1
|
Færøvik UH, Vikene K, Specht K. Put the control back in the control condition: are brown, pink, and white noise neutral control stimuli? Front Neurosci 2025; 19:1488682. [PMID: 40352908 PMCID: PMC12062116 DOI: 10.3389/fnins.2025.1488682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction What are good control stimuli for music perception research? Systematic evaluations of control suitability remain limited. We wanted to examine if control stimuli (brown, pink, white noise, and voice recordings) lead to different emotional ratings in themselves. Methods Across two separate studies (n = 84, and 1280, respectively), participants assessed brown, pink, and white noise and voice recordings using a music-emotional perception scale with variations. We used the GEMS-9 scale, and the GEMS-9 scale with the second-order factors 'sublime', 'uneasy', and 'vital'. Results Our two studies show that brown noise was considered more sublime than white and pink noise, while white noise was considered more uneasy than brown noise, pink noise, and voice recordings in both studies. Discussion Brown, pink, and white noise is rated emotionally above 3 on unease on a scale from 1 to 7. This means that none of the noise stimuli had minimal emotional ratings and therefore had an emotional effect in themselves. Out of the three noise stimuli, white noise had the highest ratings of unease across both studies. Only voice recordings were considered neutral, defined as having consistently minimal emotional ratings in both studies.
Collapse
Affiliation(s)
- Ulvhild H. Færøvik
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Kjetil Vikene
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
- Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
- Department of Education, Faculty of Humanities, Social Sciences and Education, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Bairnsfather JE, Mosing MA, Osborne MS, Wilson SJ. Conceptual coherence but methodological mayhem: A systematic review of absolute pitch phenotyping. Behav Res Methods 2025; 57:61. [PMID: 39838215 PMCID: PMC11750914 DOI: 10.3758/s13428-024-02577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 01/23/2025]
Abstract
Despite extensive research on absolute pitch (AP), there remains no gold-standard task to measure its presence or extent. This systematic review investigated the methods of pitch-naming tasks for the classification of individuals with AP and examined how our understanding of the AP phenotype is affected by variability in the tasks used to measure it. Data extracted from 160 studies (N = 23,221 participants) included (i) the definition of AP, (ii) task characteristics, (iii) scoring method, and (iv) participant scores. While there was near-universal agreement (99%) in the conceptual definition of AP, task characteristics such as stimulus range and timbre varied greatly. Ninety-five studies (59%) specified a pitch-naming accuracy threshold for AP classification, which ranged from 20 to 100% (mean = 77%, SD = 20), with additional variability introduced by 31 studies that assigned credit to semitone errors. When examining participants' performance rather than predetermined thresholds, mean task accuracy (not including semitone errors) was 85.9% (SD = 10.8) for AP participants and 17.0% (SD = 10.5) for non-AP participants. This review shows that the characterisation of the AP phenotype varies based on methodological choices in tasks and scoring, limiting the generalisability of individual studies. To promote a more coherent approach to AP phenotyping, recommendations about the characteristics of a gold-standard pitch-naming task are provided based on the review findings. Future work should also use data-driven techniques to characterise phenotypic variability to support the development of a taxonomy of AP phenotypes to advance our understanding of its mechanisms and genetic basis.
Collapse
Affiliation(s)
- Jane E Bairnsfather
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia.
| | - Miriam A Mosing
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Frankfurt Am Main, Germany
| | - Margaret S Osborne
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
- Melbourne Conservatorium of Music, University of Melbourne, Melbourne, Australia
| | - Sarah J Wilson
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Cao A, Ueda K. One- or two-step? New insights into two-step hypothesis and rainbow-like theory for pitch class-color synesthesia. Front Psychol 2025; 15:1482714. [PMID: 39868013 PMCID: PMC11758358 DOI: 10.3389/fpsyg.2024.1482714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction This study investigates the mechanisms underlying pitch class-color synesthesia, a cognitive trait in which musical pitches evoke color perceptions. Synesthesia in music particularly involves the association of pitch classes (e.g., do, re, and mi) with specific colors. A previous study introduced the two-step hypothesis, which suggests that pitch class identification precedes color association, and proposed a rainbow-like theory based on color gradients selected by synesthetes. The primary objective is to retest these theories to evaluate their generalizability in explaining pitch class-color synesthesia. Methods We employed a dual-task paradigm to assess the robustness of the two-step hypothesis and conducted qualitative interviews to explore the nature of synesthetic experiences. Results The results indicated that the two-step hypothesis may not be always applicable, because it effectively accounts for only a subset of synesthetes. The presence of one-step synesthetes, who experience direct pitch-to-color associations without intermediate steps, implied a more varied synesthetic mechanism. Moreover, rainbow-like theory predominantly characterized two-step synesthetes, while one-step synesthetes exhibited distinct color perceptions. Furthermore, we found that the differentiation between two- and one-step synesthesia may be associated with the methods through which participants develop synesthetic associations. Discussion The findings highlighted the diversity of synesthetic experiences in pitch class-color synesthesia, which challenges the generalizability of the current theories and poses the need for a further nuanced understanding of this phenomenon.
Collapse
Affiliation(s)
- Ang Cao
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Ueda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Jamey K, Foster NEV, Hyde KL, Dalla Bella S. Does music training improve inhibition control in children? A systematic review and meta-analysis. Cognition 2024; 252:105913. [PMID: 39197250 DOI: 10.1016/j.cognition.2024.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Inhibition control is an essential executive function during children's development, underpinning self-regulation and the acquisition of social and language abilities. This executive function is intensely engaged in music training while learning an instrument, a complex multisensory task requiring monitoring motor performance and auditory stream prioritization. This novel meta-analysis examined music-based training on inhibition control in children. Records from 1980 to 2023 yielded 22 longitudinal studies with controls (N = 1734), including 8 RCTs and 14 others. A random-effects meta-analysis showed that music training improved inhibition control (moderate-to-large effect size) in the RCTs and the superset of twenty-two longitudinal studies (small-to-moderate effect size). Music training plays a privileged role compared to other activities (sports, visual arts, drama) in improving children's executive functioning, with a particular effect on inhibition control. We recommend music training for complementing education and as a clinical tool focusing on inhibition control remediation (e.g., in autism and ADHD).
Collapse
Affiliation(s)
- Kevin Jamey
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada.
| | - Nicholas E V Foster
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Krista L Hyde
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada; University of Economics and Human Sciences in Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Di Stefano N, Spence C. Should absolute pitch be considered as a unique kind of absolute sensory judgment in humans? A systematic and theoretical review of the literature. Cognition 2024; 249:105805. [PMID: 38761646 DOI: 10.1016/j.cognition.2024.105805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
Absolute pitch is the name given to the rare ability to identify a musical note in an automatic and effortless manner without the need for a reference tone. Those individuals with absolute pitch can, for example, name the note they hear, identify all of the tones of a given chord, and/or name the pitches of everyday sounds, such as car horns or sirens. Hence, absolute pitch can be seen as providing a rare example of absolute sensory judgment in audition. Surprisingly, however, the intriguing question of whether such an ability presents unique features in the domain of sensory perception, or whether instead similar perceptual skills also exist in other sensory domains, has not been explicitly addressed previously. In this paper, this question is addressed by systematically reviewing research on absolute pitch using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method. Thereafter, we compare absolute pitch with two rare types of sensory experience, namely synaesthesia and eidetic memory, to understand if and how these phenomena exhibit similar features to absolute pitch. Furthermore, a common absolute perceptual ability that has been often compared to absolute pitch, namely colour perception, is also discussed. Arguments are provided supporting the notion that none of the examined abilities can be considered like absolute pitch. Therefore, we conclude by suggesting that absolute pitch does indeed appear to constitute a unique kind of absolute sensory judgment in humans, and we discuss some open issues and novel directions for future research in absolute pitch.
Collapse
Affiliation(s)
- Nicola Di Stefano
- Institute of Cognitive Sciences and Technologies, National Research Council of Italy (CNR), Via Gian Domenico Romagnosi, 18, 00196 Rome, Italy.
| | - Charles Spence
- Crossmodal Research Laboratory, Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Tseng HC, Hsieh IH. Effects of absolute pitch on brain activation and functional connectivity during hearing-in-noise perception. Cortex 2024; 174:1-18. [PMID: 38484435 DOI: 10.1016/j.cortex.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 04/21/2024]
Abstract
Hearing-in-noise (HIN) ability is crucial in speech and music communication. Recent evidence suggests that absolute pitch (AP), the ability to identify isolated musical notes, is associated with HIN benefits. A theoretical account postulates a link between AP ability and neural network indices of segregation. However, how AP ability modulates the brain activation and functional connectivity underlying HIN perception remains unclear. Here we used functional magnetic resonance imaging to contrast brain responses among a sample (n = 45) comprising 15 AP musicians, 15 non-AP musicians, and 15 non-musicians in perceiving Mandarin speech and melody targets under varying signal-to-noise ratios (SNRs: No-Noise, 0, -9 dB). Results reveal that AP musicians exhibited increased activation in auditory and superior frontal regions across both HIN domains (music and speech), irrespective of noise levels. Notably, substantially higher sensorimotor activation was found in AP musicians when the target was music compared to speech. Furthermore, we examined AP effects on neural connectivity using psychophysiological interaction analysis with the auditory cortex as the seed region. AP musicians showed decreased functional connectivity with the sensorimotor and middle frontal gyrus compared to non-AP musicians. Crucially, AP differentially affected connectivity with parietal and frontal brain regions depending on the HIN domain being music or speech. These findings suggest that AP plays a critical role in HIN perception, manifested by increased activation and functional independence between auditory and sensorimotor regions for perceiving music and speech streams.
