1
|
Mishra A, Wang F, Chen LM, Gore JC. Machine Learning-Based Clustering of Layer-Resolved fMRI Activation and Functional Connectivity Within the Primary Somatosensory Cortex in Nonhuman Primates. Hum Brain Mapp 2025; 46:e70193. [PMID: 40095731 PMCID: PMC11912181 DOI: 10.1002/hbm.70193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Delineating the functional organization of mesoscale cortical columnar structure is essential for understanding brain function. We have previously demonstrated a high spatial correspondence between BOLD fMRI and LFP responses to tactile stimuli in the primary somatosensory cortex area 3b of nonhuman primates. This study aims to explore how 2D spatial profiles of the functional column vary across cortical layers (defined by three cortical depths) in both tactile stimulation and resting states using fMRI. At 9.4 T, we acquired submillimeter-resolution oblique fMRI data from cortical areas 3b and 1 of anesthetized squirrel monkeys and obtained fMRI signals from three cortical layers. In both areas 3b and 1, the tactile stimulus-evoked fMRI activation foci were fitted with point spread functions (PSFs), from which shape parameters, including full width at half maximum (FWHM), were derived. Seed-based resting-state fMRI data analysis was then performed to measure the spatial profiles of resting-state connectivity within and between areas 3b and 1. We found that the tactile-evoked fMRI response and local resting-state functional connectivity were elongated at the superficial layer, with the major axes oriented in lateral to medial (from digit 1 to digit 5) direction. This elongation was significantly reduced in the deeper (middle and bottom) layers. To assess the robustness of these spatial profiles in distinguishing cortical layers, shape parameters describing the spatial extents of activation and resting-state connectivity profiles were used to classify the layers via self-organizing maps (SOM). A minimal overall classification error (~13%) was achieved, effectively classifying the layers into two groups: the superficial layer exhibited distinct features from the two deeper layers in the rsfMRI data. Our results support distinct 2D spatial profiles for superficial versus deeper cortical layers and reveal similarities between stimulus-evoked and resting-state configurations.
Collapse
Affiliation(s)
- Arabinda Mishra
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Feng Wang
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Li Min Chen
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - John C. Gore
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
2
|
Poplawsky AJ, Cover C, Reddy S, Chishti HB, Vazquez A, Fukuda M. Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb. Neuroimage 2023; 274:120121. [PMID: 37080347 PMCID: PMC10240534 DOI: 10.1016/j.neuroimage.2023.120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Awake rodent fMRI is increasingly common over the use of anesthesia since it permits behavioral paradigms and does not confound normal brain function or neurovascular coupling. It is well established that adequate acclimation to the loud fMRI environment and head fixation reduces stress in the rodents and allows for whole brain imaging with little contamination from motion. However, it is unknown whether high-resolution fMRI with increased susceptibility to motion and lower sensitivity can measure small, but spatially discrete, activations in awake mice. To examine this, we used contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI in the mouse olfactory bulb for its enhanced sensitivity and neural specificity. We determined that activation patterns in the glomerular layer to four different odors were spatially distinct and were consistent with previously established histological patterns. In addition, odor-evoked laminar activations were greatest in superficial layers that decreased with laminar depth, similar to previous observations. Interestingly, the fMRI response strengths in the granule cell layer were greater in awake mice than our previous anesthetized rat studies, suggesting that feedback neural activities were intact with wakefulness. We finally determined that fMRI signal changes to repeated odor exposure (i.e., olfactory adaptation) attenuated relatively more in the feedback granule cell layer compared to the input glomerular layer, which is consistent with prior observations. We, therefore, conclude that high-resolution CBVw fMRI can measure odor-specific activation patterns and distinguish changes in laminar activity of head and body restrained awake mice.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States.
| | - Christopher Cover
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sujatha Reddy
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| | - Harris B Chishti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Vazquez
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| |
Collapse
|
3
|
Choi S, Chen Y, Zeng H, Biswal B, Yu X. Identifying the distinct spectral dynamics of laminar-specific interhemispheric connectivity with bilateral line-scanning fMRI. J Cereb Blood Flow Metab 2023; 43:1115-1129. [PMID: 36803280 PMCID: PMC10291453 DOI: 10.1177/0271678x231158434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 02/23/2023]
Abstract
Despite extensive efforts to identify interhemispheric functional connectivity (FC) with resting-state (rs-) fMRI, correlated low-frequency rs-fMRI signal fluctuation across homotopic cortices originates from multiple sources. It remains challenging to differentiate circuit-specific FC from global regulation. Here, we developed a bilateral line-scanning fMRI method to detect laminar-specific rs-fMRI signals from homologous forepaw somatosensory cortices with high spatial and temporal resolution in rat brains. Based on spectral coherence analysis, two distinct bilateral fluctuation spectral features were identified: ultra-slow fluctuation (<0.04 Hz) across all cortical laminae versus Layer (L) 2/3-specific evoked BOLD at 0.05 Hz based on 4 s on/16 s off block design and resting-state fluctuations at 0.08-0.1 Hz. Based on the measurements of evoked BOLD signal at corpus callosum (CC), this L2/3-specific 0.05 Hz signal is likely associated with neuronal circuit-specific activity driven by the callosal projection, which dampened ultra-slow oscillation less than 0.04 Hz. Also, the rs-fMRI power variability clustering analysis showed that the appearance of L2/3-specific 0.08-0.1 Hz signal fluctuation is independent of the ultra-slow oscillation across different trials. Thus, distinct laminar-specific bilateral FC patterns at different frequency ranges can be identified by the bilateral line-scanning fMRI method.
Collapse
Affiliation(s)
- Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yi Chen
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Hang Zeng
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Bharat Biswal
- Department of Biomedical Engineering, NJIT, Newark, NJ, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
4
|
Akbari A, Bollmann S, Ali TS, Barth M. Modelling the depth-dependent VASO and BOLD responses in human primary visual cortex. Hum Brain Mapp 2022; 44:710-726. [PMID: 36189837 PMCID: PMC9842911 DOI: 10.1002/hbm.26094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 01/25/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) using a blood-oxygenation-level-dependent (BOLD) contrast is a common method for studying human brain function noninvasively. Gradient-echo (GRE) BOLD is highly sensitive to the blood oxygenation change in blood vessels; however, the spatial signal specificity can be degraded due to signal leakage from activated lower layers to superficial layers in depth-dependent (also called laminar or layer-specific) fMRI. Alternatively, physiological variables such as cerebral blood volume using the VAscular-Space-Occupancy (VASO) contrast have shown higher spatial specificity compared to BOLD. To better understand the physiological mechanisms such as blood volume and oxygenation changes and to interpret the measured depth-dependent responses, models are needed which reflect vascular properties at this scale. For this purpose, we extended and modified the "cortical vascular model" previously developed to predict layer-specific BOLD signal changes in human primary visual cortex to also predict a layer-specific VASO response. To evaluate the model, we compared the predictions with experimental results of simultaneous VASO and BOLD measurements in a group of healthy participants. Fitting the model to our experimental data provided an estimate of CBV change in different vascular compartments upon neural activity. We found that stimulus-evoked CBV change mainly occurs in small arterioles, capillaries, and intracortical arteries and that the contribution from venules and ICVs is smaller. Our results confirm that VASO is less susceptible to large vessel effects compared to BOLD, as blood volume changes in intracortical arteries did not substantially affect the resulting depth-dependent VASO profiles, whereas depth-dependent BOLD profiles showed a bias towards signal contributions from intracortical veins.
