1
|
Májovská J, Nestrašil I, Ahmed A, Bondy MT, Klempíř J, Jahnová H, Schneider SA, Horáková D, Krásenský J, Ješina P, Vaneckova M, Nascene DR, Whitley CB, Jarnes JR, Magner M, Dušek P. Quantitative brain morphometry identifies cerebellar, cortical, and subcortical gray and white matter atrophy in late-onset Tay-Sachs disease. J Inherit Metab Dis 2024; 47:327-339. [PMID: 38112342 PMCID: PMC10947897 DOI: 10.1002/jimd.12700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Cerebellar atrophy is a characteristic sign of late-onset Tay-Sachs disease (LOTS). Other structural neuroimaging abnormalities are inconsistently reported. Our study aimed to perform a detailed whole-brain analysis and quantitatively characterize morphometric changes in LOTS patients. Fourteen patients (8 M/6F) with LOTS from three centers were included in this retrospective study. For morphometric brain analyses, we used deformation-based morphometry, voxel-based morphometry, surface-based morphometry, and spatially unbiased cerebellar atlas template. The quantitative whole-brain morphometric analysis confirmed the finding of profound pontocerebellar atrophy with most affected cerebellar lobules V and VI in LOTS patients. Additionally, the atrophy of structures mainly involved in motor control, including bilateral ventral and lateral thalamic nuclei, primary motor and sensory cortex, supplementary motor area, and white matter regions containing corticospinal tract, was present. The atrophy of the right amygdala, hippocampus, and regions of occipital, parietal and temporal white matter was also observed in LOTS patients in contrast with controls (p < 0.05, FWE corrected). Patients with dysarthria and those initially presenting with ataxia had more severe cerebellar atrophy. Our results show predominant impairment of cerebellar regions responsible for speech and hand motor function in LOTS patients. Widespread morphological changes of motor cortical and subcortical regions and tracts in white matter indicate abnormalities in central motor circuits likely coresponsible for impaired speech and motor function.
Collapse
Affiliation(s)
- Jitka Májovská
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital Prague, Czech Republic
| | - Igor Nestrašil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Alia Ahmed
- Advanced Therapies Program, Division of Genetics and Metabolism, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Monica T Bondy
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Jiří Klempíř
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Helena Jahnová
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital Prague, Czech Republic
| | | | - Dana Horáková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Jan Krásenský
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Pavel Ješina
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - David R Nascene
- Department of Neuroradiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Chester B Whitley
- Advanced Therapies Program, Division of Genetics and Metabolism, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
- Gene Therapy and Diagnostic Laboratory, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
- Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, MN, USA
| | - Jeanine R Jarnes
- Advanced Therapies Program, Division of Genetics and Metabolism, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
- Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, MN, USA
| | - Martin Magner
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
2
|
Liu X, Guo J, Jiang Z, Liu X, Chen H, Zhang Y, Wang J, Liu C, Gao Q, Chen H. Compressed cerebellar functional connectome hierarchy in spinocerebellar ataxia type 3. Hum Brain Mapp 2024; 45:e26624. [PMID: 38376240 PMCID: PMC10878347 DOI: 10.1002/hbm.26624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an inherited movement disorder characterized by a progressive decline in motor coordination. Despite the extensive functional connectivity (FC) alterations reported in previous SCA3 studies in the cerebellum and cerebellar-cerebral pathways, the influence of these FC disturbances on the hierarchical organization of cerebellar functional regions remains unclear. Here, we compared 35 SCA3 patients with 48 age- and sex-matched healthy controls using a combination of voxel-based morphometry and resting-state functional magnetic resonance imaging to investigate whether cerebellar hierarchical organization is altered in SCA3. Utilizing connectome gradients, we identified the gradient axis of cerebellar hierarchical organization, spanning sensorimotor to transmodal (task-unfocused) regions. Compared to healthy controls, SCA3 patients showed a compressed hierarchical organization in the cerebellum at both voxel-level (p < .05, TFCE corrected) and network-level (p < .05, FDR corrected). This pattern was observed in both intra-cerebellar and cerebellar-cerebral gradients. We observed that decreased intra-cerebellar gradient scores in bilateral Crus I/II both negatively correlated with SARA scores (left/right Crus I/II: r = -.48/-.50, p = .04/.04, FDR corrected), while increased cerebellar-cerebral gradients scores in the vermis showed a positive correlation with disease duration (r = .48, p = .04, FDR corrected). Control analyses of cerebellar gray matter atrophy revealed that gradient alterations were associated with cerebellar volume loss. Further FC analysis showed increased functional connectivity in both unimodal and transmodal areas, potentially supporting the disrupted cerebellar functional hierarchy uncovered by the gradients. Our findings provide novel evidence regarding alterations in the cerebellar functional hierarchy in SCA3.
Collapse
Affiliation(s)
- Xinyuan Liu
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jing Guo
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhouyu Jiang
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xingli Liu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hui Chen
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yuhan Zhang
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jian Wang
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chen Liu
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Qing Gao
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
3
|
Wu Y, Zhong Y, Zhang G, Wang C, Zhang N, Chen Q. Distinct functional patterns in child and adolescent bipolar and unipolar depression during emotional processing. Cereb Cortex 2024; 34:bhad461. [PMID: 38044479 DOI: 10.1093/cercor/bhad461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 12/05/2023] Open
Abstract
Accumulating evidence from functional magnetic resonance imaging studies supported brain dysfunction during emotional processing in bipolar disorder (BD) and major depressive disorder (MDD). However, child and adolescent BD and MDD could display different activation patterns, which have not been fully understood. This study aimed to investigate common and distinct activation patterns of pediatric BD (PBD) and MDD (p-MDD) during emotion processing using meta-analytic approaches. Literature search identified 25 studies, contrasting 252 PBD patients, and 253 healthy controls (HCs) as well as 311 p-MDD patients and 263 HCs. A total of nine meta-analyses were conducted pulling PBD and p-MDD experiments together and separately. The results revealed that PBD and p-MDD showed distinct patterns during negative processing. PBD patients exhibited activity changes in bilateral precuneus, left inferior parietal gyrus, left angular gyrus, and right posterior cingulate cortex while p-MDD patients showed functional disruptions in the left rectus, left triangular part of the inferior frontal gyrus, left orbital frontal cortex, left insula, and left putamen. In conclusion, the activity changes in PBD patients were mainly in regions correlated with emotion perception while the dysfunction among p-MDD patients was in the fronto-limbic circuit and reward-related regions in charge of emotion appraisal and regulation.
Collapse
Affiliation(s)
- Yun Wu
- School of Psychology, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing, Jiangsu 210097, China
- Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing 210097, China
- Jiangsu International Collaborative Laboratory of Child and Adolescent Psychological Development and Crisis Intervention, Nanjing Normal University, 122 Ninghai Rd., Gulou District, Nanjing 210097, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing, Jiangsu 210097, China
- Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing 210097, China
- Jiangsu International Collaborative Laboratory of Child and Adolescent Psychological Development and Crisis Intervention, Nanjing Normal University, 122 Ninghai Rd., Gulou District, Nanjing 210097, China
| | - Gui Zhang
- School of Psychology, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing, Jiangsu 210097, China
- Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing 210097, China
- Jiangsu International Collaborative Laboratory of Child and Adolescent Psychological Development and Crisis Intervention, Nanjing Normal University, 122 Ninghai Rd., Gulou District, Nanjing 210097, China
| | - Chun Wang
- Psychiatry Department, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Ning Zhang
- Psychiatry Department, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Qingrong Chen
- School of Psychology, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing, Jiangsu 210097, China
- Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing 210097, China
- Jiangsu International Collaborative Laboratory of Child and Adolescent Psychological Development and Crisis Intervention, Nanjing Normal University, 122 Ninghai Rd., Gulou District, Nanjing 210097, China
- Jiangsu Collaborative Innovation Center for Language Ability, School of Linguistic Sciences And Arts, Jiangsu Normal University, 57 Heping Road, Yunlong District, Xuzhou, Jiangsu 221009, China
| |
Collapse
|
4
|
Chen S, Li S, Liu Y, She R, Jiang W. Spastic paraplegia is the main manifestation of a spinocerebellar ataxia type 8 lineage in China: a case report and review of literature. Front Hum Neurosci 2023; 17:1198309. [PMID: 37529405 PMCID: PMC10388100 DOI: 10.3389/fnhum.2023.1198309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
The diagnosis and treatment of cerebellar atrophy remain challenging owing to its nonspecific symptoms and laboratory indicators. Three patients with spinocerebellar ataxia type 8 caused by ATXN8OS were found among the 16 people in the studied family. The clinical manifestations of the patients included progressive spastic paraplegia of the lower extremities, mild ataxia, mild cognitive impairment, and cerebellar atrophy. After administering antispasmodic rehabilitation treatment, using oral drugs, botulinum toxin injection, baclofen pump, and other systems in our hospital, the patients' lower extremity spasticity was significantly relieved. To our knowledge, till date, this is the first domestic report of spinocerebellar ataxia type 8 affecting a family, caused by ATXN8OS with spasticity onset in early childhood. Manifestations of the disease included spastic dyskinesia (in early disease stages) and cerebellar atrophy. Through systematic rehabilitation, the daily life of patients with this movement disorder was improved. This case report adds to the literature on spinocerebellar ataxia type 8 by summarizing its features.
Collapse
|
5
|
Nikolaeva A, Pospelova M, Krasnikova V, Makhanova A, Tonyan S, Krasnopeev Y, Kayumova E, Vasilieva E, Efimtsev A, Levchuk A, Trufanov G, Voynov M, Shevtsov M. Elevated Levels of Serum Biomarkers Associated with Damage to the CNS Neurons and Endothelial Cells Are Linked with Changes in Brain Connectivity in Breast Cancer Patients with Vestibulo-Atactic Syndrome. PATHOPHYSIOLOGY 2023; 30:260-274. [PMID: 37368372 DOI: 10.3390/pathophysiology30020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Vestibulo-atactic syndrome (VAS), which represents a combination of motor and vestibular disorders, can be manifested as a clinical complication of breast cancer treatment and has a significant impact on patients' quality of life. The identification of novel potential biomarkers that might help to predict the onset of VAS and its progression could improve the management of this group of patients. In the current study, the levels of intercellular cell adhesion molecule 1 (ICAM-1), platelet/endothelial cell adhesion molecule 1 (PECAM-1), NSE (neuron-specific enolase), and the antibodies recognizing NR-2 subunit of NMDA receptor (NR-2-ab) were measured in the blood serum of BC survivor patients with vestibulo-atactic syndrome (VAS) and associated with the brain connectome data obtained via functional magnetic resonance imaging (fMRI) studies. A total of 21 patients were registered in this open, single-center trial and compared to age-matched healthy female volunteers (control group) (n = 17). BC patients with VAS demonstrated higher serum levels of ICAM-1, PECAM-1, and NSE and a lower value of NR-2-ab, with values of 654.7 ± 184.8, 115.3 ± 37.03, 49.9 ± 103.9, and 0.5 ± 0.3 pg/mL, respectively, as compared to the healthy volunteers, with 230.2 ± 44.8, 62.8 ± 15.6, 15.5 ± 6.4, and 1.4 ± 0.7 pg/mL. According to the fMRI data (employing seed-to-voxel and ROI-to-ROI methods), in BC patients with VAS, significant changes were detected in the functional connectivity in the areas involved in the regulation of postural-tonic reflexes, the coordination of movements, and the regulation of balance. In conclusion, the detected elevated levels of serum biomarkers may reveal damage to the CNS neurons and endothelial cells that is, in turn, associated with the change in the brain connectivity in this group of patients.