Collapse
Affiliation(s)
- Hung-Chen Tseng
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
| | - I-Hui Hsieh
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan; Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan.
| |
Collapse
|
7
|
Papadaki E, Koustakas T, Werner A, Lindenberger U, Kühn S, Wenger E. Resting-state functional connectivity in an auditory network differs between aspiring professional and amateur musicians and correlates with performance. Brain Struct Funct 2023; 228:2147-2163. [PMID: 37792073 PMCID: PMC10587189 DOI: 10.1007/s00429-023-02711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
Auditory experience-dependent plasticity is often studied in the domain of musical expertise. Available evidence suggests that years of musical practice are associated with structural and functional changes in auditory cortex and related brain regions. Resting-state functional magnetic resonance imaging (MRI) can be used to investigate neural correlates of musical training and expertise beyond specific task influences. Here, we compared two groups of musicians with varying expertise: 24 aspiring professional musicians preparing for their entrance exam at Universities of Arts versus 17 amateur musicians without any such aspirations but who also performed music on a regular basis. We used an interval recognition task to define task-relevant brain regions and computed functional connectivity and graph-theoretical measures in this network on separately acquired resting-state data. Aspiring professionals performed significantly better on all behavioral indicators including interval recognition and also showed significantly greater network strength and global efficiency than amateur musicians. Critically, both average network strength and global efficiency were correlated with interval recognition task performance assessed in the scanner, and with an additional measure of interval identification ability. These findings demonstrate that task-informed resting-state fMRI can capture connectivity differences that correspond to expertise-related differences in behavior.
Collapse
Affiliation(s)
- Eleftheria Papadaki
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
- International Max Planck Research School on the Life Course (LIFE), Berlin, Germany.
| | - Theodoros Koustakas
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - André Werner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, London, UK
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Neuronal Plasticity Working Group, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Wenger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| |
Collapse
|
8
|
Belden A, Quinci MA, Geddes M, Donovan NJ, Hanser SB, Loui P. Functional Organization of Auditory and Reward Systems in Aging. J Cogn Neurosci 2023; 35:1570-1592. [PMID: 37432735 PMCID: PMC10513766 DOI: 10.1162/jocn_a_02028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The intrinsic organization of functional brain networks is known to change with age, and is affected by perceptual input and task conditions. Here, we compare functional activity and connectivity during music listening and rest between younger (n = 24) and older (n = 24) adults, using whole-brain regression, seed-based connectivity, and ROI-ROI connectivity analyses. As expected, activity and connectivity of auditory and reward networks scaled with liking during music listening in both groups. Younger adults show higher within-network connectivity of auditory and reward regions as compared with older adults, both at rest and during music listening, but this age-related difference at rest was reduced during music listening, especially in individuals who self-report high musical reward. Furthermore, younger adults showed higher functional connectivity between auditory network and medial prefrontal cortex that was specific to music listening, whereas older adults showed a more globally diffuse pattern of connectivity, including higher connectivity between auditory regions and bilateral lingual and inferior frontal gyri. Finally, connectivity between auditory and reward regions was higher when listening to music selected by the participant. These results highlight the roles of aging and reward sensitivity on auditory and reward networks. Results may inform the design of music-based interventions for older adults and improve our understanding of functional network dynamics of the brain at rest and during a cognitively engaging task.
Collapse
Affiliation(s)
| | | | | | - Nancy J Donovan
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
9
|
Leite Filho CA, Rocha-Muniz CN, Pereira LD, Schochat E. Auditory temporal resolution and backward masking in musicians with absolute pitch. Front Neurosci 2023; 17:1151776. [PMID: 37139520 PMCID: PMC10149789 DOI: 10.3389/fnins.2023.1151776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Among the many questions regarding the ability to effortlessly name musical notes without a reference, also known as absolute pitch, the neural processes by which this phenomenon operates are still a matter of debate. Although a perceptual subprocess is currently accepted by the literature, the participation of some aspects of auditory processing still needs to be determined. We conducted two experiments to investigate the relationship between absolute pitch and two aspects of auditory temporal processing, namely temporal resolution and backward masking. In the first experiment, musicians were organized into two groups according to the presence of absolute pitch, as determined by a pitch identification test, and compared regarding their performance in the Gaps-in-Noise test, a gap detection task for assessing temporal resolution. Despite the lack of statistically significant difference between the groups, the Gaps-in-Noise test measures were significant predictors of the measures for pitch naming precision, even after controlling for possible confounding variables. In the second experiment, another two groups of musicians with and without absolute pitch were submitted to the backward masking test, with no difference between the groups and no correlation between backward masking and absolute pitch measures. The results from both experiments suggest that only part of temporal processing is involved in absolute pitch, indicating that not all aspects of auditory perception are related to the perceptual subprocess. Possible explanations for these findings include the notable overlap of brain areas involved in both temporal resolution and absolute pitch, which is not present in the case of backward masking, and the relevance of temporal resolution to analyze the temporal fine structure of sound in pitch perception.
Collapse
Affiliation(s)
- Carlos Alberto Leite Filho
- Auditory Processing Lab, Department of Physical Therapy, Speech-Language Pathology and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carlos Alberto Leite Filho,
| | - Caroline Nunes Rocha-Muniz
- Speech-Language Pathology Department, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Liliane Desgualdo Pereira
- Neuroaudiology Lab, Department of Speech Therapy, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Eliane Schochat
- Auditory Processing Lab, Department of Physical Therapy, Speech-Language Pathology and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Sokolowski HM, Levine B. Common neural substrates of diverse neurodevelopmental disorders. Brain 2022; 146:438-447. [PMID: 36299249 PMCID: PMC9924912 DOI: 10.1093/brain/awac387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/14/2022] Open
Abstract
Neurodevelopmental disorders are categorized and studied according to their manifestations as distinct syndromes. For instance, congenital prosopagnosia and dyslexia have largely non-overlapping research literatures and clinical pathways for diagnosis and intervention. On the other hand, the high incidence of neurodevelopmental comorbidities or co-existing extreme strengths and weaknesses suggest that transdiagnostic commonalities may be greater than currently appreciated. The core-periphery model holds that brain regions within the stable core perceptual and motor regions are more densely connected to one another compared to regions in the flexible periphery comprising multimodal association regions. This model provides a framework for the interpretation of neural data in normal development and clinical disorders. Considering network-level commonalities reported in studies of neurodevelopmental disorders, variability in multimodal association cortex connectivity may reflect a shared origin of seemingly distinct neurodevelopmental disorders. This framework helps to explain both comorbidities in neurodevelopmental disorders and profiles of strengths and weaknesses attributable to competitive processing between cognitive systems within an individual.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Correspondence may also be addressed to: H. Moriah Sokolowski E-mail: Twitter: https://twitter.com/hm_sokolowski
| | - Brian Levine
- Correspondence to: Brian Levine 3560 Bathurst St, North York, ON M6A 2E1, Canada E-mail: Website: www.LevineLab.ca Twitter: https://twitter.com/briantlevine
| |
Collapse
|
11
|
Leipold S, Klein C, Jäncke L. Musical Expertise Shapes Functional and Structural Brain Networks Independent of Absolute Pitch Ability. J Neurosci 2021; 41:2496-2511. [PMID: 33495199 PMCID: PMC7984587 DOI: 10.1523/jneurosci.1985-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
Professional musicians are a popular model for investigating experience-dependent plasticity in human large-scale brain networks. A minority of musicians possess absolute pitch, the ability to name a tone without reference. The study of absolute pitch musicians provides insights into how a very specific talent is reflected in brain networks. Previous studies of the effects of musicianship and absolute pitch on large-scale brain networks have yielded highly heterogeneous findings regarding the localization and direction of the effects. This heterogeneity was likely influenced by small samples and vastly different methodological approaches. Here, we conducted a comprehensive multimodal assessment of effects of musicianship and absolute pitch on intrinsic functional and structural connectivity using a variety of commonly used and state-of-the-art multivariate methods in the largest sample to date (n = 153 female and male human participants; 52 absolute pitch musicians, 51 non-absolute pitch musicians, and 50 non-musicians). Our results show robust effects of musicianship in interhemispheric and intrahemispheric connectivity in both structural and functional networks. Crucially, most of the effects were replicable in both musicians with and without absolute pitch compared with non-musicians. However, we did not find evidence for an effect of absolute pitch on intrinsic functional or structural connectivity in our data: The two musician groups showed strikingly similar networks across all analyses. Our results suggest that long-term musical training is associated with robust changes in large-scale brain networks. The effects of absolute pitch on neural networks might be subtle, requiring very large samples or task-based experiments to be detected.SIGNIFICANCE STATEMENT A question that has fascinated neuroscientists, psychologists, and musicologists for a long time is how musicianship and absolute pitch, the rare talent to name a tone without reference, are reflected in large-scale networks of the human brain. Much is still unknown as previous studies have reported widely inconsistent results based on small samples. Here, we investigate the largest sample of musicians and non-musicians to date (n = 153) using a multitude of established and novel analysis methods. Results provide evidence for robust effects of musicianship on functional and structural networks that were replicable in two separate groups of musicians and independent of absolute pitch ability.
