1
|
Farruggia MC, Pellegrino R, Scheinost D. Functional Connectivity of the Chemosenses: A Review. Front Syst Neurosci 2022; 16:865929. [PMID: 35813269 PMCID: PMC9257046 DOI: 10.3389/fnsys.2022.865929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/05/2022] [Indexed: 01/01/2023] Open
Abstract
Functional connectivity approaches have long been used in cognitive neuroscience to establish pathways of communication between and among brain regions. However, the use of these analyses to better understand how the brain processes chemosensory information remains nascent. In this review, we conduct a literature search of all functional connectivity papers of olfaction, gustation, and chemesthesis, with 103 articles discovered in total. These publications largely use approaches of seed-based functional connectivity and psychophysiological interactions, as well as effective connectivity approaches such as Granger Causality, Dynamic Causal Modeling, and Structural Equation Modeling. Regardless of modality, studies largely focus on elucidating neural correlates of stimulus qualities such as identity, pleasantness, and intensity, with task-based paradigms most frequently implemented. We call for further "model free" or data-driven approaches in predictive modeling to craft brain-behavior relationships that are free from a priori hypotheses and not solely based on potentially irreproducible literature. Moreover, we note a relative dearth of resting-state literature, which could be used to better understand chemosensory networks with less influence from motion artifacts induced via gustatory or olfactory paradigms. Finally, we note a lack of genomics data, which could clarify individual and heritable differences in chemosensory perception.
Collapse
Affiliation(s)
- Michael C. Farruggia
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States,*Correspondence: Michael C. Farruggia,
| | | | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States,Child Study Center, Yale School of Medicine, New Haven, CT, United States,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, United States,Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States,Wu Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
2
|
Müschenich FS, Sichtermann T, Di Francesco ME, Rodriguez-Raecke R, Heim L, Singer M, Wiesmann M, Freiherr J. Some like it, some do not: behavioral responses and central processing of olfactory-trigeminal mixture perception. Brain Struct Funct 2020; 226:247-261. [PMID: 33355693 PMCID: PMC7817597 DOI: 10.1007/s00429-020-02178-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Abstract
Exploring the potential of eucalyptol as a masking agent for aversive odors, we found that eucalyptol masks the olfactory but not the trigeminal sensation of ammonia in a previous study. Here, we further investigate the processing of a mixture consisting of eucalyptol and ammonia, two olfactory–trigeminal stimuli. We presented the two pure odors and a mixture thereof to 33 healthy participants. The nostrils were stimulated alternately (monorhinal application). We analyzed the behavioral ratings (intensity and pleasantness) and functional brain images. First, we replicated our previous finding that, within the mixture, the eucalyptol component suppressed the olfactory intensity of the ammonia component. Second, mixture pleasantness was rated differently by participants depending on which component dominated their mixture perception. Approximately half of the volunteers rated the eucalyptol component as more intense and evaluated the mixture as pleasant (pleasant group). The other half rated the ammonia component as more intense and evaluated the mixture as unpleasant (unpleasant group). Third, these individual differences were also found in functional imaging data. Contrasting the mixture either to eucalyptol or to both single odors, neural activation was found in the unpleasant group only. Activation in the anterior insula and SII was interpreted as evidence for an attentional shift towards the potentially threatening mixture component ammonia and for trigeminal enhancement. In addition to insula and SII, further regions of the pain matrix were involved when assessing all participant responses to the mixture. Both a painful sensation and an attentional shift towards the unpleasant mixture component complicates the development of an efficient mask because a pleasant perception is an important requirement for malodor coverage.
