1
|
Kübler S, Langsdorf L, Meyer M, Schubert T. Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex Modulates Voluntary Task-order Coordination in Dual-task Situations. J Cogn Neurosci 2025; 37:602-620. [PMID: 39499530 DOI: 10.1162/jocn_a_02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Dual tasks (DTs) require additional control processes that temporally coordinate the processing of the two component tasks. Previous studies employing imaging as well as noninvasive stimulation techniques have demonstrated that the dorsolateral prefrontal cortex (dlPFC) is causally involved in these task-order coordination processes. However, in these studies, participants were instructed to match their processing order to an externally provided and mandatory order criterion during DT processing. Hence, it is still unknown whether the dlPFC is also recruited for rather voluntary order control processes, which are required in situations that allow for intentional and internally generated order choices. To address this issue, in two experiments, we applied anodal (Experiment 1) and cathodal (Experiment 2) transcranial direct current stimulation during a random-order DT in which participants could freely decide about their order of task processing. In our results, we found facilitatory and inhibitory effects on voluntary task-order coordination because of anodal and cathodal transcranial direct current stimulation, respectively. This was indicated by shorter RTs when participants intentionally switched the task order relative to the preceding trial during anodal as well as a reduced tendency to switch the task order relative to the preceding trial during cathodal stimulation compared with the sham stimulation. Overall, these findings indicate that the dlPFC is also causally involved in voluntary task-order coordination processes. In particular, we argue that the dlPFC is recruited for intentionally updating and implementing task-order information that is necessary for scheduling the processing of two temporally overlapping tasks.
Collapse
Affiliation(s)
- Sebastian Kübler
- Martin Luther University Halle-Wittenberg
- Humboldt-Universität zu Berlin
| | | | | | | |
Collapse
|
2
|
Zanetti AS, Saroka KS, Dotta BT. Electromagnetic field enhanced flow state: Insights from electrophysiological measures, self-reported experiences, and gameplay. Brain Res 2024; 1844:149158. [PMID: 39137825 DOI: 10.1016/j.brainres.2024.149158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The intersection of neuroscience and technology hinges on the development of wearable devices and electrodes that can augment brain networks to improve cognitive capabilities such as learning and concentration. The capacity to enhance networks associated with these functions above baseline capabilities, holds the potential to benefit numerous individuals. The purpose of this study was to determine if electromagnetic field exposure modeled from physiological data would increase instances of flow in participants playing a computer game. The flow state refers to a subjective state of optimal performance experienced by individuals during a variety of tasks. For this study, participants (n = 39, 18-65 years, nfemale = 20) played the arcade game Snake for two ten-minute periods (each with a ten-minute rest period immediately following). For one of the trials, an electromagnetic field was applied bilaterally to the temporal lobes, with the other serving as the control. Brain activity was measured using quantitative electroencephalography, flow experience was measured using the Flow Short Scale and game play scores were also recorded. Results showed deceased beta 1 (12-16 Hz) activity in the left cuneus [t = 4.650, p < 0.01] and left precuneus [t = 4.603, p < 0.01], left posterior cingulate [t = 4.521, p < 0.05], insula [t = 4.234, p < 0.05], and parahippocampal gyrus [t = 4.113, p < 0.05] for trials when the field was active, compared to controls during rest periods. Results from the Flow Short Scale showed a statistically significant difference in mean "concentration ease" scores across electromagnetic field conditions, irrespective of difficulty [t = 2.131, p < 0.05]. In the EMF exposure trials, there was no discernible experience effect; participants with prior experience in the game Snake did not exhibit significantly better performance compared to those without prior experience. This anticipated effect was observed in control conditions. The comparable performance observed between novices and experienced players in the EMF condition indicate a noteworthy learning curve for novices. In all, these results provide evidence supporting the ability of EMF patterned from amygdaloid firing (6-20 Hz) to elicit neurological correlates of flow in brain regions previously reported in the literature, facilitate concentration, and subtly improve game scores. The possibility for wearable devices to support learning, concentration, and focus are discussed.
Collapse
Affiliation(s)
- Anthony S Zanetti
- Behavioural Neuroscience & Psychology Programs, School of Natural Science, Laurentian University, Sudbury, ON P3E2C6, Canada
| | - Kevin S Saroka
- Behavioural Neuroscience & Psychology Programs, School of Natural Science, Laurentian University, Sudbury, ON P3E2C6, Canada
| | - Blake T Dotta
- Behavioural Neuroscience & Psychology Programs, School of Natural Science, Laurentian University, Sudbury, ON P3E2C6, Canada.
| |
Collapse
|
3
|
Kropotov JD, Ponomarev VA, Pronina MV. The P300 wave is decomposed into components reflecting response selection and automatic reactivation of stimulus-response links. Psychophysiology 2024; 61:e14578. [PMID: 38556644 DOI: 10.1111/psyp.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/14/2024] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
The parietal P300 wave of event-related potentials (ERPs) has been associated with various psychological operations in numerous laboratory tasks. This study aims to decompose the P3 wave of ERPs into subcomponents and link them with behavioral parameters, such as the strength of stimulus-response (S-R) links and GO/NOGO responses. EEGs (31 channels), referenced to linked ears, were recorded from 172 healthy adults (107 women) who participated in two cued GO/NOGO tasks, where the strength of S-R links was manipulated through instructions. P300 waves were observed in active conditions in response to cues, GO/NOGO stimuli, and in passive conditions when no manual response was required. Utilizing a combination of current source density transformation and blind source separation methods, we decomposed the P300 wave into two distinct components, purportedly originating from different parts of the parietal lobules. The amplitude of the parietal midline component (with current sources around Pz) closely mirrored the strength of the S-R link across proactive, reactive, and passive conditions. The amplitude of the lateral parietal component (with current sources around P3 and P4) resembled the push-pull activity of the output nuclei of the basal ganglia in action selection-inhibition operations. These findings provide insights into the neural mechanisms underlying action selection processes and the reactivation of S-R links.