Collapse
Affiliation(s)
- Simon Leipold
- Division of Neuropsychology, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland
- Department of Psychiatry and Behavioral Sciences, Stanford University, School of Medicine, Stanford, California 94305
| | - Carina Klein
- Division of Neuropsychology, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland
| | - Lutz Jäncke
- Division of Neuropsychology, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland
- University Research Priority Program, Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| |
Collapse
|
12
|
Rogenmoser L, Li HC, Jäncke L, Schlaug G. Auditory aversion in absolute pitch possessors. Cortex 2020; 135:285-297. [PMID: 33421728 DOI: 10.1016/j.cortex.2020.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/07/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022]
Abstract
Absolute pitch (AP) refers to the ability of identifying the pitch of a given tone without reliance on any reference pitch. The downside of possessing AP may be the experience of disturbance when exposed to out-of-tune tones. Here, we investigated this so-far unexplored phenomenon in AP, which we refer to as auditory aversion. Electroencephalography (EEG) was recorded in a sample of AP possessors and matched control musicians without AP while letting them perform a task underlying a so-called affective priming paradigm: Participants judged valenced pictures preceded by musical primes as quickly and accurately as possible. The primes were bimodal, presented as tones in combination with visual notations that either matched or mismatched the actually presented tone. Both samples performed better in judging unpleasant pictures over pleasant ones. In comparison with the control musicians, the AP possessors revealed a more profound discrepancy between the two valence conditions, and their EEG revealed later peaks at around 200 ms (P200) after prime onset. Their performance dropped when responding to pleasant pictures preceded by incongruent primes, especially when mistuned by one semitone. This interference was also reflected in an EEG deflection at around 400 ms (N400) after picture onset, preceding the behavior responses. These findings suggest that AP possessors process mistuned musical stimuli and pleasant pictures as affectively unrelated with each other, supporting an aversion towards out-of-tune tones in AP possessors. The longer prime-related P200 latencies exhibited by AP possessors suggest a delay in integrating musical stimuli, underlying an altered affinity towards pitch-label associations.
Collapse
Affiliation(s)
- Lars Rogenmoser
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Fribourg, Fribourg, Switzerland.
| | - H Charles Li
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Lutz Jäncke
- Department of Psychology, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| | - Gottfried Schlaug
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Diminished large-scale functional brain networks in absolute pitch during the perception of naturalistic music and audiobooks. Neuroimage 2020; 216:116513. [DOI: 10.1016/j.neuroimage.2019.116513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022] Open
|
14
|
Greber M, Klein C, Leipold S, Sele S, Jäncke L. Heterogeneity of EEG resting-state brain networks in absolute pitch. Int J Psychophysiol 2020; 157:11-22. [PMID: 32721558 DOI: 10.1016/j.ijpsycho.2020.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 01/13/2023]
Abstract
The neural basis of absolute pitch (AP), the ability to effortlessly identify a musical tone without an external reference, is poorly understood. One of the key questions is whether perceptual or cognitive processes underlie the phenomenon, as both sensory and higher-order brain regions have been associated with AP. To integrate the perceptual and cognitive views on AP, here, we investigated joint contributions of sensory and higher-order brain regions to AP resting-state networks. We performed a comprehensive functional network analysis of source-level EEG in a large sample of AP musicians (n = 54) and non-AP musicians (n = 51), adopting two analysis approaches: First, we applied an ROI-based analysis to examine the connectivity between the auditory cortex and the dorsolateral prefrontal cortex (DLPFC) using several established functional connectivity measures. This analysis is a replication of a previous study which reported increased connectivity between these two regions in AP musicians. Second, we performed a whole-brain network-based analysis on the same functional connectivity measures to gain a more complete picture of the brain regions involved in a possibly large-scale network supporting AP ability. In our sample, the ROI-based analysis did not provide evidence for an AP-specific connectivity increase between the auditory cortex and the DLPFC. The whole-brain analysis revealed three networks with increased connectivity in AP musicians comprising nodes in frontal, temporal, subcortical, and occipital areas. Commonalities of the networks were found in both sensory and higher-order brain regions of the perisylvian area. Further research will be needed to confirm these exploratory results.
Collapse
Affiliation(s)
- Marielle Greber
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland.
| | - Carina Klein
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Simon Leipold
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, USA
| | - Silvano Sele
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| | - Lutz Jäncke
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Wang D, Belden A, Hanser SB, Geddes MR, Loui P. Resting-State Connectivity of Auditory and Reward Systems in Alzheimer's Disease and Mild Cognitive Impairment. Front Hum Neurosci 2020; 14:280. [PMID: 32765244 PMCID: PMC7380265 DOI: 10.3389/fnhum.2020.00280] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Music-based interventions (MBI) have become increasingly widely adopted for dementia and related disorders. Previous research shows that music engages reward-related regions through functional connectivity with the auditory system, but evidence for the effectiveness of MBI is mixed in older adults with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). This underscores the need for a unified mechanistic understanding to motivate MBIs. The main objective of the present study is to characterize the intrinsic connectivity of the auditory and reward systems in healthy aging individuals with MCI, and those with AD. Using resting-state fMRI data from the Alzheimer’s Database Neuroimaging Initiative, we tested resting-state functional connectivity within and between auditory and reward systems in older adults with MCI, AD, and age-matched healthy controls (N = 105). Seed-based correlations were assessed from regions of interest (ROIs) in the auditory network (i.e., anterior superior temporal gyrus, posterior superior temporal gyrus, Heschl’s Gyrus), and the reward network (i.e., nucleus accumbens, caudate, putamen, and orbitofrontal cortex). AD individuals were lower in both within-network and between-network functional connectivity in the auditory network and reward networks compared to MCI and controls. Furthermore, graph theory analyses showed that the MCI group had higher clustering and local efficiency than both AD and control groups, whereas AD individuals had lower betweenness centrality than MCI and control groups. Together, the auditory and reward systems show preserved within- and between-network connectivity in MCI individuals relative to AD. These results motivate future music-based interventions in individuals with MCI due to the preservation of functional connectivity within and between auditory and reward networks at that initial stage of neurodegeneration.
Collapse
Affiliation(s)
- Diana Wang
- Harvard College, Harvard University, Cambridge, MA, United States
| | - Alexander Belden
- Music, Imaging, and Neural Dynamics Laboratory (MIND), Northeastern University, Boston, MA, United States
| | | | - Maiya R Geddes
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Psyche Loui
- Department of Music, Northeastern University, Boston, MA, United States
| |
Collapse
|
16
|
The importance of the fibre tracts connecting the planum temporale in absolute pitch possessors. Neuroimage 2020; 211:116590. [DOI: 10.1016/j.neuroimage.2020.116590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
|
17
|
Abstract
Absolute pitch (AP) refers to the rare ability to name the pitch of a tone without external reference. It is widely believed to be only for the selected few with rare genetic makeup and early musical training during the critical period, and therefore acquiring AP in adulthood is impossible. Previous studies have not offered a strong test of the effect of training because of issues like small sample size and insufficient training. In three experiments, adults learned to name pitches in a computerized, gamified and personalized training protocol for 12 to 40 hours, with the number of pitches gradually increased from three to twelve. Across the three experiments, the training covered different octaves, timbre, and training environment (inside or outside laboratory). AP learning showed classic characteristics of perceptual learning, including generalization of learning dependent on the training stimuli, and sustained improvement for at least one to three months. 14% of the participants (6 out of 43) were able to name twelve pitches at 90% or above accuracy, comparable to that of 'AP possessors' as defined in the literature. Overall, AP continues to be learnable in adulthood, which challenges the view that AP development requires both rare genetic predisposition and learning within the critical period. The finding calls for reconsideration of the role of learning in the occurrence of AP, and pushes the field to pinpoint and explain the differences, if any, between the aspects of AP more trainable in adulthood and the aspects of AP that are potentially exclusive for the few exceptional AP possessors observed in the real world.