Collapse
Affiliation(s)
- Atena Akbari
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Saskia Bollmann
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Tonima S. Ali
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Markus Barth
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia,ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandBrisbaneAustralia,School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Cortical connectivity is embedded in resting state at columnar resolution. Prog Neurobiol 2022; 213:102263. [DOI: 10.1016/j.pneurobio.2022.102263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023]
|
6
|
Chen Y, Wang Q, Choi S, Zeng H, Takahashi K, Qian C, Yu X. Focal fMRI signal enhancement with implantable inductively coupled detectors. Neuroimage 2022; 247:118793. [PMID: 34896291 PMCID: PMC8842502 DOI: 10.1016/j.neuroimage.2021.118793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Despite extensive efforts to increase the signal-to-noise ratio (SNR) of fMRI images for brain-wide mapping, technical advances of focal brain signal enhancement are lacking, in particular, for animal brain imaging. Emerging studies have combined fMRI with fiber optic-based optogenetics to decipher circuit-specific neuromodulation from meso to macroscales. High-resolution fMRI is needed to integrate hemodynamic responses into cross-scale functional dynamics, but the SNR remains a limiting factor given the complex implantation setup of animal brains. Here, we developed a multimodal fMRI imaging platform with an implanted inductive coil detector. This detector boosts the tSNR of MRI images, showing a 2-3-fold sensitivity gain over conventional coil configuration. In contrast to the cryoprobe or array coils with limited spaces for implanted brain interface, this setup offers a unique advantage to study brain circuit connectivity with optogenetic stimulation and can be further extended to other multimodal fMRI mapping schemes.
Collapse
Affiliation(s)
- Yi Chen
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
| | - Qi Wang
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Sangcheon Choi
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Hang Zeng
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Kengo Takahashi
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
7
|
Deshpande G, Wang Y, Robinson J. Resting state fMRI connectivity is sensitive to laminar connectional architecture in the human brain. Brain Inform 2022; 9:2. [PMID: 35038072 PMCID: PMC8764001 DOI: 10.1186/s40708-021-00150-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022] Open
Abstract
Previous invasive studies indicate that human neocortical graymatter contains cytoarchitectonically distinct layers, with notable differences in their structural connectivity with the rest of the brain. Given recent improvements in the spatial resolution of anatomical and functional magnetic resonance imaging (fMRI), we hypothesize that resting state functional connectivity (FC) derived from fMRI is sensitive to layer-specific thalamo-cortical and cortico-cortical microcircuits. Using sub-millimeter resting state fMRI data obtained at 7 T, we found that: (1) FC between the entire thalamus and cortical layers I and VI was significantly stronger than between the thalamus and other layers. Furthermore, FC between somatosensory thalamus (ventral posterolateral nucleus, VPL) and layers IV, VI of the primary somatosensory cortex were stronger than with other layers; (2) Inter-hemispheric cortico-cortical FC between homologous regions in superficial layers (layers I-III) was stronger compared to deep layers (layers V-VI). These findings are in agreement with structural connections inferred from previous invasive studies that showed that: (i) M-type neurons in the entire thalamus project to layer-I; (ii) Pyramidal neurons in layer-VI target all thalamic nuclei, (iii) C-type neurons in the VPL project to layer-IV and receive inputs from layer-VI of the primary somatosensory cortex, and (iv) 80% of collosal projecting neurons between homologous cortical regions connect superficial layers. Our results demonstrate for the first time that resting state fMRI is sensitive to structural connections between cortical layers (previously inferred through invasive studies), specifically in thalamo-cortical and cortico-cortical networks.
Collapse
Affiliation(s)
- Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL, 36849, USA. .,Department of Psychological Sciences, Auburn University, Auburn, AL, USA. .,Alabama Advanced Imaging Consortium, Birmingham, AL, USA. .,Center for Neuroscience, Auburn University, Auburn, AL, USA. .,Key Laboratory for Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China. .,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India. .,Centre for Brain Research, Indian Institute of Science, Bangalore, India.
| | - Yun Wang
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL, 36849, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| | - Jennifer Robinson
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL, 36849, USA.,Department of Psychological Sciences, Auburn University, Auburn, AL, USA.,Alabama Advanced Imaging Consortium, Birmingham, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
8
|
Ichinose T, Habib S. ON and OFF Signaling Pathways in the Retina and the Visual System. FRONTIERS IN OPHTHALMOLOGY 2022; 2:989002. [PMID: 36926308 PMCID: PMC10016624 DOI: 10.3389/fopht.2022.989002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Visual processing starts at the retina of the eye, and signals are then transferred primarily to the visual cortex and the tectum. In the retina, multiple neural networks encode different aspects of visual input, such as color and motion. Subsequently, multiple neural streams in parallel convey unique aspects of visual information to cortical and subcortical regions. Bipolar cells, which are the second order neurons of the retina, separate visual signals evoked by light and dark contrasts and encode them to ON and OFF pathways, respectively. The interplay between ON and OFF neural signals is the foundation for visual processing for object contrast which underlies higher order stimulus processing. ON and OFF pathways have been classically thought to signal in a mirror-symmetric manner. However, while these two pathways contribute synergistically to visual perception in some instances, they have pronounced asymmetries suggesting independent operation in other cases. In this review, we summarize the role of the ON-OFF dichotomy in visual signaling, aiming to contribute to the understanding of visual recognition.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Correspondence: Tomomi Ichinose, MD, PhD,
| | - Samar Habib
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Fracasso A, Dumoulin SO, Petridou N. Point-spread function of the BOLD response across columns and cortical depth in human extra-striate cortex. Prog Neurobiol 2021; 207:102187. [PMID: 34798198 DOI: 10.1016/j.pneurobio.2021.102187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Columns and layers are fundamental organizational units of the brain. Well known examples of cortical columns are the ocular dominance columns (ODCs) in primary visual cortex and the column-like stripe-based arrangement in the second visual area V2. The spatial scale of columns and layers is beyond the reach of conventional neuroimaging, but the advent of high field magnetic resonance imaging (MRI) scanners (UHF, 7 Tesla and above) has opened the possibility to acquire data at this spatial scale, in-vivo and non-invasively in humans. The most prominent non-invasive technique to measure brain function is blood oxygen level dependent (BOLD) fMRI, measuring brain activity indirectly, via changes in hemodynamics. A key determinant of the ability of high-resolution BOLD fMRI to accurately resolve columns and layers is the point-spread function (PSF) of the BOLD response in relation to the spatial extent of neuronal activity. In this study we take advantage of the stripe-based arrangement present in visual area V2, coupled with sub-millimetre anatomical and gradient-echo BOLD (GE BOLD) acquisition at 7 T to obtain PSF estimates and along cortical depth in human participants. Results show that the BOLD PSF is maximal in the superficial part of the cortex (1.78 mm), and it decreases with increasing cortical depth (0.83 mm close to white matter).
Collapse
Affiliation(s)
- Alessio Fracasso
- University of Glasgow, Institute of Neuroscience and Psychology, Glasgow, Scotland, United Kingdom.
| | - Serge O Dumoulin
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands; Spinoza Center for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University Amsterdam, the Netherlands
| | - Natalia Petridou
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Kashyap S, Ivanov D, Havlicek M, Huber L, Poser BA, Uludağ K. Sub-millimetre resolution laminar fMRI using Arterial Spin Labelling in humans at 7 T. PLoS One 2021; 16:e0250504. [PMID: 33901230 PMCID: PMC8075193 DOI: 10.1371/journal.pone.0250504] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
Laminar fMRI at ultra-high magnetic field strength is typically carried out using the Blood Oxygenation Level-Dependent (BOLD) contrast. Despite its unrivalled sensitivity to detecting activation, the BOLD contrast is limited in its spatial specificity due to signals stemming from intra-cortical ascending and pial veins. Alternatively, regional changes in perfusion (i.e., cerebral blood flow through tissue) are colocalised to neuronal activation, which can be non-invasively measured using Arterial Spin Labelling (ASL) MRI. In addition, ASL provides a quantitative marker of neuronal activation in terms of perfusion signal, which is simultaneously acquired along with the BOLD signal. However, ASL for laminar imaging is challenging due to the lower SNR of the perfusion signal and higher RF power deposition i.e., specific absorption rate (SAR) of ASL sequences. In the present study, we present for the first time in humans, isotropic sub-millimetre spatial resolution functional perfusion images using Flow-sensitive Alternating Inversion Recovery (FAIR) ASL with a 3D-EPI readout at 7 T. We show that robust statistical activation maps can be obtained with perfusion-weighting in a single session. We observed the characteristic BOLD amplitude increase towards the superficial laminae, and, in apparent discrepancy, the relative perfusion profile shows a decrease of the amplitude and the absolute perfusion profile a much smaller increase towards the cortical surface. Considering the draining vein effect on the BOLD signal using model-based spatial “convolution”, we show that the empirically measured perfusion and BOLD profiles are, in fact, consistent with each other. This study demonstrates that laminar perfusion fMRI in humans is feasible at 7 T and that caution must be exercised when interpreting BOLD signal laminar profiles as direct representation of the cortical distribution of neuronal activity.