Collapse
Affiliation(s)
- Juri D Kropotov
- Laboratory of neurobiology of action programming, N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| | - Valery A Ponomarev
- Laboratory of neurobiology of action programming, N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| | - Marina V Pronina
- Laboratory of neurobiology of action programming, N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
4
|
Li X, Turel O, He Q. Sex modulated the relationship between trait approach motivation and decision-making. Neuroimage 2024; 291:120598. [PMID: 38555995 DOI: 10.1016/j.neuroimage.2024.120598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
It has been observed that one's Behavioral Approach System (BAS) can have an effect on decision-making under uncertainty, although the results have been mixed. To discern the underlying neural substrates, we hypothesize that sex may explain the conflicting results. To test this idea, a large sample of participants was studied using resting state fMRI, utilizing fractional Amplitude of Low Frequency Fluctuations (fALFF) and Resting-State Functional Connectivity (rsFC) techniques. The results of the Iowa Gambling Task (IGT) revealed an interaction between sex and BAS, particularly in the last 60 trials (decision-making under risk). Males with high BAS showed poorer performance than those with low BAS. fALFF analysis showed a significant interaction between BAS group and sex in the left superior occipital gyrus, as well as the functional connectivity between this region and the left ventrolateral prefrontal cortex. Additionally, this functional connectivity was further positively correlated with male performance in the IGT, particularly in the decision-making under risk stage. Furthermore, it was found that the functional connectivity between left ventrolateral prefrontal cortex and left superior occipital gyrus could mediate the relationship between BAS and decision-making in males, particularly in the decision-making under risk stage. These results suggest possible sex-based differences in decision-making, providing an explanation for the inconsistent results found in prior research. Since the research was carried out exclusively with Chinese university students, it is essential to conduct further studies to investigate whether the findings can be generalized.
Collapse
Affiliation(s)
- Xiaoyi Li
- Faculty of Psychology, MOE Key Lab of Cognition and Personality, Southwest University, Chongqing , China
| | - Ofir Turel
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Qinghua He
- Faculty of Psychology, MOE Key Lab of Cognition and Personality, Southwest University, Chongqing , China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Collaborative Innovation Center of Assessment Toward Basic Education Quality, Southwest University Branch, Chongqing, China.
| |
Collapse
|
5
|
Guo T, Schwieter JW, Liu H. fMRI reveals overlapping and non-overlapping neural bases of domain-general and emotional conflict control. Psychophysiology 2023; 60:e14355. [PMID: 37254582 DOI: 10.1111/psyp.14355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 04/05/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
The present study uses functional magnetic resonance image (fMRI) to examine the overlapping and specific neural correlates of contextualized emotional conflict control and domain-general conflict control. During a performance on emotional and domain-general conflict tasks, conjunction analyses showed that neural areas distributed in the frontoparietal network were engaged in both processes, supporting the notion that similar neural mechanisms are implemented in these two types of control. Importantly, disjunction analyses revealed a broader neural recruitment of emotional conflict control compared to domain-general conflict control as shown by the possible lateralization of the lateral prefrontal cortex (lPFC), such that emotional conflict control significantly involved the left lPFC while domain-general conflict control seemly involved the right lPFC. Results of generalized psychophysiological interaction (gPPI) analyses further demonstrated that emotional conflict control, compared to domain-general conflict control, elicited broader synergistic activities in individuals' brain networks. Together, these findings offer novel and compelling neural evidence that furthers our understanding of the complex relationship between domain-general and emotional conflict control.
Collapse
Affiliation(s)
- Tingting Guo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, China
| | - John W Schwieter
- Language Acquisition, Cognition, and Multilingualism Laboratory, Bilingualism Matters @ Wilfrid Laurier University, Waterloo, Ontario, Canada
- Department of Linguistics and Languages, McMaster University, Hamilton, Ontario, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, China
| |
Collapse
|
6
|
Application of Machine Learning to Diagnostics of Schizophrenia Patients Based on Event-Related Potentials. Diagnostics (Basel) 2023; 13:diagnostics13030509. [PMID: 36766614 PMCID: PMC9913945 DOI: 10.3390/diagnostics13030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Schizophrenia is a major psychiatric disorder that significantly reduces the quality of life. Early treatment is extremely important in order to mitigate the long-term negative effects. In this paper, a machine learning based diagnostics of schizophrenia was designed. Classification models were applied to the event-related potentials (ERPs) of patients and healthy subjects performing the visual cued Go/NoGo task. The sample consisted of 200 adult individuals ranging in age from 18 to 50 years. In order to apply the machine learning models, various features were extracted from the ERPs. The process of feature extraction was parametrized through a special procedure and the parameters of this procedure were selected through a grid-search technique along with the model hyperparameters. Feature extraction was followed by sequential feature selection transformation in order to prevent overfitting and reduce the computational complexity. Various models were trained on the resulting feature set. The best model was support vector machines with a sensitivity and specificity of 91% and 90.8%, respectively.
Collapse
|
7
|
Frick A, Chevalier N. A First Theoretical Model of Self-Directed Cognitive Control Development. JOURNAL OF COGNITION AND DEVELOPMENT 2022. [DOI: 10.1080/15248372.2022.2160720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aurélien Frick
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | | |
Collapse
|
8
|
Zhang Y, Lemarchand R, Asyraff A, Hoffman P. Representation of motion concepts in occipitotemporal cortex: fMRI activation, decoding and connectivity analyses. Neuroimage 2022; 259:119450. [PMID: 35798252 DOI: 10.1016/j.neuroimage.2022.119450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/15/2022] [Accepted: 07/03/2022] [Indexed: 11/18/2022] Open
Abstract
Embodied theories of semantic cognition predict that brain regions involved in motion perception are engaged when people comprehend motion concepts expressed in language. Left lateral occipitotemporal cortex (LOTC) is implicated in both motion perception and motion concept processing but prior studies have produced mixed findings on which parts of this region are engaged by motion language. We scanned participants performing semantic judgements about sentences describing motion events and static events. We performed univariate analyses, multivariate pattern analyses (MVPA) and psychophysiological interaction (PPI) analyses to investigate the effect of motion on activity and connectivity in different parts of LOTC. In multivariate analyses that decoded whether a sentence described motion or not, the middle and posterior parts of LOTC showed above-chance level performance, with performance exceeding that of other brain regions. Univariate ROI analyses found the middle part of LOTC was more active for motion events than static ones. Finally, PPI analyses found that when processing motion events, the middle and posterior parts of LOTC (overlapping with motion perception regions), increased their connectivity with cognitive control regions. Taken together, these results indicate that the more posterior parts of LOTC, including motion perception cortex, respond differently to motion vs. static events. These findings are consistent with embodiment accounts of semantic processing, and suggest that understanding verbal descriptions of motion engages areas of the occipitotemporal cortex involved in perceiving motion.