Collapse
|
18
|
Lumaca M, Kleber B, Brattico E, Vuust P, Baggio G. Functional connectivity in human auditory networks and the origins of variation in the transmission of musical systems. eLife 2019; 8:48710. [PMID: 31658945 PMCID: PMC6819097 DOI: 10.7554/elife.48710] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/09/2019] [Indexed: 02/02/2023] Open
Abstract
Music producers, whether original composers or performers, vary in their ability to acquire and faithfully transmit music. This form of variation may serve as a mechanism for the emergence of new traits in musical systems. In this study, we aim to investigate whether individual differences in the social learning and transmission of music relate to intrinsic neural dynamics of auditory processing systems. We combined auditory and resting-state functional magnetic resonance imaging (fMRI) with an interactive laboratory model of cultural transmission, the signaling game, in an experiment with a large cohort of participants (N=51). We found that the degree of interhemispheric rs-FC within fronto-temporal auditory networks predicts—weeks after scanning—learning, transmission, and structural modification of an artificial tone system. Our study introduces neuroimaging in cultural transmission research and points to specific neural auditory processing mechanisms that constrain and drive variation in the cultural transmission and regularization of musical systems.
Collapse
Affiliation(s)
- Massimo Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus, Denmark
| | - Boris Kleber
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus, Denmark
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus, Denmark
| | - Giosue Baggio
- Language Acquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
19
|
Matsuda M, Igarashi H, Itoh K. Auditory T-Complex Reveals Reduced Neural Activities in the Right Auditory Cortex in Musicians With Absolute Pitch. Front Neurosci 2019; 13:809. [PMID: 31447632 PMCID: PMC6691098 DOI: 10.3389/fnins.2019.00809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Absolute pitch (AP) is the ability to identify the pitch names of arbitrary musical tones without being given a reference pitch. The acquisition of AP typically requires early musical training, the critical time window for which is similar to that for the acquisition of a first language. This study investigated the left-right asymmetry of the auditory cortical functions responsible for AP by focusing on the T-complex of auditory evoked potentials (AEPs), which shows morphological changes during the critical period for language acquisition. AEPs evoked by a pure-tone stimulus were recorded in high-AP musicians, low-AP musicians, and non-musicians (n = 19 each). A balanced non-cephalic electrode (BNE) reference was used to examine the left-right asymmetry of the N1a and N1c components of the T-complex. As a result, a left-dominant N1c was observed only in the high-AP musician group, indicating "AP negativity," which has previously been described as an electrophysiological marker of AP. Notably, this hemispheric asymmetry was due to a diminution of the right N1c rather than enhancement of the left N1c. A left-dominant N1a was found in both musician groups, irrespective of AP. N1c and N1a exhibited no left-right asymmetry in non-musicians. Hence, music training and the acquisition of AP are both accompanied by a left-dominant hemispheric specialization of auditory cortical functions, as indexed by N1a and N1c, respectively, but the N1c asymmetry in AP possessors was due to reduced neural activities in the right hemisphere. The use of a BNE is recommended for evaluating these radially oriented components of the T-complex.
Collapse
Affiliation(s)
| | | | - Kosuke Itoh
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
20
|
Enhanced auditory disembedding in an interleaved melody recognition test is associated with absolute pitch ability. Sci Rep 2019; 9:7838. [PMID: 31127171 PMCID: PMC6534562 DOI: 10.1038/s41598-019-44297-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/09/2019] [Indexed: 11/08/2022] Open
Abstract
Absolute pitch (AP) and autism have recently been associated with each other. Neurocognitive theories of autism could perhaps explain this co-occurrence. This study investigates whether AP musicians show an advantage in an interleaved melody recognition task (IMRT), an auditory version of an embedded figures test often investigated in autism with respect to the these theories. A total of N = 59 professional musicians (AP = 27) participated in the study. In each trial a probe melody was followed by an interleaved sequence. Participants had to indicate as to whether the probe melody was present in the interleaved sequence. Sensitivity index d′ and response bias c were calculated according to signal detection theory. Additionally, a pitch adjustment test measuring fine-graded differences in absolute pitch proficiency, the Autism-Spectrum-Quotient and a visual embedded figures test were conducted. AP outperformed relative pitch (RP) possessors on the overall IMRT and the fully interleaved condition. AP proficiency, visual disembedding and musicality predicted 39.2% of variance in the IMRT. No correlations were found between IMRT and autistic traits. Results are in line with a detailed-oriented cognitive style and enhanced perceptional functioning of AP musicians similar to that observed in autism.
Collapse
|
21
|
Wenhart T, Bethlehem RAI, Baron-Cohen S, Altenmüller E. Autistic traits, resting-state connectivity, and absolute pitch in professional musicians: shared and distinct neural features. Mol Autism 2019; 10:20. [PMID: 31073395 PMCID: PMC6498518 DOI: 10.1186/s13229-019-0272-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
Background Recent studies indicate increased autistic traits in musicians with absolute pitch and a higher proportion of absolute pitch in people with autism. Theoretical accounts connect both of these with shared neural principles of local hyper- and global hypoconnectivity, enhanced perceptual functioning, and a detail-focused cognitive style. This is the first study to investigate absolute pitch proficiency, autistic traits, and brain correlates in the same study. Sample and methods Graph theoretical analysis was conducted on resting-state (eyes closed and eyes open) EEG connectivity (wPLI, weighted phase lag index) matrices obtained from 31 absolute pitch (AP) and 33 relative pitch (RP) professional musicians. Small-worldness, global clustering coefficient, and average path length were related to autistic traits, passive (tone identification) and active (pitch adjustment) absolute pitch proficiency, and onset of musical training using Welch two-sample tests, correlations, and general linear models. Results Analyses revealed increased path length (delta 2–4 Hz), reduced clustering (beta 13–18 Hz), reduced small-worldness (gamma 30–60 Hz), and increased autistic traits for AP compared to RP. Only clustering values (beta 13–18 Hz) were predicted by both AP proficiency and autistic traits. Post hoc single connection permutation tests among raw wPLI matrices in the beta band (13–18 Hz) revealed widely reduced interhemispheric connectivity between bilateral auditory-related electrode positions along with higher connectivity between F7–F8 and F8–P9 for AP. Pitch-naming ability and pitch adjustment ability were predicted by path length, clustering, autistic traits, and onset of musical training (for pitch adjustment) explaining 44% and 38% of variance, respectively. Conclusions Results show both shared and distinct neural features between AP and autistic traits. Differences in the beta range were associated with higher autistic traits in the same population. In general, AP musicians exhibit a widely underconnected brain with reduced functional integration and reduced small-world property during resting state. This might be partly related to autism-specific brain connectivity, while differences in path length and small-worldness reflect other ability-specific influences. This is further evidenced for different pathways in the acquisition and development of absolute pitch, likely influenced by both genetic and environmental factors and their interaction.
Collapse
Affiliation(s)
- T Wenhart
- Institute of Music Physiology and Musicians' Medicine, University for Music, Drama and Media, Hannover, Germany.,2Center for Systems Neuroscience, Hannover, Germany
| | - R A I Bethlehem
- 3Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - S Baron-Cohen
- 3Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - E Altenmüller
- Institute of Music Physiology and Musicians' Medicine, University for Music, Drama and Media, Hannover, Germany.,2Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
22
|
Absolute and relative pitch processing in the human brain: neural and behavioral evidence. Brain Struct Funct 2019; 224:1723-1738. [DOI: 10.1007/s00429-019-01872-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
|
23
|
Brauchli C, Leipold S, Jäncke L. Univariate and multivariate analyses of functional networks in absolute pitch. Neuroimage 2019; 189:241-247. [DOI: 10.1016/j.neuroimage.2019.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 11/26/2022] Open
|
24
|
Larger Auditory Cortical Area and Broader Frequency Tuning Underlie Absolute Pitch. J Neurosci 2019; 39:2930-2937. [PMID: 30745420 DOI: 10.1523/jneurosci.1532-18.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/08/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Absolute pitch (AP), the ability of some musicians to precisely identify and name musical tones in isolation, is associated with a number of gross morphological changes in the brain, but the fundamental neural mechanisms underlying this ability have not been clear. We presented a series of logarithmic frequency sweeps to age- and sex-matched groups of musicians with or without AP and controls without musical training. We used fMRI and population receptive field (pRF) modeling to measure the responses in the auditory cortex in 61 human subjects. The tuning response of each fMRI voxel was characterized as Gaussian, with independent center frequency and bandwidth parameters. We identified three distinct tonotopic maps, corresponding to primary (A1), rostral (R), and rostral-temporal (RT) regions of auditory cortex. We initially hypothesized that AP abilities might manifest in sharper tuning in the auditory cortex. However, we observed that AP subjects had larger cortical area, with the increased area primarily devoted to broader frequency tuning. We observed anatomically that A1, R and RT were significantly larger in AP musicians than in non-AP musicians or control subjects, which did not differ significantly from each other. The increased cortical area in AP in areas A1 and R were primarily low frequency and broadly tuned, whereas the distribution of responses in area RT did not differ significantly. We conclude that AP abilities are associated with increased early auditory cortical area devoted to broad-frequency tuning and likely exploit increased ensemble encoding.SIGNIFICANCE STATEMENT Absolute pitch (AP), the ability of some musicians to precisely identify and name musical tones in isolation, is associated with a number of gross morphological changes in the brain, but the fundamental neural mechanisms have not been clear. Our study shows that AP musicians have significantly larger volume in early auditory cortex than non-AP musicians and non-musician controls and that this increased volume is primarily devoted to broad-frequency tuning. We conclude that AP musicians are likely able to exploit increased ensemble representations to encode and identify frequency.