Collapse
Affiliation(s)
- Alexandra Nikolaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Maria Pospelova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Varvara Krasnikova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Albina Makhanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Samvel Tonyan
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Yurii Krasnopeev
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Evgeniya Kayumova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Elena Vasilieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Aleksandr Efimtsev
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Anatoliy Levchuk
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Gennadiy Trufanov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Mark Voynov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
6
|
Hong W, Du Y, Xu R, Zhang X, Liu Z, Li M, Yu Z, Wang Y, Wang M, Yang B, Sun F, Xu G. Altered cerebellar functional connectivity in chronic subcortical stroke patients. Front Hum Neurosci 2022; 16:1046378. [DOI: 10.3389/fnhum.2022.1046378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPrevious studies demonstrated that cerebellar subregions are involved in different functions. Especially the cerebellar anterior lobe (CAL) and cerebellar posterior lobe (CPL) have been postulated to primarily account for sensorimotor and cognitive function, respectively. However, the functional connectivity (FC) alterations of CAL and CPL, and their relationships with behavior performance in chronic stroke participants are unclear so far.Materials and methodsThe present study collected resting-state fMRI data from thirty-six subcortical chronic stroke participants and thirty-eight well-matched healthy controls (HCs). We performed the FC analysis with bilateral CAL and CPL as seeds for each participant. Then, we detected the FC difference between the two groups by using a two-sample t-test and evaluated the relationship between the FC and scores of motor and cognitive assessments across all post-stroke participants by using partial correlation analysis.ResultsThe CAL showed increased FCs in the prefrontal cortex, superior/inferior temporal gyrus, and lingual gyrus, while the CPL showed increased FCs in the inferior parietal lobule, precuneus, and cingulum gyrus in the stroke participants compared with HCs. Moreover, the FC alteration in the right CAL and the right CPL were negatively correlated with executive and memory functions across stroke participants, respectively.ConclusionThese findings shed light on the different increased FC alteration patterns of CAL and CPL that help understand the neuro-mechanisms underlying behavior performance in chronic stroke survivors.
Collapse
|
7
|
Guo J, Jiang Z, Liu X, Li H, Biswal BB, Zhou B, Sheng W, Gao Q, Chen H, Fan Y, Zhu W, Wang J, Chen H, Liu C. Cerebello-cerebral resting-state functional connectivity in spinocerebellar ataxia type 3. Hum Brain Mapp 2022; 44:927-936. [PMID: 36250694 PMCID: PMC9875927 DOI: 10.1002/hbm.26113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder characterized by progressive motor and nonmotor deficits concomitant with degenerative pathophysiological changes within the cerebellum. The cerebellum is topographically organized into cerebello-cerebral circuits that create distinct functional networks regulating movement, cognition, and affect. SCA3-associated motor and nonmotor symptoms are possibly related not only to intracerebellar changes but also to disruption of the connectivity within these cerebello-cerebral circuits. However, to date, no comprehensive investigation of cerebello-cerebral connectivity in SCA3 has been conducted. The present study aimed to identify cerebello-cerebral functional connectivity alterations and associations with downstream clinical phenotypes and upstream topographic markers of cerebellar neurodegeneration in patients with SCA3. This study included 45 patients with SCA3 and 49 healthy controls. Voxel-based morphometry and resting-state functional magnetic resonance imaging (MRI) were performed to characterize the cerebellar atrophy and to examine the cerebello-cerebral functional connectivity patterns. Structural MRI confirmed widespread gray matter atrophy in the motor and cognitive cerebellum of patients with SCA3. We found reduced functional connectivity between the cerebellum and the cerebral cortical networks, including the somatomotor, frontoparietal, and default networks; however, increased connectivity was observed between the cerebellum and the dorsal attention network. These abnormal patterns correlated with the CAG repeat expansion and deficits in global cognition. Our results indicate the contribution of cerebello-cerebral networks to the motor and cognitive impairments in patients with SCA3 and reveal that such alterations occur in association with cerebellar atrophy. These findings add important insights into our understanding of the role of the cerebellum in SCA3.
Collapse
Affiliation(s)
- Jing Guo
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina,The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Zhouyu Jiang
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xinyuan Liu
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Haoru Li
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Bo Zhou
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Qing Gao
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hui Chen
- Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Yunshuang Fan
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wenyan Zhu
- Data Processing DepartmentYidu Cloud Technology, Inc.BeijingChina
| | - Jian Wang
- Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Huafu Chen
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina,The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Chen Liu
- Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
8
|
Pankey BS, Riedel MC, Cowan I, Bartley JE, Pintos Lobo R, Hill-Bowen LD, Salo T, Musser ED, Sutherland MT, Laird AR. Extended functional connectivity of convergent structural alterations among individuals with PTSD: a neuroimaging meta-analysis. Behav Brain Funct 2022; 18:9. [PMID: 36100907 PMCID: PMC9472396 DOI: 10.1186/s12993-022-00196-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background Post-traumatic stress disorder (PTSD) is a debilitating disorder defined by the onset of intrusive, avoidant, negative cognitive or affective, and/or hyperarousal symptoms after witnessing or experiencing a traumatic event. Previous voxel-based morphometry studies have provided insight into structural brain alterations associated with PTSD with notable heterogeneity across these studies. Furthermore, how structural alterations may be associated with brain function, as measured by task-free and task-based functional connectivity, remains to be elucidated. Methods Using emergent meta-analytic techniques, we sought to first identify a consensus of structural alterations in PTSD using the anatomical likelihood estimation (ALE) approach. Next, we generated functional profiles of identified convergent structural regions utilizing resting-state functional connectivity (rsFC) and meta-analytic co-activation modeling (MACM) methods. Finally, we performed functional decoding to examine mental functions associated with our ALE, rsFC, and MACM brain characterizations. Results We observed convergent structural alterations in a single region located in the medial prefrontal cortex. The resultant rsFC and MACM maps identified functional connectivity across a widespread, whole-brain network that included frontoparietal and limbic regions. Functional decoding revealed overlapping associations with attention, memory, and emotion processes. Conclusions Consensus-based functional connectivity was observed in regions of the default mode, salience, and central executive networks, which play a role in the tripartite model of psychopathology. Taken together, these findings have important implications for understanding the neurobiological mechanisms associated with PTSD. Supplementary Information The online version contains supplementary material available at 10.1186/s12993-022-00196-2.
Collapse
|
9
|
Combination of structural MRI, functional MRI and brain PET-CT provide more diagnostic and prognostic value in patients of cerebellar ataxia associated with anti-Tr/DNER: a case report. BMC Neurol 2021; 21:368. [PMID: 34560837 PMCID: PMC8461997 DOI: 10.1186/s12883-021-02403-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Background Brain magnetic resonance imaging (MRI) rarely reveals structural changes in patients with suspected anti-Tr/DNER encephalitis and thus provides very limited information. Here, we combined structural MRI, functional MRI, and positron emission tomography-computed tomography (PET-CT) findings to characterize this rare disorder in a patient. Case presentation A 43-year-old woman presented with progressive cerebellar ataxia, memory impairment, anxiety, and depression. Anti-Tr antibodies were detected in both her serum (1:10) and cerebrospinal fluid (1:10). A diagnosis of anti-Tr-positive autoimmune cerebellar ataxia was established. The patient’s symptoms were worse, but her brain MRI was normal. Meanwhile, voxel-based morphometry analysis showed bilateral reduced cerebellar volume, especially in the posterior lobe and uvula of the cerebellum and the middle of the left temporal lobe compared with 6 sex- and age-matched healthy subjects (6 females, 43 ± 2 years; p < 0.05). Using seed-based functional connectivity analysis, decreased connectivity between the posterior cingulate cortex/precuneus and left frontal lobe compared to the control group (p < 0.05) was detected. PET-CT revealed bilateral hypometabolism in the cerebellum and relative hypermetabolism in the cerebellar vermis and bilateral frontal lobe, but no malignant changes. Conclusions A combination of structural MRI, functional MRI, and brain PET-CT has higher diagnostic and prognostic value than conventional MRI in patients with suspected anti-Tr/DNER encephalitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02403-5.
Collapse
|
10
|
Montembeault M, Sayah S, Rinaldi D, Le Toullec B, Bertrand A, Funkiewiez A, Saracino D, Camuzat A, Couratier P, Chouly M, Hannequin D, Aubier-Girard C, Pasquier F, Delbeuck X, Colliot O, Batrancourt B, Azuar C, Lévy R, Dubois B, Le Ber I, Migliaccio R. Cognitive inhibition impairments in presymptomatic C9orf72 carriers. J Neurol Neurosurg Psychiatry 2020; 91:366-372. [PMID: 32054668 DOI: 10.1136/jnnp-2019-322242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate cognitive inhibition in presymptomatic C9orf72 mutation carriers (C9+) and its associated neuroanatomical correlates. METHODS Thirty-eight presymptomatic C9orf72 mutation carriers (C9+, mean age 38.2±8.0 years) and 22 C9- controls from the PREV-DEMALS cohort were included in this study. They underwent a cognitive inhibition assessment with the Hayling Sentence Completion Test (HSCT; time to completion (part B-part A); error score in part B) as well as a 3D MRI. RESULTS C9+ individuals younger than 40 years had higher error scores (part B) but equivalent HSCT time to completion (part B-part A) compared to C9- individuals. C9+ individuals older than 40 years had both higher error scores and longer time to completion. HSCT time to completion significantly predicted the proximity to estimated clinical conversion from presymptomatic to symptomatic phase in C9+ individuals (based on the average age at onset of affected relatives in the family). Anatomically, we found that HSCT time to completion was associated with the integrity of the cerebellum. CONCLUSION The HSCT represents a good marker of cognitive inhibition impairments in C9+ and of proximity to clinical conversion. This study also highlights the key role of the cerebellum in cognitive inhibition.
Collapse
Affiliation(s)
- Maxime Montembeault
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne University, Paris, France.,FrontLab, Paris, France.,Department of Neurology, University of California San Francisco, Memory and Aging Center, San Francisco, California, USA
| | - Sabrina Sayah
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France
| | - Daisy Rinaldi
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Benjamin Le Toullec
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne Bertrand
- Sorbonne University, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle Épinière, FrontLAB, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France
| | - Aurélie Funkiewiez
- Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dario Saracino
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France
| | - Agnès Camuzat
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Couratier
- Centre de Référence SLA et autres maladies du motoneurone, Centre Hospitalier Universitaire de Limoges, Limoges, France.,Centre de Compétence Démences Rares, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | - Marianne Chouly
- Centre de Référence SLA et autres maladies du motoneurone, Centre Hospitalier Universitaire de Limoges, Limoges, France.,Centre de Compétence Démences Rares, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | - Didier Hannequin
- Centre National de Référence pour les Malades Alzheimer Jeunes, Centre Hospitalier Universitaire de Rouen, INSERM 1245, Rouen, France.,Department of Neurology, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Carole Aubier-Girard
- Centre National de Référence pour les Malades Alzheimer Jeunes, Centre Hospitalier Universitaire de Rouen, INSERM 1245, Rouen, France.,Department of Neurology, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Florence Pasquier
- Université de Lille, INSERM U1171, Centre de la mémoire (CMRR), Centre national de référence pour les malades Alzheimer jeunes (CNRMAJ), CHU Lille, Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease (DistAlz), Lille, France
| | - Xavier Delbeuck
- Université de Lille, INSERM U1171, Centre de la mémoire (CMRR), Centre national de référence pour les malades Alzheimer jeunes (CNRMAJ), CHU Lille, Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease (DistAlz), Lille, France
| | - Olivier Colliot
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France
| | - Bénédicte Batrancourt
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne University, Paris, France.,FrontLab, Paris, France
| | - Carole Azuar
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,FrontLab, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Richard Lévy
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne University, Paris, France.,FrontLab, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bruno Dubois
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne University, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Le Ber
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne University, Paris, France.,FrontLab, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Raffaella Migliaccio
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France .,Sorbonne University, Paris, France.,FrontLab, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | |
Collapse
|
11
|
Jiang X, Faber J, Giordano I, Machts J, Kindler C, Dudesek A, Speck O, Kamm C, Düzel E, Jessen F, Spottke A, Vielhaber S, Boecker H, Klockgether T, Scheef L. Characterization of Cerebellar Atrophy and Resting State Functional Connectivity Patterns in Sporadic Adult-Onset Ataxia of Unknown Etiology (SAOA). THE CEREBELLUM 2020; 18:873-881. [PMID: 31422550 DOI: 10.1007/s12311-019-01072-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sporadic adult-onset ataxia of unknown etiology (SAOA) is a non-genetic neurodegenerative disorder of the cerebellum of unknown cause which manifests with progressive ataxia without severe autonomic failure. Although SAOA is associated with cerebellar degeneration, little is known about the specific cerebellar atrophy pattern in SAOA. Thirty-seven SAOA patients and 49 healthy controls (HCs) were included at two centers. We investigated the structural and functional characteristics of SAOA brains using voxel-based morphometry (VBM) and resting-state functional imaging (rs-fMRI). In order to examine the functional consequence of structural cerebellar alterations, the amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC) were analyzed, and then assessed their relation with disease severity, disease duration, and age of onset within these regions. Group differences were investigated using two-sample t tests, controlling for age, gender, site, and the total intracranial volume. The VBM analysis revealed a significant, mostly bilateral reduction of local gray matter (GM) volume in lobules I-V, V, VI, IX, X, and vermis VIII a/b in SAOA patients, compared with HCs. The GM volume loss in these regions was significantly associated with disease severity, disease duration, and age of onset. The disease-related atrophy regions did not show any functional alternations compared with HCs but were functionally characterized by high ALFF and poor DC compared with intact cerebellar regions. Our data revealed volume reduction in SAOA in cerebellar regions that are known to be involved in motor and somatosensory processing, corresponding with the clinical phenotype of SAOA. Our data suggest that the atrophy occurs in those cerebellar regions which are characterized by high ALFF and poor DC. Further studies have to show if these findings are specific for SAOA, and if they can be used to predict disease progression.