Collapse
Affiliation(s)
- Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (M-BIC), Maastricht University, Maastricht, The Netherlands
- * E-mail: (SK); (DI)
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (M-BIC), Maastricht University, Maastricht, The Netherlands
- * E-mail: (SK); (DI)
| | - Martin Havlicek
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Laurentius Huber
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (M-BIC), Maastricht University, Maastricht, The Netherlands
| | - Benedikt A. Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (M-BIC), Maastricht University, Maastricht, The Netherlands
| | - Kâmil Uludağ
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, South Korea
- Department of Biomedical Engineering, N Center, Sungkyunkwan University, Suwon, South Korea
- Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, Canada
| |
Collapse
|
11
|
Lu M, Yang Z, Wang F, Drake G, Chen LM, Gore JC, Yan X. Optimization of a quadrature birdcage coil for functional imaging of squirrel monkey brain at 9.4T. Magn Reson Imaging 2021; 79:45-51. [PMID: 33741436 DOI: 10.1016/j.mri.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
A quadrature transmit/receive birdcage coil was optimized for squirrel monkey functional imaging at the high field of 9.4 T. The coil length was chosen to gain maximum coil efficiency/signal-to-noise ratio (SNR) and meanwhile provide enough homogenous RF field in the whole brain area. Based on the numerical simulation results, a 16-rung high-pass birdcage coil with the optimal length of 9 cm was constructed and evaluated on phantom and in vivo experiments. Compared to a general-purpose non-optimized coil, it exhibits approximately 25% in vivo SNR improvement. In addition to the volume coil, details about how to design and construct the associated animal preparation system were provided.
Collapse
Affiliation(s)
- Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai, Shandong, China
| | - Zhangyan Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gary Drake
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Fracasso A, Dumoulin SO, Petridou N. Point-spread function of the BOLD response across columns and cortical depth in human extra-striate cortex. Prog Neurobiol 2021; 202:102034. [PMID: 33741401 DOI: 10.1016/j.pneurobio.2021.102034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Columns and layers are fundamental organizational units of the brain. Well known examples of cortical columns are the ocular dominance columns (ODCs) in primary visual cortex and the column-like stripe-based arrangement in the second visual area V2. The spatial scale of columns and layers is beyond the reach of conventional neuroimaging, but the advent of high field magnetic resonance imaging (MRI) scanners (UHF, 7 T and above) has opened the possibility to acquire data at this spatial scale, in-vivo and non-invasively in humans. The most prominent non-invasive technique to measure brain function is blood oxygen level dependent (BOLD) fMRI, measuring brain activity indirectly, via changes in hemodynamics. A key determinant of the ability of high-resolution BOLD fMRI to accurately resolve columns and layers is the point-spread function (PSF) of the BOLD response in relation to the spatial extent of neuronal activity. In this study we take advantage of the stripe-based arrangement present in visual area V2, coupled with sub-millimetre anatomical and gradient-echo BOLD (GE BOLD) acquisition at 7 T to obtain PSF estimates and along cortical depth in human participants. Results show that the BOLD PSF is maximal in the superficial part of the cortex (1.78 mm), and it decreases with increasing cortical depth (0.83 mm close to white matter).
Collapse
Affiliation(s)
- Alessio Fracasso
- University of Glasgow, Institute of Neuroscience and Psychology, Glasgow, Scotland, United Kingdom.
| | - Serge O Dumoulin
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands; Spinoza Center for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University Amsterdam, the Netherlands
| | - Natalia Petridou
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Stanley OW, Kuurstra AB, Klassen LM, Menon RS, Gati JS. Effects of phase regression on high-resolution functional MRI of the primary visual cortex. Neuroimage 2020; 227:117631. [PMID: 33316391 DOI: 10.1016/j.neuroimage.2020.117631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
High-resolution functional MRI studies have become a powerful tool to non-invasively probe the sub-millimeter functional organization of the human cortex. Advances in MR hardware, imaging techniques and sophisticated post-processing methods have allowed high resolution fMRI to be used in both the clinical and academic neurosciences. However, consensus within the community regarding the use of gradient echo (GE) or spin echo (SE) based acquisition remains largely divided. On one hand, GE provides a high temporal signal-to-noise ratio (tSNR) technique sensitive to both the macro- and micro-vascular signal while SE based methods are more specific to microvasculature but suffer from lower tSNR and specific absorption rate limitations, especially at high field and with short repetition times. Fortunately, the phase of the GE-EPI signal is sensitive to vessel size and this provides a potential avenue to reduce the macrovascular weighting of the signal (phase regression, Menon 2002). In order to determine the efficacy of this technique at high-resolution, phase regression was applied to GE-EPI timeseries and compared to SE-EPI to determine if GE-EPI's specificity to the microvascular compartment improved. To do this, functional data was collected from seven subjects on a neuro-optimized 7 T system at 800 μm isotropic resolution with both GE-EPI and SE-EPI while observing an 8 Hz contrast reversing checkerboard. Phase data from the GE-EPI was used to create a microvasculature-weighted time series (GE-EPI-PR). Anatomical imaging (MP2RAGE) was also collected to allow for surface segmentation so that the functional results could be projected onto a surface. A multi-echo gradient echo sequence was collected and used to identify venous vasculature. The GE-EPI-PR surface activation maps showed a high qualitative similarity with SE-EPI and also produced laminar activity profiles similar to SE-EPI. When the GE-EPI and GE-EPI-PR distributions were compared to SE-EPI it was shown that GE-EPI-PR had similar distribution characteristics to SE-EPI (p < 0.05) across the top 60% of cortex. Furthermore, it was shown that GE-EPI-PR has a higher contrast-to-noise ratio (0.5 ± 0.2, mean ± std. dev. across layers) than SE-EPI (0.27 ± 0.07) demonstrating the technique has higher sensitivity than SE-EPI. Taken together this evidence suggests phase regression is a useful method in low SNR studies such as high-resolution fMRI.
Collapse
Affiliation(s)
- Olivia W Stanley
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Medical Biophysics, The University of Western Ontario, London, Ontario, Canada.
| | - Alan B Kuurstra
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - L Martyn Klassen
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
14
|
Li Y, Lee J, Long X, Qiao Y, Ma T, He Q, Cao P, Zhang X, Zheng H. A Magnetic Resonance-Guided Focused Ultrasound Neuromodulation System With a Whole Brain Coil Array for Nonhuman Primates at 3 T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4401-4412. [PMID: 32833632 DOI: 10.1109/tmi.2020.3019087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The phased-array radio frequency (RF) coil plays a vital role in magnetic resonance-guided focused ultrasound (MRgFUS) neuromodulation studies, where accurate brain functional stimulations and neural circuit observations are required. Although various designs of phased-array coils have been reported, few are suitable for ultrasound stimulations. In this study, an MRgFUS neuromodulation system comprised of a whole brain coverage non-human primate (NHP) RF coil and an MRI-compatible ultrasound device was developed. When compared to a single loop coil, the NHP coil provided up to a 50% increase in the signal-to-noise ratio (SNR) in the brain and acquired better anatomical image-quality. The NHP coil also demonstrated the ability to achieve higher spatial resolution and reduce distortion in echo-planer imaging (EPI). Ultrasound beam characteristics and transcranial magnetic resonance acoustic radiation force (MR-ARF) were measured for simulated positions, and calculated B0 maps were employed to establish MRI-compatibility. The differences between focused off and on ultrasound techniques were measured using SNR, g-factors, and temporal SNR (tSNR) analyses and all deviations were under 2.3%. The EPI images quality and stable tSNR demonstrated the suitability of the MRgFUS neuromodulation system to conduct functional MRI studies. Last, the time course of the blood oxygen level dependent (BOLD) signal of posterior cingulate cortex in a focused ultrasound neuromodulation study was detected and repeated with MR thermometry.