Collapse
|
25
|
Early tone categorization in absolute pitch musicians is subserved by the right-sided perisylvian brain. Sci Rep 2019; 9:1419. [PMID: 30723232 PMCID: PMC6363806 DOI: 10.1038/s41598-018-38273-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/21/2018] [Indexed: 01/17/2023] Open
Abstract
Absolute pitch (AP) is defined as the ability to identify and label tones without reference to keyality. In this context, the main question is whether early or late processing stages are responsible for this ability. We investigated the electrophysiological responses to tones in AP and relative pitch (RP) possessors while participants listened attentively to sine tones. Since event-related potentials are particularly suited for tracking tone encoding (N100 and P200), categorization (N200), and mnemonic functions (N400), we hypothesized that differences in early pitch processing stages would be reflected by increased N100 and P200-related areas in AP musicians. Otherwise, differences in later cognitive stages of tone processing should be mirrored by increased N200 and/or N400 areas in AP musicians. AP possessors exhibited larger N100 areas and a tendency towards enhanced P200 areas. Furthermore, the sources of these components were estimated and statistically compared between the two groups for a set of a priori defined regions of interest. AP musicians demonstrated increased N100-related current densities in the right superior temporal sulcus, middle temporal gyrus, and Heschl’s gyrus. Results are interpreted as indicating that early between-group differences in right-sided perisylvian brain regions might reflect auditory tone categorization rather than labelling mechanisms.
Collapse
|
26
|
A reevaluation of the electrophysiological correlates of absolute pitch and relative pitch: No evidence for an absolute pitch-specific negativity. Int J Psychophysiol 2019; 137:21-31. [PMID: 30610912 DOI: 10.1016/j.ijpsycho.2018.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 12/30/2018] [Indexed: 11/20/2022]
Abstract
Musicians with absolute pitch effortlessly identify the pitch of a sound without an external reference. Previous neuroscientific studies on absolute pitch have typically had small samples sizes and low statistical power, making them susceptible for false positive findings. In a seminal study, Itoh et al. (2005) reported the elicitation of an absolute pitch-specific event-related potential component during tone listening - the AP negativity. Additionally, they identified several components as correlates of relative pitch, the ability to identify relations between pitches. Here, we attempted to replicate the main findings of Itoh et al.'s study in a large sample of musicians (n = 104) using both frequentist and Bayesian inference. We were not able to replicate the presence of an AP negativity during tone listening in individuals with high levels of absolute pitch, but we partially replicated the findings concerning the correlates of relative pitch. Our results are consistent with several previous studies reporting an absence of differences between musicians with and without absolute pitch in early auditory evoked potential components. We conclude that replication studies form a crucial part in assessing extraordinary findings, even more so in small fields where a single finding can have a large impact on further research.
Collapse
|
27
|
Mazrooyisebdani M, Nair VA, Loh PL, Remsik AB, Young BM, Moreno BS, Dodd KC, Kang TJ, William JC, Prabhakaran V. Evaluation of Changes in the Motor Network Following BCI Therapy Based on Graph Theory Analysis. Front Neurosci 2018; 12:861. [PMID: 30542258 PMCID: PMC6277805 DOI: 10.3389/fnins.2018.00861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Despite the established effectiveness of the brain-computer interface (BCI) therapy during stroke rehabilitation (Song et al., 2014a, 2015; Young et al., 2014a,b,c, 2015; Remsik et al., 2016), little is understood about the connections between motor network reorganization and functional motor improvements. The aim of this study was to investigate changes in the network reorganization of the motor cortex during BCI therapy. Graph theoretical approaches are used on resting-state functional magnetic resonance imaging (fMRI) data acquired from stroke patients to evaluate these changes. Correlations between changes in graph measurements and behavioral measurements were also examined. Right hemisphere chronic stroke patients (average time from stroke onset = 38.23 months, standard deviation (SD) = 46.27 months, n = 13, 6 males, 10 right-handed) with upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device. Eyes-closed resting-state fMRI (rs-fMRI) scans, along with T-1 weighted anatomical scans on 3.0T MRI scanners were collected from these patients at four test points. Immediate therapeutic effects were investigated by comparing pre and post-therapy results. Results displayed that th average clustering coefficient of the motor network increased significantly from pre to post-therapy. Furthermore, increased regional centrality of ipsilesional primary motor area (p = 0.02) and decreases in regional centrality of contralesional thalamus (p = 0.05), basal ganglia (p = 0.05 in betweenness centrality analysis and p = 0.03 for degree centrality), and dentate nucleus (p = 0.03) were observed (uncorrected). These findings suggest an overall trend toward significance in terms of involvement of these regions. Increased centrality of primary motor area may indicate increased efficiency within its interactive network as an effect of BCI therapy. Notably, changes in centrality of the bilateral cerebellum regions have strong correlations with both clinical variables [the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT)]
Collapse
Affiliation(s)
- Mohsen Mazrooyisebdani
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Veena A Nair
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Po-Ling Loh
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander B Remsik
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany M Young
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany S Moreno
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Keith C Dodd
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Theresa J Kang
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Justin C William
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
28
|
No otoacoustic evidence for a peripheral basis of absolute pitch. Hear Res 2018; 370:201-208. [PMID: 30190151 DOI: 10.1016/j.heares.2018.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 11/21/2022]
Abstract
Absolute pitch (AP) is the ability to identify the perceived pitch of a sound without an external reference. Relatively rare, with an incidence of approximately 1/10,000, the mechanisms underlying AP are not well understood. This study examined otoacoustic emissions (OAEs) to determine if there is evidence of a peripheral (i.e., cochlear) basis for AP. Two OAE types were examined: spontaneous emissions (SOAEs) and stimulus-frequency emissions (SFOAEs). Our motivations to explore a peripheral foundation for AP were several-fold. First is the observation that pitch judgment accuracy has been reported to decrease with age due to age-dependent physiological changes cochlear biomechanics. Second is the notion that SOAEs, which are indirectly related to perception, could act as a fixed frequency reference. Third, SFOAE delays, which have been demonstrated to serve as a proxy measure for cochlear frequency selectivity, could indicate tuning differences between groups. These led us to the hypotheses that AP subjects would (relative to controls) exhibit a. greater SOAE activity and b. sharper cochlear tuning. To test these notions, measurements were made in normal-hearing control (N = 33) and AP-possessor (N = 20) populations. In short, no substantial difference in SOAE activity was found between groups, indicating no evidence for one or more strong SOAEs that could act as a fixed cue. SFOAE phase-gradient delays, measured at several different probe levels (20-50 dB SPL), also showed no significant differences between groups. This observation argues against sharper cochlear frequency selectivity in AP subjects. Taken together, these data support the prevailing view that AP mechanisms predominantly arise at a processing level in the central nervous system (CNS) at the brainstem or higher, not within the cochlea.
