
- University of British Columbia, Vancouver, BC, Canada
| | | | - Lara A. Boyd
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Ceccanti M, Onesti E, Rubino A, Cambieri C, Tartaglia G, Miscioscia A, Frasca V, Inghilleri M. Modulation of human corticospinal excitability by paired associative stimulation in patients with amyotrophic lateral sclerosis and effects of Riluzole. Brain Stimul 2018; 11:775-781. [DOI: 10.1016/j.brs.2018.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
|
34
|
Gallasch E, Rafolt D, Postruznik M, Fresnoza S, Christova M. Decrease of motor cortex excitability following exposure to a 20 Hz magnetic field as generated by a rotating permanent magnet. Clin Neurophysiol 2018; 129:1397-1402. [PMID: 29729595 DOI: 10.1016/j.clinph.2018.03.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/14/2018] [Accepted: 03/30/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Rotation of a static magnet over the motor cortex (MC) generates a transcranial alternating magnetic field (tAMF), and a linked alternating electrical field. The aim of this transcranial magnetic stimulation (TMS) study is to investigate whether such fields are able to influence MC excitability, and whether there are parallels to tACS induced effects. METHODS Fourteen healthy volunteers received 20 Hz tAMF stimulation over the MC, over the vertex, and 20 Hz tACS over the MC, each with a duration of 15 min. TMS assessments were performed before and after the interventions. Changes in motor evoked potentials (MEP), short interval intra-cortical inhibition (SICI) and intra-cortical facilitation (ICF) were evaluated. RESULTS The tACS and the tAMF stimulation over the MC affected cortical excitability in a different way. After tAMF stimulation MEP amplitudes and ICF decreased and the effect of SICI increased. After tACS MEP amplitudes increased and there were no effects on SICI and ICF. CONCLUSIONS The recorded single and paired pulse MEPs indicate a general decrease of MC excitability following 15 min of tAMF stimulation. SIGNIFICANCE The effects demonstrate that devices based on rotating magnets are potentially suited to become a novel brain stimulation tool in clinical neurophysiology.
Collapse
Affiliation(s)
- Eugen Gallasch
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Austria.
| | - Dietmar Rafolt
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Magdalena Postruznik
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Austria
| | | | - Monica Christova
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Austria; Institute of Physiotherapy, University of Applied Sciences FH-Joanneum, Graz, Austria
| |
Collapse
|
35
|
Structural changes in brain morphology induced by brief periods of repetitive sensory stimulation. Neuroimage 2018; 165:148-157. [DOI: 10.1016/j.neuroimage.2017.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/25/2017] [Accepted: 10/08/2017] [Indexed: 01/29/2023] Open
|
36
|
Dinse HR, Tegenthoff M. Repetitive Sensory Stimulation—A Canonical Approach to Control the Induction of Human Learning at a Behavioral and Neural Level. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00021-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Raffin E, Hummel FC. Restoring Motor Functions After Stroke: Multiple Approaches and Opportunities. Neuroscientist 2017; 24:400-416. [DOI: 10.1177/1073858417737486] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
More than 1.5 million people suffer a stroke in Europe per year and more than 70% of stroke survivors experience limited functional recovery of their upper limb, resulting in diminished quality of life. Therefore, interventions to address upper-limb impairment are a priority for stroke survivors and clinicians. While a significant body of evidence supports the use of conventional treatments, such as intensive motor training or constraint-induced movement therapy, the limited and heterogeneous improvements they allow are, for most patients, usually not sufficient to return to full autonomy. Various innovative neurorehabilitation strategies are emerging in order to enhance beneficial plasticity and improve motor recovery. Among them, robotic technologies, brain-computer interfaces, or noninvasive brain stimulation (NIBS) are showing encouraging results. These innovative interventions, such as NIBS, will only provide maximized effects, if the field moves away from the “one-fits all” approach toward a “patient-tailored” approach. After summarizing the most commonly used rehabilitation approaches, we will focus on NIBS and highlight the factors that limit its widespread use in clinical settings. Subsequently, we will propose potential biomarkers that might help to stratify stroke patients in order to identify the individualized optimal therapy. We will discuss future methodological developments, which could open new avenues for poststroke rehabilitation, toward more patient-tailored precision medicine approaches and pathophysiologically motivated strategies.