Collapse
Affiliation(s)
- Yueyang Zhang
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Rafael Lemarchand
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Aliff Asyraff
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK.
| |
Collapse
|
9
|
Chen Y, Cao B, Xie L, Wu J, Li F. Proactive and reactive control differ between task switching and response rule switching: Event-related potential evidence. Neuropsychologia 2022; 172:108272. [PMID: 35597267 DOI: 10.1016/j.neuropsychologia.2022.108272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 12/26/2022]
Abstract
The distinction between task-switching (T-switch) and response-rule switching (RR-switch) has been reported in previous studies. However, it is unclear whether the neural correlates of proactive and reactive control differ between T-switch and RR-switch. In this study, a modified cue-target task was adopted. When the cue in the current trial differed from that in the preceding trial in shape (or color), the participants had to perform a T-switch (or RR-switch). Otherwise, they performed the same task following the same response rule. The behavioral results showed that the switch cost was greater for the RR-switch than for the T-switch. The event-related potential results indicated that (1) for cues, the switch-positivity in the late positive component (LPC) (500-800 ms) was more enhanced for the RR-switch than for the T-switch over the central to parietal regions, reflecting increased proactive control for the RR-switch compared with the T-switch; (2) for targets, the P3 amplitude was more attenuated in the RR-switch than the T-switch over the central and parietal regions, reflecting increased reactive control for the RR-switch; and (3) under the T-switch, the switch-positivity in the cue-LPC was negatively correlated with accuracy cost, while under the RR-switch, the switch negativity in the target-P3 was positively correlated with the reaction time cost. These findings suggest that similar proactive and reactive control are recruited in the T-switch and RR-switch, whereas cognitive control efforts clearly differ between them, perhaps due to different sub-processes.
Collapse
Affiliation(s)
- Yun Chen
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China
| | - Bihua Cao
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China.
| | - Liufang Xie
- School of Education Science, Nanning Normal University, Nanning, 530299, China
| | - Jianxiao Wu
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China; School of Business Administration, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Fuhong Li
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
10
|
Jiao L, Meng N, Wang Z, Schwieter JW, Liu C. Partially shared neural mechanisms of language control and executive control in bilinguals: Meta-analytic comparisons of language and task switching studies. Neuropsychologia 2022; 172:108273. [DOI: 10.1016/j.neuropsychologia.2022.108273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 01/28/2023]
|
11
|
Attention Control and Audiomotor Processes Underlying Anticipation of Musical Themes while Listening to Familiar Sonata-Form Pieces. Brain Sci 2022; 12:brainsci12020261. [PMID: 35204024 PMCID: PMC8870438 DOI: 10.3390/brainsci12020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
When listening to music, people are excited by the musical cues immediately before rewarding passages. More generally, listeners attend to the antecedent cues of a salient musical event irrespective of its emotional valence. The present study used functional magnetic resonance imaging to investigate the behavioral and cognitive mechanisms underlying the cued anticipation of the main theme’s recurrence in sonata form. Half of the main themes in the musical stimuli were of a joyful character, half a tragic character. Activity in the premotor cortex suggests that around the main theme’s recurrence, the participants tended to covertly hum along with music. The anterior thalamus, pre-supplementary motor area (preSMA), posterior cerebellum, inferior frontal junction (IFJ), and auditory cortex showed increased activity for the antecedent cues of the themes, relative to the middle-last part of the themes. Increased activity in the anterior thalamus may reflect its role in guiding attention towards stimuli that reliably predict important outcomes. The preSMA and posterior cerebellum may support sequence processing, fine-grained auditory imagery, and fine adjustments to humming according to auditory inputs. The IFJ might orchestrate the attention allocation to motor simulation and goal-driven attention. These findings highlight the attention control and audiomotor components of musical anticipation.
Collapse
|
12
|
Chen Y, Wu J, Li F. Reconfiguration of response rule is more difficult than that of task goal: Behavior and electrophysiological evidence. Neurosci Lett 2022; 774:136517. [PMID: 35149197 DOI: 10.1016/j.neulet.2022.136517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Previous studies have investigated the neural mechanisms underlying cognitive control by using the task-switching paradigm, but differentiation from response rule switching (RR-switch) remains poorly explored. In this study, a partial voluntary task-switching (VTS) paradigm was used to explore the electrophysiological differences between task switching (T-switch) and RR-switching. Participants were sequentially presented with Arabic numerals colored red or green. If the color in the current trial was the same as that in the previous trial, the participants had to perform the same task following the same response rule. Otherwise, they had to voluntarily switch tasks (e.g., from parity task to magnitude task) or switch response rules (e.g., from "pressing F for odd and J for even number' to 'pressing J for odd and F for even number"). The behavioral results indicated that RR-switch was infrequently selected, and the performance was less efficient than that of the T-switch. Event-related potential results showed that both T- and RR-switches elicited a larger switch-positivity in the P2 and P3 time windows than that in the repeat condition. Switch-positivity was larger for RR-switch than for T-switch over the frontal sites, suggesting that more attention and cognitive resources were required to update information for the RR-switch than for the T-switch. These findings suggest that in the VTS, the hierarchical relationship between task goals and response rules is relatively loose, resulting in the neural disassociation of task reconfiguration and response change.
