1
|
Qin Y, Lu M, Liu L, Li M, Mi B, Zhou J, Xiao Y. The effects of diet quality, eating behavior, and sleep on the academic performance among elementary school students. Ecol Food Nutr 2024; 63:472-488. [PMID: 38909380 DOI: 10.1080/03670244.2024.2371154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The academic success of children contributes to their income, social status, and public health. This study was conducted with 217 elementary school students from western China. Scores on the Chinese Children Dietary Index (CCDI), Dietary Approaches to Stop Hypertension (DASH), adjusted DASH, and KIDMED index were calculated to evaluate diet quality. Eating behavior and sleep quality were assessed using the Children's Eating Behavior Questionnaire (CEBQ) and Children's Sleep Habits Questionnaire (CHSQ), respectively. Academic achievement was measured using school-provided average grades. Higher CCDI scores, longer sleep time, lower total CHSQ scores, and lower subscores on "satiety responsiveness," "slowness in eating," "emotional undereating," and "food fussiness" dimensions of the CEBQ were associated with high academic achievement. In conclusion, good diet quality, sleep quality, healthy eating behaviors, and adequate sleep duration were associated with better academic performance. Interventions are recommended to be developed in education system to improve healthy diets and lifestyles, enhancing academic achievement.
Collapse
Affiliation(s)
- Yujie Qin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengnan Lu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lujie Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Baibing Mi
- Department of Epidemiology and Biostatistics, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jing Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Gallegos C, Ramírez C, García A, Borrani J, Valdez P. Total sleep deprivation effects on the attentional blink. Exp Brain Res 2024; 242:1361-1372. [PMID: 38563978 DOI: 10.1007/s00221-024-06826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
The Attentional Blink (AB) is a phenomenon that reflects difficulty in detecting or identifying the second of two successive targets (T1 and T2) that are presented in rapid succession, between 200-500ms apart. The AB involves indicators of attentional and temporal integration mechanisms related to the early stages of visual processing. The aim of this study was to identify the effects of 24-h of sleep deprivation (total sleep deprivation, TSD) on the attentional and temporal integration mechanisms of the AB. Twenty-two undergraduate students were recorded during five successive days, in these three conditions: baseline (two days), TSD (one day), and recovery (two days). Each day, at around 12:00 h, participants responded to a Rapid Serial Visual Presentation task (RSVP) that presented two targets separated by random intervals from 100 to 1000ms. The attentional mechanisms were assessed by the AB presence, the AB magnitude, and the AB interval, while the temporal integration mechanisms were evaluated by lag-1 sparing and order reversal responses. TSD negatively affected the attentional mechanisms, which is expressed by an overall reduction in performance, an extended AB interval, and a reduced AB magnitude. TSD also negatively affected the temporal integration mechanisms, manifested by an absence of lag-1 sparing and an increase in order reversals. These results suggest that people are still able to respond to two successive stimuli after 24 h without sleep. However, it becomes more difficult to respond to both stimuli because the attentional and temporal integration mechanisms of the AB are impaired.
Collapse
Affiliation(s)
- Carlos Gallegos
- Laboratory of Psychophysiology, School of Psychology, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | - Candelaria Ramírez
- Laboratory of Psychophysiology, School of Psychology, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Aída García
- Laboratory of Psychophysiology, School of Psychology, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Jorge Borrani
- Laboratory of Psychophysiology, School of Psychology, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Pablo Valdez
- Laboratory of Psychophysiology, School of Psychology, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| |
Collapse
|
3
|
Luo Z, Yin E, Yan Y, Zhao S, Xie L, Shen H, Zeng LL, Wang L, Hu D. Sleep deprivation changes frequency-specific functional organization of the resting human brain. Brain Res Bull 2024; 210:110925. [PMID: 38493835 DOI: 10.1016/j.brainresbull.2024.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies have widely explored the temporal connection changes in the human brain following long-term sleep deprivation (SD). However, the frequency-specific topological properties of sleep-deprived functional networks remain virtually unclear. In this study, thirty-seven healthy male subjects underwent resting-state fMRI during rested wakefulness (RW) and after 36 hours of SD, and we examined frequency-specific spectral connection changes (0.01-0.08 Hz, interval = 0.01 Hz) caused by SD. First, we conducted a multivariate pattern analysis combining linear SVM classifiers with a robust feature selection algorithm, and the results revealed that accuracies of 74.29%-84.29% could be achieved in the classification between RW and SD states in leave-one-out cross-validation at different frequency bands, moreover, the spectral connection at the lowest and highest frequency bands exhibited higher discriminative power. Connection involving the cingulo-opercular network increased most, while connection involving the default-mode network decreased most following SD. Then we performed a graph-theoretic analysis and observed reduced low-frequency modularity and high-frequency global efficiency in the SD state. Moreover, hub regions, which were primarily situated in the cerebellum and the cingulo-opercular network after SD, exhibited high discriminative power in the aforementioned classification consistently. The findings may indicate the frequency-dependent effects of SD on the functional network topology and its efficiency of information exchange, providing new insights into the impact of SD on the human brain.