Collapse
Affiliation(s)
- Estelle Raffin
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
38
|
Suppa A, Quartarone A, Siebner H, Chen R, Di Lazzaro V, Del Giudice P, Paulus W, Rothwell J, Ziemann U, Classen J. The associative brain at work: Evidence from paired associative stimulation studies in humans. Clin Neurophysiol 2017; 128:2140-2164. [DOI: 10.1016/j.clinph.2017.08.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 12/25/2022]
|
39
|
Changes in spectroscopic biomarkers after transcranial direct current stimulation in children with perinatal stroke. Brain Stimul 2017; 11:94-103. [PMID: 28958737 DOI: 10.1016/j.brs.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Perinatal stroke causes lifelong motor disability, affecting independence and quality of life. Non-invasive neuromodulation interventions such as transcranial direct current stimulation (tDCS) combined with intensive therapy may improve motor function in adult stroke hemiparesis but is under-explored in children. Measuring cortical metabolites with proton magnetic resonance spectroscopy (MRS) can inform cortical neurobiology in perinatal stroke but how these change with neuromodulation is yet to be explored. METHODS A double-blind, sham-controlled, randomized clinical trial tested whether tDCS could enhance intensive motor learning therapy in hemiparetic children. Ten days of customized, goal-directed therapy was paired with cathodal tDCS over contralesional primary motor cortex (M1, 20 min, 1.0 mA, 0.04 mA/cm2) or sham. Motor outcomes were assessed using validated measures. Neuronal metabolites in both M1s were measured before and after intervention using fMRI-guided short-echo 3T MRS. RESULTS Fifteen children [age(range) = 12.1(6.6-18.3) years] were studied. Motor performance improved in both groups and tDCS was associated with greater goal achievement. After cathodal tDCS, the non-lesioned M1 showed decreases in glutamate/glutamine and creatine while no metabolite changes occurred with sham tDCS. Lesioned M1 metabolite concentrations did not change post-intervention. Baseline function was highly correlated with lesioned M1 metabolite concentrations (N-acetyl-aspartate, choline, creatine, glutamate/glutamine). These correlations consistently increased in strength following intervention. Metabolite changes were not correlated with motor function change. Baseline lesioned M1 creatine and choline levels were associated with clinical response. CONCLUSIONS MRS metabolite levels and changes may reflect mechanisms of tDCS-related M1 plasticity and response biomarkers in hemiparetic children with perinatal stroke undergoing intensive neurorehabilitation.
Collapse
|
40
|
Rosso C, Perlbarg V, Valabregue R, Obadia M, Kemlin-Méchin C, Moulton E, Leder S, Meunier S, Lamy JC. Anatomical and functional correlates of cortical motor threshold of the dominant hand. Brain Stimul 2017; 10:952-958. [PMID: 28551318 DOI: 10.1016/j.brs.2017.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Resting Motor threshold (rMT) provides information about cortical motor excitability. Interestingly, the influences of the structural or functional variability of the motor system on the rMT inter-individual variability have been poorly investigated. OBJECTIVE/HYPOTHESIS To investigate relationships between rMT and measures of brain structures and function of the motor system. The hypothesis is that cortical excitability not only depends on the primary motor cortex (M1) but also on the integration of information originating from its vicinity such as premotor (PMd and SMA) and post-central (S1) cortices. METHODS We measured brain structures, including grey and white matter properties (cortical volume and fiber coherence respectively), and functional interaction (resting-state functional connectivity-FC) in areas contributing to the corticospinal tract axons, i. e, M1, S1, SMA and PMd in the dominant hemisphere of 21 healthy subjects. RESULTS The rMT was inversely correlated with the FC between PMd and M1 (r = -0.496, 95%CI: -0.764; -0.081; p = 0.02) and the grey matter volume of the dominant hemisphere (r = -0.463, 95%CI: -0.746; -0.039; p = 0.03). The multiple regression analysis model retained the FC between M1 and PMd (coefficient: -25 ± 9) as well as the grey matter volume of the dominant hemisphere (coefficient: -0.15 ± 0.06) explaining 44% of the variance of the rMT (p: 0.005). When adding age and coil-to-cortex distance, two factors known to influence rMT, the model reached a R2 of 75% (p: 0.0001). CONCLUSIONS These results underline the major role of the PMd and the cortico-cortical connections toward M1 in the excitation of the corticospinal fibers likely through trans-synaptic pathways.