Collapse
Affiliation(s)
- Yun Chen
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China
| | - Jianxiao Wu
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China
| | - Fuhong Li
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
13
|
Landers MJF, Meesters SPL, van Zandvoort M, de Baene W, Rutten GJM. The frontal aslant tract and its role in executive functions: a quantitative tractography study in glioma patients. Brain Imaging Behav 2021; 16:1026-1039. [PMID: 34716878 PMCID: PMC9107421 DOI: 10.1007/s11682-021-00581-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/03/2021] [Indexed: 11/29/2022]
Abstract
Focal white matter lesions can cause cognitive impairments due to disconnections within or between networks. There is some preliminary evidence that there are specific hubs and fiber pathways that should be spared during surgery to retain cognitive performance. A tract potentially involved in important higher-level cognitive processes is the frontal aslant tract. It roughly connects the posterior parts of the inferior frontal gyrus and the superior frontal gyrus. Functionally, the left frontal aslant tract has been associated with speech and the right tract with executive functions. However, there currently is insufficient knowledge about the right frontal aslant tract’s exact functional importance. The aim of this study was to investigate the role of the right frontal aslant tract in executive functions via a lesion-symptom approach. We retrospectively examined 72 patients with frontal glial tumors and correlated measures from tractography (distance between tract and tumor, and structural integrity of the tract) with cognitive test performances. The results indicated involvement of the right frontal aslant tract in shifting attention and letter fluency. This involvement was not found for the left tract. Although this study was exploratory, these converging findings contribute to a better understanding of the functional frontal subcortical anatomy. Shifting attention and letter fluency are important for healthy cognitive functioning, and when impaired they may greatly influence a patient’s wellbeing. Further research is needed to assess whether or not damage to the right frontal aslant tract causes permanent cognitive impairments, and consequently identifies this tract as a critical pathway that should be taken into account during neurosurgical procedures.
Collapse
Affiliation(s)
- Maud J F Landers
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands. .,Department of Neurology & Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Stephan P L Meesters
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands.,Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martine van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wouter de Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| |
Collapse
|
14
|
Vijayakumar S, Hartstra E, Mars RB, Bekkering H. Neural mechanisms of predicting individual preferences based on group membership. Soc Cogn Affect Neurosci 2021; 16:1006-1017. [PMID: 33025007 PMCID: PMC8421698 DOI: 10.1093/scan/nsaa136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/26/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
Successful social interaction requires humans to predict others’ behavior. To do so, internal models of others are generated based on previous observations. When predicting others’ preferences for objects, for example, observations are made at an individual level (5-year-old Rosie often chooses a pencil) or at a group level (kids often choose pencils). But previous research has focused either on already established group knowledge, i.e. stereotypes, or on the neural correlates of predicting traits and preferences of individuals. We identified the neural mechanisms underlying predicting individual behavior based on learned group knowledge using fMRI. We show that applying learned group knowledge hinges on both a network of regions commonly referred to as the mentalizing network, and a network of regions implicated in representing social knowledge. Additionally, we provide evidence for the presence of a gradient in the posterior temporal cortex and the medial frontal cortex, catering to different functions while applying learned group knowledge. This process is characterized by an increased connectivity between medial prefrontal cortex and other mentalizing network regions and increased connectivity between anterior temporal lobe and other social knowledge regions. Our study provides insights into the neural mechanisms underlying the application of learned group knowledge.
Collapse
Affiliation(s)
- Suhas Vijayakumar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, HR, Nijmegen, The Netherlands
| | - Egbert Hartstra
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, HR, Nijmegen, The Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, HR, Nijmegen, The Netherlands.,Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Harold Bekkering
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, HR, Nijmegen, The Netherlands
| |
Collapse
|
15
|
González-García C, Formica S, Wisniewski D, Brass M. Frontoparietal action-oriented codes support novel instruction implementation. Neuroimage 2020; 226:117608. [PMID: 33271270 DOI: 10.1016/j.neuroimage.2020.117608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/24/2020] [Indexed: 01/05/2023] Open
Abstract
A key aspect of human cognitive flexibility concerns the ability to convert complex symbolic instructions into novel behaviors. Previous research proposes that this transformation is supported by two neurocognitive states: an initial declarative maintenance of task knowledge, and an implementation state necessary for optimal task execution. Furthermore, current models predict a crucial role of frontal and parietal brain regions in this process. However, whether declarative and procedural signals independently contribute to implementation remains unknown. We report the results of an fMRI experiment in which participants executed novel instructed stimulus-response associations. We then used a pattern-tracking procedure to quantify the contribution of format-unique signals during instruction implementation. This revealed independent procedural and declarative representations of novel S-Rs in frontoparietal areas, prior to execution. Critically, the degree of procedural activation predicted subsequent behavioral performance. Altogether, our results suggest an important contribution of frontoparietal regions to the neural architecture that regulates cognitive flexibility.
Collapse
Affiliation(s)
| | - Silvia Formica
- Department of Experimental Psychology, Ghent University, Belgium
| | - David Wisniewski
- Department of Experimental Psychology, Ghent University, Belgium
| | - Marcel Brass
- Department of Experimental Psychology, Ghent University, Belgium; Berlin School of Mind and Brain, Department of Psychology, Humboldt University of Berlin, Germany
| |
Collapse
|
16
|
Abou-Ghazaleh A, Khateb A, Kroll JF. New insights into the neural basis of cognitive control: An event-related fMRI study of task selection processes. Int J Psychophysiol 2020; 153:80-90. [PMID: 32360750 DOI: 10.1016/j.ijpsycho.2020.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/25/2022]
Abstract
To investigate cognitive control, researchers have repeatedly employed task switching paradigms. The comparison of switch relative to repeat trials reveals longer response times and higher error rates, a pattern that has been interpreted as switching costs. Functional magnetic resonance imaging (fMRI) studies have shown the involvement of different brain modules in switching conditions, including prefrontal and parietal regions together with other sub-cortical structures. In this study, the aim was to shed light on the brain basis of cognitive control using an approach that proved useful in previous studies investigating language control in bilinguals. We examined adult participants in one simple color naming context and two task selection mixed contexts. In the first mixed selection context, participants named the color or the shape of the stimulus based on a cue word. In the second, they named the color or the size of the stimulus. It was assumed that the comparison of brain responses to the same color naming in mixed selection contexts vs. in non-selection context will reveal the of engagement of cognitive control/task selection processes. Whole brain analysis of color naming in the different contexts showed a significant main effect of context. The comparison of brain responses in several frontal, parietal and sub-cortical regions, of which some are supposedly involved in cognitive control, demonstrated an increased activation during color naming in mixed relative the simple non-mixed context. The different cognitive control modules described in this study fit with recent bilingual language control and domain general cognitive models.