Collapse
Affiliation(s)
- Franziska S Müschenich
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Thorsten Sichtermann
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Maria Elisa Di Francesco
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Rea Rodriguez-Raecke
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Lennart Heim
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | | | - Martin Wiesmann
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jessica Freiherr
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
3
|
Biggs EE, Timmers I, Meulders A, Vlaeyen JW, Goebel R, Kaas AL. The neural correlates of pain-related fear: A meta-analysis comparing fear conditioning studies using painful and non-painful stimuli. Neurosci Biobehav Rev 2020; 119:52-65. [DOI: 10.1016/j.neubiorev.2020.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 01/24/2023]
|
4
|
Stickel S, Weismann P, Kellermann T, Regenbogen C, Habel U, Freiherr J, Chechko N. Audio-visual and olfactory-visual integration in healthy participants and subjects with autism spectrum disorder. Hum Brain Mapp 2019; 40:4470-4486. [PMID: 31301203 PMCID: PMC6865810 DOI: 10.1002/hbm.24715] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023] Open
Abstract
The human capacity to integrate sensory signals has been investigated with respect to different sensory modalities. A common denominator of the neural network underlying the integration of sensory clues has yet to be identified. Additionally, brain imaging data from patients with autism spectrum disorder (ASD) do not cover disparities in neuronal sensory processing. In this fMRI study, we compared the underlying neural networks of both olfactory-visual and auditory-visual integration in patients with ASD and a group of matched healthy participants. The aim was to disentangle sensory-specific networks so as to derive a potential (amodal) common source of multisensory integration (MSI) and to investigate differences in brain networks with sensory processing in individuals with ASD. In both groups, similar neural networks were found to be involved in the olfactory-visual and auditory-visual integration processes, including the primary visual cortex, the inferior parietal sulcus (IPS), and the medial and inferior frontal cortices. Amygdala activation was observed specifically during olfactory-visual integration, with superior temporal activation having been seen during auditory-visual integration. A dynamic causal modeling analysis revealed a nonlinear top-down IPS modulation of the connection between the respective primary sensory regions in both experimental conditions and in both groups. Thus, we demonstrate that MSI has shared neural sources across olfactory-visual and audio-visual stimulation in patients and controls. The enhanced recruitment of the IPS to modulate changes between areas is relevant to sensory perception. Our results also indicate that, with respect to MSI processing, adults with ASD do not significantly differ from their healthy counterparts.
Collapse
Affiliation(s)
- Susanne Stickel
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
| | - Pauline Weismann
- Department of Psychiatry and PsychotherapyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
| | - Jessica Freiherr
- Department of Psychiatry and PsychotherapyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Sensory AnalyticsFraunhofer Institute for Process Engineering and Packaging IVVFreisingGermany
| | - Natalya Chechko
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
| |
Collapse
|
5
|
Van Diest I. Interoception, conditioning, and fear: The panic threesome. Psychophysiology 2019; 56:e13421. [DOI: 10.1111/psyp.13421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Ilse Van Diest
- Health, Behavior & Psychopathology, Faculty of Psychology & Educational Sciences; University of Leuven; Leuven Belgium
| |
Collapse
|
6
|
Brianza G, Tajadura-Jiménez A, Maggioni E, Pittera D, Bianchi-Berthouze N, Obrist M. As Light as Your Scent: Effects of Smell and Sound on Body Image Perception. HUMAN-COMPUTER INTERACTION – INTERACT 2019 2019. [DOI: 10.1007/978-3-030-29390-1_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Morriss J, Gell M, van Reekum CM. The uncertain brain: A co-ordinate based meta-analysis of the neural signatures supporting uncertainty during different contexts. Neurosci Biobehav Rev 2018; 96:241-249. [PMID: 30550858 DOI: 10.1016/j.neubiorev.2018.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/23/2022]
Abstract
Uncertainty is often inevitable in everyday life and can be both stressful and exciting. Given its relevance to psychopathology and wellbeing, recent research has begun to address the brain basis of uncertainty. In the current review we examined whether there are discrete and shared neural signatures for different uncertain contexts. From the literature we identified three broad categories of uncertainty currently empirically studied using functional MRI (fMRI): basic threat and reward uncertainty, decision-making under uncertainty, and associative learning under uncertainty. We examined the neural basis of each category by using a coordinate based meta-analysis, where brain activation foci from previously published fMRI experiments were drawn together (1998-2017; 87 studies). The analyses revealed shared and discrete patterns of neural activation for uncertainty, such as the insula and amygdala, depending on the category. Such findings will have relevance for researchers attempting to conceptualise uncertainty, as well as clinical researchers examining the neural basis of uncertainty in relation to psychopathology.