Collapse
|
15
|
Bollmann S, Barth M. New acquisition techniques and their prospects for the achievable resolution of fMRI. Prog Neurobiol 2020; 207:101936. [PMID: 33130229 DOI: 10.1016/j.pneurobio.2020.101936] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 01/17/2023]
Abstract
This work reviews recent advances in technologies for functional magnetic resonance imaging (fMRI) of the human brain and highlights the push for higher functional specificity based on increased spatial resolution and specific MR contrasts to reveal previously undetectable functional properties of small-scale cortical structures. We discuss how the combination of MR hardware, advanced acquisition techniques and various MR contrast mechanisms have enabled recent progress in functional neuroimaging. However, these advanced fMRI practices have only been applied to a handful of neuroscience questions to date, with the majority of the neuroscience community still using conventional imaging techniques. We thus discuss upcoming challenges and possibilities for fMRI technology development in human neuroscience. We hope that readers interested in functional brain imaging acquire an understanding of current and novel developments and potential future applications, even if they don't have a background in MR physics or engineering. We summarize the capabilities of standard fMRI acquisition schemes with pointers to relevant literature and comprehensive reviews and introduce more recent developments.
Collapse
Affiliation(s)
- Saskia Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
16
|
Zhang X, Zhang J, Gao Y, Qian M, Qu S, Quan Z, Yu M, Chen X, Wang Y, Pan G, Adriany G, Roe AW. A 16-Channel Dense Array for In Vivo Animal Cortical MRI/fMRI on 7T Human Scanners. IEEE Trans Biomed Eng 2020; 68:1611-1618. [PMID: 32991277 DOI: 10.1109/tbme.2020.3027296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The purpose of the present study was to fabricate a novel RF coil exclusively for visualizing submillimeter tissue structure and probing neuronal activity in cerebral cortex over anesthetized and awake animals on 7T human scanners. METHODS A novel RF coil design has been proposed for visualizing submillimeter tissue structure and probing neuronal activity in cerebral cortex over anesthetized and awake animals on 7T human scanners: a local transmit coil was utilized to save space for auxiliary device installation; 16 receive-only loops were densely arranged over a 5 cm-diameter circular area, with a diameter of 1.3 cm for each loop. RESULTS In anesthetized macaque experiments, 60 μm T2*-weighted images were successfully obtained with cortical gyri and sulci exquisitely visualized; over awake macaques, bilateral activations of visual areas including V1, V2, V4, and MST were distinctly detected at 1 mm; over the cat, robust activations were recorded in areas 17 and 18 (V1 and V2) as well as in their connected area of lateral geniculate nucleus (LGN) at 0.3 mm resolution. CONCLUSION The promising brain imaging results along with flexibility in various size use of the presented design can be an effective and maneuverable solution to take one step close towards mesoscale cortical-related imaging. SIGNIFICANCE High-spatial-resolution brain imaging over large animals by using ultra-high-field (UHF) MRI will be helpful to understand and reveal functional brain organizations and the underlying mechanism in diseases.
Collapse
|
17
|
Gao Y, Mareyam A, Sun Y, Witzel T, Arango N, Kuang I, White J, Roe AW, Wald L, Stockmann J, Zhang X. A 16-channel AC/DC array coil for anesthetized monkey whole-brain imaging at 7T. Neuroimage 2020; 207:116396. [PMID: 31778818 PMCID: PMC7309650 DOI: 10.1016/j.neuroimage.2019.116396] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/07/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) in monkeys is important for bridging the gap between invasive animal brain studies and non-invasive human brain studies. To resolve the finer functional structure of the monkey brain, ultra-high-field (UHF) MR is essential, and high-performance, close-fitting RF receive coils are typically desired to fully leverage the intrinsic gains provided by UHF MRI. Moreover, static field (B0) inhomogeneity arising from the tissue susceptibility interface is more severe at UHF, presenting an obstacle to achieving high-resolution fMRI. B0 shim of the monkey head is challenging due to its smaller size and more complex sources of B0 offsets in multi-modal imaging tasks. In the present work, we have customized an array coil for lightly-anesthetized monkey fMRI in the 7T human scanner that combines RF and multi-coil (MC) B0 shim functionality (also referred to as AC/DC coils) to provide high imaging SNR and high-spatial-order, rapidly switchable B0-shim capability. Additional space was retained on the coil to render it compatible with monkey multi-modal imaging studies. Both MC global (whole-volume) and dynamic (slice-optimized) shim methods were tested and evaluated, and the benefits of MC shim for fMRI experiments was also studied. A minor reduction in RF coil performance was found after introducing additional B0 shim circuitry. However, the proposed RF coil provided higher image SNR and more uniform contrast compared to a commercially available coil for human knee imaging. Compared with static 2nd-order shim, the B0 inhomogeneity was reduced by 56.8%, and 95-percentile B0 offset was reduced to within 28.2 Hz through MC shim, versus 68.7 Hz with 2nd-order static shim. As a result, functional image quality could be improved, and brain activation can be better detected using the proposed AC/DC monkey coil.
Collapse
Affiliation(s)
- Yang Gao
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; School of Medicine, Zhejiang University, Hangzhou, China
| | - Azma Mareyam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Yi Sun
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Nicolas Arango
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Irene Kuang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jacob White
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; School of Medicine, Zhejiang University, Hangzhou, China
| | - Lawrence Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Jason Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Xiaotong Zhang
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Gau R, Bazin PL, Trampel R, Turner R, Noppeney U. Resolving multisensory and attentional influences across cortical depth in sensory cortices. eLife 2020; 9:46856. [PMID: 31913119 PMCID: PMC6984812 DOI: 10.7554/elife.46856] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
In our environment, our senses are bombarded with a myriad of signals, only a subset of which is relevant for our goals. Using sub-millimeter-resolution fMRI at 7T, we resolved BOLD-response and activation patterns across cortical depth in early sensory cortices to auditory, visual and audiovisual stimuli under auditory or visual attention. In visual cortices, auditory stimulation induced widespread inhibition irrespective of attention, whereas auditory relative to visual attention suppressed mainly central visual field representations. In auditory cortices, visual stimulation suppressed activations, but amplified responses to concurrent auditory stimuli, in a patchy topography. Critically, multisensory interactions in auditory cortices were stronger in deeper laminae, while attentional influences were greatest at the surface. These distinct depth-dependent profiles suggest that multisensory and attentional mechanisms regulate sensory processing via partly distinct circuitries. Our findings are crucial for understanding how the brain regulates information flow across senses to interact with our complex multisensory world.