Collapse
Affiliation(s)
- Afaf Abou-Ghazaleh
- The Unit for the Study of Arabic Language, Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, Faculty of Education, University of Haifa, Haifa, Israel; Dept of Learning Disabilities, Faculty of Education, University of Haifa, Haifa, Israel
| | - Asaid Khateb
- The Unit for the Study of Arabic Language, Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, Faculty of Education, University of Haifa, Haifa, Israel; Dept of Learning Disabilities, Faculty of Education, University of Haifa, Haifa, Israel.
| | - Judith F Kroll
- Dept of Language Science, University of California, Irvine, CA, USA
| |
Collapse
|
17
|
Bilingual language processing: A meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 2020; 108:834-853. [DOI: 10.1016/j.neubiorev.2019.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/27/2023]
|
18
|
de la Vega A, Yarkoni T, Wager TD, Banich MT. Large-scale Meta-analysis Suggests Low Regional Modularity in Lateral Frontal Cortex. Cereb Cortex 2019; 28:3414-3428. [PMID: 28968758 DOI: 10.1093/cercor/bhx204] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/20/2017] [Indexed: 01/24/2023] Open
Abstract
Extensive fMRI study of human lateral frontal cortex (LFC) has yet to yield a consensus mapping between discrete anatomy and psychological states, partly due to the difficulty of inferring mental states from brain activity. Despite this, there have been few large-scale efforts to map the full range of psychological states across the entirety of LFC. Here, we used a data-driven approach to generate a comprehensive functional-anatomical mapping of LFC from 11 406 neuroimaging studies. We identified putatively separable LFC regions on the basis of whole-brain co-activation, revealing 14 clusters organized into 3 whole-brain networks. Next, we generated functional preference profiles by using multivariate classification to identify the psychological states that best predicted activity within each cluster. We observed large functional differences between networks, suggesting brain networks support distinct modes of processing. Within each network, however, we observed relatively low functional specificity, suggesting discrete psychological states are not strongly localized to individual regions; instead, our results are consistent with the view that individual LFC regions work as part of distributed networks to give rise to flexible behavior. Collectively, our results provide a comprehensive synthesis of a diverse neuroimaging literature using relatively unbiased data-driven methods.
Collapse
Affiliation(s)
- Alejandro de la Vega
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.,Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Tal Yarkoni
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
19
|
Yu C, Beckmann JF, Birney DP. Cognitive flexibility as a meta-competency / Flexibilidad cognitiva como meta-competencia. STUDIES IN PSYCHOLOGY 2019. [DOI: 10.1080/02109395.2019.1656463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
20
|
De Baene W, Rutten GJM, Sitskoorn MM. Cognitive functioning in glioma patients is related to functional connectivity measures of the non-tumoural hemisphere. Eur J Neurosci 2019; 50:3921-3933. [PMID: 31370107 PMCID: PMC6972640 DOI: 10.1111/ejn.14535] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/04/2019] [Accepted: 07/22/2019] [Indexed: 01/19/2023]
Abstract
Previous studies have shown that cognitive functioning in patients with brain tumour is associated with the functional network characteristics of specific resting‐state networks or with whole‐brain network characteristics. These studies, however, did not acknowledge the functional contribution of areas in the contralesional, non‐tumoural hemisphere, even though these healthy remote areas likely play a critical role in compensating for the loss of function in damaged tissue. In the current study, we examined whether there is an association between cognitive performance and functional network features of the contralesional hemisphere of patients with glioma. We found that local efficiency of the contralesional hemisphere was associated with performance on the reaction time domain, whereas contralesional assortativity was associated with complex attention and cognitive flexibility scores. Our results suggest that a less segregated organization of the contralesional hemisphere is associated with better reaction time scores, whereas a better spread of information over the contralesional hemisphere through mutually interconnected contralesional hubs is associated with better cognitive flexibility and better complex attention scores. These findings urge researchers to recognize the functional contribution of remote, undamaged regions and to focus more on the graph metrics of the contralesional hemisphere in the search for predictors of cognitive functioning in patients with brain tumour.
Collapse
Affiliation(s)
- Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Margriet M Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
21
|
Neural Switch Asymmetry in Feature-Based Auditory Attention Tasks. J Assoc Res Otolaryngol 2019; 20:205-215. [PMID: 30675674 DOI: 10.1007/s10162-018-00713-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022] Open
Abstract
Active listening involves dynamically switching attention between competing talkers and is essential to following conversations in everyday environments. Previous investigations in human listeners have examined the neural mechanisms that support switching auditory attention within the acoustic featural cues of pitch and auditory space. Here, we explored the cortical circuitry underlying endogenous switching of auditory attention between pitch and spatial cues necessary to discern target from masker words. Because these tasks are of unequal difficulty, we expected an asymmetry in behavioral switch costs for hard-to-easy versus easy-to-hard switches, mirroring prior evidence from vision-based cognitive task-switching paradigms. We investigated the neural correlates of this behavioral switch asymmetry and associated cognitive control operations in the present auditory paradigm. Behaviorally, we observed no switch-cost asymmetry, i.e., no performance difference for switching from the more difficult attend-pitch to the easier attend-space condition (P→S) versus switching from easy-to-hard (S→P). However, left lateral prefrontal cortex activity, correlated with improved performance, was observed during a silent gap period when listeners switched attention from P→S, relative to switching within pitch cues. No such differential activity was seen for the analogous easy-to-hard switch. We hypothesize that this neural switch asymmetry reflects proactive cognitive control mechanisms that successfully reconfigured neurally-specified task parameters and resolved competition from other such "task sets," thereby obviating the expected behavioral switch-cost asymmetry. The neural switch activity observed was generally consistent with that seen in cognitive paradigms, suggesting that established cognitive models of attention switching may be productively applied to better understand similar processes in audition.