Collapse
Affiliation(s)
- Zhiguo Luo
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China; College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Erwei Yin
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China.
| | - Ye Yan
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Shaokai Zhao
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Liang Xie
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Lubin Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 102206, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| |
Collapse
|
4
|
Marmelshtein A, Eckerling A, Hadad B, Ben-Eliyahu S, Nir Y. Sleep-like changes in neural processing emerge during sleep deprivation in early auditory cortex. Curr Biol 2023; 33:2925-2940.e6. [PMID: 37385257 PMCID: PMC7617130 DOI: 10.1016/j.cub.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 03/30/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Insufficient sleep is commonplace in modern lifestyle and can lead to grave outcomes, yet the changes in neuronal activity accumulating over hours of extended wakefulness remain poorly understood. Specifically, which aspects of cortical processing are affected by sleep deprivation (SD), and whether they also affect early sensory regions, remain unclear. Here, we recorded spiking activity in the rat auditory cortex along with polysomnography while presenting sounds during SD followed by recovery sleep. We found that frequency tuning, onset responses, and spontaneous firing rates were largely unaffected by SD. By contrast, SD decreased entrainment to rapid (≥20 Hz) click trains, increased population synchrony, and increased the prevalence of sleep-like stimulus-induced silent periods, even when ongoing activity was similar. Recovery NREM sleep was associated with similar effects as SD with even greater magnitude, while auditory processing during REM sleep was similar to vigilant wakefulness. Our results show that processes akin to those in NREM sleep invade the activity of cortical circuits during SD, even in the early sensory cortex.
Collapse
Affiliation(s)
- Amit Marmelshtein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anabel Eckerling
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Barak Hadad
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.
| |
Collapse
|
5
|
Abstract
The restorative function of sleep is shaped by its duration, timing, continuity, subjective quality, and efficiency. Current sleep recommendations specify only nocturnal duration and have been largely derived from sleep self-reports that can be imprecise and miss relevant details. Sleep duration, preferred timing, and ability to withstand sleep deprivation are heritable traits whose expression may change with age and affect the optimal sleep prescription for an individual. Prevailing societal norms and circumstances related to work and relationships interact to influence sleep opportunity and quality. The value of allocating time for sleep is revealed by the impact of its restriction on behavior, functional brain imaging, sleep macrostructure, and late-life cognition. Augmentation of sleep slow oscillations and spindles have been proposed for enhancing sleep quality, but they inconsistently achieve their goal. Crafting bespoke sleep recommendations could benefit from large-scale, longitudinal collection of objective sleep data integrated with behavioral and self-reported data.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
6
|
Batuk IT, Batuk MO, Aksoy S. Evaluation of the postural balance and visual perception in young adults with acute sleep deprivation. J Vestib Res 2020; 30:383-391. [PMID: 33285660 DOI: 10.3233/ves-200778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND/OBJECTIVE Few studies have suggested a relationship between vestibular system and sleep deprivation. The aim of the present study is to investigate the effects of acute sleep deprivation lasting 24 hours or more on the postural balance and the visual abilities related to the vestibular system in healthy young adults. METHODS Thirty-one healthy young adults (8 males, 23 female; ages 18- 36 years) who had experienced at least 24 hours of sleep deprivation were included in the study. Subjects made two visits to the test laboratory. One visit was scheduled during a sleep deprivation (SD) condition, and the other was scheduled during a daily life (DL) condition. Five tests- the Sensory Organization Test (SOT), Static Visual Acuity Test (SVA), Minimum Perception Time Test (mPT), Dynamic Visual Acuity Test (DVA), and Gaze Stabilization Test (GST)- were performed using a Computerized Dynamic Posturography System. RESULTS A statistically significant difference was found between SD and DL measurements in somatosensorial (p = 0.003), visual (p = 0.037), vestibular (p = 0.008) ratios, and composite scores (p = 0.001) in SOT. The mPT results showed a statistically significant difference between SD and DL conditions (p = 0.001). No significant difference was found between SD and DL conditions in the comparison of the mean SVA (p = 0.466), DVA (p = 0.192), and GST head velocity values (p = 0.160). CONCLUSIONS Sleep deprivation has a considerable impact on the vestibular system and visual perception time in young adults. Increased risk of accidents and performance loss after SD were thought to be due to the postural control and visual processing parameters rather than dynamic visual parameters of the vestibular system.