Collapse
Affiliation(s)
- Remi Gau
- Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Birmingham, United Kingdom.,Institute of Psychology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pierre-Louis Bazin
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, Netherlands
| | - Robert Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Robert Turner
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Uta Noppeney
- Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Birmingham, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
19
|
Havlicek M, Uludağ K. A dynamical model of the laminar BOLD response. Neuroimage 2020; 204:116209. [DOI: 10.1016/j.neuroimage.2019.116209] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/11/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
|
20
|
Self MW, van Kerkoerle T, Goebel R, Roelfsema PR. Benchmarking laminar fMRI: Neuronal spiking and synaptic activity during top-down and bottom-up processing in the different layers of cortex. Neuroimage 2019. [DOI: 10.1016/j.neuroimage.2017.06.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Gao Y, Wang P, Qian M, Zhao J, Xu H, Zhang X. A surface loop array for in vivo small animal MRI/fMRI on 7T human scanners. Phys Med Biol 2019; 64:035009. [PMID: 30566918 DOI: 10.1088/1361-6560/aaf9e4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Small animals such as non-human primate (NHP) and rodent are valuable models in frontier neuroscience researches, and comparative research between the animal model and human is helpful to understand and reveal the functional brain circuits in cognition and underlying mechanism in psychological disease. Small animals can be trained or anesthetized to endure long-term and multiple imaging scans; however, the concomitant needs in subcortical structure and function investigations pose major challenges in, e.g. spatial resolution, scan time efficiency, spatial/temporal signal-to-noise-ratio, as well as apparatus mechanical fixation. In addition, comparative investigations across species are also expected to be conducted under similar physical environment (such as the main magnetic field strength, RF pulse shape, sequence protocols, gradient waveform, system stability, etc in MRI), in order to avoid possible deviation in signal detection under different platforms, as well as to reduce experiment complexity. We have proposed a novel 5-channel surface coil that is equipped on 7T human MRI scanners and designed for small animal structural and functional MRI. Through a series of in vivo experiments over an anesthetized rat and macaque, the presented coil shows its main characteristics in, i.e. flexible coil mounting, reduced FOV, high temporal SNR, and parallel imaging capability. Such design is able to compensate the relatively lower gradient slew rate of human scanners versus those with smaller bores, and thus effectively facilitates in vivo microscopic structural MR images being obtained within a shortened and safe period of anesthesia; besides, it also enables high-resolution functional MRI (i.e. spin-echo based) being achieved with reasonable temporal resolution, distortion level and functional contrast.
Collapse
Affiliation(s)
- Yang Gao
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Mishra A, Majumdar S, Wang F, Wilson GH, Gore JC, Chen LM. Functional connectivity with cortical depth assessed by resting state fMRI of subregions of S1 in squirrel monkeys. Hum Brain Mapp 2019; 40:329-339. [PMID: 30251760 PMCID: PMC6289644 DOI: 10.1002/hbm.24375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/15/2022] Open
Abstract
Whereas resting state blood oxygenation-level dependent (BOLD) functional MRI has been widely used to assess functional connectivity between cortical regions, the laminar specificity of such measures is poorly understood. This study aims to determine: (a) whether the resting state functional connectivity (rsFC) between two functionally related cortical regions varies with cortical depth, (b) the relationship between layer-resolved tactile stimulus-evoked activation pattern and interlayer rsFC pattern between two functionally distinct but related somatosensory areas 3b and 1, and (c) the effects of spatial resolution on rsFC measures. We examined the interlayer rsFC between areas 3b and 1 of squirrel monkeys under anesthesia using tactile stimulus-driven and resting state BOLD acquisitions at submillimeter resolution. Consistent with previous observations in the areas 3b and 1, we detected robust stimulus-evoked BOLD activations with foci were confined mainly to the upper layers (centered at 21% of the cortical depth). By carefully placing seeds in upper, middle, and lower layers of areas 3b and 1, we observed strong rsFC between upper and middle layers of these two areas. The layer-resolved activation patterns in areas 3b and 1 agree with their interlayer rsFC patterns, and are consistent with the known anatomical connections between layers. In summary, using BOLD rsFC pattern, we identified an interlayer interareal microcircuit that shows strong intrinsic functional connections between upper and middle layer areas 3b and 1. RsFC can be used as a robust invasive tool to probe interlayer corticocortical microcircuits.
Collapse
Affiliation(s)
- Arabinda Mishra
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennessee
| | - Shantanu Majumdar
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennessee
| | - Feng Wang
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennessee
| | - George H. Wilson
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennessee
| | - John C. Gore
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennessee
| | - Li Min Chen
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennessee
| |
Collapse
|
23
|
Gao Y, Chen W, Zhang X. Investigating the Influence of Spatial Constraints on Ultimate Receive Coil Performance for Monkey Brain MRI at 7 T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1723-1732. [PMID: 29969422 DOI: 10.1109/tmi.2018.2812151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The RF receive coil array has become increasingly vital in current MR imaging practice due to its extended spatial coverage, maintained high SNR, and improved capability of accelerating data acquisition. The performance of a coil array is intrinsically determined by the current patterns generated in coil elements as well as by the induced electromagnetic fields inside the object. Investigations of the ultimate performance constrained by a specific coil space, which defines all possible current patterns flowing within, offer the opportunity to evaluate coil-space parameters (i.e., coverage, coil-to-object distance, layer thickness, and coil element type) without the necessity of considering the realistic coil element geometry, coil elements layout, and number of receive channels in modeling. In this paper, to mimic 7-T monkey RF head coil design, seven hypothetical ultimate coil arrays with different coil-space configurations were mounted over a numerical macaque head model; by using Huygens's surface approximation method, the influences of coil-space design parameters were systematically investigated through evaluating the spatial constrained ultimate intrinsic SNR and ultimate g-factor. Moreover, simulations were also conducted by using four coil arrays with limited number of loop-only elements, in order to explore to what extent the ultimate coil performance can be achieved by using practical coil designs, and hence several guidelines in RF coil design for monkey brain imaging at 7 T have been tentatively concluded. It is believed that the present analysis will offer important implications in novel receive array design for monkey brain MR imaging at ultra-high field.
Collapse
|
24
|
Gilbert KM, Schaeffer DJ, Zeman P, Diedrichsen J, Everling S, Martinez-Trujillo JC, Pruszynski JA, Menon RS. Concentric radiofrequency arrays to increase the statistical power of resting-state maps in monkeys. Neuroimage 2018; 178:287-294. [PMID: 29852280 DOI: 10.1016/j.neuroimage.2018.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/30/2022] Open
Abstract
The close homology of monkeys and humans has increased the prevalence of non-human-primate models in functional MRI studies of brain connectivity. To improve upon the attainable resolution in functional MRI studies, a commensurate increase in the sensitivity of the radiofrequency receiver coil is required to avoid a reduction in the statistical power of the analysis. Most receive coils are comprised of multiple loops distributed equidistantly over a surface to produce spatially independent sensitivity profiles. A larger number of smaller elements will in turn provide a higher signal-to-noise ratio (SNR) over the same field of view. As the loops become physically smaller, noise originating from the sample is reduced relative to noise originating from the coil. In this coil-noise-dominated regime, coil elements can have overlapping sensitivity profiles, yet still possess only mildly correlated noise. In this manuscript, we demonstrate that inductively decoupled, concentric coil arrays can improve temporal SNR when operating in the coil-noise-dominated regime-in contrast to what is expected for the more ubiquitous sample-noise-dominated array. A small, thin, 7-channel flexible coil is developed and operated in conjunction with an existing whole-head monkey coil. The mean and maximum noise correlation between the two arrays was 5% and 23%, respectively. When the flex coil was placed over the sensorimotor cortex, the temporal SNR improved by up to 2.3-fold in the peripheral cortex and up to 1.3-fold at a 2- to 3-cm depth within the brain. When the flex coil was placed over the frontal eye fields, resting-state maps showed substantially elevated sensitivity to correlations in the prefrontal cortex (54%), supplementary eye fields (39%), and anterior cingulate cortex (41%). The concentric-coil topology provided a pragmatic and robust means to significantly improve local temporal SNR and the statistical power of functional connectivity maps.
Collapse
Affiliation(s)
- Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada.