Collapse
|
22
|
Abstract
Positioning "incentive hope" in a general model of behavioral control systems removes artificial boundaries between mechanisms of incentive motivation in foraging behavior and other functions of the striatum and connected systems. Specifically, incentive hope may involve mechanisms of anticipation of both reward and threat, explaining why anxious individuals show stronger potentiation of incentive motivation under conditions of reward uncertainty.
Collapse
|
23
|
Slama H, Chylinski DO, Deliens G, Leproult R, Schmitz R, Peigneux P. Sleep Deprivation Triggers Cognitive Control Impairments in Task-Goal Switching. Sleep 2017; 41:4737239. [PMID: 29244170 DOI: 10.1093/sleep/zsx200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 09/17/2017] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES This study investigates the impact of sleep deprivation (SD) on task-goal switching, a key component of cognitive flexibility. METHODS Task-goal switching performance was tested after one night of regular sleep (n = 17 participants) or of total SD (n = 18). To understand the relationships between task-switching performance and other cognitive processes following SD, participants were tested for other key attentional (alertness and vigilance) and executive (inhibition and working memory) functions. Spontaneous eye blink rate (EBR) was also measured as an indirect marker of striatal dopaminergic function. RESULTS SD negatively affects task-goal switching as well as attentional and inhibition measures, but not working memory. Changes in task-goal switching performance were not significantly correlated with changes in objective and subjective markers of fatigue and sleepiness, response inhibition, or spontaneous EBR. CONCLUSIONS Altogether, our results show differentiated effects of SD on key executive functions such as working memory, inhibition, and task-goal switching.
Collapse
Affiliation(s)
- Hichem Slama
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,UNESCOG - Research Unit in Cognitive Neurosciences at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Work Performed: Université Libre de Bruxelles (ULB)
| | - Daphne Olivia Chylinski
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Work Performed: Université Libre de Bruxelles (ULB)
| | - Gaétane Deliens
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,ACTE - Autism in Context: Theory and Experience/Langage & Esprit, Université libre de Bruxelles (ULB), Brussels, Belgium.,Work Performed: Université Libre de Bruxelles (ULB)
| | - Rachel Leproult
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Work Performed: Université Libre de Bruxelles (ULB)
| | - Rémy Schmitz
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Work Performed: Université Libre de Bruxelles (ULB)
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Work Performed: Université Libre de Bruxelles (ULB)
| |
Collapse
|
24
|
Shi Y, Wolfensteller U, Schubert T, Ruge H. When global rule reversal meets local task switching: The neural mechanisms of coordinated behavioral adaptation to instructed multi-level demand changes. Hum Brain Mapp 2017; 39:735-746. [PMID: 29094788 DOI: 10.1002/hbm.23878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 10/14/2017] [Accepted: 10/23/2017] [Indexed: 11/10/2022] Open
Abstract
Cognitive flexibility is essential to cope with changing task demands and often it is necessary to adapt to combined changes in a coordinated manner. The present fMRI study examined how the brain implements such multi-level adaptation processes. Specifically, on a "local," hierarchically lower level, switching between two tasks was required across trials while the rules of each task remained unchanged for blocks of trials. On a "global" level regarding blocks of twelve trials, the task rules could reverse or remain the same. The current task was cued at the start of each trial while the current task rules were instructed before the start of a new block. We found that partly overlapping and partly segregated neural networks play different roles when coping with the combination of global rule reversal and local task switching. The fronto-parietal control network (FPN) supported the encoding of reversed rules at the time of explicit rule instruction. The same regions subsequently supported local task switching processes during actual implementation trials, irrespective of rule reversal condition. By contrast, a cortico-striatal network (CSN) including supplementary motor area and putamen was increasingly engaged across implementation trials and more so for rule reversal than for nonreversal blocks, irrespective of task switching condition. Together, these findings suggest that the brain accomplishes the coordinated adaptation to multi-level demand changes by distributing processing resources either across time (FPN for reversed rule encoding and later for task switching) or across regions (CSN for reversed rule implementation and FPN for concurrent task switching).
Collapse
Affiliation(s)
- Yiquan Shi
- Department of Psychology, Technische Universität Dresden, Germany
| | | | - Torsten Schubert
- Department of Psychology, Humboldt Universität Berlin, Germany.,Department of Psychology, Martin-Luther University Halle-Wittenber, Germany
| | - Hannes Ruge
- Department of Psychology, Technische Universität Dresden, Germany
| |
Collapse
|
25
|
Geraldi CDV, Escorsi-Rosset S, Thompson P, Silva ACG, Sakamoto AC. Potential role of a cognitive rehabilitation program following left temporal lobe epilepsy surgery. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 75:359-365. [DOI: 10.1590/0004-282x20170050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/14/2017] [Indexed: 11/22/2022]
Abstract
ABSTRACT Research into memory and epilepsy has focused on measuring problems and exploring causes with limited attention directed at the role of neuropsychological rehabilitation in alleviating post-operative memory difficulties. Objectives To assess the effects of a memory rehabilitation program in patients with left temporal lobe epilepsy following surgery. Methods Twenty-four patients agreed to participate and 18 completed the study; nine received memory rehabilitation while nine had no input and were designated as controls. Verbal learning efficiency, naming abilities, memory subjective ratings, ecological activity measures and a language fMRI paradigm were used as outcome measures. Results Improved verbal learning and naming test performance, increase in memory strategy use and improved self-perception were observed following the rehabilitation. Changes in fMRI activation patterns were seen in the rehabilitation group over the long term. Conclusion The findings support the potential role of a cognitive rehabilitation program following left temporal lobe surgery.