Collapse
Affiliation(s)
- Jayne Morriss
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
| | - Martin Gell
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Carien M van Reekum
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| |
Collapse
|
8
|
Cavazzana A, Poletti SC, Guducu C, Larsson M, Hummel T. Electro-olfactogram Responses Before and After Aversive Olfactory Conditioning in Humans. Neuroscience 2018; 373:199-206. [PMID: 29360513 DOI: 10.1016/j.neuroscience.2018.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to investigate whether repetitive aversive odor conditioning induced changes at the level of the peripheral olfactory system in humans. A total of 51 volunteers participated. A pair of indistinguishable odor enantiomers [(+)-rose oxide and (-)-rose oxide] were used as stimuli. During the pre-conditioning, participants' ability to discriminate between the two odors was assessed using a three-alternative, forced-choice discrimination test. In addition, electro-olfactograms (EOG) from the olfactory epithelium were recorded. Participants underwent three conditioning sessions on consecutive days. The experimental group received an electrical stimulus to the forearm only following (+)-rose oxide presentation, whereas its enantiomer sibling was never paired with the aversive stimulus; the control group did not receive any electrical stimulation. During the post-conditioning session, their ability to discriminate the two enantiomers was assessed again using the discrimination test and EOG recordings were obtained similarly to the pre-conditioning session. Results showed significant differences in the peripheral electrophysiological responses between the conditioned and the unconditioned stimulus, demonstrating contextually induced changes at the level of the first neuron in the olfactory system.
Collapse
Affiliation(s)
- Annachiara Cavazzana
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Frescati Hagväg 9A 106 91 Stockholm, Sweden.
| | - Sophia C Poletti
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Cagdas Guducu
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Biophysics Department, Faculty of Medicine, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Maria Larsson
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Frescati Hagväg 9A 106 91 Stockholm, Sweden
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
9
|
Cortese BM, Schumann AY, Howell AN, McConnell PA, Yang QX, Uhde TW. Preliminary evidence for differential olfactory and trigeminal processing in combat veterans with and without PTSD. NEUROIMAGE-CLINICAL 2017; 17:378-387. [PMID: 29159050 PMCID: PMC5683811 DOI: 10.1016/j.nicl.2017.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
Structural and functional changes in the olfactory system are increasingly implicated in the expression of PTSD. Still, very little is known about the neurobiological networks of trauma-related odor sensitivity or how they relate to other objective and subjective measures of olfaction and PTSD. The purpose of this study was to replicate prior findings and further characterize olfactory function in trauma-exposed combat veterans with and without PTSD. We also sought to extend this area of research by exploring the effects of time since the combat-related index trauma (TST) on post-trauma olfactory function, as well as by correlating odor-elicited brain activity to general olfactory ability and odor-elicited PTSD symptoms. Participants included combat veterans with PTSD (CV+PTSD; n = 21) or without any psychiatric disorder (CV-PTSD; n = 27). TST was coded as greater (n = 24) or less (n = 24) than 5 years. There were main effects and/or interaction for PTSD-status and TST across several parameters of olfactory function: odor detection, odor identification, ratings for trauma-related odor intensity and triggered PTSD symptoms, and trauma odor-elicited brain activation. Overall, results suggest olfactory impairment in chronic PTSD, but not necessarily in the earlier stages of the disorder, although some early-stage olfactory findings may be predictive of later olfactory impairment. Results also suggest that trauma-exposed individuals who never develop PTSD may demonstrate olfactory resiliency. Finally, results highlight a potentially unique role of trigeminal odor properties in the olfactory-PTSD relationship.
Collapse
Affiliation(s)
| | - Aicko Y Schumann
- Department of Psychiatry and Behavioral Sciences, MUSC, Charleston, SC, USA
| | - Ashley N Howell
- Department of Psychiatry and Behavioral Sciences, MUSC, Charleston, SC, USA
| | | | - Qing X Yang
- Department of Radiology, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Thomas W Uhde
- Department of Psychiatry and Behavioral Sciences, MUSC, Charleston, SC, USA
| |
Collapse
|
10
|
Frie J, Bartocci M, Lagercrantz H, Kuhn P. Cortical Responses to Alien Odors in Newborns: An fNIRS Study. Cereb Cortex 2017; 28:3229-3240. [DOI: 10.1093/cercor/bhx194] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 07/13/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jakob Frie
- Neonatal Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
- Department of Neonatal Medicine, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Bartocci
- Neonatal Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
- Department of Neonatal Medicine, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Hugo Lagercrantz
- Neonatal Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
| | - Pierre Kuhn
- Neonatal Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
- Service de Médecine et Réanimation du Nouveau-né, Hôpital de Hautepierre, Centre Hospitalier Universitaire de Strasbourg, France
- Institut de Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique et Unistra, Strasbourg, France
| |
Collapse
|
11
|
Fjaeldstad A, Fernandes HM, Van Hartevelt TJ, Gleesborg C, Møller A, Ovesen T, Kringelbach ML. Brain fingerprints of olfaction: a novel structural method for assessing olfactory cortical networks in health and disease. Sci Rep 2017; 7:42534. [PMID: 28195241 PMCID: PMC5307346 DOI: 10.1038/srep42534] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/10/2017] [Indexed: 11/09/2022] Open
Abstract
Olfactory deficits are a common (often prodromal) symptom of neurodegenerative or psychiatric disorders. As such, olfaction could have great potential as an early biomarker of disease, for example using neuroimaging to investigate the breakdown of structural connectivity profile of the primary olfactory networks. We investigated the suitability for this purpose in two existing neuroimaging maps of olfactory networks. We found problems with both existing neuroimaging maps in terms of their structural connectivity to known secondary olfactory networks. Based on these findings, we were able to merge the existing maps to a new template map of olfactory networks with connections to all key secondary olfactory networks. We introduce a new method that combines diffusion tensor imaging with probabilistic tractography and pattern recognition techniques. This method can obtain comprehensive and reliable fingerprints of the structural connectivity underlying the neural processing of olfactory stimuli in normosmic adults. Combining the novel proposed method for structural fingerprinting with the template map of olfactory networks has great potential to be used for future neuroimaging investigations of olfactory function in disease. With time, the proposed method may even come to serve as structural biomarker for early detection of disease.