Collapse
Affiliation(s)
- Xueyan Jiang
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - J Faber
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - I Giordano
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - J Machts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Ch Kindler
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - A Dudesek
- Department of Neurology, University of Rostock, Rostock, Germany
| | - O Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Ch Kamm
- Department of Neurology, University of Rostock, Rostock, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - F Jessen
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - A Spottke
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - St Vielhaber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - H Boecker
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Radiology, University of Bonn, Bonn, Germany
| | - T Klockgether
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - L Scheef
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Radiology, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Schnellbächer GJ, Hoffstaedter F, Eickhoff SB, Caspers S, Nickl-Jockschat T, Fox PT, Laird AR, Schulz JB, Reetz K, Dogan I. Functional Characterization of Atrophy Patterns Related to Cognitive Impairment. Front Neurol 2020; 11:18. [PMID: 32038473 PMCID: PMC6993791 DOI: 10.3389/fneur.2020.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Mild cognitive impairment (MCI) is a heterogenous syndrome considered as a risk factor for developing dementia. Previous work examining morphological brain changes in MCI has identified a temporo-parietal atrophy pattern that suggests a common neuroanatomical denominator of cognitive impairment. Using functional connectivity analyses of structurally affected regions in MCI, we aimed to investigate and characterize functional networks formed by these regions that appear to be particularly vulnerable to disease-related disruptions. Methods: Areas of convergent atrophy in MCI were derived from a quantitative meta-analysis and encompassed left and right medial temporal (i.e., hippocampus, amygdala), as well as parietal regions (precuneus), which were defined as seed regions for connectivity analyses. Both task-based meta-analytical connectivity modeling (MACM) based on the BrainMap database and task-free resting-state functional MRI in a large cohort of older adults from the 1000BRAINS study were applied. We additionally assessed behavioral characteristics associated with the seed regions using BrainMap meta-data and investigated correlations of resting-state connectivity with age. Results: The left temporal seed showed stronger associations with a fronto-temporal network, whereas the right temporal atrophy cluster was more linked to cortico-striatal regions. In accordance with this, behavioral analysis indicated an emphasis of the left temporal seed on language generation, and the right temporal seed was associated with the domains of emotion and attention. Task-independent co-activation was more pronounced in the parietal seed, which demonstrated stronger connectivity with a frontoparietal network and associations with introspection and social cognition. Correlation analysis revealed both decreasing and increasing functional connectivity with higher age that may add to pathological processes but also indicates compensatory mechanisms of functional reorganization with increasing age. Conclusion: Our findings provide an important pathophysiological link between morphological changes and the clinical relevance of major structural damage in MCI. Multimodal analysis of functional networks related to areas of MCI-typical atrophy may help to explain cognitive decline and behavioral alterations not tractable by a mere anatomical interpretation and therefore contribute to prognostic evaluations.
Collapse
Affiliation(s)
| | - Felix Hoffstaedter
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-7, INM-11), Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Simon B Eickhoff
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-7, INM-11), Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Svenja Caspers
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-7, INM-11), Jülich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas Nickl-Jockschat
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Peter T Fox
- Research Imaging Center, University of Texas Health Science Center, San Antonio, TX, United States.,Research Service, South Texas Veterans Administration Medical Center, San Antonio, TX, United States
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, United States
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-7, INM-11), Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-7, INM-11), Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-7, INM-11), Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| |
Collapse
|
13
|
Cerebellum and cognition in Friedreich ataxia: a voxel-based morphometry and volumetric MRI study. J Neurol 2019; 267:350-358. [PMID: 31641877 DOI: 10.1007/s00415-019-09582-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent studies have suggested the presence of a significant atrophy affecting the cerebellar cortex in Friedreich ataxia (FRDA) patients, an area of the brain long considered to be relatively spared by neurodegenerative phenomena. Cognitive deficits, which occur in FRDA patients, have been associated with cerebellar volume loss in other conditions. The aim of this study was to investigate the correlation between cerebellar volume and cognition in FRDA. METHODS Nineteen FRDA patients and 20 healthy controls (HC) were included in this study and evaluated via a neuropsychological examination. Cerebellar global and lobular volumes were computed using the Spatially Unbiased Infratentorial Toolbox (SUIT). Furthermore, a cerebellar voxel-based morphometry (VBM) analysis was also carried out. Correlations between MRI metrics and clinical data were tested via partial correlation analysis. RESULTS FRDA patients showed a significant reduction of the total cerebellar volume (p = 0.004), significantly affecting the Lobule IX (p = 0.001). At the VBM analysis, we found a cluster of significant reduced GM density encompassing the entire lobule IX (p = 0.003). When correlations were probed, we found a direct correlation between Lobule IX volume and impaired visuo-spatial functions (r = 0.58, p = 0.02), with a similar correlation that was found between the same altered function and results obtained at the VBM (r = 0.52; p = 0.03). CONCLUSIONS With two different image analysis techniques, we confirmed the presence of cerebellar volume loss in FRDA, mainly affecting the posterior lobe. In particular, Lobule IX atrophy correlated with worse visuo-spatial abilities, further expanding our knowledge about the physiopathology of cognitive impairment in FRDA.
Collapse
|
14
|
Wu Y, Zhong Y, Ma Z, Lu X, Zhang N, Fox PT, Wang C. Gray matter changes in panic disorder: A voxel-based meta-analysis and meta-analytic connectivity modeling. Psychiatry Res Neuroimaging 2018; 282:82-89. [PMID: 30340800 DOI: 10.1016/j.pscychresns.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) studies of panic disorder (PD) have discovered various damaged brain regions, with heterogeneous results across studies. The present study used meta-analytic approaches to discover gray matter (GM) changes consistently detected in PD and to characterize the functional and connectivity profiles of these regions. In the present study we first conducted an activation likelihood estimation (ALE) meta-analysis of eight eligible whole-brain VBM studies. Then, meta-analytic connectivity modeling analyses (MACMs) were used to provide co-atrophy and co-activation profiles across all the experiments stored in BrainMap. Lastly, the co-atrophied and co-activated regions were analyzed using functional decoding to reveal their functions. Lower gray matter volume was found in the bilateral dorsomedial prefrontal cortex (DMPFC), left dorsolateral prefrontal cortex (DLPFC), right insula, right superior temporal gyrus (STG), right middle temporal gyrus (MTG) and right superior orbital frontal cortex (OFC). Significant co-atrophies were found in the STG, DMPFC and OFC and co-activations were found between the left DLPFC and bilateral DMPFC. Decreased gray matter volume in STG, OFC, DLPFC and DMPFC and their co-atrophy and co-activation patterns indicate the damaged higher cognitive functions in PD and suggest that cortical regions are important structural imaging biomarkers in PD.
Collapse
Affiliation(s)
- Yun Wu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China; Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Zijuan Ma
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Lu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China; Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peter T Fox
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; South Texas Veterans Healthcare System; University of Texas Health San Antonio, United States; Research Imaging Institute, University of Texas Health San Antonio, United States
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Yu F, Barron DS, Tantiwongkosi B, Fox M, Fox P. Characterisation of meta-analytical functional connectivity in progressive supranuclear palsy. Clin Radiol 2018; 73:415.e1-415.e7. [PMID: 29269038 PMCID: PMC10596737 DOI: 10.1016/j.crad.2017.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 11/05/2017] [Indexed: 11/23/2022]
Abstract
AIM To characterise the meta-analytical functional connectivity patterns in progressive supranuclear palsy (PSP) and compare them to idiopathic Parkinson's disease (IPD). MATERIALS AND METHODS It was previously reported that PSP and IPD showed distinct regions of brain atrophy based on voxel-based morphometry (VBM) meta-analysis. Using these regions as seeds, healthy control data were referenced to create and statistically compare meta-analytical functional connectivity maps of PSP and IPD. RESULTS Some overlap was noted between the two diseases, including within the thalamus, striatum, and prefrontal cortex; however, the PSP seeds demonstrated more extensive functional co-activity throughout the brain, particularly within the midbrain, precentral gyrus, parietal cortex, basal ganglia, and cerebellum. CONCLUSION These findings may help guide future longitudinal studies in the development of new functional imaging biomarkers for diagnosis and assessing treatment response.
Collapse
Affiliation(s)
- F Yu
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA.
| | - D S Barron
- Department of Psychiatry, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| | - B Tantiwongkosi
- Department of Radiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, MC 7800, San Antonio, TX 78229, USA
| | - M Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - P Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
16
|
Kotkowski E, Price LR, Mickle Fox P, Vanasse TJ, Fox PT. The hippocampal network model: A transdiagnostic metaconnectomic approach. NEUROIMAGE-CLINICAL 2018; 18:115-129. [PMID: 29387529 PMCID: PMC5789756 DOI: 10.1016/j.nicl.2018.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 12/14/2022]
Abstract
Purpose The hippocampus plays a central role in cognitive and affective processes and is commonly implicated in neurodegenerative diseases. Our study aimed to identify and describe a hippocampal network model (HNM) using trans-diagnostic MRI data from the BrainMap® database. We used meta-analysis to test the network degeneration hypothesis (NDH) (Seeley et al., 2009) by identifying structural and functional covariance in this hippocampal network. Methods To generate our network model, we used BrainMap's VBM database to perform a region-to-whole-brain (RtWB) meta-analysis of 269 VBM experiments from 165 published studies across a range of 38 psychiatric and neurological diseases reporting hippocampal gray matter density alterations. This step identified 11 significant gray matter foci, or nodes. We subsequently used meta-analytic connectivity modeling (MACM) to define edges of structural covariance between nodes from VBM data as well as functional covariance using the functional task-activation database, also from BrainMap. Finally, we applied a correlation analysis using Pearson's r to assess the similarities and differences between the structural and functional covariance models. Key findings Our hippocampal RtWB meta-analysis reported consistent and significant structural covariance in 11 key regions. The subsequent structural and functional MACMs showed a strong correlation between HNM nodes with a significant structural-functional covariance correlation of r = .377 (p = .000049). Significance This novel method of studying network covariance using VBM and functional meta-analytic techniques allows for the identification of generalizable patterns of functional and structural abnormalities pertaining to the hippocampus. In accordance with the NDH, this framework could have major implications in studying and predicting spatial disease patterns using network-based assays. We derived regions that structurally co-vary with the hippocampus in a network model using a transdiagnostic meta-analytic approach. We used meta-analytic connectivity mapping to assess inter-regional connectivity from BrainMap's structural and functional databases. We tested the network degeneration hypothesis by identifying network correlations between structural and functional networks.
Collapse
Affiliation(s)
- Eithan Kotkowski
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Larry R Price
- Department of Mathematics, Texas State University, San Marcos, TX, USA; College of Education, Texas State University, San Marcos, TX, USA
| | - P Mickle Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Thomas J Vanasse
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Institute for Neuroscience & Neurotechnology, Shenzhen University, Shenzen, China
| |
Collapse
|
17
|
|
18
|
Sarro L, Nanetti L, Castaldo A, Mariotti C. Monitoring disease progression in spinocerebellar ataxias: implications for treatment and clinical research. Expert Rev Neurother 2017; 17:919-931. [PMID: 28805093 DOI: 10.1080/14737175.2017.1364628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Spinocerebellar ataxias (SCAs) are autosomal dominant diseases characterized by progressive gait and limb incoordination, disequilibrium, dysarthria, and eye movement disturbances. Approximately 40 genetic subtypes of SCAs are known and classified according to the causative disease gene/locus. With the possibility of the specific genetic diagnosis in patients and at-risk family members, several clinical scales and functional tests have been validated and used in ataxic patients with the purposes of measuring the entity of disease progression in natural history studies and the possible slowing of neurological impairment in therapeutic trials. Areas covered: This paper reviews the most widely used clinical scales and quantitative tests that contributed in monitoring disease progression of the most common forms of SCAs. Expert commentary: The currently available and validated clinical scales and quantitative performance scores are adequate to measure disease severity, but may require a considerable number of subjects and a long period of treatment to allow the recognition of beneficial effect of interventional therapies. Advanced MRI techniques are a consistent biomarker and maybe useful to track disease progression from the preclinical to the manifest ataxic phase in association with appropriate clinical or paraclinical investigations.