Collapse
Affiliation(s)
| | | | - Songul Aksoy
- Department of Audiology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Labad J, Salvat-Pujol N, Armario A, Cabezas Á, de Arriba-Arnau A, Nadal R, Martorell L, Urretavizcaya M, Monreal JA, Crespo JM, Vilella E, Palao DJ, Menchón JM, Soria V. The Role of Sleep Quality, Trait Anxiety and Hypothalamic-Pituitary-Adrenal Axis Measures in Cognitive Abilities of Healthy Individuals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207600. [PMID: 33086584 PMCID: PMC7589840 DOI: 10.3390/ijerph17207600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
Sleep plays a crucial role in cognitive processes. Sleep and wake memory consolidation seem to be regulated by glucocorticoids, pointing out the potential role of the hypothalamic-pituitary-adrenal (HPA) axis in the relationship between sleep quality and cognitive abilities. Trait anxiety is another factor that is likely to moderate the relationship between sleep and cognition, because poorer sleep quality and subtle HPA axis abnormalities have been reported in people with high trait anxiety. The current study aimed to explore whether HPA axis activity or trait anxiety moderate the relationship between sleep quality and cognitive abilities in healthy individuals. We studied 203 healthy individuals. We measured verbal and visual memory, working memory, processing speed, attention and executive function. Sleep quality was assessed with the Pittsburgh Sleep Quality Index. Trait anxiety was assessed with the State-Trait Anxiety Inventory. HPA axis measures included the cortisol awakening response (CAR), diurnal cortisol slope and cortisol levels during the day. Multiple linear regression analyses explored the relationship between sleep quality and cognition and tested potential moderating effects by HPA axis measures and trait anxiety. Poor sleep quality was associated with poorer performance in memory, processing speed and executive function tasks. In people with poorer sleep quality, a blunted CAR was associated with poorer verbal and visual memory and executive functions, and higher cortisol levels during the day were associated with poorer processing speed. Trait anxiety was a moderator of visual memory and executive functioning. These results suggest that subtle abnormalities in the HPA axis and higher trait anxiety contribute to the relationship between lower sleep quality and poorer cognitive functioning in healthy individuals.