Collapse
|
29
|
Kim SG, Knösche TR. Resting state functional connectivity of the ventral auditory pathway in musicians with absolute pitch. Hum Brain Mapp 2017; 38:3899-3916. [PMID: 28481006 DOI: 10.1002/hbm.23637] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/06/2017] [Accepted: 04/23/2017] [Indexed: 11/09/2022] Open
Abstract
Absolute pitch (AP) is the ability to recognize pitch chroma of tonal sound without external references, providing a unique model of the human auditory system (Zatorre: Nat Neurosci 6 () 692-695). In a previous study (Kim and Knösche: Hum Brain Mapp () 3486-3501), we identified enhanced intracortical myelination in the right planum polare (PP) in musicians with AP, which could be a potential site for perceptional processing of pitch chroma information. We speculated that this area, which initiates the ventral auditory pathway, might be crucially involved in the perceptual stage of the AP process in the context of the "dual pathway hypothesis" that suggests the role of the ventral pathway in processing nonspatial information related to the identity of an auditory object (Rauschecker: Eur J Neurosci 41 () 579-585). To test our conjecture on the ventral pathway, we investigated resting state functional connectivity (RSFC) using functional magnetic resonance imaging (fMRI) from musicians with varying degrees of AP. Should our hypothesis be correct, RSFC via the ventral pathway is expected to be stronger in musicians with AP, whereas such group effect is not predicted in the RSFC via the dorsal pathway. In the current data, we found greater RSFC between the right PP and bilateral anteroventral auditory cortices in musicians with AP. In contrast, we did not find any group difference in the RSFC of the planum temporale (PT) between musicians with and without AP. We believe that these findings support our conjecture on the critical role of the ventral pathway in AP recognition. Hum Brain Mapp 38:3899-3916, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seung-Goo Kim
- Research Group for MEG and EEG - Cortical Networks and Cognitive Functions, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thomas R Knösche
- Research Group for MEG and EEG - Cortical Networks and Cognitive Functions, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
30
|
Kim S, Blake R, Lee M, Kim CY. Audio-visual interactions uniquely contribute to resolution of visual conflict in people possessing absolute pitch. PLoS One 2017; 12:e0175103. [PMID: 28380058 PMCID: PMC5381860 DOI: 10.1371/journal.pone.0175103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 02/23/2017] [Indexed: 11/26/2022] Open
Abstract
Individuals possessing absolute pitch (AP) are able to identify a given musical tone or to reproduce it without reference to another tone. The present study sought to learn whether this exceptional auditory ability impacts visual perception under stimulus conditions that provoke visual competition in the form of binocular rivalry. Nineteen adult participants with 3–19 years of musical training were divided into two groups according to their performance on a task involving identification of the specific note associated with hearing a given musical pitch. During test trials lasting just over half a minute, participants dichoptically viewed a scrolling musical score presented to one eye and a drifting sinusoidal grating presented to the other eye; throughout the trial they pressed buttons to track the alternations in visual awareness produced by these dissimilar monocular stimuli. On “pitch-congruent” trials, participants heard an auditory melody that was congruent in pitch with the visual score, on “pitch-incongruent” trials they heard a transposed auditory melody that was congruent with the score in melody but not in pitch, and on “melody-incongruent” trials they heard an auditory melody completely different from the visual score. For both groups, the visual musical scores predominated over the gratings when the auditory melody was congruent compared to when it was incongruent. Moreover, the AP participants experienced greater predominance of the visual score when it was accompanied by the pitch-congruent melody compared to the same melody transposed in pitch; for non-AP musicians, pitch-congruent and pitch-incongruent trials yielded equivalent predominance. Analysis of individual durations of dominance revealed differential effects on dominance and suppression durations for AP and non-AP participants. These results reveal that AP is accompanied by a robust form of bisensory interaction between tonal frequencies and musical notation that boosts the salience of a visual score.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Psychology, Korea University, Seoul, Korea
| | - Randolph Blake
- Department of Psychological Sciences, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Minyoung Lee
- Department of Psychology, Korea University, Seoul, Korea
| | - Chai-Youn Kim
- Department of Psychology, Korea University, Seoul, Korea
- * E-mail:
| |
Collapse
|
31
|
Chavarria-Soley G. Absolute pitch in Costa Rica: Distribution of pitch identification ability and implications for its genetic basis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:891. [PMID: 27586721 DOI: 10.1121/1.4960569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Absolute pitch is the unusual ability to recognize a pitch without an external reference. The current view is that both environmental and genetic factors are involved in the acquisition of the trait. In the present study, 127 adult musicians were subjected to a musical tone identification test. Subjects were university music students and volunteers who responded to a newspaper article. The test consisted of the identification of 40 piano and 40 pure tones. Subjects were classified in three categories according to their pitch naming ability: absolute pitch (AP), high accuracy of tone identification (HA), and non-absolute pitch (non-AP). Both the percentage of correct responses and the mean absolute deviation showed a statistically significant variation between categories. A very clear pattern of higher accuracy for white than for black key notes was observed for the HA and the non-AP groups. Meanwhile, the AP group had an almost perfect pitch naming accuracy for both kinds of tones. Each category presented a very different pattern of deviation around the correct response. The age at the beginning of musical training did not differ between categories. The distribution of pitch identification ability in this study suggests a complex inheritance of the trait.
Collapse
|
32
|
Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications Including Developmental Dyslexia. Curr Neurol Neurosci Rep 2016; 15:51. [PMID: 26092314 DOI: 10.1007/s11910-015-0574-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensorimotor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the current understanding of pitch processing and behavioral and neural variations that give rise to difficulties in pitch processing, and potential applications of music education for language processing disorders such as dyslexia.
Collapse
|
33
|
Gingras B, Honing H, Peretz I, Trainor LJ, Fisher SE. Defining the biological bases of individual differences in musicality. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140092. [PMID: 25646515 DOI: 10.1098/rstb.2014.0092] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in molecular technologies make it possible to pinpoint genomic factors associated with complex human traits. For cognition and behaviour, identification of underlying genes provides new entry points for deciphering the key neurobiological pathways. In the past decade, the search for genetic correlates of musicality has gained traction. Reports have documented familial clustering for different extremes of ability, including amusia and absolute pitch (AP), with twin studies demonstrating high heritability for some music-related skills, such as pitch perception. Certain chromosomal regions have been linked to AP and musical aptitude, while individual candidate genes have been investigated in relation to aptitude and creativity. Most recently, researchers in this field started performing genome-wide association scans. Thus far, studies have been hampered by relatively small sample sizes and limitations in defining components of musicality, including an emphasis on skills that can only be assessed in trained musicians. With opportunities to administer standardized aptitude tests online, systematic large-scale assessment of musical abilities is now feasible, an important step towards high-powered genome-wide screens. Here, we offer a synthesis of existing literatures and outline concrete suggestions for the development of comprehensive operational tools for the analysis of musical phenotypes.
Collapse
Affiliation(s)
- Bruno Gingras
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| | - Henkjan Honing
- Amsterdam Brain and Cognition (ABC), Institute of Logic, Language and Computation (ILLC), University of Amsterdam, Amsterdam, The Netherlands
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research, Department of Psychology, University of Montreal, Quebec, Canada
| | - Laurel J Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Ontario, Canada
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Reybrouck M, Brattico E. Neuroplasticity beyond Sounds: Neural Adaptations Following Long-Term Musical Aesthetic Experiences. Brain Sci 2015; 5:69-91. [PMID: 25807006 PMCID: PMC4390792 DOI: 10.3390/brainsci5010069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/14/2015] [Accepted: 03/04/2015] [Indexed: 11/16/2022] Open
Abstract
Capitalizing from neuroscience knowledge on how individuals are affected by the sound environment, we propose to adopt a cybernetic and ecological point of view on the musical aesthetic experience, which includes subprocesses, such as feature extraction and integration, early affective reactions and motor actions, style mastering and conceptualization, emotion and proprioception, evaluation and preference. In this perspective, the role of the listener/composer/performer is seen as that of an active “agent” coping in highly individual ways with the sounds. The findings concerning the neural adaptations in musicians, following long-term exposure to music, are then reviewed by keeping in mind the distinct subprocesses of a musical aesthetic experience. We conclude that these neural adaptations can be conceived of as the immediate and lifelong interactions with multisensorial stimuli (having a predominant auditory component), which result in lasting changes of the internal state of the “agent”. In a continuous loop, these changes affect, in turn, the subprocesses involved in a musical aesthetic experience, towards the final goal of achieving better perceptual, motor and proprioceptive responses to the immediate demands of the sounding environment. The resulting neural adaptations in musicians closely depend on the duration of the interactions, the starting age, the involvement of attention, the amount of motor practice and the musical genre played.
Collapse
Affiliation(s)
- Mark Reybrouck
- Section of Musicology, Faculty of Arts, KU Leuven-University of Leuven, Blijde-Inkomststraat 21, P.O. Box 3313, 3000 Leuven, Belgium.
- Faculty of Psychology and Educational Sciences, Center for Instructional Psychology and Technology, KU Leuven-University of Leuven, Dekenstraat 2, P.O. Box 3773, 3000 Leuven, Belgium.
| | - Elvira Brattico
- Helsinki Collegium for Advanced Studies, University of Helsinki, Fabianinkatu 24, P.O. Box 4, 00014 Helsinki, Finland.