Collapse
Affiliation(s)
- Lidia Sarro
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Lorenzo Nanetti
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Anna Castaldo
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Caterina Mariotti
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| |
Collapse
|
19
|
Wensing T, Cieslik EC, Müller VI, Hoffstaedter F, Eickhoff SB, Nickl-Jockschat T. Neural correlates of formal thought disorder: An activation likelihood estimation meta-analysis. Hum Brain Mapp 2017; 38:4946-4965. [PMID: 28653797 DOI: 10.1002/hbm.23706] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/24/2017] [Accepted: 06/16/2017] [Indexed: 11/10/2022] Open
Abstract
Formal thought disorder (FTD) refers to a psychopathological dimension characterized by disorganized and incoherent speech. Whether symptoms of FTD arise from aberrant processing in language-related regions or more general cognitive networks, however, remains debated. Here, we addressed this question by a quantitative meta-analysis of published functional neuroimaging studies on FTD. The revised Activation Likelihood Estimation (ALE) algorithm was used to test for convergent aberrant activation changes in 18 studies (30 experiments) investigating FTD, of which 17 studies comprised schizophrenia patients and one study healthy subjects administered to S-ketamine. Additionally, we analyzed task-dependent and task-independent (resting-state) functional connectivity (FC) of brain regions showing convergence in activation changes. Subsequent functional characterization was performed for the initial clusters and the delineated connectivity networks by reference to the BrainMap database. Consistent activation changes were found in the left superior temporal gyrus (STG) and two regions within the left posterior middle temporal gyrus (p-MTG), ventrally (vp-MTG) and dorsally (dp-MTG). Functional characterization revealed a prominent functional association of ensuing clusters from our ALE meta-analysis with language and speech processing, as well as auditory perception in STG and with social cognition in dp-MTG. FC analysis identified task-dependent and task-independent networks for all three seed regions, which were mainly related to language and speech processing, but showed additional involvement in higher order cognitive functions. Our findings suggest that FTD is mainly characterized by abnormal activation in brain regions of the left hemisphere that are associated with language and speech processing, but also extend to higher order cognitive functions. Hum Brain Mapp 38:4946-4965, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tobias Wensing
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Germany.,JARA Translational Brain Medicine, Aachen, Germany
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Germany.,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Veronika I Müller
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Germany.,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Germany.,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Germany.,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany.,JARA Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
20
|
Alcalá-López D, Smallwood J, Jefferies E, Van Overwalle F, Vogeley K, Mars RB, Turetsky BI, Laird AR, Fox PT, Eickhoff SB, Bzdok D. Computing the Social Brain Connectome Across Systems and States. Cereb Cortex 2017; 28:2207-2232. [DOI: 10.1093/cercor/bhx121] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/27/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel Alcalá-López
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Jonathan Smallwood
- Department of Psychology, York Neuroimaging Centre, University of York, Hesslington, York, UK
| | - Elizabeth Jefferies
- Department of Psychology, York Neuroimaging Centre, University of York, Hesslington, York, UK
| | | | - Kai Vogeley
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Rogier B Mars
- Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Bruce I Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Simon B Eickhoff
- Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany
- Institute for Neuroscience and Medicine (INM-7, Brain & Behavior), Research Center Jülich, Jülich, Germany
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Parietal Team, INRIA, Neurospin, bat 145, CEA Saclay, Gif-sur-Yvette, France
- JARA, Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
21
|
Laird AR, Riedel MC, Okoe M, Jianu R, Ray KL, Eickhoff SB, Smith SM, Fox PT, Sutherland MT. Heterogeneous fractionation profiles of meta-analytic coactivation networks. Neuroimage 2017; 149:424-435. [PMID: 28222386 PMCID: PMC5408583 DOI: 10.1016/j.neuroimage.2016.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/01/2016] [Accepted: 12/14/2016] [Indexed: 11/22/2022] Open
Abstract
Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how "parent" functional brain systems decompose into constituent "child" sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication.
Collapse
Affiliation(s)
- Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA.
| | - Michael C Riedel
- Department of Physics, Florida International University, Miami, FL, USA
| | - Mershack Okoe
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Radu Jianu
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Kimberly L Ray
- Research Imaging Center, University of California Davis, Sacramento, CA, USA
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Stephen M Smith
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA; Research Service, South Texas Veterans Administration Medical Center, San Antonio, TX, USA; State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong
| | | |
Collapse
|
22
|
Olivito G, Cercignani M, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, Molinari M, Bozzali M, Leggio M. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: A network based statistics analysis. NEUROIMAGE-CLINICAL 2017; 14:719-725. [PMID: 28393013 PMCID: PMC5377430 DOI: 10.1016/j.nicl.2017.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/07/2017] [Accepted: 03/24/2017] [Indexed: 01/04/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease characterized by a progressive cerebellar syndrome, which can be isolated or associated with extracerebellar signs. It has been shown that patients affected by SCA2 present also cognitive impairments and psychiatric symptoms. The cerebellum is known to modulate cortical activity and to contribute to distinct functional networks related to higher-level functions beyond motor control. It is therefore conceivable that one or more networks, rather than isolated regions, may be dysfunctional in cerebellar degenerative diseases and that an abnormal connectivity within specific cerebello-cortical regions might explain the widespread deficits typically observed in patients. In the present study, the network-based statistics (NBS) approach was used to assess differences in functional connectivity between specific cerebellar and cerebral “nodes” in SCA2 patients. Altered inter-nodal connectivity was found between more posterior regions in the cerebellum and regions in the cerebral cortex clearly related to cognition and emotion. Furthermore, more anterior cerebellar lobules showed altered inter-nodal connectivity with motor and somatosensory cerebral regions. The present data suggest that in SCA2 a cerebellar dysfunction affects long-distance cerebral regions and that the clinical symptoms may be specifically related with connectivity changes between motor and non-motor cerebello-cortical nodes. A cerebellar dysfunction affects long-distance cerebral regions in SCA2 patients. Connectivity changes affect sensorimotor and cognitive cerebello-cortical nodes. Cerebellar symptoms may be related to altered cerebello-cerebral connectivity.
Collapse
Affiliation(s)
- G Olivito
- Ataxia Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Cercignani
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Clinical Imaging Science Center, Brighton and Sussex Medical School, Brighton, UK
| | - M Lupo
- Ataxia Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - C Iacobacci
- Ataxia Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Psychology, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - S Clausi
- Ataxia Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Psychology, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - S Romano
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), "Sapienza" University of Rome-Sant'Andrea Hospital, Rome, Italy
| | - M Masciullo
- SPInal REhabilitation Lab, IRCCS Fondazione Santa Lucia,Rome, Italy
| | - M Molinari
- Neurorehabilitation 1 and Spinal Center, Robotic Neurorehabilitation Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Bozzali
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Leggio
- Ataxia Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Psychology, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
23
|
Cortese S, Castellanos FX, Eickhoff CR, D’Acunto G, Masi G, Fox PT, Laird AR, Eickhoff SB. Functional Decoding and Meta-analytic Connectivity Modeling in Adult Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry 2016; 80:896-904. [PMID: 27569542 PMCID: PMC5108674 DOI: 10.1016/j.biopsych.2016.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 05/22/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Task-based functional magnetic resonance imaging (fMRI) studies of adult attention-deficit/hyperactivity disorder (ADHD) have revealed various ADHD-related dysfunctional brain regions, with heterogeneous findings across studies. Here, we used novel meta-analytic data-driven approaches to characterize the function and connectivity profile of ADHD-related dysfunctional regions consistently detected across studies. METHODS We first conducted an activation likelihood estimation meta-analysis of 24 task-based fMRI studies in adults with ADHD. Each ADHD-related dysfunctional region resulting from the activation likelihood estimation meta-analysis was then analyzed using functional decoding based on ~7500 fMRI experiments in the BrainMap database. This approach allows mapping brain regions to functions not necessarily tested in individual studies, thus suggesting possible novel functions for those regions. Additionally, ADHD-related dysfunctional regions were clustered based on their functional coactivation profiles across all the experiments stored in BrainMap (meta-analytic connectivity modeling). RESULTS ADHD-related hypoactivation was found in the left putamen, left inferior frontal gyrus (pars opercularis), left temporal pole, and right caudate. Functional decoding mapped the left putamen to cognitive aspects of music perception/reproduction and the left temporal lobe to language semantics; both these regions clustered together on the basis of their meta-analytic functional connectivity. Left inferior gyrus mapped to executive function tasks; right caudate mapped to both executive function tasks and music-related processes. CONCLUSIONS Our study provides meta-analytic support to the hypothesis that, in addition to well-known deficits in typical executive functions, impairment in processes related to music perception/reproduction and language semantics may be involved in the pathophysiology of adult ADHD.
Collapse
Affiliation(s)
- Samuele Cortese
- Academic Unit of Psychology, Developmental Brain-Behaviour Laboratory, Southampton, United Kingdom; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom; The Child Study Center, Hassenfeld Children's Hospital of New York, NYU Langone Medical Center, New York; IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Italy.
| | - F. Xavier Castellanos
- The Child Study Center at NYU Langone Medical Center, New York, NY, USA,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Claudia R. Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich GmbH, Jülich, Germany,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Giulia D’Acunto
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Italy
| | - Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Italy
| | - Peter T. Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA,Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA,South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich GmbH, Jülich, Germany,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
24
|
Bzdok D, Hartwigsen G, Reid A, Laird AR, Fox PT, Eickhoff SB. Left inferior parietal lobe engagement in social cognition and language. Neurosci Biobehav Rev 2016; 68:319-334. [PMID: 27241201 PMCID: PMC5441272 DOI: 10.1016/j.neubiorev.2016.02.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 10/21/2022]
Abstract
Social cognition and language are two core features of the human species. Despite distributed recruitment of brain regions in each mental capacity, the left parietal lobe (LPL) represents a zone of topographical convergence. The present study quantitatively summarizes hundreds of neuroimaging studies on social cognition and language. Using connectivity-based parcellation on a meta-analytically defined volume of interest (VOI), regional coactivation patterns within this VOI allowed identifying distinct subregions. Across parcellation solutions, two clusters emerged consistently in rostro-ventral and caudo-ventral aspects of the parietal VOI. Both clusters were functionally significantly associated with social-cognitive and language processing. In particular, the rostro-ventral cluster was associated with lower-level processing facets, while the caudo-ventral cluster was associated with higher-level processing facets in both mental capacities. Contrarily, in the (less stable) dorsal parietal VOI, all clusters reflected computation of general-purpose processes, such as working memory and matching tasks, that are frequently co-recruited by social or language processes. Our results hence favour a rostro-caudal distinction of lower- versus higher-level processes underlying social cognition and language in the left inferior parietal lobe.