Collapse
Affiliation(s)
- Javier Labad
- Consorci Sanitari del Maresme, 08340 Mataró, Spain;
- Institut d’Investigació i Innovació Parc Taulí (I3PT), 08208 Sabadell, Spain; (J.A.M.); (D.J.P.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
| | - Neus Salvat-Pujol
- Department of Mental Health, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain;
- Department of Psychiatry, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Spain;
- Neurosciences Group—Psychiatry and Mental Health, Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
| | - Antonio Armario
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ángel Cabezas
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43206 Reus, Spain;
| | - Aida de Arriba-Arnau
- Department of Psychiatry, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Spain;
- Neurosciences Group—Psychiatry and Mental Health, Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
| | - Roser Nadal
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lourdes Martorell
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43206 Reus, Spain;
| | - Mikel Urretavizcaya
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Department of Psychiatry, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Spain;
- Neurosciences Group—Psychiatry and Mental Health, Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - José Antonio Monreal
- Institut d’Investigació i Innovació Parc Taulí (I3PT), 08208 Sabadell, Spain; (J.A.M.); (D.J.P.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Department of Mental Health, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain;
| | - José Manuel Crespo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Department of Psychiatry, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Spain;
- Neurosciences Group—Psychiatry and Mental Health, Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Elisabet Vilella
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43206 Reus, Spain;
| | - Diego José Palao
- Institut d’Investigació i Innovació Parc Taulí (I3PT), 08208 Sabadell, Spain; (J.A.M.); (D.J.P.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Department of Mental Health, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain;
| | - José Manuel Menchón
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Department of Psychiatry, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Spain;
- Neurosciences Group—Psychiatry and Mental Health, Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Virginia Soria
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain; (A.A.); (R.N.); (L.M.); (M.U.); (J.M.C.); (E.V.); (J.M.M.)
- Department of Psychiatry, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Spain;
- Neurosciences Group—Psychiatry and Mental Health, Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain
- Correspondence:
| |
Collapse
|
8
|
Massar SAA, Lim J, Huettel SA. Sleep deprivation, effort allocation and performance. PROGRESS IN BRAIN RESEARCH 2019; 246:1-26. [PMID: 31072557 DOI: 10.1016/bs.pbr.2019.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sleep deprivation causes physiological alterations (e.g., decreased arousal, intrusion of micro-sleeps), that negatively affect performance on a wide range of cognitive domains. These effects indicate that cognitive performance relies on a capacity-limited system that may be more challenged in the absence of sleep. Additionally, sleep loss can result in a lower willingness to exert effort in the pursuit of performance goals. Such deficits in motivation may interact with the effects of capacity limitations to further stifle cognitive performance. When sleep-deprived, cognitive performance is experienced as more effortful, and intrinsic motivation to perform dwindles. On the other hand, increasing motivation extrinsically (e.g., by monetary incentives) can inspire individuals to allocate more task-related effort, and can partially counter performance deficits associated with sleep deprivation. In this chapter, we review current research on the interplay between sleep deprivation, effort and performance. We integrate these findings into an effort-based decision-making framework in which sleep-related performance impairments may result from a voluntary decision to withdraw effort. We conclude with practical implications of this framework for performance in healthy populations (e.g., work productivity) and clinical conditions.
Collapse
Affiliation(s)
- Stijn A A Massar
- Centre for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.
| | - Julian Lim
- Centre for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Scott A Huettel
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC, United States.
| |
Collapse
|
9
|
Yang L, Lei Y, Wang L, Chen P, Cheng S, Chen S, Sun J, Li Y, Wang Y, Hu W, Yang Z. Abnormal functional connectivity density in sleep-deprived subjects. Brain Imaging Behav 2019; 12:1650-1657. [PMID: 29488149 DOI: 10.1007/s11682-018-9829-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sleep deprivation (SD) can alter the intrinsic brain functional organization. However, its effects on intrinsic low-frequency connectivity in the whole brain have not been well characterized. In this study, we used voxel-based functional connectivity density (FCD) analysis to investigate the effects of SD on the spontaneous functional organization of the brain. Thirty-seven healthy participants underwent this within-subject crossover functional magnetic resonance imaging (fMRI) study during rested wakefulness (RW) and after 36 h of total sleep deprivation (TSD). Decreased long-/short-range FCDs were observed in the posterior cingulate cortex, precuneus, inferior parietal lobule, dorsolateral prefrontal cortex, dorsomedial prefrontal cortex, and ventromedial prefrontal cortex. Increased long-/short-range FCDs were found in the sensory integration and arousal regulating areas, including the postcentral gyrus, thalamus, superior temporal gyrus, and occipital-temporal cortex. Moreover, a significant negative correlation was found between the short-range FCD of the PCC and the reaction time of Psychomotor Vigilance Task. In the present study, spontaneous functional organization with significant group-wise differences between RW and TSD sessions was identified. Our findings extend our understanding of the neural mechanism of how brain activity is altered in sleep-deprived individuals.