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, Siltavuorenpenger 1 B, P.O. Box 9, 00014 Helsinki, Finland.
| |
Collapse
|
35
|
Rogenmoser L, Elmer S, Jäncke L. Absolute Pitch: Evidence for Early Cognitive Facilitation during Passive Listening as Revealed by Reduced P3a Amplitudes. J Cogn Neurosci 2015; 27:623-37. [DOI: 10.1162/jocn_a_00708] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Absolute pitch (AP) is the rare ability to identify or produce different pitches without using reference tones. At least two sequential processing stages are assumed to contribute to this phenomenon. The first recruits a pitch memory mechanism at an early stage of auditory processing, whereas the second is driven by a later cognitive mechanism (pitch labeling). Several investigations have used active tasks, but it is unclear how these two mechanisms contribute to AP during passive listening. The present work investigated the temporal dynamics of tone processing in AP and non-AP (NAP) participants by using EEG. We applied a passive oddball paradigm with between- and within-tone category manipulations and analyzed the MMN reflecting the early stage of auditory processing and the P3a response reflecting the later cognitive mechanism during the second processing stage. Results did not reveal between-group differences in MMN waveforms. By contrast, the P3a response was specifically associated with AP and sensitive to the processing of different pitch types. Specifically, AP participants exhibited smaller P3a amplitudes, especially in between-tone category conditions, and P3a responses correlated significantly with the age of commencement of musical training, suggesting an influence of early musical exposure on AP. Our results reinforce the current opinion that the representation of pitches at the processing level of the auditory-related cortex is comparable among AP and NAP participants, whereas the later processing stage is critical for AP. Results are interpreted as reflecting cognitive facilitation in AP participants, possibly driven by the availability of multiple codes for tones.
Collapse
Affiliation(s)
| | | | - Lutz Jäncke
- 1University of Zurich
- 2King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Abstract
Singing requires effortless and efficient use of auditory and motor systems that center around the perception and production of the human voice. Although perception and production are usually tightly coupled functions, occasional mismatches between the two systems inform us of dissociable pathways in the brain systems that enable singing. Here I review the literature on perception and production in the auditory modality, and propose a dual-stream neuroanatomical model that subserves singing. I will discuss studies surrounding the neural functions of feedforward, feedback, and efference systems that control vocal monitoring, as well as the white matter pathways that connect frontal and temporal regions that are involved in perception and production. I will also consider disruptions of the perception-production network that are evident in tone-deaf individuals and poor pitch singers. Finally, by comparing expert singers against other musicians and nonmusicians, I will evaluate the possibility that singing training might offer rehabilitation from these disruptions through neuroplasticity of the perception-production network. Taken together, the best available evidence supports a model of dorsal and ventral pathways in auditory-motor integration that enables singing and is shared with language, music, speech, and human interactions in the auditory environment.
Collapse
|
37
|
Suriadi MM, Usui K, Tottori T, Terada K, Fujitani S, Umeoka S, Usui N, Baba K, Matsuda K, Inoue Y. Preservation of absolute pitch after right amygdalohippocampectomy for a pianist with TLE. Epilepsy Behav 2015; 42:14-7. [PMID: 25499156 DOI: 10.1016/j.yebeh.2014.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/27/2014] [Accepted: 10/21/2014] [Indexed: 11/27/2022]
Abstract
Absolute pitch (AP) ability is a rare musical phenomenon. In the literature, it has been suggested that the relative specialization for pitch processing is in the right temporal lobe in the non-AP population. Since the anatomic basis for absolute pitch is not fully understood and cases of temporal lobe epilepsy of AP possessors are extremely rare, applicability of resection as a treatment of epilepsy in this particular area should be evaluated with caution. In the present study, we examined an AP possessor who suffered from medically refractory temporal lobe epilepsy and underwent right selective amygdalohippocampectomy (SAH). The SAH procedure clearly avoided disturbing important structures for AP, inasmuch as postsurgically she preserved her AP ability and was seizure-free. She did well post-operatively in the test of pure sine wave tones with short reaction time, which could be identified as "true" absolute pitch.
Collapse
Affiliation(s)
- Meilia M Suriadi
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka 420-8688, Japan.
| | - Keiko Usui
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka 420-8688, Japan
| | - Takayasu Tottori
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka 420-8688, Japan
| | - Kiyohito Terada
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka 420-8688, Japan
| | - Shigeru Fujitani
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka 420-8688, Japan
| | - Shuichi Umeoka
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka 420-8688, Japan
| | - Naotaka Usui
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka 420-8688, Japan
| | - Kouichi Baba
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka 420-8688, Japan
| | - Kazumi Matsuda
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka 420-8688, Japan
| | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka 420-8688, Japan
| |
Collapse
|
38
|
Raschle NM, Smith SA, Zuk J, Dauvermann MR, Figuccio MJ, Gaab N. Investigating the neural correlates of voice versus speech-sound directed information in pre-school children. PLoS One 2014; 9:e115549. [PMID: 25532132 PMCID: PMC4274095 DOI: 10.1371/journal.pone.0115549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023] Open
Abstract
Studies in sleeping newborns and infants propose that the superior temporal sulcus is involved in speech processing soon after birth. Speech processing also implicitly requires the analysis of the human voice, which conveys both linguistic and extra-linguistic information. However, due to technical and practical challenges when neuroimaging young children, evidence of neural correlates of speech and/or voice processing in toddlers and young children remains scarce. In the current study, we used functional magnetic resonance imaging (fMRI) in 20 typically developing preschool children (average age = 5.8 y; range 5.2-6.8 y) to investigate brain activation during judgments about vocal identity versus the initial speech sound of spoken object words. FMRI results reveal common brain regions responsible for voice-specific and speech-sound specific processing of spoken object words including bilateral primary and secondary language areas of the brain. Contrasting voice-specific with speech-sound specific processing predominantly activates the anterior part of the right-hemispheric superior temporal sulcus. Furthermore, the right STS is functionally correlated with left-hemispheric temporal and right-hemispheric prefrontal regions. This finding underlines the importance of the right superior temporal sulcus as a temporal voice area and indicates that this brain region is specialized, and functions similarly to adults by the age of five. We thus extend previous knowledge of voice-specific regions and their functional connections to the young brain which may further our understanding of the neuronal mechanism of speech-specific processing in children with developmental disorders, such as autism or specific language impairments.
Collapse
Affiliation(s)
- Nora Maria Raschle
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Psychiatric University Clinics Basel, Department of Child and Adolescent Psychiatry, Basel, Switzerland
| | - Sara Ashley Smith
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Jennifer Zuk
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maria Regina Dauvermann
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Joseph Figuccio
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Graduate School of Education, Cambridge, Massachusetts, United States of America
| |
Collapse
|
39
|
Parkinson AL, Behroozmand R, Ibrahim N, Korzyukov O, Larson CR, Robin DA. Effective connectivity associated with auditory error detection in musicians with absolute pitch. Front Neurosci 2014; 8:46. [PMID: 24634644 PMCID: PMC3942878 DOI: 10.3389/fnins.2014.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/19/2014] [Indexed: 11/29/2022] Open
Abstract
It is advantageous to study a wide range of vocal abilities in order to fully understand how vocal control measures vary across the full spectrum. Individuals with absolute pitch (AP) are able to assign a verbal label to musical notes and have enhanced abilities in pitch identification without reliance on an external referent. In this study we used dynamic causal modeling (DCM) to model effective connectivity of ERP responses to pitch perturbation in voice auditory feedback in musicians with relative pitch (RP), AP, and non-musician controls. We identified a network compromising left and right hemisphere superior temporal gyrus (STG), primary motor cortex (M1), and premotor cortex (PM). We specified nine models and compared two main factors examining various combinations of STG involvement in feedback pitch error detection/correction process. Our results suggest that modulation of left to right STG connections are important in the identification of self-voice error and sensory motor integration in AP musicians. We also identify reduced connectivity of left hemisphere PM to STG connections in AP and RP groups during the error detection and corrections process relative to non-musicians. We suggest that this suppression may allow for enhanced connectivity relating to pitch identification in the right hemisphere in those with more precise pitch matching abilities. Musicians with enhanced pitch identification abilities likely have an improved auditory error detection and correction system involving connectivity of STG regions. Our findings here also suggest that individuals with AP are more adept at using feedback related to pitch from the right hemisphere.
Collapse
Affiliation(s)
- Amy L Parkinson
- Research Imaging Institute, Department of Neurology, University of Texas Health Science Center San Antonio San Antonio, TX, USA
| | - Roozbeh Behroozmand
- Human Brain Research Lab, Department of Neurosurgery, The University of Iowa Iowa City, IA, USA
| | - Nadine Ibrahim
- Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA
| | - Oleg Korzyukov
- Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA
| | - Charles R Larson
- Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA
| | - Donald A Robin
- Research Imaging Institute, Department of Neurology, University of Texas Health Science Center San Antonio San Antonio, TX, USA
| |
Collapse
|
40
|
Bouvet L, Donnadieu S, Valdois S, Caron C, Dawson M, Mottron L. Veridical mapping in savant abilities, absolute pitch, and synesthesia: an autism case study. Front Psychol 2014; 5:106. [PMID: 24600416 PMCID: PMC3927080 DOI: 10.3389/fpsyg.2014.00106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 01/26/2014] [Indexed: 12/11/2022] Open
Abstract
An enhanced role and autonomy of perception are prominent in autism. Furthermore, savant abilities, absolute pitch, and synesthesia are all more commonly found in autistic individuals than in the typical population. The mechanism of veridical mapping has been proposed to account for how enhanced perception in autism leads to the high prevalence of these three phenomena and their structural similarity. Veridical mapping entails functional rededication of perceptual brain regions to higher order cognitive operations, allowing the enhanced detection and memorization of isomorphisms between perceptual and non-perceptual structures across multiple scales. In this paper, we present FC, an autistic individual who possesses several savant abilities in addition to both absolute pitch and synesthesia-like associations. The co-occurrence in FC of abilities, some of them rare, which share the same structure, as well as FC’s own accounts of their development, together suggest the importance of veridical mapping in the atypical range and nature of abilities displayed by autistic people.