Collapse
Affiliation(s)
- Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany; JARA, Translational Brain Medicine, Aachen, Germany; Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany; Parietal team, INRIA, Neurospin, bat 145, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Gesa Hartwigsen
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Andrew Reid
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
25
|
Interhemispheric Connectivity Characterizes Cortical Reorganization in Motor-Related Networks After Cerebellar Lesions. THE CEREBELLUM 2016; 16:358-375. [DOI: 10.1007/s12311-016-0811-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Sutherland MT, Riedel MC, Flannery JS, Yanes JA, Fox PT, Stein EA, Laird AR. Chronic cigarette smoking is linked with structural alterations in brain regions showing acute nicotinic drug-induced functional modulations. Behav Brain Funct 2016; 12:16. [PMID: 27251183 PMCID: PMC4890474 DOI: 10.1186/s12993-016-0100-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Whereas acute nicotine administration alters brain function which may, in turn, contribute to enhanced attention and performance, chronic cigarette smoking is linked with regional brain atrophy and poorer cognition. However, results from structural magnetic resonance imaging (MRI) studies comparing smokers versus nonsmokers have been inconsistent and measures of gray matter possess limited ability to inform functional relations or behavioral implications. The purpose of this study was to address these interpretational challenges through meta-analytic techniques in the service of clarifying the impact of chronic smoking on gray matter integrity and more fully contextualizing such structural alterations. Methods We first conducted a coordinate-based meta-analysis of structural MRI studies to identify consistent structural alterations associated with chronic smoking. Subsequently, we conducted two additional meta-analytic assessments to enhance insight into potential functional and behavioral relations. Specifically, we performed a multimodal meta-analytic assessment to test the structural–functional hypothesis that smoking-related structural alterations overlapped those same regions showing acute nicotinic drug-induced functional modulations. Finally, we employed database driven tools to identify pairs of structurally impacted regions that were also functionally related via meta-analytic connectivity modeling, and then delineated behavioral phenomena associated with such functional interactions via behavioral decoding. Results Across studies, smoking was associated with convergent structural decreases in the left insula, right cerebellum, parahippocampus, multiple prefrontal cortex (PFC) regions, and the thalamus. Indicating a structural–functional relation, we observed that smoking-related gray matter decreases overlapped with the acute functional effects of nicotinic agonist administration in the left insula, ventromedial PFC, and mediodorsal thalamus. Suggesting structural-behavioral implications, we observed that the left insula’s task-based, functional interactions with multiple other structurally impacted regions were linked with pain perception, the right cerebellum’s interactions with other regions were associated with overt body movements, interactions between the parahippocampus and thalamus were linked with memory processes, and interactions between medial PFC regions were associated with face processing. Conclusions Collectively, these findings emphasize brain regions (e.g., ventromedial PFC, insula, thalamus) critically linked with cigarette smoking, suggest neuroimaging paradigms warranting additional consideration among smokers (e.g., pain processing), and highlight regions in need of further elucidation in addiction (e.g., cerebellum). Electronic supplementary material The online version of this article (doi:10.1186/s12993-016-0100-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew T Sutherland
- Department of Psychology, Florida International University, AHC-4, RM 312, 11200 S.W. 8th St, Miami, FL, 33199, USA.
| | - Michael C Riedel
- Department of Psychology, Florida International University, AHC-4, RM 312, 11200 S.W. 8th St, Miami, FL, 33199, USA.,Department of Physics, Florida International University, Miami, FL, USA
| | - Jessica S Flannery
- Department of Psychology, Florida International University, AHC-4, RM 312, 11200 S.W. 8th St, Miami, FL, 33199, USA
| | - Julio A Yanes
- Department of Psychology, Auburn University, Auburn, AL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA.,South Texas Veterans Health Care System, San Antonio, TX, USA.,State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH/DHHS, Baltimore, MD, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| |
Collapse
|
27
|
Poeppl TB, Müller VI, Hoffstaedter F, Bzdok D, Laird AR, Fox PT, Langguth B, Rupprecht R, Sorg C, Riedl V, Goya-Maldonado R, Gruber O, Eickhoff SB. Imbalance in subregional connectivity of the right temporoparietal junction in major depression. Hum Brain Mapp 2016; 37:2931-42. [PMID: 27090056 DOI: 10.1002/hbm.23217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 11/11/2022] Open
Abstract
Major depressive disorder (MDD) involves impairment in cognitive and interpersonal functioning. The right temporoparietal junction (RTPJ) is a key brain region subserving cognitive-attentional and social processes. Yet, findings on the involvement of the RTPJ in the pathophysiology of MDD have so far been controversial. Recent connectivity-based parcellation data revealed a topofunctional dualism within the RTPJ, linking its anterior and posterior part (aRTPJ/pRTPJ) to antagonistic brain networks for attentional and social processing, respectively. Comparing functional resting-state connectivity of the aRTPJ and pRTPJ in 72 MDD patients and 76 well-matched healthy controls, we found a seed (aRTPJ/pRTPJ) × diagnosis (MDD/controls) interaction in functional connectivity for eight regions. Employing meta-data from a large-scale neuroimaging database, functional characterization of these regions exhibiting differentially altered connectivity with the aRTPJ/pRTPJ revealed associations with cognitive (dorsolateral prefrontal cortex, parahippocampus) and behavioral (posterior medial frontal cortex) control, visuospatial processing (dorsal visual cortex), reward (subgenual anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex), as well as memory retrieval and social cognition (precuneus). These findings suggest that an imbalance in connectivity of subregions, rather than disturbed connectivity of the RTPJ as a whole, characterizes the connectional disruption of the RTPJ in MDD. This imbalance may account for key symptoms of MDD in cognitive, emotional, and social domains. Hum Brain Mapp 37:2931-2942, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timm B Poeppl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Veronika I Müller
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Danilo Bzdok
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany.,Parietal team, INRIA, Neurospin, Gif-sur-Yvette, France.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany.,JARA-BRAIN, RWTH Aachen and Research Centre Jülich, Aachen and Jülich, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, Florida
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Christian Sorg
- Department of Neuroradiology, Technische Universität München, Munich, Germany.,Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Valentin Riedl
- Department of Neuroradiology, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, Technische Universität München, Munich, Germany.,Neuroimaging Center, Technische Universität München, Munich, Germany.,Department of Neurology, Technische Universität München, Munich, Germany
| | - Roberto Goya-Maldonado
- Center for Translational Research in Systems Neuroscience and Psychiatry, Georg August University, Göttingen, Germany
| | - Oliver Gruber
- Center for Translational Research in Systems Neuroscience and Psychiatry, Georg August University, Göttingen, Germany
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
28
|
Eickhoff SB, Laird AR, Fox PT, Bzdok D, Hensel L. Functional Segregation of the Human Dorsomedial Prefrontal Cortex. Cereb Cortex 2016; 26:304-21. [PMID: 25331597 PMCID: PMC4677979 DOI: 10.1093/cercor/bhu250] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human dorsomedial prefrontal cortex (dmPFC) has been implicated in various complex cognitive processes, including social cognition. To unravel its functional organization, we assessed the dmPFC's regional heterogeneity, connectivity patterns, and functional profiles. First, the heterogeneity of a dmPFC seed, engaged during social processing, was investigated by assessing local differences in whole-brain coactivation profiles. Second, functional connectivity of the ensuing dmPFC clusters was compared by task-constrained meta-analytic coactivation mapping and task-unconstrained resting-state correlations. Third, dmPFC clusters were functionally profiled by forward/reverse inference. The dmPFC seed was thus segregated into 4 clusters (rostroventral, rostrodorsal, caudal-right, and caudal-left). Both rostral clusters were connected to the amygdala and hippocampus and associated with memory and social cognitive tasks in functional decoding. The rostroventral cluster exhibited strongest connectivity to the default mode network. Unlike the rostral segregation, the caudal dmPFC was divided by hemispheres. The caudal-right cluster was strongly connected to a frontoparietal network (dorsal attention network), whereas the caudal-left cluster was strongly connected to the anterior midcingulate cortex and bilateral anterior insula (salience network). In conclusion, we demonstrate that a dmPFC seed reflecting social processing can be divided into 4 separate functional modules that contribute to distinct facets of advanced human cognition.
Collapse
Affiliation(s)
- Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich 52428, Germany Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL 11200, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX 7703, USA
| | - Danilo Bzdok
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich 52428, Germany Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Lukas Hensel
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich 52428, Germany
| |
Collapse
|
29
|
Manto M, Habas C. Cerebellar disorders: clinical/radiologic findings and modern imaging tools. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:479-491. [PMID: 27432679 DOI: 10.1016/b978-0-444-53485-9.00023-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cerebellar disorders, also called cerebellar ataxias, comprise a large group of sporadic and genetic diseases. Their core clinical features include impaired control of coordination and gait, as well as cognitive/behavioral deficits usually not detectable by a standard neurologic examination and therefore often overlooked. Two forms of cognitive/behavioral syndromes are now well identified: (1) the cerebellar cognitive affective syndrome, which combines an impairment of executive functions, including planning and working memory, deficits in visuospatial skills, linguistic deficiencies such as agrammatism, and inappropriate behavior; and (2) the posterior fossa syndrome, a very acute form of cerebellar cognitive affective syndrome occurring essentially in children. Sporadic ataxias include stroke, toxic causes, immune ataxias, infectious/parainfectious ataxias, traumatic causes, neoplasias and paraneoplastic syndromes, endocrine disorders affecting the cerebellum, and the so-called "degenerative ataxias" (multiple system atrophy, and sporadic adult-onset ataxias). Genetic ataxias include mainly four groups of disorders: autosomal-recessive cerebellar ataxias, autosomal-dominant ataxias (spinocerebellar ataxias and episodic ataxias), mitochondrial disorders, and X-linked ataxias. In addition to biochemical studies and genetic tests, brain imaging techniques are a cornerstone for the diagnosis, clinicoanatomic correlations, and follow-up of cerebellar ataxias. Modern radiologic tools to assess cerebellar ataxias include: functional imaging studies, magnetic resonance spectroscopy, volumetric studies, and tractography. These complementary methods provide a multimodal appreciation of the whole long-range cerebellar network functioning, and allow the extraction of potential biomarkers for prognosis and rating level of recovery after treatment.
Collapse
Affiliation(s)
- Mario Manto
- Department of Neurology, Université Libre de Bruxelles Erasme, Brussels, Belgium.
| | - Christophe Habas
- Neuroimaging Service, Centre National d'Ophtalmologie des Quinze-Vingts, Paris, France
| |
Collapse
|
30
|
Mathys C, Caspers J, Langner R, Südmeyer M, Grefkes C, Reetz K, Moldovan AS, Michely J, Heller J, Eickhoff CR, Turowski B, Schnitzler A, Hoffstaedter F, Eickhoff SB. Functional Connectivity Differences of the Subthalamic Nucleus Related to Parkinson's Disease. Hum Brain Mapp 2015; 37:1235-53. [PMID: 26700444 DOI: 10.1002/hbm.23099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/12/2015] [Accepted: 12/13/2015] [Indexed: 01/29/2023] Open
Abstract
A typical feature of Parkinson's disease (PD) is pathological activity in the subthalamic nucleus (STN). Here, we tested whether in patients with PD under dopaminergic treatment functional connectivity of the STN differs from healthy controls (HC) and whether some brain regions show (anti-) correlations between functional connectivity with STN and motor symptoms. We used functional magnetic resonance imaging to investigate whole-brain resting-state functional connectivity with STN in 54 patients with PD and 55 HC matched for age, gender, and within-scanner motion. Compared to HC, we found attenuated negative STN-coupling with Crus I of the right cerebellum and with right ventromedial prefrontal regions in patients with PD. Furthermore, we observed enhanced negative STN-coupling with bilateral intraparietal sulcus/superior parietal cortex, right sensorimotor, right premotor, and left visual cortex compared to HC. Finally, we found a decline in positive STN-coupling with the left insula related to severity of motor symptoms and a decline of inter-hemispheric functional connectivity between left and right STN with progression of PD-related motor symptoms. Motor symptom related uncoupling of the insula, a key region in the saliency network and for executive function, from the STN might be associated with well-known executive dysfunction in PD. Moreover, uncoupling between insula and STN might also induce an insufficient setting of thresholds for the discrimination between relevant and irrelevant salient environmental stimuli, explaining observations of disturbed response control in PD. In sum, motor symptoms in PD are associated with a reduced coupling between STN and a key region for executive function.
