1
|
De Vis C, Barry KM, Mulders WHAM. Hearing Loss Increases Inhibitory Effects of Prefrontal Cortex Stimulation on Sound Evoked Activity in Medial Geniculate Nucleus. Front Synaptic Neurosci 2022; 14:840368. [PMID: 35300310 PMCID: PMC8921694 DOI: 10.3389/fnsyn.2022.840368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Sensory gating is the process whereby irrelevant sensory stimuli are inhibited on their way to higher cortical areas, allowing for focus on salient information. Sensory gating circuitry includes the thalamus as well as several cortical regions including the prefrontal cortex (PFC). Defective sensory gating has been implicated in a range of neurological disorders, including tinnitus, a phantom auditory perception strongly associated with cochlear trauma. Recently, we have shown in rats that functional connectivity between PFC and auditory thalamus, i.e., the medial geniculate nucleus (MGN), changes following cochlear trauma, showing an increased inhibitory effect from PFC activation on the spontaneous firing rate of MGN neurons. In this study, we further investigated this phenomenon using a guinea pig model, in order to demonstrate the validity of our finding beyond a single species and extend data to include data on sound evoked responses. Effects of PFC electrical stimulation on spontaneous and sound-evoked activity of single neurons in MGN were recorded in anaesthetised guinea pigs with normal hearing or hearing loss 2 weeks after acoustic trauma. No effect, inhibition and excitation were observed following PFC stimulation. The proportions of these effects were not different in animals with normal hearing and hearing loss but the magnitude of effect was. Indeed, hearing loss significantly increased the magnitude of inhibition for sound evoked responses, but not for spontaneous activity. The findings support previous observations that PFC can modulate MGN activity and that functional changes occur within this pathway after cochlear trauma. These data suggest hearing loss can alter sensory gating which may be a contributing factor toward tinnitus development.
Collapse
|
2
|
Isaacs D, Key AP, Cascio CJ, Conley AC, Riordan H, Walker HC, Wallace MT, Claassen DO. Cross-disorder comparison of sensory over-responsivity in chronic tic disorders and obsessive-compulsive disorder. Compr Psychiatry 2022; 113:152291. [PMID: 34952304 PMCID: PMC8792289 DOI: 10.1016/j.comppsych.2021.152291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Sensory over-responsivity (SOR) refers to excessively intense and/or prolonged behavioral responses to environmental stimuli typically perceived as non-aversive. SOR is prevalent in several neurodevelopmental disorders, including chronic tic disorders (CTDs) and obsessive-compulsive disorder (OCD). Few studies have examined the extent and clinical correlates of SOR across disorders, limiting insights into the phenomenon's transdiagnostic clinical and biological relevance. Such cross-disorder comparisons are of particular interest for CTDs and OCD given their frequent co-occurrence. OBJECTIVE We sought to compare the magnitude of SOR between adults with CTD and adults with OCD and to identify the clinical factors most strongly associated with SOR across these disorders. METHODS We enrolled 207 age- and sex-matched participants across four diagnostic categories: CTD without OCD (designated "CTD/OCD-"; n = 37), CTD with OCD ("CTD/OCD+"; n = 32), OCD without tic disorder ("OCD"; n = 69), and healthy controls (n = 69). Participants completed a self-report battery of rating scales assessing SOR (Sensory Gating Inventory, SGI), obsessive-compulsive symptoms (Dimensional Obsessive-Compulsive Scale, DOCS), inattention and hyperactivity (Adult ADHD Self-Report Screening Scale for DSM-5, ASRS-5), anxiety (Generalized Anxiety Disorder-7), and depression (Patient Health Questionnaire-9). CTD participants were also administered the Yale Global Tic Severity Scale (YGTSS). To examine between-group differences in SOR, we compared SGI score across all groups and between pairs of groups. To examine the relationship of SOR with other clinical factors, we performed multivariable linear regression. RESULTS CTD/OCD-, CTD/OCD+, and OCD participants were 86.7%, 87.6%, and 89.5%, respectively, more likely to have higher SGI total scores than healthy controls. SGI total score did not differ between CTD/OCD-, CTD/OCD+, and OCD groups. In the regression model of log-transformed SGI total score, OCD diagnosis, DOCS score, and ASRS-5 score each contributed significantly to model goodness-of-fit, whereas CTD diagnosis and YGTSS total tic score did not. CONCLUSION SOR is prevalent in adults with CTD and in adults with OCD but does not significantly differ in magnitude between these disorders. Across CTD, OCD, and healthy control adult populations, SOR is independently associated with both obsessive-compulsive and ADHD symptoms, suggesting a transdiagnostic relationship between these sensory and psychiatric manifestations. Future cross-disorder, longitudinal, and translational research is needed to clarify the role and prognostic import of SOR in CTDs, OCD, and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- David Isaacs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - Alexandra P Key
- Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, United States; Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, United States.
| | - Carissa J Cascio
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, United States; Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - Alexander C Conley
- Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - Heather Riordan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, United States; Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, United States; Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Department of Psychology, Vanderbilt University, Nashville, TN, United States.