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Peter Zeman
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Jörn Diedrichsen
- Department of Computer Science, The University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Julio C Martinez-Trujillo
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
25
|
Marquardt I, Schneider M, Gulban OF, Ivanov D, Uludağ K. Cortical depth profiles of luminance contrast responses in human V1 and V2 using 7 T fMRI. Hum Brain Mapp 2018; 39:2812-2827. [PMID: 29575494 DOI: 10.1002/hbm.24042] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/23/2018] [Accepted: 03/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neural activity in early visual cortex is modulated by luminance contrast. Cortical depth (i.e., laminar) contrast responses have been studied in monkey early visual cortex, but not in humans. In addition to the high spatial resolution needed and the ensuing low signal-to-noise ratio, laminar studies in humans using fMRI are hampered by the strong venous vascular weighting of the fMRI signal. In this study, we measured luminance contrast responses in human V1 and V2 with high-resolution fMRI at 7 T. To account for the effect of intracortical ascending veins, we applied a novel spatial deconvolution model to the fMRI depth profiles. Before spatial deconvolution, the contrast response in V1 showed a slight local maximum at mid cortical depth, whereas V2 exhibited a monotonic signal increase toward the cortical surface. After applying the deconvolution, both V1 and V2 showed a pronounced local maximum at mid cortical depth, with an additional peak in deep grey matter, especially in V1. Moreover, we found a difference in contrast sensitivity between V1 and V2, but no evidence for variations in contrast sensitivity as a function of cortical depth. These findings are in agreement with results obtained in nonhuman primates, but further research will be needed to validate the spatial deconvolution approach.
Collapse
Affiliation(s)
- Ingo Marquardt
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Marian Schneider
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Kâmil Uludağ
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
26
|
Linking brain vascular physiology to hemodynamic response in ultra-high field MRI. Neuroimage 2018; 168:279-295. [DOI: 10.1016/j.neuroimage.2017.02.063] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/05/2023] Open
|
27
|
Yen CCC, Papoti D, Silva AC. Investigating the spatiotemporal characteristics of the deoxyhemoglobin-related and deoxyhemoglobin-unrelated functional hemodynamic response across cortical layers in awake marmosets. Neuroimage 2018; 164:121-130. [PMID: 28274833 PMCID: PMC5587354 DOI: 10.1016/j.neuroimage.2017.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/05/2023] Open
Abstract
Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) has become a major tool to map neural activity. However, the spatiotemporal characteristics of the BOLD functional hemodynamic response across the cortical layers remain poorly understood. While human fMRI studies suffer from low spatiotemporal resolution, the use of anesthesia in animal models introduces confounding factors. Additionally, inflow contributions to the fMRI signal become non-negligible when short repetition times (TRs) are used. In the present work, we mapped the BOLD fMRI response to somatosensory stimulation in awake marmosets. To address the above technical concerns, we used a dual-echo gradient-recalled echo planar imaging (GR-EPI) sequence to separate the deoxyhemoglobin-related response (absolute T2* differences) from the deoxyhemoglobin-unrelated response (relative S0 changes). We employed a spatial saturation pulse to saturate incoming arterial spins and reduce inflow effects. Functional GR-EPI images were obtained from a single coronal slice with two different echo times (13.5 and 40.5ms) and TR=0.2s. BOLD, T2*, and S0 images were calculated and their functional responses were detected in both hemispheres of primary somatosensory cortex, from which five laminar regions (L1+2, L3, L4, L5, and L6) were derived. The spatiotemporal distribution of the BOLD response across the cortical layers was heterogeneous, with the middle layers having the highest BOLD amplitudes and shortest onset times. ΔT2* also showed a similar trend. However, functional S0 changes were detected only in L1+2, with a fast onset time. Because inflow effects were minimized, the source of S0 functional changes in L1+2 could be attributed to a reduction of cerebrospinal fluid volume fraction due to the functional increase in cerebral blood volume and to unmodeled T2* changes in the extra- and intra-venous compartments. Caution should be exercised when interpreting laminar BOLD fMRI changes in superficial layers as surrogates of underlying neural activity.
Collapse
Affiliation(s)
- Cecil Chern-Chyi Yen
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Papoti
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Bonaiuto JJ, Rossiter HE, Meyer SS, Adams N, Little S, Callaghan MF, Dick F, Bestmann S, Barnes GR. Non-invasive laminar inference with MEG: Comparison of methods and source inversion algorithms. Neuroimage 2017; 167:372-383. [PMID: 29203456 PMCID: PMC5862097 DOI: 10.1016/j.neuroimage.2017.11.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/30/2017] [Accepted: 11/30/2017] [Indexed: 11/29/2022] Open
Abstract
Magnetoencephalography (MEG) is a direct measure of neuronal current flow; its anatomical resolution is therefore not constrained by physiology but rather by data quality and the models used to explain these data. Recent simulation work has shown that it is possible to distinguish between signals arising in the deep and superficial cortical laminae given accurate knowledge of these surfaces with respect to the MEG sensors. This previous work has focused around a single inversion scheme (multiple sparse priors) and a single global parametric fit metric (free energy). In this paper we use several different source inversion algorithms and both local and global, as well as parametric and non-parametric fit metrics in order to demonstrate the robustness of the discrimination between layers. We find that only algorithms with some sparsity constraint can successfully be used to make laminar discrimination. Importantly, local t-statistics, global cross-validation and free energy all provide robust and mutually corroborating metrics of fit. We show that discrimination accuracy is affected by patch size estimates, cortical surface features, and lead field strength, which suggests several possible future improvements to this technique. This study demonstrates the possibility of determining the laminar origin of MEG sensor activity, and thus directly testing theories of human cognition that involve laminar- and frequency-specific mechanisms. This possibility can now be achieved using recent developments in high precision MEG, most notably the use of subject-specific head-casts, which allow for significant increases in data quality and therefore anatomically precise MEG recordings. Section Analysis methods. Classifications Source localization: inverse problem; Source localization: other. Laminar inferences can be made with MEG using both local and global fit metrics. Source inversion algorithms with sparsity constraints performed best. Classification is affected by patch size estimates, anatomy, and lead field strength.
Collapse
Affiliation(s)
- James J Bonaiuto
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, UK.