Collapse
Affiliation(s)
- Christian Mathys
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany.,Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Christian Grefkes
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Department of Neurology, Neuromodulation & Neurorehabilitation Group, University of Cologne, Cologne, Germany
| | - Kathrin Reetz
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Department of Neurology and JARA BRAIN, RWTH Aachen University, Aachen, Germany
| | - Alexia-Sabine Moldovan
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Jochen Michely
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Department of Neurology, Neuromodulation & Neurorehabilitation Group, University of Cologne, Cologne, Germany
| | - Julia Heller
- Department of Neurology and JARA BRAIN, RWTH Aachen University, Aachen, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Bernd Turowski
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany.,Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
31
|
Baldarçara L, Currie S, Hadjivassiliou M, Hoggard N, Jack A, Jackowski AP, Mascalchi M, Parazzini C, Reetz K, Righini A, Schulz JB, Vella A, Webb SJ, Habas C. Consensus paper: radiological biomarkers of cerebellar diseases. THE CEREBELLUM 2015; 14:175-96. [PMID: 25382714 DOI: 10.1007/s12311-014-0610-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hereditary and sporadic cerebellar ataxias represent a vast and still growing group of diseases whose diagnosis and differentiation cannot only rely on clinical evaluation. Brain imaging including magnetic resonance (MR) and nuclear medicine techniques allows for characterization of structural and functional abnormalities underlying symptomatic ataxias. These methods thus constitute a potential source of radiological biomarkers, which could be used to identify these diseases and differentiate subgroups of them, and to assess their severity and their evolution. Such biomarkers mainly comprise qualitative and quantitative data obtained from MR including proton spectroscopy, diffusion imaging, tractography, voxel-based morphometry, functional imaging during task execution or in a resting state, and from SPETC and PET with several radiotracers. In the current article, we aim to illustrate briefly some applications of these neuroimaging tools to evaluation of cerebellar disorders such as inherited cerebellar ataxia, fetal developmental malformations, and immune-mediated cerebellar diseases and of neurodegenerative or early-developing diseases, such as dementia and autism in which cerebellar involvement is an emerging feature. Although these radiological biomarkers appear promising and helpful to better understand ataxia-related anatomical and physiological impairments, to date, very few of them have turned out to be specific for a given ataxia with atrophy of the cerebellar system being the main and the most usual alteration being observed. Consequently, much remains to be done to establish sensitivity, specificity, and reproducibility of available MR and nuclear medicine features as diagnostic, progression and surrogate biomarkers in clinical routine.
Collapse
|
32
|
Harding IH, Corben LA, Storey E, Egan GF, Stagnitti MR, Poudel GR, Delatycki MB, Georgiou-Karistianis N. Fronto-cerebellar dysfunction and dysconnectivity underlying cognition in friedreich ataxia: The IMAGE-FRDA study. Hum Brain Mapp 2015; 37:338-50. [PMID: 26502936 DOI: 10.1002/hbm.23034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 09/16/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
Friedreich ataxia (FRDA) is a progressive neurodegenerative disorder defined by pathology within the cerebellum and spinal tracts. Although FRDA is most readily linked to motor and sensory dysfunctions, reported impairments in working memory and executive functions indicate that abnormalities may also extend to associations regions of the cerebral cortex and/or cerebello-cerebral interactions. To test this hypothesis, 29 individuals with genetically confirmed FRDA and 34 healthy controls performed a verbal n-back working memory task while undergoing functional magnetic resonance imaging. No significant group differences were evident in task performance. However, individuals with FRDA had deficits in brain activations both in the lateral cerebellar hemispheres, principally encompassing lobule VI, and the prefrontal cortex, including regions of the anterior insular and rostrolateral prefrontal cortices. Functional connectivity between these brain regions was also impaired, supporting a putative link between primary cerebellar dysfunction and subsequent cerebral abnormalities. Disease severity and genetic markers of disease liability were correlated specifically with cerebellar dysfunction, while correlations between behavioural performance and both cerebral activations and cerebello-cerebral connectivity were observed in controls, but not in the FRDA cohort. Taken together, these findings support a diaschisis model of brain dysfunction, whereby primary disease effects in the cerebellum result in functional changes in downstream fronto-cerebellar networks. These fronto-cerebellar disturbances provide a putative biological basis for the nonmotor symptoms observed in FRDA, and reflect the consequence of localized cerebellar pathology to distributed brain function underlying higher-order cognition.
Collapse
Affiliation(s)
- Ian H Harding
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Louise A Corben
- School of Psychological Sciences, Monash University, Melbourne, Australia.,Bruce Lefroy Centre, Murdoch Childrens Research Institute, Melbourne, Australia.,Friedreich Ataxia Clinic, Monash Medical Centre, Monash Health, Melbourne, Australia
| | - Elsdon Storey
- Department of Medicine, Monash University, Melbourne, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | | | - Govinda R Poudel
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Martin B Delatycki
- School of Psychological Sciences, Monash University, Melbourne, Australia.,Bruce Lefroy Centre, Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Clinical Genetics, Austin Health, Melbourne, Australia
| | | |
Collapse
|
33
|
Satterthwaite TD, Wolf DH, Roalf DR, Ruparel K, Erus G, Vandekar S, Gennatas ED, Elliott MA, Smith A, Hakonarson H, Verma R, Davatzikos C, Gur RE, Gur RC. Linked Sex Differences in Cognition and Functional Connectivity in Youth. Cereb Cortex 2015; 25:2383-94. [PMID: 24646613 PMCID: PMC4537416 DOI: 10.1093/cercor/bhu036] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sex differences in human cognition are marked, but little is known regarding their neural origins. Here, in a sample of 674 human participants ages 9-22, we demonstrate that sex differences in cognitive profiles are related to multivariate patterns of resting-state functional connectivity MRI (rsfc-MRI). Males outperformed females on motor and spatial cognitive tasks; females were faster in tasks of emotion identification and nonverbal reasoning. Sex differences were also prominent in the rsfc-MRI data at multiple scales of analysis, with males displaying more between-module connectivity, while females demonstrated more within-module connectivity. Multivariate pattern analysis using support vector machines classified subject sex on the basis of their cognitive profile with 63% accuracy (P < 0.001), but was more accurate using functional connectivity data (71% accuracy; P < 0.001). Moreover, the degree to which a given participant's cognitive profile was "male" or "female" was significantly related to the masculinity or femininity of their pattern of brain connectivity (P = 2.3 × 10(-7)). This relationship was present even when considering males and female separately. Taken together, these results demonstrate for the first time that sex differences in patterns of cognition are in part represented on a neural level through divergent patterns of brain connectivity.
Collapse
Affiliation(s)
| | - Daniel H Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guray Erus
- Department of Radiology, Perelman Scholl of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Vandekar
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Mark A Elliott
- Department of Radiology, Perelman Scholl of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Smith
- Department of Radiology, Perelman Scholl of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ragini Verma
- Department of Radiology, Perelman Scholl of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman Scholl of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Radiology, Perelman Scholl of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Radiology, Perelman Scholl of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Philadelphia Veterans Administration Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Riedel MC, Ray KL, Dick AS, Sutherland MT, Hernandez Z, Fox PM, Eickhoff SB, Fox PT, Laird AR. Meta-analytic connectivity and behavioral parcellation of the human cerebellum. Neuroimage 2015; 117:327-42. [PMID: 25998956 PMCID: PMC4512917 DOI: 10.1016/j.neuroimage.2015.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/14/2015] [Accepted: 05/05/2015] [Indexed: 01/07/2023] Open
Abstract
The cerebellum historically has been thought to mediate motor and sensory signals between the body and cerebral cortex, yet cerebellar lesions are also associated with altered cognitive behavioral performance. Neuroimaging evidence indicates that the cerebellum contributes to a wide range of cognitive, perceptual, and motor functions. Here, we used the BrainMap database to investigate whole-brainco-activation patterns between cerebellar structures and regions of the cerebral cortex, as well as associations with behavioral tasks. Hierarchical clustering was performed to meta-analytically identify cerebellar structures with similar cortical co-activation, and independently, with similar correlations to specific behavioral tasks. Strong correspondences were observed in these separate but parallel analyses of meta-analytic connectivity and behavioral metadata. We recovered differential zones of cerebellar co-activation that are reflected across the literature. Furthermore, the behaviors and tasks associated with the different cerebellar zones provide insight into the specialized function of the cerebellum, relating to high-order cognition, emotion, perception, interoception, and action. Taken together, these task-basedmeta-analytic results implicate distinct zones of the cerebellum as critically involved in the monitoring and mediation of psychological responses to internal and external stimuli.
Collapse
Affiliation(s)
- Michael C Riedel
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Kimberly L Ray
- Imaging Research Center, University of California Davis, Sacramento, CA, USA
| | - Anthony S Dick
- Department of Psychology, Florida International University, Miami, FL, USA
| | | | - Zachary Hernandez
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - P Mickle Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Dusseldorf, Germany
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA; South Texas Veterans Health Care System, San Antonio, TX, USA; State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA.
| |
Collapse
|
35
|
Hardwick RM, Lesage E, Eickhoff CR, Clos M, Fox P, Eickhoff SB. Multimodal connectivity of motor learning-related dorsal premotor cortex. Neuroimage 2015; 123:114-28. [PMID: 26282855 DOI: 10.1016/j.neuroimage.2015.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 01/02/2023] Open
Abstract
The dorsal premotor cortex (dPMC) is a key region for motor learning and sensorimotor integration, yet we have limited understanding of its functional interactions with other regions. Previous work has started to examine functional connectivity in several brain areas using resting state functional connectivity (RSFC) and meta-analytical connectivity modelling (MACM). More recently, structural covariance (SC) has been proposed as a technique that may also allow delineation of functional connectivity. Here, we applied these three approaches to provide a comprehensive characterization of functional connectivity with a seed in the left dPMC that a previous meta-analysis of functional neuroimaging studies has identified as playing a key role in motor learning. Using data from two sources (the Rockland sample, containing resting state data and anatomical scans from 132 participants, and the BrainMap database, which contains peak activation foci from over 10,000 experiments), we conducted independent whole-brain functional connectivity mapping analyses of a dPMC seed. RSFC and MACM revealed similar connectivity maps spanning prefrontal, premotor, and parietal regions, while the SC map identified more widespread frontal regions. Analyses indicated a relatively consistent pattern of functional connectivity between RSFC and MACM that was distinct from that identified by SC. Notably, results indicate that the seed is functionally connected to areas involved in visuomotor control and executive functions, suggesting that the dPMC acts as an interface between motor control and cognition.
Collapse
Affiliation(s)
- Robert M Hardwick
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, USA
| | - Elise Lesage
- Neuroimaging Research Branch, National Institutes of Drug Abuse, Baltimore, USA
| | - Claudia R Eickhoff
- Institute for Neuroscience and Medicine (INM-1), Research Center Jülich, Germany; Dept. of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University Hospital, Germany
| | - Mareike Clos
- Institute for Neuroscience and Medicine (INM-1), Research Center Jülich, Germany; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Simon B Eickhoff
- Institute for Neuroscience and Medicine (INM-1), Research Center Jülich, Germany; Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine-Universität, Germany.
| |
Collapse
|
36
|
Hernandez-Castillo CR, Galvez V, Mercadillo RE, Díaz R, Yescas P, Martinez L, Ochoa A, Velazquez-Perez L, Fernandez-Ruiz J. Functional connectivity changes related to cognitive and motor performance in spinocerebellar ataxia type 2. Mov Disord 2015; 30:1391-9. [PMID: 26256273 DOI: 10.1002/mds.26320] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/30/2015] [Accepted: 05/25/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Several neuropathological studies in spinocerebellar ataxia type 2 (SCA2) have revealed significant atrophy of the cerebellum, brainstem, sensorimotor cortex, and several regions in the frontal lobe. However, the impact of the neurodegeneration on the functional integration of the remaining tissue is unknown. To analyze the clinical impact of these functional changes, we correlated the abnormal functional connectivity found in SCA2 patients with their scores in clinical scales. To obtain the functional connectivity changes, we followed two approaches. In one we used areas with significant cerebellar gray matter atrophy as anchor seeds, and in the other we performed a whole-brain data-driven analysis. METHODS Fourteen genetically confirmed SCA2 patients and aged-matched healthy controls participated in the study. Voxel-based morphometry and resting-state functional magnetic resonance imaging (fMRI) were done to analyze structural and functional brain changes. Independent component analysis and dual regression were used for intrinsic network comparison. Significant functional connectivity differences were correlated with the behavioral scores. RESULTS Seed-based analysis found reduced functional connectivity within the cerebellum and between the cerebellum and frontal/parietal cortices. Cerebellar functional connectivity increases were found with parietal, frontal, and temporal areas. Intrinsic network analysis found a functional decrease in the cerebellar network, and increase in the default-mode and fronto-parietal networks. Further analysis showed significant correlations between clinical scores and the abnormal functional connectivity strength. CONCLUSION Our findings show significant correlations between functional connectivity changes in key areas affected in SCA2 and these patients' motor and neuropsychological impairments, adding an important insight to our understanding of the pathophysiology of SCA2.