Collapse
Affiliation(s)
- Liu Yang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Cognitive and Mental Health Research Center, Beijing, People's Republic of China
| | - Yu Lei
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Cognitive and Mental Health Research Center, Beijing, People's Republic of China.,Brain Science Center, Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Lubin Wang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Cognitive and Mental Health Research Center, Beijing, People's Republic of China
| | - Pinhong Chen
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Cognitive and Mental Health Research Center, Beijing, People's Republic of China
| | - Shan Cheng
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shanshan Chen
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Cognitive and Mental Health Research Center, Beijing, People's Republic of China
| | - Jicheng Sun
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yanyan Li
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Cognitive and Mental Health Research Center, Beijing, People's Republic of China
| | - Yihan Wang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wendong Hu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Zheng Yang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China. .,Cognitive and Mental Health Research Center, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Adolescent sleep restriction effects on cognition and mood. PROGRESS IN BRAIN RESEARCH 2019; 246:55-71. [DOI: 10.1016/bs.pbr.2019.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Sleep Deprivation Promotes Habitual Control over Goal-Directed Control: Behavioral and Neuroimaging Evidence. J Neurosci 2017; 37:11979-11992. [PMID: 29109237 DOI: 10.1523/jneurosci.1612-17.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/10/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022] Open
Abstract
Sleep is one of the most fundamental processes of life, playing an important role in the regulation of brain function. The long-term lack of sleep can cause memory impairments, declines in learning ability, and executive dysfunction. In the present study, we evaluated the effects of sleep deprivation on instrumental learning behavior, particularly goal-directed and habitual actions in humans, and investigated the underlying neural mechanisms. Healthy college students of either gender were enrolled and randomly divided into sleep deprivation group and sleep control group. fMRI data were collected. We found that one night of sleep deprivation led to greater responsiveness to stimuli that were associated with devalued outcomes in the slips-of-action test, indicating a deficit in the formation of goal-directed control and an overreliance on habits. Furthermore, sleep deprivation had no effect on the expression of acquired goal-directed action. The level of goal-directed action after sleep deprivation was positively correlated with baseline working memory capacity. The neuroimaging data indicated that goal-directed learning mainly recruited the ventromedial PFC (vmPFC), the activation of which was less pronounced during goal-directed learning after sleep deprivation. Activation of the vmPFC during goal-directed learning during training was positively correlated with the level of goal-directed action performance. The present study suggests that people rely predominantly on habits at the expense of goal-directed control after sleep deprivation, and this process involves the vmPFC. These results contribute to a better understanding of the effects of sleep loss on decision-making.SIGNIFICANCE STATEMENT Understanding the cognitive consequences of sleep deprivation has become extremely important over the past half century, given the continued decline in sleep duration in industrialized societies. Our results provide novel evidence that goal-directed action may be particularly vulnerable to sleep loss, and the brain mechanism underlying this effect was explored. Elucidation of the effects of sleep deprivation on decision-making will deepen our understanding of the function of sleep, emphasizing the role of sleep in cognitive impairments and mental health.
Collapse
|
12
|
Poh JH, Chee MWL. Degradation of neural representations in higher visual cortex by sleep deprivation. Sci Rep 2017; 7:45532. [PMID: 28361948 PMCID: PMC5374525 DOI: 10.1038/srep45532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/01/2017] [Indexed: 11/09/2022] Open
Abstract
A night of total sleep deprivation (TSD) impairs selective attention and is accompanied by attenuated activation within ventral visual cortex (VVC). However, finer details of how TSD compromises selectivity of visual processing remain unclear. Drawing from prior work in cognitive aging, we predicted that TSD would result in dedifferentiation of neural responses for faces and houses within the VVC. Instead, we found preservation of category selectivity. This was observed both in voxels highly selective for each category, and also across multiple voxels evaluated using MVPA. Based on prior findings of impaired attentional modulation following TSD, we also predicted reduced biasing of neural representations towards the attended category when participants viewed ambiguous face/house images. When participants were well rested, attention to houses (or faces) caused activation patterns to more closely resemble those elicited by isolated house (face) images than face (house) images. During TSD, attention to faces enhanced neural similarity to both target (face) and distractor (house) representations, signifying reduced suppression of irrelevant information. Degraded sensory processing reflected in reduced VVC activation following TSD, thus appears to be a result of impaired top-down modulation of sensory representations instead of degraded selectivity of maximally category sensitive voxels, or the dedifferentiation of neural activation patterns.