Collapse
Affiliation(s)
- Charlotte Rosso
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France; AP-HP, Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, F-75013, Paris, France.
| | - Vincent Perlbarg
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'imagerie biomédicale (LIB), F-75013, Paris, France; Bioinformatics and Biostatistics Core Facility, iCONICS, IHU-A-ICM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Romain Valabregue
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France; Centre de Neuro-imagerie de Recherche, CENIR, F-75013, Paris, France
| | - Mickaël Obadia
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France; AP-HP, Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Claire Kemlin-Méchin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Eric Moulton
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Sara Leder
- AP-HP, Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Sabine Meunier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Jean-Charles Lamy
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France; Centre de Neuro-imagerie de Recherche, CENIR, F-75013, Paris, France
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. RECENT FINDINGS Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain stimulation. Trait-related and state-related determinants contribute to this variability, challenging the standard approach to apply stimulation in a rigid, one-size-fits-all fashion. Several strategies have been identified to reduce variability and maximize the plasticity-inducing effects of noninvasive transcranial brain stimulation. Priming interventions or paired associative stimulation can be used to 'standardize' the brain-state and hereby, homogenize the group response to stimulation. Neuroanatomical and neurochemical profiling based on magnetic resonance imaging and spectroscopy can capture trait-related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified rules. In contrast, adaptive closed-loop stimulation dynamically adjusts stimulation settings based on the occurrence of stimulation-induced state changes. SUMMARY Approaches that take into account trait-related and state-related determinants of stimulation-induced plasticity bear considerable potential to establish noninvasive transcranial brain stimulation as interventional therapeutic tool.
Collapse
|
42
|
Hartwright CE, Hardwick RM, Apperly IA, Hansen PC. Resting state morphology predicts the effect of theta burst stimulation in false belief reasoning. Hum Brain Mapp 2016; 37:3502-14. [PMID: 27195942 DOI: 10.1002/hbm.23255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 04/07/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022] Open
Abstract
When required to represent a perspective that conflicts with one's own, functional magnetic resonance imaging (fMRI) suggests that the right ventrolateral prefrontal cortex (rvlPFC) supports the inhibition of that conflicting self-perspective. The present task dissociated inhibition of self-perspective from other executive control processes by contrasting belief reasoning-a cognitive state where the presence of conflicting perspectives was manipulated-with a conative desire state wherein no systematic conflict existed. Linear modeling was used to examine the effect of continuous theta burst stimulation (cTBS) to rvlPFC on participants' reaction times in belief and desire reasoning. It was anticipated that cTBS applied to rvlPFC would affect belief but not desire reasoning, by modulating activity in the Ventral Attention System (VAS). We further anticipated that this effect would be mediated by functional connectivity within this network, which was identified using resting state fMRI and an unbiased model-free approach. Simple reaction-time analysis failed to detect an effect of cTBS. However, by additionally modeling individual measures from within the stimulated network, the hypothesized effect of cTBS to belief (but, importantly, not desire) reasoning was demonstrated. Structural morphology within the stimulated region, rvlPFC, and right temporoparietal junction were demonstrated to underlie this effect. These data provide evidence that inconsistencies found with cTBS can be mediated by the composition of the functional network that is being stimulated. We suggest that the common claim that this network constitutes the VAS explains the effect of cTBS to this network on false belief reasoning. Hum Brain Mapp 37:3502-3514, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Charlotte E Hartwright
- Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom.,Centre for Behavioural Brain Sciences, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Robert M Hardwick
- Centre for Behavioural Brain Sciences, School of Psychology, University of Birmingham, Birmingham, United Kingdom.,Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Ian A Apperly
- Centre for Behavioural Brain Sciences, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Peter C Hansen
- Centre for Behavioural Brain Sciences, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
43
|
Wischnewski M, Schutter DJ. Efficacy and time course of paired associative stimulation in cortical plasticity: Implications for neuropsychiatry. Clin Neurophysiol 2016; 127:732-739. [PMID: 26024981 DOI: 10.1016/j.clinph.2015.04.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/16/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022]
|
44
|
Bhandari A, Voineskos D, Daskalakis ZJ, Rajji TK, Blumberger DM. A Review of Impaired Neuroplasticity in Schizophrenia Investigated with Non-invasive Brain Stimulation. Front Psychiatry 2016; 7:45. [PMID: 27065890 PMCID: PMC4810231 DOI: 10.3389/fpsyt.2016.00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/09/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Several lines of evidence implicate dysfunctional neuronal plasticity in the pathophysiology of schizophrenia (SCZ). Aberrant glutamatergic and gamma amino--butyric acid neurotransmission are thought to underlie core cognitive deficits and negative symptoms of SCZ. Non-invasive brain stimulation (NIBS) allows for the in vivo study of cortical plasticity and excitability at the systems level of the human motor cortex. This review will focus on summarizing the available neurophysiological evidence for impaired motor cortical plasticity in SCZ assessed by NIBS. METHODS A search of MEDLINE, Embase, and PubMed was performed on the use of NIBS techniques to investigate neuroplasticity in the motor cortex of SCZ patients. The relevant articles were summarized. CONCLUSION Our review of the literature reveals evidence for disrupted neuroplasticity in SCZ and its close association to alterations in cortical inhibition and dysfunctional intracortical connectivity. Further investigations are required to elucidate the neurobiological mechanisms that underlie dysfunctional plasticity in SCZ in order to develop more targeted therapeutic interventions for SCZ patients.
Collapse
Affiliation(s)
- Apoorva Bhandari
- Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, University of Toronto , Toronto, ON , Canada
| | - Daphne Voineskos
- Department of Psychiatry, Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, University of Toronto , Toronto, ON , Canada
| | - Zafiris J Daskalakis
- Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, University of Toronto , Toronto, ON , Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, University of Toronto , Toronto, ON , Canada
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
45
|
Heba S, Puts NAJ, Kalisch T, Glaubitz B, Haag LM, Lenz M, Dinse HR, Edden RAE, Tegenthoff M, Schmidt-Wilcke T. Local GABA Concentration Predicts Perceptual Improvements After Repetitive Sensory Stimulation in Humans. Cereb Cortex 2015; 26:1295-301. [PMID: 26637451 PMCID: PMC4737612 DOI: 10.1093/cercor/bhv296] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Learning mechanisms are based on synaptic plasticity processes. Numerous studies on synaptic plasticity suggest that the regulation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a central role maintaining the delicate balance of inhibition and excitation. However, in humans, a link between learning outcome and GABA levels has not been shown so far. Using magnetic resonance spectroscopy of GABA prior to and after repetitive tactile stimulation, we show here that baseline GABA+ levels predict changes in perceptual outcome. Although no net changes in GABA+ are observed, the GABA+ concentration prior to intervention explains almost 60% of the variance in learning outcome. Our data suggest that behavioral effects can be predicted by baseline GABA+ levels, which provide new insights into the role of inhibitory mechanisms during perceptual learning.