Collapse
Affiliation(s)
- Carlos R Hernandez-Castillo
- Consejo Nacional de Ciencia y Tecnología-Cátedras-Instituto de Neuroetologia, Universidad Veracruzana, México
| | - Víctor Galvez
- Programa de Doctorado en Neuroetología, Universidad Veracruzana, México
| | - Roberto E Mercadillo
- Cátedras CONACYT, Área de Neurociencias, Depto. de Biología de la Reproducción, Universidad Autónoma Metropolitana-Unidad Iztapalapa, México
| | - Rosalinda Díaz
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Petra Yescas
- Departamento de Neurogenética y Biología Molecular, Instituto Nacional de Neurología y Neurocirugía. Manuel Velasco Suarez, México
| | - Leticia Martinez
- Departamento de Neurogenética y Biología Molecular, Instituto Nacional de Neurología y Neurocirugía. Manuel Velasco Suarez, México
| | - Adriana Ochoa
- Departamento de Neurogenética y Biología Molecular, Instituto Nacional de Neurología y Neurocirugía. Manuel Velasco Suarez, México
| | | | - Juan Fernandez-Ruiz
- Programa de Doctorado en Neuroetología, Universidad Veracruzana, México.,Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México.,Facultad de Psicología, Universidad Veracruzana, México
| |
Collapse
|
37
|
Cocozza S, Saccà F, Cervo A, Marsili A, Russo CV, Giorgio SMDA, De Michele G, Filla A, Brunetti A, Quarantelli M. Modifications of resting state networks in spinocerebellar ataxia type 2. Mov Disord 2015; 30:1382-90. [PMID: 26094751 DOI: 10.1002/mds.26284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/13/2015] [Accepted: 05/11/2015] [Indexed: 12/29/2022] Open
Abstract
PURPOSE We aimed to investigate the integrity of the Resting State Networks in spinocerebellar ataxia type 2 (SCA2) and the correlations between the modification of these networks and clinical variables. METHODS Resting-state functional magnetic resonance imaging (RS-fMRI) data from 19 SCA2 patients and 29 healthy controls were analyzed using an independent component analysis and dual regression, controlling at voxel level for the effect of atrophy by co-varying for gray matter volume. Correlations between the resting state networks alterations and disease duration, age at onset, number of triplets, and clinical score were assessed by Spearman's coefficient, for each cluster which was significantly different in SCA2 patients compared with healthy controls. RESULTS In SCA2 patients, disruption of the cerebellar components of all major resting state networks was present, with supratentorial involvement only for the default mode network. When controlling at voxel level for gray matter volume, the reduction in functional connectivity in supratentorial regions of the default mode network, and in cerebellar regions within the default mode, executive and right fronto-parietal networks, was still significant. No correlations with clinical variables were found for any of the investigated resting state networks. CONCLUSIONS The SCA2 patients show significant alterations of the resting state networks, only partly explained by the atrophy. The default mode network is the only resting state network that shows also supratentorial changes, which appear unrelated to the cortical gray matter volume. Further studies are needed to assess the clinical significance of these changes.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Amedeo Cervo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Angela Marsili
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Cinzia Valeria Russo
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | | | - Giuseppe De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| |
Collapse
|
38
|
New AB, Robin DA, Parkinson AL, Eickhoff CR, Reetz K, Hoffstaedter F, Mathys C, Sudmeyer M, Michely J, Caspers J, Grefkes C, Larson CR, Ramig LO, Fox PT, Eickhoff SB. The intrinsic resting state voice network in Parkinson's disease. Hum Brain Mapp 2015; 36:1951-62. [PMID: 25627959 PMCID: PMC4782783 DOI: 10.1002/hbm.22748] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 01/06/2015] [Accepted: 01/13/2015] [Indexed: 01/09/2023] Open
Abstract
Over 90 percent of patients with Parkinson's disease experience speech-motor impairment, namely, hypokinetic dysarthria characterized by reduced pitch and loudness. Resting-state functional connectivity analysis of blood oxygen level-dependent functional magnetic resonance imaging is a useful measure of intrinsic neural functioning. We utilized resting-state functional connectivity modeling to analyze the intrinsic connectivity in patients with Parkinson's disease within a vocalization network defined by a previous meta-analysis of speech (Brown et al., 2009). Functional connectivity of this network was assessed in 56 patients with Parkinson's disease and 56 gender-, age-, and movement-matched healthy controls. We also had item 5 and 18 of the UPDRS, and the PDQ-39 Communication subscale available for correlation with the voice network connectivity strength in patients. The within-group analyses of connectivity patterns demonstrated a lack of subcortical-cortical connectivity in patients with Parkinson's disease. At the cortical level, we found robust (homotopic) interhemispheric connectivity but only inconsistent evidence for many intrahemispheric connections. When directly contrasted to the control group, we found a significant reduction of connections between the left thalamus and putamen, and cortical motor areas, as well as reduced right superior temporal gyrus connectivity. Furthermore, most symptom measures correlated with right putamen, left cerebellum, left superior temporal gyrus, right premotor, and left Rolandic operculum connectivity in the voice network. The results reflect the importance of (right) subcortical nodes and the superior temporal gyrus in Parkinson's disease, enhancing our understanding of the neurobiological underpinnings of vocalization impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Anneliese B. New
- University of Texas Health Science Center at San Antonio, Research Imaging InstituteSan AntonioTexas
| | - Donald A. Robin
- University of Texas Health Science Center at San Antonio, Research Imaging InstituteSan AntonioTexas
- University of Texas Health Science Center at San Antonio, Department of NeurologySan AntonioTexas
- University of Texas Health Science Center at San Antonio, Department of RadiologySan AntonioTexas
- University of Texas Health Science Center at San Antonio and University of Texas at San Antonio, Joint Program in Biomedical EngineeringSan AntonioTexas
| | - Amy L. Parkinson
- University of Texas Health Science Center at San Antonio, Research Imaging InstituteSan AntonioTexas
| | - Claudia R. Eickhoff
- Research Center JulichInstitute of Neuroscience and Medicine (INM‐1)Department of PsychiatryPsychotherapy and Psychosomatics, University HospitalJulichGermany
- University Hospital Aachen, Department of Psychiatry, Psychotherapy and PsychosomaticsAachenGermany
| | - Kathrin Reetz
- Department of NeurologyUniversity of AachenAachenGermany
- Research Center JulichInstitute of Neuroscience and Medicine (INM‐4)Department of NeurologyUniversity HospitalJulichGermany
- Julich Aachen Research AllianceTranslational Brain MedicineJulich and AachenGermany
| | - Felix Hoffstaedter
- Research Center JulichInstitute of Neuroscience and Medicine (INM‐1)Department of PsychiatryPsychotherapy and Psychosomatics, University HospitalJulichGermany
- Department of Clinical Neuroscience and Medical PsychologyHeinrich Heine University–DüsseldorfDusseldorfGermany
| | - Christian Mathys
- Department of Diagnostic and Interventional RadiologyUniversity Dusseldorf, Medical FacultyDusseldorfGermany
| | - Martin Sudmeyer
- Department of NeurologyHeinrich Heine University – Dusseldorf, University HospitalDusseldorfGermany
| | - Jochen Michely
- Department of Neurology, Cologne UniversityCologneGermany
| | - Julian Caspers
- Research Center JulichInstitute of Neuroscience and Medicine (INM‐1)Department of PsychiatryPsychotherapy and Psychosomatics, University HospitalJulichGermany
- Department of Diagnostic and Interventional RadiologyUniversity Dusseldorf, Medical FacultyDusseldorfGermany
| | - Christian Grefkes
- Department of Neurology, Cologne UniversityCologneGermany
- Max‐Planck‐Institute for Neurological ResearchNeuromodulation, and NeurorehabilitationCologneGermany
| | - Charles R. Larson
- Northwestern University, Communication Sciences and DisordersEvanstonIllinois
| | - Loraine O. Ramig
- Department of SpeechLanguage and Hearing Science, University of Colorado – BoulderColorado
- National Center for Voice and SpeechSalt Lake CityUtah
| | - Peter T. Fox
- University of Texas Health Science Center at San Antonio, Research Imaging InstituteSan AntonioTexas
- University of Texas Health Science Center at San Antonio, Department of NeurologySan AntonioTexas
- University of Texas Health Science Center at San Antonio, Department of RadiologySan AntonioTexas
- South Texas Veterans Health Care System, Department of NeurologySan AntonioTexas
| | - Simon B. Eickhoff
- Research Center JulichInstitute of Neuroscience and Medicine (INM‐1)Department of PsychiatryPsychotherapy and Psychosomatics, University HospitalJulichGermany
- Department of Clinical Neuroscience and Medical PsychologyHeinrich Heine University–DüsseldorfDusseldorfGermany
| |
Collapse
|
39
|
New AB, Robin DA, Parkinson AL, Duffy JR, McNeil MR, Piguet O, Hornberger M, Price CJ, Eickhoff SB, Ballard KJ. Altered resting-state network connectivity in stroke patients with and without apraxia of speech. NEUROIMAGE-CLINICAL 2015; 8:429-39. [PMID: 26106568 PMCID: PMC4473263 DOI: 10.1016/j.nicl.2015.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/22/2022]
Abstract
Motor speech disorders, including apraxia of speech (AOS), account for over 50% of the communication disorders following stroke. Given its prevalence and impact, and the need to understand its neural mechanisms, we used resting state functional MRI to examine functional connectivity within a network of regions previously hypothesized as being associated with AOS (bilateral anterior insula (aINS), inferior frontal gyrus (IFG), and ventral premotor cortex (PM)) in a group of 32 left hemisphere stroke patients and 18 healthy, age-matched controls. Two expert clinicians rated severity of AOS, dysarthria and nonverbal oral apraxia of the patients. Fifteen individuals were categorized as AOS and 17 were AOS-absent. Comparison of connectivity in patients with and without AOS demonstrated that AOS patients had reduced connectivity between bilateral PM, and this reduction correlated with the severity of AOS impairment. In addition, AOS patients had negative connectivity between the left PM and right aINS and this effect decreased with increasing severity of non-verbal oral apraxia. These results highlight left PM involvement in AOS, begin to differentiate its neural mechanisms from those of other motor impairments following stroke, and help inform us of the neural mechanisms driving differences in speech motor planning and programming impairment following stroke.
Collapse
Affiliation(s)
- Anneliese B New
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Donald A Robin
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA ; Department of Neurology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA ; Joint Program in Biomedical Engineering, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA ; Honors College, University of Texas, San Antonio, TX, USA
| | - Amy L Parkinson
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA ; Department of Neurology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | | | - Malcom R McNeil
- University of Pittsburgh and Veterans Administration, Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Olivier Piguet
- Neuroscience Research Australia and University of New South Wales, Randwick, NSW,Australia
| | - Michael Hornberger
- Neuroscience Research Australia and University of New South Wales, Randwick, NSW,Australia
| | - Cathy J Price
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Julich, Julich, Germany ; Department of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kirrie J Ballard
- Neuroscience Research Australia and University of New South Wales, Randwick, NSW,Australia ; Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
40
|
Poeppl TB, Eickhoff SB, Fox PT, Laird AR, Rupprecht R, Langguth B, Bzdok D. Connectivity and functional profiling of abnormal brain structures in pedophilia. Hum Brain Mapp 2015; 36:2374-86. [PMID: 25733379 DOI: 10.1002/hbm.22777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/24/2015] [Accepted: 02/17/2015] [Indexed: 12/25/2022] Open
Abstract
Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia.
Collapse
Affiliation(s)
- Timm B Poeppl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Dogan I, Eickhoff CR, Fox PT, Laird AR, Schulz JB, Eickhoff SB, Reetz K. Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington's disease. NEUROIMAGE-CLINICAL 2015; 7:640-52. [PMID: 25844318 PMCID: PMC4375786 DOI: 10.1016/j.nicl.2015.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by a complex neuropsychiatric phenotype. In a recent meta-analysis we identified core regions of consistent neurodegeneration in premanifest HD in the striatum and middle occipital gyrus (MOG). For early manifest HD convergent evidence of atrophy was most prominent in the striatum, motor cortex (M1) and inferior frontal junction (IFJ). The aim of the present study was to functionally characterize this topography of brain atrophy and to investigate differential connectivity patterns formed by consistent cortico-striatal atrophy regions in HD. Using areas of striatal and cortical atrophy at different disease stages as seeds, we performed task-free resting-state and task-based meta-analytic connectivity modeling (MACM). MACM utilizes the large data source of the BrainMap database and identifies significant areas of above-chance co-activation with the seed-region via the activation-likelihood-estimation approach. In order to delineate functional networks formed by cortical as well as striatal atrophy regions we computed the conjunction between the co-activation profiles of striatal and cortical seeds in the premanifest and manifest stages of HD, respectively. Functional characterization of the seeds was obtained using the behavioral meta-data of BrainMap. Cortico-striatal atrophy seeds of the premanifest stage of HD showed common co-activation with a rather cognitive network including the striatum, anterior insula, lateral prefrontal, premotor, supplementary motor and parietal regions. A similar but more pronounced co-activation pattern, additionally including the medial prefrontal cortex and thalamic nuclei was found with striatal and IFJ seeds at the manifest HD stage. The striatum and M1 were functionally connected mainly to premotor and sensorimotor areas, posterior insula, putamen and thalamus. Behavioral characterization of the seeds confirmed that experiments activating the MOG or IFJ in conjunction with the striatum were associated with cognitive functions, while the network formed by M1 and the striatum was driven by motor-related tasks. Thus, based on morphological changes in HD, we identified functionally distinct cortico-striatal networks resembling a cognitive and motor loop, which may be prone to early disruptions in different stages of the disease and underlie HD-related cognitive and motor symptom profiles. Our findings provide an important link between morphometrically defined seed-regions and corresponding functional circuits highlighting the functional and ensuing clinical relevance of structural damage in HD. Pre-HD atrophy seeds showed common functional co-activation with a cognitive network. Modeling of manifest-HD seeds delineated a segregation of a cognitive and motor loop. Behavioral decoding of atrophy seeds confirmed functional segregation of networks. Based on morphometric changes in HD distinct corticostriatal networks were identified. Findings depict functional and ensuing clinical relevance of structural damage in HD.