Collapse
Affiliation(s)
- Jia-Hou Poh
- Centre for Cognitive Neuroscience Duke-NUS Medical School, 8 College Road, Singapore, 169857.,NUS Graduate School for Integrative Sciences &Engineering, 28 Medical Drive, Singapore, 117456
| | - Michael W L Chee
- Centre for Cognitive Neuroscience Duke-NUS Medical School, 8 College Road, Singapore, 169857
| |
Collapse
|
13
|
Mullette-Gillman OA, Kurnianingsih YA, Liu JCJ. Sleep deprivation alters choice strategy without altering uncertainty or loss aversion preferences. Front Neurosci 2015; 9:352. [PMID: 26500479 PMCID: PMC4593856 DOI: 10.3389/fnins.2015.00352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 09/16/2015] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation alters decision making; however, it is unclear what specific cognitive processes are modified to drive altered choices. In this manuscript, we examined how one night of total sleep deprivation (TSD) alters economic decision making. We specifically examined changes in uncertainty preferences dissociably from changes in the strategy with which participants engage with presented choice information. With high test-retest reliability, we show that TSD does not alter uncertainty preferences or loss aversion. Rather, TSD alters the information the participants rely upon to make their choices. Utilizing a choice strategy metric which contrasts the influence of maximizing and satisficing information on choice behavior, we find that TSD alters the relative reliance on maximizing information and satisficing information, in the gains domain. This alteration is the result of participants both decreasing their reliance on cognitively-complex maximizing information and a concomitant increase in the use of readily-available satisficing information. TSD did not result in a decrease in overall information use in either domain. These results show that sleep deprivation alters decision making by altering the informational strategies that participants employ, without altering their preferences.
Collapse
Affiliation(s)
- O'Dhaniel A Mullette-Gillman
- Department of Psychology, National University of Singapore Singapore, Singapore ; SINAPSE Institute, National University of Singapore Singapore, Singapore ; Neuroscience and Behavioral Disorders Program, Centre for Cognitive Neuroscience, Duke-NUS Graduate Medical School Singapore, Singapore
| | | | - Jean C J Liu
- Neuroscience and Behavioral Disorders Program, Centre for Cognitive Neuroscience, Duke-NUS Graduate Medical School Singapore, Singapore ; Division of Social Sciences, Yale-NUS College Singapore, Singapore
| |
Collapse
|
14
|
Ong JL, Kong D, Chia TT, Tandi J, Thomas Yeo B, Chee MW. Co-activated yet disconnected—Neural correlates of eye closures when trying to stay awake. Neuroimage 2015; 118:553-62. [DOI: 10.1016/j.neuroimage.2015.03.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 12/25/2022] Open
|
15
|
Kong D, Asplund CL, Ling A, Chee MWL. Increased Automaticity and Altered Temporal Preparation Following Sleep Deprivation. Sleep 2015; 38:1219-27. [PMID: 25845689 DOI: 10.5665/sleep.4896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/04/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Temporal expectation enables us to focus limited processing resources, thereby optimizing perceptual and motor processing for critical upcoming events. We investigated the effects of total sleep deprivation (TSD) on temporal expectation by evaluating the foreperiod and sequential effects during a psychomotor vigilance task (PVT). We also examined how these two measures were modulated by vulnerability to TSD. DESIGN Three 10-min visual PVT sessions using uniformly distributed foreperiods were conducted in the wake-maintenance zone the evening before sleep deprivation (ESD) and three more in the morning following approximately 22 h of TSD. TSD vulnerable and nonvulnerable groups were determined by a tertile split of participants based on the change in the number of behavioral lapses recorded during ESD and TSD. A subset of participants performed six additional 10-min modified auditory PVTs with exponentially distributed foreperiods during rested wakefulness (RW) and TSD to test the effect of temporal distribution on foreperiod and sequential effects. SETTING Sleep laboratory. PARTICIPANTS There were 172 young healthy participants (90 males) with regular sleep patterns. Nineteen of these participants performed the modified auditory PVT. MEASUREMENTS AND RESULTS Despite behavioral lapses and slower response times, sleep deprived participants could still perceive the conditional probability of temporal events and modify their level of preparation accordingly. Both foreperiod and sequential effects were magnified following sleep deprivation in vulnerable individuals. Only the foreperiod effect increased in nonvulnerable individuals. CONCLUSIONS The preservation of foreperiod and sequential effects suggests that implicit time perception and temporal preparedness are intact during total sleep deprivation. Individuals appear to reallocate their depleted preparatory resources to more probable event timings in ongoing trials, whereas vulnerable participants also rely more on automatic processes.