Collapse
Affiliation(s)
| | | | - Pamela Thompson
- UCL Institute of Neurology, UK; Epilepsy Society Research Centre, UK
| | | | | |
Collapse
|
26
|
Reineberg AE, Banich MT. Functional connectivity at rest is sensitive to individual differences in executive function: A network analysis. Hum Brain Mapp 2016; 37:2959-75. [PMID: 27167614 PMCID: PMC6186291 DOI: 10.1002/hbm.23219] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 03/28/2016] [Accepted: 04/06/2016] [Indexed: 11/11/2022] Open
Abstract
Graph theory provides a means to understand the nature of network characteristics and connectivity between specific brain regions. Here it was used to investigate whether the network characteristics of the brain at rest are associated with three dimensions thought to underlie individual differences in executive function (EF)-common EF, shifting-specific EF, and updating-specific EF (Miyake and Friedman [2012]). To do so, both an a priori analysis focused mainly on select frontoparietal regions previously linked to individual differences in EF as well as a whole-brain analysis were performed. The findings indicated that individual differences in each of the three dimensions of EF were associated with specific patterns of resting-state connectivity both in a priori and other brain regions. More specifically, higher common EF was associated with greater integrative (i.e., more hublike) connectivity of cuneus and supplementary motor area but less integrative function of lateral frontal nodes and left temporal lobe nodes. Higher shifting-specific EF was associated with more hublike motor-related nodes and cingulo-opercular nodes. Higher updating-specific EF was associated with less hublike lateral and medial frontoparietal nodes. In general, these results suggested that higher ability in each of these three dimensions of EF was not solely characterized by the connectivity characteristics of frontoparietal regions. The pattern was complicated in that higher EF was associated with the connectivity profile of nodes outside of the traditional frontoparietal network, as well as with less hublike or centrality characteristics of some nodes within the frontoparietal network. Hum Brain Mapp 37:2959-2975, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew E Reineberg
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, 80309
| | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, 80309
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado, 80309
| |
Collapse
|
27
|
Teuchies M, Demanet J, Sidarus N, Haggard P, Stevens MA, Brass M. Influences of unconscious priming on voluntary actions: Role of the rostral cingulate zone. Neuroimage 2016; 135:243-52. [DOI: 10.1016/j.neuroimage.2016.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/08/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022] Open
|
28
|
Attention and Working Memory in Adolescents with Autism Spectrum Disorder: A Functional MRI Study. Child Psychiatry Hum Dev 2016; 47:503-17. [PMID: 26323584 DOI: 10.1007/s10578-015-0583-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present study examined attention and memory load-dependent differences in the brain activation and deactivation patterns between adolescents with autism spectrum disorders (ASDs) and typically developing (TD) controls using functional magnetic resonance imaging. Attentional (0-back) and working memory (WM; 2-back) processing and load differences (0 vs. 2-back) were analysed. WM-related areas activated and default mode network deactivated normally in ASDs as a function of task load. ASDs performed the attentional 0-back task similarly to TD controls but showed increased deactivation in cerebellum and right temporal cortical areas and weaker activation in other cerebellar areas. Increasing task load resulted in multiple responses in ASDs compared to TD and in inadequate modulation of brain activity in right insula, primary somatosensory, motor and auditory cortices. The changes during attentional task may reflect compensatory mechanisms enabling normal behavioral performance. The inadequate memory load-dependent modulation of activity suggests diminished compensatory potential in ASD.
Collapse
|
29
|
Yin S, Wang T, Pan W, Liu Y, Chen A. Task-switching Cost and Intrinsic Functional Connectivity in the Human Brain: Toward Understanding Individual Differences in Cognitive Flexibility. PLoS One 2015; 10:e0145826. [PMID: 26716447 PMCID: PMC4696812 DOI: 10.1371/journal.pone.0145826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
The human ability to flexibly alternate between tasks (i.e., task-switching) represents a critical component of cognitive control. Many functional magnetic resonance imaging (fMRI) studies have explored the neural basis of the task-switching. However, no study to date has examined how individual differences in intrinsic functional architecture of the human brain are related to that of the task-switching. In the present study, we took 11 task-switching relevant areas from a meta-analysis study as the regions of interests (ROIs) and estimated their intrinsic functional connectivity (iFC) with the whole brain. This procedure was repeated for 32 healthy adults based upon their fMRI scans during resting-state (rfMRI) to investigate the correlations between switching cost and the iFC strength across these participants. This analysis found that switch cost was negatively correlated with a set of iFC involved ROIs including left inferior frontal junction, bilateral superior posterior parietal cortex, left precuneus, bilateral inferior parietal lobule, right middle frontal gyrus and bilateral middle occipital gyrus. These connectivity profiles represent an intrinsic functional architecture of task-switching where the left inferior frontal junction plays a hub role in this brain-behavior association. These findings are highly reproducible in another validation independent sample and provide a novel perspective for understanding the neural basis of individual differences in task-switching behaviors reflected in the intrinsic architecture of the human brain.
Collapse
Affiliation(s)
- Shouhang Yin
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Wang
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Weigang Pan
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yijun Liu
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Antao Chen
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
30
|
De Baene W, Duyck W, Brass M, Carreiras M. Brain Circuit for Cognitive Control Is Shared by Task and Language Switching. J Cogn Neurosci 2015; 27:1752-65. [DOI: 10.1162/jocn_a_00817] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Controlling multiple languages during speech production is believed to rely on functional mechanisms that are (at least partly) shared with domain-general cognitive control in early, highly proficient bilinguals. Recent neuroimaging results have indeed suggested a certain degree of neural overlap between language control and nonverbal cognitive control in bilinguals. However, this evidence is only indirect. Direct evidence for neural overlap between language control and nonverbal cognitive control can only be provided if two prerequisites are met: Language control and nonverbal cognitive control should be compared within the same participants, and the task requirements of both conditions should be closely matched. To provide such direct evidence for the first time, we used fMRI to examine the overlap in brain activation between switch-specific activity in a linguistic switching task and a closely matched nonlinguistic switching task, within participants, in early, highly proficient Spanish–Basque bilinguals. The current findings provide direct evidence that, in these bilinguals, highly similar brain circuits are involved in language control and domain-general cognitive control.