Collapse
Affiliation(s)
- Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany ; Institute of Neuroscience and Medicine (INM-1, INM-4), Research Center Jülich GmbH, 52425 Jülich, Germany ; JARA - Translational Brain Medicine, Aachen, Jülich, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-4), Research Center Jülich GmbH, 52425 Jülich, Germany ; Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Peter T Fox
- Research Imaging Center, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284-7801, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Modesto A. Maidique Campus, CP 204, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany ; JARA - Translational Brain Medicine, Aachen, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-4), Research Center Jülich GmbH, 52425 Jülich, Germany ; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany ; Institute of Neuroscience and Medicine (INM-1, INM-4), Research Center Jülich GmbH, 52425 Jülich, Germany ; JARA - Translational Brain Medicine, Aachen, Jülich, Germany
| |
Collapse
|
42
|
Cytoarchitecture of the human lateral occipital cortex: mapping of two extrastriate areas hOc4la and hOc4lp. Brain Struct Funct 2015; 221:1877-97. [DOI: 10.1007/s00429-015-1009-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
|
43
|
Murray RJ, Debbané M, Fox PT, Bzdok D, Eickhoff SB. Functional connectivity mapping of regions associated with self- and other-processing. Hum Brain Mapp 2014; 36:1304-24. [PMID: 25482016 DOI: 10.1002/hbm.22703] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 10/16/2014] [Accepted: 11/17/2014] [Indexed: 12/12/2022] Open
Abstract
Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing.
Collapse
Affiliation(s)
- Ryan J Murray
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Bzdok D, Heeger A, Langner R, Laird AR, Fox PT, Palomero-Gallagher N, Vogt BA, Zilles K, Eickhoff SB. Subspecialization in the human posterior medial cortex. Neuroimage 2014; 106:55-71. [PMID: 25462801 DOI: 10.1016/j.neuroimage.2014.11.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022] Open
Abstract
The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-unconstrained but not task-constrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications.
Collapse
Affiliation(s)
- Danilo Bzdok
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adrian Heeger
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Brent A Vogt
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Cingulum NeuroSciences Institute and Boston University School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
45
|
Dose-dependent effects of theta burst rTMS on cortical excitability and resting-state connectivity of the human motor system. J Neurosci 2014; 34:6849-59. [PMID: 24828639 DOI: 10.1523/jneurosci.4993-13.2014] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity.
Collapse
|
46
|
Langner R, Rottschy C, Laird AR, Fox PT, Eickhoff SB. Meta-analytic connectivity modeling revisited: controlling for activation base rates. Neuroimage 2014; 99:559-70. [PMID: 24945668 DOI: 10.1016/j.neuroimage.2014.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/24/2014] [Accepted: 06/04/2014] [Indexed: 01/17/2023] Open
Abstract
Co-activation of distinct brain regions is a measure of functional interaction, or connectivity, between those regions. The co-activation pattern of a given region can be investigated using seed-based activation likelihood estimation meta-analysis of functional neuroimaging data stored in databases such as BrainMap. This method reveals inter-regional functional connectivity by determining brain regions that are consistently co-activated with a given region of interest (the "seed") across a broad range of experiments. In current implementations of this meta-analytic connectivity modeling (MACM), significant spatial convergence (i.e. consistent co-activation) is distinguished from noise by comparing it against an unbiased null-distribution of random spatial associations between experiments according to which all gray-matter voxels have the same chance of convergence. As the a priori probability of finding activation in different voxels markedly differs across the brain, computing such a quasi-rectangular null-distribution renders the detection of significant convergence more likely in those voxels that are frequently activated. Here, we propose and test a modified MACM approach that takes this activation frequency bias into account. In this new specific co-activation likelihood estimation (SCALE) algorithm, a null-distribution is generated that reflects the base rate of reporting activation in any given voxel and thus equalizes the a priori chance of finding across-study convergence in each voxel of the brain. Using four exemplary seed regions (right visual area V4, left anterior insula, right intraparietal sulcus, and subgenual cingulum), our tests corroborated the enhanced specificity of the modified algorithm, indicating that SCALE may be especially useful for delineating distinct core networks of co-activation.
Collapse
Affiliation(s)
- Robert Langner
- Institute of Clinical Neuroscience & Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Claudia Rottschy
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, and South Texas Veterans Administration Medical Center, San Antonio, TX, USA
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience & Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
47
|
Neural networks related to dysfunctional face processing in autism spectrum disorder. Brain Struct Funct 2014; 220:2355-71. [PMID: 24869925 DOI: 10.1007/s00429-014-0791-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 04/28/2014] [Indexed: 12/21/2022]
Abstract
One of the most consistent neuropsychological findings in autism spectrum disorders (ASD) is a reduced interest in and impaired processing of human faces. We conducted an activation likelihood estimation meta-analysis on 14 functional imaging studies on neural correlates of face processing enrolling a total of 164 ASD patients. Subsequently, normative whole-brain functional connectivity maps for the identified regions of significant convergence were computed for the task-independent (resting-state) and task-dependent (co-activations) state in healthy subjects. Quantitative functional decoding was performed by reference to the BrainMap database. Finally, we examined the overlap of the delineated network with the results of a previous meta-analysis on structural abnormalities in ASD as well as with brain regions involved in human action observation/imitation. We found a single cluster in the left fusiform gyrus showing significantly reduced activation during face processing in ASD across all studies. Both task-dependent and task-independent analyses indicated significant functional connectivity of this region with the temporo-occipital and lateral occipital cortex, the inferior frontal and parietal cortices, the thalamus and the amygdala. Quantitative reverse inference then indicated an association of these regions mainly with face processing, affective processing, and language-related tasks. Moreover, we found that the cortex in the region of right area V5 displaying structural changes in ASD patients showed consistent connectivity with the region showing aberrant responses in the context of face processing. Finally, this network was also implicated in the human action observation/imitation network. In summary, our findings thus suggest a functionally and structurally disturbed network of occipital regions related primarily to face (but potentially also language) processing, which interact with inferior frontal as well as limbic regions and may be the core of aberrant face processing and reduced interest in faces in ASD.
Collapse
|
48
|
Clos M, Rottschy C, Laird AR, Fox PT, Eickhoff SB. Comparison of structural covariance with functional connectivity approaches exemplified by an investigation of the left anterior insula. Neuroimage 2014; 99:269-80. [PMID: 24844743 DOI: 10.1016/j.neuroimage.2014.05.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/29/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022] Open
Abstract
The anterior insula is a multifunctional region involved in various cognitive, perceptual and socio-emotional processes. In particular, a portion of the left anterior insula is closely associated with working memory processes in healthy participants and shows gray matter reduction in schizophrenia. To unravel the functional networks related to this left anterior insula region, we here combined resting state connectivity, meta-analytic-connectivity modeling (MACM) and structural covariance (SC) in addition to functional characterization based on BrainMap meta-data. Apart from allowing new insight into the seed region, this approach moreover provided an opportunity to systematically compare these different connectivity approaches. The results showed that the left anterior insula has a broad response profile and is part of multiple functional networks including language, memory and socio-emotional networks. As all these domains are linked with several symptoms of schizophrenia, dysfunction of the left anterior insula might be a crucial component contributing to this disorder. Moreover, although converging connectivity across all three connectivity approaches for the left anterior insula were found, also striking differences were observed. RS and MACM as functional connectivity approaches specifically revealed functional networks linked with internal cognition and active perceptual/language processes, respectively. SC, in turn, showed a clear preference for highlighting regions involved in social cognition. These differential connectivity results thus indicate that the use of multiple forms of connectivity is advantageous when investigating functional networks as conceptual differences between these approaches might lead to systematic variation in the revealed functional networks.
Collapse
Affiliation(s)
- Mareike Clos
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Rottschy
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, TX, USA; South Texas Veterans Administration Medical Center, San Antonio, TX, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
49
|
Age-related decrease of functional connectivity additional to gray matter atrophy in a network for movement initiation. Brain Struct Funct 2014; 220:999-1012. [PMID: 24399178 DOI: 10.1007/s00429-013-0696-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/26/2013] [Indexed: 01/21/2023]
Abstract
Healthy aging is accompanied by a decrease in cognitive and motor capacities. In a network associated with movement initiation, we investigated age-related changes of functional connectivity (FC) as well as regional atrophy in a sample of 232 healthy subjects (age range 18-85 years). To this end, voxel-based morphometry and whole-brain resting-state FC were analyzed for the supplementary motor area (SMA), anterior midcingulate cortex (aMCC) and bilateral striatum (Str). To assess the specificity of age-related effects, bilateral primary sensorimotor cortex (S1/M1) closely associated with motor execution was used as control seeds. All regions showed strong reduction of gray matter volume with age. Corrected for this regional atrophy, the FC analysis revealed an age × seed interaction for each of the bilateral Str nodes against S1/M1 with consistent age-related decrease in FC with bilateral caudate nucleus and anterior putamen. Specific age-dependent FC decline of SMA was found in bilateral central insula and the adjacent frontal operculum. aMCC showed exclusive age-related decoupling from the anterior cingulate motor area. The present study demonstrates network as well as node-specific age-dependent FC decline of the SMA and aMCC to highly integrative cortical areas involved in cognitive motor control. FC decrease in addition to gray matter atrophy within the Str may provide a substrate for the declining motor control in elderly. Finally, age-related FC changes in both the network for movement initiation as well as the network for motor execution are not explained by regional atrophy in the healthy aging brain.
Collapse
|
50
|
Amft M, Bzdok D, Laird AR, Fox PT, Schilbach L, Eickhoff SB. Definition and characterization of an extended social-affective default network. Brain Struct Funct 2014; 220:1031-49. [PMID: 24399179 DOI: 10.1007/s00429-013-0698-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/26/2013] [Indexed: 01/13/2023]
Abstract
Recent evidence suggests considerable overlap between the default mode network (DMN) and regions involved in social, affective and introspective processes. We considered these overlapping regions as the social-affective part of the DMN. In this study, we established a robust mapping of the underlying brain network formed by these regions and those strongly connected to them (the extended social-affective default network). We first seeded meta-analytic connectivity modeling and resting-state analyses in the meta-analytically defined DMN regions that showed statistical overlap with regions associated with social and affective processing. Consensus connectivity of each seed was subsequently delineated by a conjunction across both connectivity analyses. We then functionally characterized the ensuing regions and performed several cluster analyses. Among the identified regions, the amygdala/hippocampus formed a cluster associated with emotional processes and memory functions. The ventral striatum, anterior cingulum, subgenual cingulum and ventromedial prefrontal cortex formed a heterogeneous subgroup associated with motivation, reward and cognitive modulation of affect. Posterior cingulum/precuneus and dorsomedial prefrontal cortex were associated with mentalizing, self-reference and autobiographic information. The cluster formed by the temporo-parietal junction and anterior middle temporal sulcus/gyrus was associated with language and social cognition. Taken together, the current work highlights a robustly interconnected network that may be central to introspective, socio-affective, that is, self- and other-related mental processes.
Collapse
Affiliation(s)
- Maren Amft
- Institute of Clinical Neuroscience and Medical Psychology, HHU Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|