Collapse
Affiliation(s)
- Stefanie Heba
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-0006, USA F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Tobias Kalisch
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany Institute for Neuroinformatics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Benjamin Glaubitz
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Lauren M Haag
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Melanie Lenz
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Hubert R Dinse
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany Institute for Neuroinformatics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-0006, USA F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Tobias Schmidt-Wilcke
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| |
Collapse
|
46
|
Polimanti R, Simonelli I, Zappasodi F, Ventriglia M, Pellicciari MC, Benussi L, Squitti R, Rossini PM, Tecchio F. Biological factors and age-dependence of primary motor cortex experimental plasticity. Neurol Sci 2015; 37:211-8. [PMID: 26445942 DOI: 10.1007/s10072-015-2388-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/25/2015] [Indexed: 12/23/2022]
Abstract
To evaluate whether the age-dependence of brain plasticity correlates with the levels of proteins involved in hormone and brain functions we executed a paired associative stimulation (PAS) protocol and blood tests. We measured the PAS-induced plasticity in the primary motor cortex. Blood levels of the brain-derived neurotrophic factor (BDNF), estradiol, the insulin-like growth factor (IGF)-1, the insulin-like growth factor binding protein (IGFBP)-3, progesterone, sex hormone-binding globulin (SHBG), testosterone, and the transforming growth factor beta 1 (TGF-β1) were determined in 15 healthy men and 20 healthy women. We observed an age-related reduction of PAS-induced plasticity in females that it is not present in males. In females, PAS-induced plasticity displayed a correlation with testosterone (p = 0.006) that became a trend after the adjustment for the age effect (p = 0.078). In males, IGF-1 showed a nominally significant correlation with the PAS-induced plasticity (p = 0.043). In conclusion, we observed that hormone blood levels (testosterone in females and IGF-1 in males) may be involved in the age-dependence of brain plasticity.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
| | - Ilaria Simonelli
- Department of Imaging and Neurodegeneration Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
- Medical Statistics and Information Technology and Department of Neuroscience, Fatebenefratelli Foundation, AFaR Division, Fatebenefratelli Hospital-Isola Tiberina, Rome, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
- Institute of Advanced Biomedical Technologies, University "G. d'Annunzio", Chieti, Italy
| | - Mariacarla Ventriglia
- Medical Statistics and Information Technology and Department of Neuroscience, Fatebenefratelli Foundation, AFaR Division, Fatebenefratelli Hospital-Isola Tiberina, Rome, Italy
| | - Maria Concetta Pellicciari
- Cognitive Neuroscience Section and Molecular Markers Laboratory, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Cognitive Neuroscience Section and Molecular Markers Laboratory, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosanna Squitti
- Department of Imaging and Neurodegeneration Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
- Medical Statistics and Information Technology and Department of Neuroscience, Fatebenefratelli Foundation, AFaR Division, Fatebenefratelli Hospital-Isola Tiberina, Rome, Italy
| | - Paolo Maria Rossini
- Department of Imaging and Neurodegeneration Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
- Institute of Neurology, Catholic University, Rome, Italy
| | - Franca Tecchio
- Department of Imaging and Neurodegeneration Laboratory, IRCCS San Raffaele Pisana, Rome, Italy.