| | | | - Sofie S Meyer
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, UK; UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK
| | - Natalie Adams
- The Hull York Medical School, University of York, York YO10 5DD, UK
| | - Simon Little
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, 33 Queen Square, London, UK
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, UK
| | - Fred Dick
- Birkbeck, University of London, London, UK
| | - Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, 33 Queen Square, London, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, UK
| |
Collapse
|
29
|
Poplawsky AJ, Fukuda M, Kim SG. Foundations of layer-specific fMRI and investigations of neurophysiological activity in the laminarized neocortex and olfactory bulb of animal models. Neuroimage 2017; 199:718-729. [PMID: 28502845 DOI: 10.1016/j.neuroimage.2017.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 12/25/2022] Open
Abstract
Laminar organization of neuronal circuits is a recurring feature of how the brain processes information. For instance, different layers compartmentalize different cell types, synaptic activities, and have unique intrinsic and extrinsic connections that serve as units for specialized signal processing. Functional MRI is an invaluable tool to investigate laminar processing in the in vivo human brain, but it measures neuronal activity indirectly by way of the hemodynamic response. Therefore, the accuracy of high-resolution laminar fMRI depends on how precisely it can measure localized microvascular changes nearest to the site of evoked activity. To determine the specificity of fMRI responses to the true neurophysiological responses across layers, the flexibility to invasive procedures in animal models has been necessary. In this review, we will examine different fMRI contrasts and their appropriate uses for layer-specific fMRI, and how localized laminar processing was examined in the neocortex and olfactory bulb. Through collective efforts, it was determined that microvessels, including capillaries, are regulated within single layers and that several endogenous and contrast-enhanced fMRI contrast mechanisms can separate these neural-specific vascular changes from the nonspecific, especially cerebral blood volume-weighted fMRI with intravenous contrast agent injection. We will also propose some open questions that are relevant for the successful implementation of layer-specific fMRI and its potential future directions to study laminar processing when combined with optogenetics.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mitsuhiro Fukuda
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
30
|
De Martino F, Yacoub E, Kemper V, Moerel M, Uludağ K, De Weerd P, Ugurbil K, Goebel R, Formisano E. The impact of ultra-high field MRI on cognitive and computational neuroimaging. Neuroimage 2017; 168:366-382. [PMID: 28396293 DOI: 10.1016/j.neuroimage.2017.03.060] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/20/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
Abstract
The ability to measure functional brain responses non-invasively with ultra high field MRI (7 T and above) represents a unique opportunity in advancing our understanding of the human brain. Compared to lower fields (3 T and below), ultra high field MRI has an increased sensitivity, which can be used to acquire functional images with greater spatial resolution, and greater specificity of the blood oxygen level dependent (BOLD) signal to the underlying neuronal responses. Together, increased resolution and specificity enable investigating brain functions at a submillimeter scale, which so far could only be done with invasive techniques. At this mesoscopic spatial scale, perception, cognition and behavior can be probed at the level of fundamental units of neural computations, such as cortical columns, cortical layers, and subcortical nuclei. This represents a unique and distinctive advantage that differentiates ultra high from lower field imaging and that can foster a tighter link between fMRI and computational modeling of neural networks. So far, functional brain mapping at submillimeter scale has focused on the processing of sensory information and on well-known systems for which extensive information is available from invasive recordings in animals. It remains an open challenge to extend this methodology to uniquely human functions and, more generally, to systems for which animal models may be problematic. To succeed, the possibility to acquire high-resolution functional data with large spatial coverage, the availability of computational models of neural processing as well as accurate biophysical modeling of neurovascular coupling at mesoscopic scale all appear necessary.
Collapse
Affiliation(s)
- Federico De Martino
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 sixth street SE, 55455 Minneapolis, MN, USA.
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 sixth street SE, 55455 Minneapolis, MN, USA
| | - Valentin Kemper
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Michelle Moerel
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands; Maastricht Center for System Biology, Maastricht University, Universiteitssingel 60, 6229 ER Maastricht, The Netherlands
| | - Kâmil Uludağ
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Peter De Weerd
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 sixth street SE, 55455 Minneapolis, MN, USA
| | - Rainer Goebel
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Elia Formisano
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands; Maastricht Center for System Biology, Maastricht University, Universiteitssingel 60, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
31
|
Guidi M, Huber L, Lampe L, Gauthier CJ, Möller HE. Lamina-dependent calibrated BOLD response in human primary motor cortex. Neuroimage 2016; 141:250-261. [DOI: 10.1016/j.neuroimage.2016.06.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/07/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
|
32
|
Puckett AM, Aquino KM, Robinson P, Breakspear M, Schira MM. The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex. Neuroimage 2016; 139:240-248. [DOI: 10.1016/j.neuroimage.2016.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 11/15/2022] Open
|
33
|
Systematic variation of population receptive field properties across cortical depth in human visual cortex. Neuroimage 2016; 139:427-438. [PMID: 27374728 DOI: 10.1016/j.neuroimage.2016.06.048] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 06/06/2016] [Accepted: 06/24/2016] [Indexed: 01/17/2023] Open
Abstract
Receptive fields (RFs) in visual cortex are organized in antagonistic, center-surround, configurations. RF properties change systematically across eccentricity and between visual field maps. However, it is unknown how center-surround configurations are organized in human visual cortex across lamina. We use sub-millimeter resolution functional MRI at 7Tesla and population receptive field (pRF) modeling to investigate the pRF properties in primary visual cortex (V1) across cortical depth. pRF size varies according to a U-shaped function, indicating smaller pRF center size in the middle compared to superficial and deeper intra-cortical portions of V1, consistent with non-human primate neurophysiological measurements. Moreover, a similar U-shaped function is also observed for pRF surround size. However, pRF center-surround ratio remains constant across cortical depth. Simulations suggest that this pattern of results can be directly linked to the flow of signals across cortical depth, with the visual input reaching the middle of cortical depth and then spreading towards superficial and deeper layers of V1. Conversely, blood-oxygenation-level-dependent (BOLD) signal amplitude increases monotonically towards the pial surface, in line with the known vascular organization across cortical depth. Independent estimates of the haemodynamic response function (HRF) across cortical depth show that the center-surround pRF size estimates across cortical depth cannot be explained by variations in the full-width half maximum (FWHM) of the HRF.
Collapse
|
34
|
Markuerkiaga I, Barth M, Norris DG. A cortical vascular model for examining the specificity of the laminar BOLD signal. Neuroimage 2016; 132:491-498. [DOI: 10.1016/j.neuroimage.2016.02.073] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
|
35
|
Layer-Specific fMRI Responses to Excitatory and Inhibitory Neuronal Activities in the Olfactory Bulb. J Neurosci 2016; 35:15263-75. [PMID: 26586815 DOI: 10.1523/jneurosci.1015-15.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED High-resolution functional magnetic resonance imaging (fMRI) detects localized neuronal activity via the hemodynamic response, but it is unclear whether it accurately identifies neuronal activity specific to individual layers. To address this issue, we preferentially evoked neuronal activity in superficial, middle, and deep layers of the rat olfactory bulb: the glomerular layer by odor (5% amyl acetate), the external plexiform layer by electrical stimulation of the lateral olfactory tract (LOT), and the granule cell layer by electrical stimulation of the anterior commissure (AC), respectively. Electrophysiology, laser-Doppler flowmetry of cerebral blood flow (CBF), and blood oxygenation level-dependent (BOLD) and cerebral blood volume-weighted (CBV) fMRI at 9.4 T were performed independently. We found that excitation of inhibitory granule cells by stimulating LOT and AC decreased the spontaneous multi-unit activities of excitatory mitral cells and subsequently increased CBF, CBV, and BOLD signals. Odor stimulation also increased the hemodynamic responses. Furthermore, the greatest CBV fMRI responses were discretely separated into the same layers as the evoked neuronal activities for all three stimuli, whereas BOLD was poorly localized with some exception to the poststimulus undershoot. In addition, the temporal dynamics of the fMRI responses varied depending on the stimulation pathway, even within the same layer. These results indicate that the vasculature is regulated within individual layers and CBV fMRI has a higher fidelity to the evoked neuronal activity compared with BOLD. Our findings are significant for understanding the neuronal origin and spatial specificity of hemodynamic responses, especially for the interpretation of laminar-resolution fMRI. SIGNIFICANCE STATEMENT Functional magnetic resonance imaging (fMRI) is a noninvasive, in vivo technique widely used to map function of the entire brain, including deep structures, in animals and humans. However, it measures neuronal activity indirectly by way of the vascular response. It is currently unclear how finely the hemodynamic response is regulated within single cortical layers and whether increased inhibitory neuronal activities affect fMRI signal changes. Both laminar specificity and the neural origins of fMRI are important to interpret functional maps properly, which we investigated by activating discrete rat olfactory bulb circuits.