Collapse
Affiliation(s)
- Lucie Bouvet
- Laboratoire de Psychologie et Neurocognition, CNRS UMR 5105 Grenoble, France ; Université Lille 3 - Charles de Gaulle Lille, France
| | - Sophie Donnadieu
- Laboratoire de Psychologie et Neurocognition, CNRS UMR 5105 Grenoble, France ; Université de Savoie Chambéry, France
| | - Sylviane Valdois
- Laboratoire de Psychologie et Neurocognition, CNRS UMR 5105 Grenoble, France ; Centre National de la Recherche Scientifique Paris, France
| | - Chantal Caron
- Centre d'Excellence en Troubles Envahissants du Développement de l'Université de Montréal, Hôpital Rivière-des-Prairies Montréal, Canada
| | - Michelle Dawson
- Centre d'Excellence en Troubles Envahissants du Développement de l'Université de Montréal, Hôpital Rivière-des-Prairies Montréal, Canada
| | - Laurent Mottron
- Centre d'Excellence en Troubles Envahissants du Développement de l'Université de Montréal, Hôpital Rivière-des-Prairies Montréal, Canada
| |
Collapse
|
41
|
Behroozmand R, Ibrahim N, Korzyukov O, Robin DA, Larson CR. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch. Brain Cogn 2013; 84:97-108. [PMID: 24355545 DOI: 10.1016/j.bandc.2013.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/16/2013] [Accepted: 11/20/2013] [Indexed: 11/25/2022]
Abstract
The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing.
Collapse
Affiliation(s)
- Roozbeh Behroozmand
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, United States
| | - Nadine Ibrahim
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, United States
| | - Oleg Korzyukov
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, United States
| | - Donald A Robin
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, United States
| | - Charles R Larson
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, United States.
| |
Collapse
|
42
|
Dohn A, Garza-Villarreal EA, Chakravarty MM, Hansen M, Lerch JP, Vuust P. Gray- and White-Matter Anatomy of Absolute Pitch Possessors. Cereb Cortex 2013; 25:1379-88. [DOI: 10.1093/cercor/bht334] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
43
|
Elmer S, Sollberger S, Meyer M, Jäncke L. An Empirical Reevaluation of Absolute Pitch: Behavioral and Electrophysiological Measurements. J Cogn Neurosci 2013; 25:1736-53. [DOI: 10.1162/jocn_a_00410] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Here, we reevaluated the “two-component” model of absolute pitch (AP) by combining behavioral and electrophysiological measurements. This specific model postulates that AP is driven by a perceptual encoding ability (i.e., pitch memory) plus an associative memory component (i.e., pitch labeling). To test these predictions, during EEG measurements AP and non-AP (NAP) musicians were passively exposed to piano tones (first component of the model) and additionally instructed to judge whether combinations of tones and labels were conceptually associated or not (second component of the model). Auditory-evoked N1/P2 potentials did not reveal differences between the two groups, thus indicating that AP is not necessarily driven by a differential pitch encoding ability at the processing level of the auditory cortex. Otherwise, AP musicians performed the conceptual association task with an order of magnitude better accuracy and shorter RTs than NAP musicians did, this result clearly pointing to distinctive conceptual associations in AP possessors. Most notably, this behavioral superiority was reflected by an increased N400 effect and accompanied by a subsequent late positive component, the latter not being distinguishable in NAP musicians.
Collapse
Affiliation(s)
| | | | - Martin Meyer
- 1University of Zurich
- 2Center for Integrative Human Physiology, Zurich, Switzerland
- 3International Normal Aging and Plasticity Imaging Center, Zurich, Switzerland
| | - Lutz Jäncke
- 1University of Zurich
- 2Center for Integrative Human Physiology, Zurich, Switzerland
- 3International Normal Aging and Plasticity Imaging Center, Zurich, Switzerland
| |
Collapse
|
44
|
Jakubowski K, Müllensiefen D. The influence of music-elicited emotions and relative pitch on absolute pitch memory for familiar melodies. Q J Exp Psychol (Hove) 2013; 66:1259-67. [DOI: 10.1080/17470218.2013.803136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Levitin's findings that nonmusicians could produce from memory the absolute pitches of self-selected pop songs have been widely cited in the music psychology literature. These findings suggest that latent absolute pitch (AP) memory may be a more widespread trait within the population than traditional AP labelling ability. However, it has been left unclear what factors may facilitate absolute pitch retention for familiar pieces of music. The aim of the present paper was to investigate factors that may contribute to latent AP memory using Levitin's sung production paradigm for AP memory and comparing results to the outcomes of a pitch labelling task, a relative pitch memory test, measures of music-induced emotions, and various measures of participants' musical backgrounds. Our results suggest that relative pitch memory and the quality and degree of music-elicited emotions impact on latent AP memory.
Collapse
Affiliation(s)
- Kelly Jakubowski
- Department of Psychology, Goldsmiths, University of London, London, UK
| | | |
Collapse
|
45
|
Parkinson AL, Korzyukov O, Larson CR, Litvak V, Robin DA. Modulation of effective connectivity during vocalization with perturbed auditory feedback. Neuropsychologia 2013; 51:1471-80. [PMID: 23665378 DOI: 10.1016/j.neuropsychologia.2013.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/05/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
The integration of auditory feedback with vocal motor output is important for the control of voice fundamental frequency (F0). We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. We presented varying magnitudes of pitch shifted auditory feedback to subjects during vocalization and passive listening and measured event related potentials (ERPs) to the feedback shifts. Shifts were delivered at +100 and +400 cents (200 ms duration). The ERP data were modeled with dynamic causal modeling (DCM) techniques where the effective connectivity between the superior temporal gyrus (STG), inferior frontal gyrus and premotor areas were tested. We compared three main factors: the effect of intrinsic STG connectivity, STG modulation across hemispheres and the specific effect of hemisphere. A Bayesian model selection procedure was used to make inference about model families. Results suggest that both intrinsic STG and left to right STG connections are important in the identification of self-voice error and sensory motor integration. We identified differences in left-to-right STG connections between 100 cent and 400 cent shift conditions suggesting that self- and non-self-voice error are processed differently in the left and right hemisphere. These results also highlight the potential of DCM modeling of ERP responses to characterize specific network properties of forward models of voice control.
Collapse
Affiliation(s)
- Amy L Parkinson
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
46
|
Gregersen PK, Kowalsky E, Lee A, Baron-Cohen S, Fisher SE, Asher JE, Ballard D, Freudenberg J, Li W. Absolute pitch exhibits phenotypic and genetic overlap with synesthesia. Hum Mol Genet 2013; 22:2097-104. [PMID: 23406871 DOI: 10.1093/hmg/ddt059] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Absolute pitch (AP) and synesthesia are two uncommon cognitive traits that reflect increased neuronal connectivity and have been anecdotally reported to occur together in an individual. Here we systematically evaluate the occurrence of synesthesia in a population of 768 subjects with documented AP. Out of these 768 subjects, 151 (20.1%) reported synesthesia, most commonly with color. These self-reports of synesthesia were validated in a subset of 21 study subjects, using an established methodology. We further carried out combined linkage analysis of 53 multiplex families with AP and 36 multiplex families with synesthesia. We observed a peak NPL LOD = 4.68 on chromosome 6q, as well as evidence of linkage on chromosome 2, using a dominant model. These data establish the close phenotypic and genetic relationship between AP and synesthesia. The chromosome 6 linkage region contains 73 genes; several leading candidate genes involved in neurodevelopment were investigated by exon resequencing. However, further studies will be required to definitively establish the identity of the causative gene(s) in the region.
Collapse
Affiliation(s)
- Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, NorthShore-LIJ, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mottron L, Bouvet L, Bonnel A, Samson F, Burack JA, Dawson M, Heaton P. Veridical mapping in the development of exceptional autistic abilities. Neurosci Biobehav Rev 2013; 37:209-28. [DOI: 10.1016/j.neubiorev.2012.11.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
|