Collapse
Affiliation(s)
- Danyang Kong
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Christopher L Asplund
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore.,Division of Social Sciences, Yale-NUS College, Singapore
| | - Aiqing Ling
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Michael W L Chee
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
16
|
Yeo BT, Tandi J, Chee MW. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation. Neuroimage 2015; 111:147-58. [DOI: 10.1016/j.neuroimage.2015.02.018] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 12/20/2022] Open
|
17
|
Gao L, Bai L, Zhang Y, Dai XJ, Netra R, Min Y, Zhou F, Niu C, Dun W, Gong H, Zhang M. Frequency-dependent changes of local resting oscillations in sleep-deprived brain. PLoS One 2015; 10:e0120323. [PMID: 25798918 PMCID: PMC4370559 DOI: 10.1371/journal.pone.0120323] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
Sleep deprivation (SD) adversely affects brain function and is accompanied by frequency dependent changes in EEG. Recent studies have suggested that BOLD fluctuations pertain to a spatiotemporal organization with different frequencies. The present study aimed to investigate the frequency-dependent SD-related brain oscillatory activity by using the amplitude of low-frequency fluctuation (ALFF) analysis. The ALFF changes were measured across different frequencies (Slow-4: 0.027–0.073 Hz; Slow-5: 0.01–0.027 Hz; and Typical band: 0.01–0.08 Hz) in 24 h SD as compared to rested wakeful during resting-state fMRI. Sixteen volunteers underwent two fMRI sessions, once during rested wakefulness and once after 24 h of SD. SD showed prominently decreased ALFF in the right inferior parietal lobule (IPL), bilateral orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC), while increased ALFF in the visual cortex, left sensorimotor cortex and fusiform gyrus. Across the Slow-4 and Slow-5, results differed significantly in the OFC, DLPFC, thalamus and caudate in comparison to typical frequency band; and Slow-4 showed greater differences. In addition, negative correlations of behavior performance and ALFF patterns were found mainly in the right IPL across the typical frequency band. These observations provided novel insights about the physiological responses of SD, identified how it disturbs the brain rhythms, and linked SD with frequency-dependent alterations in amplitude patterns.
Collapse
Affiliation(s)
- Lei Gao
- Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yuchen Zhang
- Zonglian Experimental Class, Xi’an Jiaotong University, Xi’an, China
| | - Xi-jian Dai
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Rana Netra
- Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Youjiang Min
- Acupuncture & Rehabilitation Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Fuqing Zhou
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chen Niu
- Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wanghuan Dun
- Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Honghan Gong
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- * E-mail: (MZ); (HG)
| | - Ming Zhang
- Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- * E-mail: (MZ); (HG)
| |
Collapse
|
18
|
Limitations on visual information processing in the sleep-deprived brain and their underlying mechanisms. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2014.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Patanaik A, Zagorodnov V, Kwoh CK, Chee MWL. Predicting vulnerability to sleep deprivation using diffusion model parameters. J Sleep Res 2014; 23:576-84. [DOI: 10.1111/jsr.12166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/22/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Amiya Patanaik
- School of Computer Engineering; Nanyang Technological University; Singapore Singapore
| | - Vitali Zagorodnov
- School of Computer Engineering; Nanyang Technological University; Singapore Singapore
| | - Chee Keong Kwoh
- School of Computer Engineering; Nanyang Technological University; Singapore Singapore
| | - Michael W. L. Chee
- Cognitive Neuroscience Laboratory; Duke-NUS Graduate Medical School; Singapore Singapore
| |
Collapse
|