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
47
|
Rodríguez-Herreros B, Amengual JL, Gurtubay-Antolín A, Richter L, Jauer P, Erdmann C, Schweikard A, López-Moliner J, Rodríguez-Fornells A, Münte TF. Microstructure of the superior longitudinal fasciculus predicts stimulation-induced interference with on-line motor control. Neuroimage 2015; 120:254-65. [DOI: 10.1016/j.neuroimage.2015.06.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/01/2022] Open
|
48
|
Bringing transcranial mapping into shape: Sulcus-aligned mapping captures motor somatotopy in human primary motor hand area. Neuroimage 2015; 120:164-75. [PMID: 26188259 DOI: 10.1016/j.neuroimage.2015.07.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/15/2015] [Accepted: 07/03/2015] [Indexed: 01/28/2023] Open
Abstract
Motor representations express some degree of somatotopy in human primary motor hand area (M1HAND), but within-M1HAND corticomotor somatotopy has been difficult to study with transcranial magnetic stimulation (TMS). Here we introduce a "linear" TMS mapping approach based on the individual shape of the central sulcus to obtain mediolateral corticomotor excitability profiles of the abductor digiti minimi (ADM) and first dorsal interosseus (FDI) muscles. In thirteen young volunteers, we used stereotactic neuronavigation to stimulate the right M1HAND with a small eight-shaped coil at 120% of FDI resting motor threshold. We pseudorandomly stimulated six targets located on a straight mediolateral line corresponding to the overall orientation of the central sulcus with a fixed coil orientation of 45° to the mid-sagittal line (STRAIGHT-450FIX) or seven targets in the posterior part of the crown of the central sulcus following the bending of the central sulcus (CURVED). CURVED mapping employed a fixed (CURVED-450FIX) or flexible coil orientation producing always a current perpendicular to the sulcal wall (CURVED-900FLEX). During relaxation, CURVED but not STRAIGHT mapping revealed distinct corticomotor excitability peaks in M1HAND with the excitability maximum of ADM located medially to the FDI maximum. This mediolateral somatotopy was still present during tonic contraction of the ADM or FDI. During ADM contraction, cross-correlation between the spatial excitability profiles of ADM and FDI was lowest for CURVED-900FLEX. Together, the results show that within-M1HAND somatotopy can be readily probed with linear TMS mapping aligned to the sulcal shape. Sulcus-aligned linear mapping will benefit non-invasive studies of representational plasticity in human M1HAND.
Collapse
|
49
|
Ziemann U, Siebner HR. Inter-subject and Inter-session Variability of Plasticity Induction by Non-invasive Brain Stimulation: Boon or Bane? Brain Stimul 2015; 8:662-3. [DOI: 10.1016/j.brs.2015.01.409] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022] Open
|
50
|
von Rein E, Hoff M, Kaminski E, Sehm B, Steele CJ, Villringer A, Ragert P. Improving motor performance without training: the effect of combining mirror visual feedback with transcranial direct current stimulation. J Neurophysiol 2015; 113:2383-9. [PMID: 25632079 DOI: 10.1152/jn.00832.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/20/2015] [Indexed: 11/22/2022] Open
Abstract
Mirror visual feedback (MVF) during motor training has been shown to improve motor performance of the untrained hand. Here we thought to determine if MVF-induced performance improvements of the left hand can be augmented by upregulating plasticity in right primary motor cortex (M1) by means of anodal transcranial direct current stimulation (a-tDCS) while subjects trained with the right hand. Participants performed a ball-rotation task with either their left (untrained) or right (trained) hand on two consecutive days (days 1 and 2). During training with the right hand, MVF was provided concurrent with two tDCS conditions: group 1 received a-tDCS over right M1 (n = 10), whereas group 2 received sham tDCS (s-tDCS, n = 10). On day 2, performance was reevaluated under the same experimental conditions compared with day 1 but without tDCS. While baseline performance of the left hand (day 1) was not different between groups, a-tDCS exhibited stronger MVF-induced performance improvements compared with s-tDCS. Similar results were observed for day 2 (without tDCS application). A control experiment (n = 8) with a-tDCS over right M1 as outlined above but without MVF revealed that left hand improvement was significantly less pronounced than that induced by combined a-tDCS and MVF. Based on these results, we provide novel evidence that upregulating activity in the untrained M1 by means of a-tDCS is capable of augmenting MVF-induced performance improvements in young normal volunteers. Our findings suggest that concurrent MVF and tDCS might have synergistic and additive effects on motor performance of the untrained hand, a result of relevance for clinical approaches in neurorehabilitation and/or exercise science.
Collapse
Affiliation(s)
- Erik von Rein
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and
| | - Maike Hoff
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and
| | - Elisabeth Kaminski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Mind and Brain Institute, Charité and Humboldt University, Berlin, Germany
| | - Patrick Ragert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and
| |
Collapse
|