Collapse
Affiliation(s)
- A. Fjaeldstad
- Flavour Institute, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Otorhinolaryngology, Regional Hospital Unit West Jutland, Holstebro, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - H. M. Fernandes
- Flavour Institute, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - T. J. Van Hartevelt
- Flavour Institute, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - C. Gleesborg
- Flavour Institute, Aarhus University, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - A. Møller
- Flavour Institute, Aarhus University, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | - T. Ovesen
- Flavour Institute, Aarhus University, Aarhus, Denmark
- Department of Otorhinolaryngology, Regional Hospital Unit West Jutland, Holstebro, Denmark
| | - M. L. Kringelbach
- Flavour Institute, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Odor-induced recall of emotional memories in PTSD–Review and new paradigm for research. Exp Neurol 2016; 284:168-180. [DOI: 10.1016/j.expneurol.2016.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 01/09/2023]
|
13
|
Fournel A, Ferdenzi C, Sezille C, Rouby C, Bensafi M. Multidimensional representation of odors in the human olfactory cortex. Hum Brain Mapp 2016; 37:2161-72. [PMID: 26991044 DOI: 10.1002/hbm.23164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/09/2016] [Accepted: 02/18/2016] [Indexed: 11/09/2022] Open
Abstract
What is known as an odor object is an integrated representation constructed from physical features, and perceptual attributes mainly mediated by the olfactory and trigeminal systems. The aim of the present study was to comprehend how this multidimensional representation is organized, by deciphering how similarities in the physical, olfactory and trigeminal perceptual spaces of odors are represented in the human brain. To achieve this aim, we combined psychophysics, functional MRI and multivariate representational similarity analysis. Participants were asked to smell odors diffused by an fMRI-compatible olfactometer and to rate each smell along olfactory dimensions (pleasantness, intensity, familiarity and edibility) and trigeminal dimensions (irritation, coolness, warmth and pain). An event-related design was implemented, presenting different odorants. Results revealed that (i) pairwise odorant similarities in anterior piriform cortex (PC) activity correlated with pairwise odorant similarities in chemical properties (P < 0.005), (ii) similarities in posterior PC activity correlated with similarities in olfactory perceptual properties (P <0.01), and (iii) similarities in amygdala activity correlated with similarities in trigeminal perceptual properties (P < 0.01). These findings provide new evidence that extraction of physical, olfactory and trigeminal features is based on specific fine processing of similarities between odorous stimuli in a distributed manner in the olfactory system. Hum Brain Mapp 37:2161-2172, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Fournel
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| | - C Ferdenzi
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| | - C Sezille
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| | - C Rouby
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| | - M Bensafi
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| |
Collapse
|
14
|
Cortese BM, Leslie K, Uhde TW. Differential odor sensitivity in PTSD: Implications for treatment and future research. J Affect Disord 2015; 179:23-30. [PMID: 25845746 PMCID: PMC4437877 DOI: 10.1016/j.jad.2015.03.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Given that odors enhance the retrieval of autobiographical memories, induce physiological arousal, and trigger trauma-related flashbacks, it is reasonable to hypothesize that odors play a significant role in the pathophysiology of posttraumatic stress disorder (PTSD). For these reasons, this preliminary study sought to examine self-reported, odor-elicited distress in PTSD. METHODS Combat veterans with (N=30) and without (N=22) PTSD and healthy controls (HC: N=21), completed an olfactory questionnaire that provided information on the hedonic valence of odors as well as their ability to elicit distress or relaxation. RESULTS Two main findings were revealed: Compared to HC, CV+PTSD, but not CV-PTSD, reported a higher prevalence of distress to a limited number of select odors that included fuel (p=.004), blood (p=.02), gunpowder (p=.03), and burning hair (p=.02). In contrast to this increased sensitivity, a blunting effect was reported by both groups of veterans compared to HC that revealed lower rates of distress and relaxation in response to negative hedonic odors (p=.03) and positive hedonic odors (p<.001), respectively. LIMITATIONS The study is limited by its use of retrospective survey methods, whereas future investigations would benefit from laboratory measures taken prior, during, and after deployment. CONCLUSION The present findings suggest a complex role of olfaction in the biological functions of threat detection. Several theoretical models are discussed. One possible explanation for increased sensitivity to select odors with decreased sensitivity to other odors is the co-occurrence of attentional bias toward threat odors with selective ignoring of distractor odors. Working together, these processes may optimize survival.