Collapse
|
36
|
Kok P, Bains LJ, van Mourik T, Norris DG, de Lange FP. Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback. Curr Biol 2016; 26:371-6. [PMID: 26832438 DOI: 10.1016/j.cub.2015.12.038] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/07/2015] [Accepted: 12/08/2015] [Indexed: 11/29/2022]
Abstract
In addition to bottom-up input, the visual cortex receives large amounts of feedback from other cortical areas [1-3]. One compelling example of feedback activation of early visual neurons in the absence of bottom-up input occurs during the famous Kanizsa illusion, where a triangular shape is perceived, even in regions of the image where there is no bottom-up visual evidence for it. This illusion increases the firing activity of neurons in the primary visual cortex with a receptive field on the illusory contour [4]. Feedback signals are largely segregated from feedforward signals within each cortical area, with feedforward signals arriving in the middle layer, while top-down feedback avoids the middle layers and predominantly targets deep and superficial layers [1, 2, 5, 6]. Therefore, the feedback-mediated activity increase in V1 during the perception of illusory shapes should lead to a specific laminar activity profile that is distinct from the activity elicited by bottom-up stimulation. Here, we used fMRI at high field (7 T) to empirically test this hypothesis, by probing the cortical response to illusory figures in human V1 at different cortical depths [7-14]. We found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers of V1. These results demonstrate the potential for non-invasive recordings of neural activity with laminar specificity in humans and elucidate the role of top-down signals during perceptual processing.
Collapse
Affiliation(s)
- Peter Kok
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands.
| | - Lauren J Bains
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, UNESCO-Weltkulturerbe Zollverein, Leitstand Kokerei Zollverein, Kokereiallee 7, 45141 Essen, Germany
| | - Tim van Mourik
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, UNESCO-Weltkulturerbe Zollverein, Leitstand Kokerei Zollverein, Kokereiallee 7, 45141 Essen, Germany; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, the Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands
| |
Collapse
|
37
|
Gilbert KM, Gati JS, Barker K, Everling S, Menon RS. Optimized parallel transmit and receive radiofrequency coil for ultrahigh-field MRI of monkeys. Neuroimage 2016; 125:153-161. [DOI: 10.1016/j.neuroimage.2015.10.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/08/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022] Open
|
38
|
Heinzle J, Koopmans PJ, den Ouden HE, Raman S, Stephan KE. A hemodynamic model for layered BOLD signals. Neuroimage 2016; 125:556-570. [DOI: 10.1016/j.neuroimage.2015.10.025] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 01/16/2023] Open
|
39
|
|
40
|
Roe AW, Chernov MM, Friedman RM, Chen G. In Vivo Mapping of Cortical Columnar Networks in the Monkey with Focal Electrical and Optical Stimulation. Front Neuroanat 2015; 9:135. [PMID: 26635539 PMCID: PMC4644798 DOI: 10.3389/fnana.2015.00135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022] Open
Abstract
There are currently largescale efforts to understand the brain as a connection machine. However, there has been little emphasis on understanding connection patterns between functionally specific cortical columns. Here, we review development and application of focal electrical and optical stimulation methods combined with optical imaging and fMRI mapping in the non-human primate. These new approaches, when applied systematically on a large scale, will elucidate functionally specific intra-areal and inter-areal network connection patterns. Such functionally specific network data can provide accurate views of brain network topology.
Collapse
Affiliation(s)
- Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University Hangzhou, China
| | - Mykyta M Chernov
- Department of Psychology, Vanderbilt University, Nashville TN, USA
| | | | - Gang Chen
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University Hangzhou, China
| |
Collapse
|
41
|
Abstract
CLINICAL/METHODICAL ISSUE Functional magnetic resonance imaging (fMRI) examinations are limited in their sensitivity due to the low activation-induced signal change. Within short tolerable scan times the spatial resolution is thus limited. STANDARD RADIOLOGICAL METHODS fMRI is a reliable tool in neuroscience as well as for clinical applications such as presurgical mapping of brain function. METHODICAL INNOVATIONS The fMRI sensitivity improves greatly (more than linearly) with increasing magnetic field strengths. For many years this was the main driving force in the push towards higher field strengths, such as 7 T. PERFORMANCE The sensitivity gain is greatest for high spatial resolution and fMRI with very high sub-millimeter resolution becomes feasible. Current results demonstrate that the localization of the blood oxygenation level dependent (BOLD) signal is better than previously assumed. ACHIEVEMENTS High-field fMRI not only allows quantitative improvements but also opens the way to new information content, such as columnar and layer-dependent functional structures of the cortex. This may pave the way for further information, e.g. the directionality of cortico-cortical connections; however, these possibilities also pose new challenges. New methods for processing such high resolution data are required which do not require spatial smoothing and preserve the high information content. PRACTICAL RECOMMENDATIONS Common spatial resolutions of 2-3 mm are still very well suited for examinations at 3 T where they benefit from the low signal void, lower geometrical distortion and reduced acoustic noise. To achieve higher resolution at 7 T parallel imaging and geometric distortion correction are essential and permit the best congruence with structural data. The echo time at 7 T should be adjusted to about 20-25 ms. Data processing for single subjects or patients should be performed with little or no smoothing to retain resolution. Group studies could achieve good correlation with local normalization. New methods for information extraction, such as multivariate pattern analysis may allow combination of group data without the need for voxel-based congruence.
Collapse
|
42
|
Yu X, Qian C, Chen DY, Dodd S, Koretsky AP. Deciphering laminar-specific neural inputs with line-scanning fMRI. Nat Methods 2014; 11:55-8. [PMID: 24240320 PMCID: PMC4276040 DOI: 10.1038/nmeth.2730] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 10/23/2013] [Indexed: 11/08/2022]
Abstract
Using a line-scanning method during functional magnetic resonance imaging (fMRI), we obtained high temporal (50-ms) and spatial (50-μm) resolution information along the cortical thickness and showed that the laminar position of fMRI onset coincides with distinct neural inputs in rat somatosensory and motor cortices. This laminar-specific fMRI onset allowed us to identify the neural inputs underlying ipsilateral fMRI activation in the barrel cortex due to peripheral denervation-induced plasticity.
Collapse
Affiliation(s)
- Xin Yu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chunqi Qian
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Der-yow Chen
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan P. Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
43
|
Boly M, Seth AK, Wilke M, Ingmundson P, Baars B, Laureys S, Edelman DB, Tsuchiya N. Consciousness in humans and non-human animals: recent advances and future directions. Front Psychol 2013; 4:625. [PMID: 24198791 PMCID: PMC3814086 DOI: 10.3389/fpsyg.2013.00625] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/24/2013] [Indexed: 12/30/2022] Open
Abstract
This joint article reflects the authors' personal views regarding noteworthy advances in the neuroscience of consciousness in the last 10 years, and suggests what we feel may be promising future directions. It is based on a small conference at the Samoset Resort in Rockport, Maine, USA, in July of 2012, organized by the Mind Science Foundation of San Antonio, Texas. Here, we summarize recent advances in our understanding of subjectivity in humans and other animals, including empirical, applied, technical, and conceptual insights. These include the evidence for the importance of fronto-parietal connectivity and of “top-down” processes, both of which enable information to travel across distant cortical areas effectively, as well as numerous dissociations between consciousness and cognitive functions, such as attention, in humans. In addition, we describe the development of mental imagery paradigms, which made it possible to identify covert awareness in non-responsive subjects. Non-human animal consciousness research has also witnessed substantial advances on the specific role of cortical areas and higher order thalamus for consciousness, thanks to important technological enhancements. In addition, much progress has been made in the understanding of non-vertebrate cognition relevant to possible conscious states. Finally, major advances have been made in theories of consciousness, and also in their comparison with the available evidence. Along with reviewing these findings, each author suggests future avenues for research in their field of investigation.
Collapse
Affiliation(s)
- Melanie Boly
- Department of Neurology, University of Wisconsin Madison, WI, USA ; Department of Psychiatry, Center for Sleep and Consciousness, University of Wisconsin Madison, WI, USA ; Coma Science Group, Cyclotron Research Centre and Neurology Department, University of Liege and CHU Sart Tilman Hospital Liege, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Raemaekers M, Schellekens W, van Wezel RJA, Petridou N, Kristo G, Ramsey NF. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study. Neuroimage 2013; 84:911-21. [PMID: 24099850 DOI: 10.1016/j.neuroimage.2013.09.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022] Open
Abstract
The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity.
Collapse
Affiliation(s)
- Mathijs Raemaekers
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|