Collapse
Affiliation(s)
- Wouter De Baene
- 1Ghent University
- 2Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
- 3Tilburg University
| | | | | | - Manuel Carreiras
- 2Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
- 4Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
31
|
Muhle-Karbe PS, Derrfuss J, Lynn MT, Neubert FX, Fox PT, Brass M, Eickhoff SB. Co-Activation-Based Parcellation of the Lateral Prefrontal Cortex Delineates the Inferior Frontal Junction Area. Cereb Cortex 2015; 26:2225-2241. [PMID: 25899707 DOI: 10.1093/cercor/bhv073] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The inferior frontal junction (IFJ) area, a small region in the posterior lateral prefrontal cortex (LPFC), has received increasing interest in recent years due to its central involvement in the control of action, attention, and memory. Yet, both its function and anatomy remain controversial. Here, we employed a meta-analytic parcellation of the left LPFC to show that the IFJ can be isolated based on its specific functional connections. A seed region, oriented along the left inferior frontal sulcus (IFS), was subdivided via cluster analyses of voxel-wise whole-brain co-activation patterns. The ensuing clusters were characterized by their unique connections, the functional profiles of associated experiments, and an independent topic mapping approach. A cluster at the posterior end of the IFS matched previous descriptions of the IFJ in location and extent and could be distinguished from a more caudal cluster involved in motor control, a more ventral cluster involved in linguistic processing, and 3 more rostral clusters involved in other aspects of cognitive control. Overall, our findings highlight that the IFJ constitutes a core functional unit within the frontal lobe and delineate its borders. Implications for the IFJ's role in human cognition and the organizational principles of the frontal lobe are discussed.
Collapse
Affiliation(s)
| | - Jan Derrfuss
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Margaret T Lynn
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Franz X Neubert
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Marcel Brass
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.,Brain Network Modeling Group, Institute of Neuroscience and Medicine (INM-1) Research Center Jülich, Jülich, Germany
| |
Collapse
|
32
|
Muhle-Karbe PS, De Baene W, Brass M. Do tasks matter in task switching? Dissociating domain-general from context-specific brain activity. Neuroimage 2014; 99:332-41. [DOI: 10.1016/j.neuroimage.2014.05.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/10/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022] Open
|
33
|
De Baene W, Brass M. Dissociating strategy-dependent and independent components in task preparation. Neuropsychologia 2014; 62:331-40. [DOI: 10.1016/j.neuropsychologia.2014.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 04/01/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
|
34
|
Ulrich M, Keller J, Hoenig K, Waller C, Grön G. Neural correlates of experimentally induced flow experiences. Neuroimage 2014; 86:194-202. [DOI: 10.1016/j.neuroimage.2013.08.019] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 11/17/2022] Open
|
35
|
Demanet J, De Baene W, Arrington CM, Brass M. Biasing free choices: The role of the rostral cingulate zone in intentional control. Neuroimage 2013; 72:207-13. [DOI: 10.1016/j.neuroimage.2013.01.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/14/2013] [Accepted: 01/26/2013] [Indexed: 11/27/2022] Open
|
36
|
Kalénine S, Shapiro AD, Buxbaum LJ. Dissociations of action means and outcome processing in left-hemisphere stroke. Neuropsychologia 2013; 51:1224-33. [PMID: 23566892 DOI: 10.1016/j.neuropsychologia.2013.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/14/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
Abstract
Previous evidence suggests that distinct fronto-parietal regions may be involved in representing action kinematics (means) and action results (outcome) during action observation. However, the evidence is contradictory with respect to the precise regions that are critical for each type of representation. Additionally unknown is the degree to which ability to detect action means and outcome during observation is related to action production performance. We used a behavioral task to evaluate the ability of healthy and left-hemisphere stroke participants to detect differences between pairs of videos that dissociated object-related action means (e.g., wiping with circular or straight movement) and/or outcome (e.g., applying or removing detergent). We expected that deficits in detecting action means would be associated with spatiomotor gesture production deficits, whereas deficits in detecting action outcome would predict impairments in complex naturalistic action. We also hypothesized a posterior to anterior gradient in the regions critical for each type of representation, disproportionately affecting means and outcome encoding, respectively. Results indicated that outcome--but not means--detection predicted naturalistic action performance in stroke participants. Regression and voxel lesion-symptom mapping analyses of lesion data revealed that means--but not outcome--coding relies on the integrity of the left inferior parietal lobe, whereas no selective critical brain region could be identified for outcome detection. Thus, means and outcome representations are dissociable at both the behavioral and neuroanatomical levels. Furthermore, the data are consistent with a degree of parallelism between action perception and production tasks. Finally, they reinforce the evidence for a critical role of the left inferior parietal lobule in the representation of action means, whereas action outcome may rely on a more distributed neural circuit.
Collapse
Affiliation(s)
- Solène Kalénine
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA 19027, United States.
| | | | | |
Collapse
|
37
|
Poljac E, Bekkering H. A review of intentional and cognitive control in autism. Front Psychol 2012; 3:436. [PMID: 23112781 PMCID: PMC3481002 DOI: 10.3389/fpsyg.2012.00436] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/02/2012] [Indexed: 11/13/2022] Open
Abstract
Different clinical studies have provided empirical evidence for impairments in cognitive control in individuals with autism spectrum disorders (ASD). The challenge arises, however, when trying to specify the neurocognitive mechanisms behind the reported observations of deviant patterns of goal-directed behavior in ASD. Studies trying to test specific assumptions by applying designs that are based on a more controlled experimental conditions often fail in providing strong evidence for an impairment in specific cognitive functions. In this review, we summarize and critically reflect on behavioral findings and their theoretical explanations regarding cognitive control processing in autism, also from a developmental perspective. The specific focus of this review is the recent evidence of deficits in intentional control – a specific subset of cognitive control processes that biases the choice of our behavioral goals – coming from different research fields. We relate this evidence to the cognitive rigidity observed in ASD and argue that individuals with ASD experience problems at the intentional level rather than at the level of implementation of intentions. Both these processes are related to cognitive control mechanisms but in different ways. Finally, we discuss new directions in studying cognitive control in ASD and how these relate to adaptive cognition.
Collapse
Affiliation(s)
- Edita Poljac
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | | |
Collapse
|