Collapse
Affiliation(s)
| | - Kimberly Leslie
- Department of Psychiatry and Behavioral Sciences, MUSC, Charleston, SC, US
| | - Thomas W. Uhde
- Department of Psychiatry and Behavioral Sciences, MUSC, Charleston, SC, US
| |
Collapse
|
15
|
Kogler L, Gur RC, Derntl B. Sex differences in cognitive regulation of psychosocial achievement stress: brain and behavior. Hum Brain Mapp 2014; 36:1028-42. [PMID: 25376429 DOI: 10.1002/hbm.22683] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/15/2014] [Accepted: 10/22/2014] [Indexed: 12/28/2022] Open
Abstract
Although cognitive regulation of emotion has been extensively examined, there is a lack of studies assessing cognitive regulation in stressful achievement situations. This study used functional magnetic resonance imaging in 23 females and 20 males to investigate cognitive downregulation of negative, stressful sensations during a frequently used psychosocial stress task. Additionally, subjective responses, cognitive regulation strategies, salivary cortisol, and skin conductance response were assessed. Subjective response supported the experimental manipulation by showing higher anger and negative affect ratings after stress regulation than after the mere exposure to stress. On a neural level, right middle frontal gyrus (MFG) and right superior temporal gyrus (STG) were more strongly activated during regulation than nonregulation, whereas the hippocampus was less activated during regulation. Sex differences were evident: after regulation females expressed higher subjective stress ratings than males, and these ratings were associated with right hippocampal activation. In the nonregulation block, females showed greater activation of the left amygdala and the right STG during stress than males while males recruited the putamen more robustly in this condition. Thus, cognitive regulation of stressful achievement situations seems to induce additional stress, to recruit regions implicated in attention integration and working memory and to deactivate memory retrieval. Stress itself is associated with greater activation of limbic as well as attention areas in females than males. Additionally, activation of the memory system during cognitive regulation of stress is associated with greater perceived stress in females. Sex differences in cognitive regulation strategies merit further investigation that can guide sex sensitive interventions for stress-associated disorders.
Collapse
Affiliation(s)
- Lydia Kogler
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany; Translational Brain Medicine, Jülich-Aachen-Research Alliance, Jülich/Aachen, Germany
| | | | | |
Collapse
|
16
|
Meier ML, de Matos NMP, Brügger M, Ettlin DA, Lukic N, Cheetham M, Jäncke L, Lutz K. Equal pain-Unequal fear response: enhanced susceptibility of tooth pain to fear conditioning. Front Hum Neurosci 2014; 8:526. [PMID: 25100974 PMCID: PMC4103082 DOI: 10.3389/fnhum.2014.00526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/28/2014] [Indexed: 01/11/2023] Open
Abstract
Experimental fear conditioning in humans is widely used as a model to investigate the neural basis of fear learning and to unravel the pathogenesis of anxiety disorders. It has been observed that fear conditioning depends on stimulus salience and subject vulnerability to fear. It is further known that the prevalence of dental-related fear and phobia is exceedingly high in the population. Dental phobia is unique as no other body part is associated with a specific phobia. Therefore, we hypothesized that painful dental stimuli exhibit an enhanced susceptibility to fear conditioning when comparing to equal perceived stimuli applied to other body sites. Differential susceptibility to pain-related fear was investigated by analyzing responses to an unconditioned stimulus (UCS) applied to the right maxillary canine (UCS-c) vs. the right tibia (UCS-t). For fear conditioning, UCS-c and USC-t consisted of painful electric stimuli, carefully matched at both application sites for equal intensity and quality perception. UCSs were paired to simple geometrical forms which served as conditioned stimuli (CS+). Unpaired CS+ were presented for eliciting and analyzing conditioned fear responses. Outcome parameter were (1) skin conductance changes and (2) time-dependent brain activity (BOLD responses) in fear-related brain regions such as the amygdala, anterior cingulate cortex, insula, thalamus, orbitofrontal cortex, and medial prefrontal cortex. A preferential susceptibility of dental pain to fear conditioning was observed, reflected by heightened skin conductance responses and enhanced time-dependent brain activity (BOLD responses) in the fear network. For the first time, this study demonstrates fear-related neurobiological mechanisms that point toward a superior conditionability of tooth pain. Beside traumatic dental experiences our results offer novel evidence that might explain the high prevalence of dental-related fears in the population.
Collapse
Affiliation(s)
- Michael L. Meier
- Center of Dental Medicine, Clinic for Removable Prosthodontics, Masticatory Disorders and Special Care Dentistry, University of ZurichZurich, Switzerland
- Chiropractic Medicine, Balgrist University HospitalZurich, Switzerland
| | - Nuno M. P. de Matos
- Center of Dental Medicine, Clinic for Removable Prosthodontics, Masticatory Disorders and Special Care Dentistry, University of ZurichZurich, Switzerland
| | - Mike Brügger
- Center of Dental Medicine, Clinic for Removable Prosthodontics, Masticatory Disorders and Special Care Dentistry, University of ZurichZurich, Switzerland
- MRI Technology, Institute for Biomedical Engineering, Swiss Federal Institute of Technology and the University of ZurichZurich, Switzerland
| | - Dominik A. Ettlin
- Center of Dental Medicine, Clinic for Removable Prosthodontics, Masticatory Disorders and Special Care Dentistry, University of ZurichZurich, Switzerland
| | - Nenad Lukic
- Center of Dental Medicine, Clinic for Removable Prosthodontics, Masticatory Disorders and Special Care Dentistry, University of ZurichZurich, Switzerland
| | - Marcus Cheetham
- Institute of Psychology, Department of Neuropsychology, University of ZurichZurich, Switzerland
| | - Lutz Jäncke
- Institute of Psychology, Department of Neuropsychology, University of ZurichZurich, Switzerland
| | - Kai Lutz
- Institute of Psychology, Department of Neuropsychology, University of ZurichZurich, Switzerland
- Center for Neurology and Rehabilitation CereneoVitznau, Switzerland
| |
Collapse
|
17
|
Li W. Learning to smell danger: acquired associative representation of threat in the olfactory cortex. Front Behav Neurosci 2014; 8:98. [PMID: 24778610 PMCID: PMC3985029 DOI: 10.3389/fnbeh.2014.00098] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/09/2014] [Indexed: 01/09/2023] Open
Abstract
Neuroscience research over the past few decades has reached a strong consensus that the amygdala plays a key role in emotion processing. However, many questions remain unanswered, especially concerning emotion perception. Based on mnemonic theories of olfactory perception and in light of the highly associative nature of olfactory cortical processing, here I propose a sensory cortical model of olfactory threat perception (i.e., sensory-cortex-based threat perception): the olfactory cortex stores threat codes as acquired associative representations (AARs) formed via aversive life experiences, thereby enabling encoding of threat cues during sensory processing. Rodent and human research in olfactory aversive conditioning was reviewed, indicating learning-induced plasticity in the amygdala and the olfactory piriform cortex. In addition, as aversive learning becomes consolidated in the amygdala, the associative olfactory (piriform) cortex may undergo (long-term) plastic changes, resulting in modified neural response patterns that underpin threat AARs. This proposal thus brings forward a sensory cortical pathway to threat processing (in addition to amygdala-based processes), potentially accounting for an alternative mechanism underlying the pathophysiology of anxiety and depression.
Collapse
Affiliation(s)
- Wen Li
- Department of Psychology, University of Wisconsin-Madison Madison, WI, USA ; Waisman Center, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|