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
3
|
Chen YX, Xu XR, Huang S, Guan RR, Hou XY, Sun JQ, Sun JW, Guo XT. Auditory Sensory Gating in Children With Cochlear Implants: A P50-N100-P200 Study. Front Neurosci 2021; 15:768427. [PMID: 34938156 PMCID: PMC8685319 DOI: 10.3389/fnins.2021.768427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
Background: While a cochlear implant (CI) can restore access to audibility in deaf children, implanted children may still have difficulty in concentrating. Previous studies have revealed a close relationship between sensory gating and attention. However, whether CI children have deficient auditory sensory gating remains unclear. Methods: To address this issue, we measured the event-related potentials (ERPs), including P50, N100, and P200, evoked by paired tone bursts (S1 and S2) in CI children and normal-hearing (NH) controls. Suppressed amplitudes for S2 compared with S1 in these three ERPs reflected sensory gating during early and later phases, respectively. A Swanson, Nolan, and Pelham IV (SNAP-IV) scale was performed to assess the attentional performance. Results: Significant amplitude differences between S1 and S2 in N100 and P200 were observed in both NH and CI children, indicating the presence of sensory gating in the two groups. However, the P50 suppression was only found in NH children and not in CI children. Furthermore, the duration of deafness was significantly positively correlated with the score of inattention in CI children. Conclusion: Auditory sensory gating can develop but is deficient during the early phase in CI children. Long-term auditory deprivation has a negative effect on sensory gating and attentional performance.
Collapse
Affiliation(s)
- Yan-Xin Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin-Ran Xu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuo Huang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui-Rui Guan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Yan Hou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jia-Qiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing-Wu Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Tao Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Josef-Golubić S. Triple model of auditory sensory processing: a novel gating stream directly links primary auditory areas to executive prefrontal cortex. Acta Clin Croat 2020; 59:721-728. [PMID: 34285443 PMCID: PMC8253058 DOI: 10.20471/acc.2020.59.04.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/09/2018] [Indexed: 11/24/2022] Open
Abstract
The generally accepted model of sensory processing of visual and auditory stimuli assumes two major parallel processing streams, ventral and dorsal, which comprise functionally and anatomically distinct but interacting processes in which the ventral stream supports stimulus identification, and the dorsal stream is involved in recognizing the stimulus spatial location and sensori-motor integration functions. However, recent studies suggest the existence of a third, very fast sensory processing pathway, a gating stream that directly links the primary auditory cortices to the executive prefrontal cortex within the first 50 milliseconds after presentation of a stimulus, bypassing hierarchical structure of the ventral and dorsal pathways. Gating stream propagates the sensory gating phenomenon, which serves as a basic protective mechanism preventing irrelevant, repeated information from recurrent sensory processing. The goal of the present paper is to introduce the novel 'three-stream' model of auditory processing, including the new fast sensory processing stream, i.e. gating stream, alongside the well-affirmed dorsal and ventral sensory processing pathways. The impairments in sensory processing along the gating stream have been found to be strongly involved in the pathophysiological sensory processing in Alzheimer's disease and could be the underlying issue in numerous neuropsychiatric disorders and diseases that are linked to the pathological sensory gating inhibition, such as schizophrenia, post-traumatic stress disorder, bipolar disorder or attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Sanja Josef-Golubić
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Golubic SJ, Jurasic MJ, Susac A, Huonker R, Gotz T, Haueisen J. Attention modulates topology and dynamics of auditory sensory gating. Hum Brain Mapp 2019; 40:2981-2994. [PMID: 30882981 PMCID: PMC6865797 DOI: 10.1002/hbm.24573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/11/2019] [Accepted: 03/06/2019] [Indexed: 01/26/2023] Open
Abstract
This work challenges the widely accepted model of sensory gating as a preattention inhibitory process by investigating whether attention directed at the second tone (S2) within a paired-click paradigm could affect gating at the cortical level. We utilized magnetoencephalography, magnetic resonance imaging and spatio-temporal source localization to compare the cortical dynamics underlying gating responses across two conditions (passive and attention) in 19 healthy subjects. Source localization results reaffirmed the existence of a fast processing pathway between the prefrontal cortex (PFC) and bilateral superior temporal gyri (STG) that underlies the auditory gating process. STG source dynamics comprised two gating sub-components, Mb1 and Mb2, both of which showed significant gating suppression (>51%). The attention directed to the S2 tone changed the gating network topology by switching the prefrontal generator from a dorsolateral location, which was active in the passive condition (18/19), to a medial location, active in the attention condition (19/19). Enhanced responses to the attended stimulus caused a significant reduction in gating suppression in both STG gating components (>50%). Our results demonstrate that attention not only modulates sensory gating dynamics, but also exerts topological rerouting of information processing within the PFC. The present data, suggesting that the cortical levels of early sensory processing are subject to top-down influences, change the current view of gating as a purely automatic bottom-up process.
Collapse
Affiliation(s)
| | | | - Ana Susac
- Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia
- Department of Applied Physics, Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
| | - Ralph Huonker
- Biomagnetic Center, Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | - Theresa Gotz
- Biomagnetic Center, Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University HospitalJenaGermany
| | - Jens Haueisen
- Biomagnetic Center, Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Institute of Biomedical Engineering and Informatics, Technical University IlmenauIlmenauGermany
| |
Collapse
|
6
|
Fruehwirt W, Dorffner G, Roberts S, Gerstgrasser M, Grossegger D, Schmidt R, Dal-Bianco P, Ransmayr G, Garn H, Waser M, Benke T. Associations of event-related brain potentials and Alzheimer's disease severity: A longitudinal study. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:31-38. [PMID: 30582941 DOI: 10.1016/j.pnpbp.2018.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND So far, no cost-efficient, widely-used biomarkers have been established to facilitate the objectivization of Alzheimer's disease (AD) diagnosis and monitoring. Research suggests that event-related potentials (ERPs) reflect neurodegenerative processes in AD and might qualify as neurophysiological AD markers. OBJECTIVES First, to examine which ERP component correlates the most with AD severity, as measured by the Mini-Mental State Examination (MMSE). Then, to analyze the temporal change of this component as AD progresses. METHODS Sixty-three subjects (31 with possible, 32 with probable AD diagnosis) were recruited as part of the cohort study Prospective Dementia Registry Austria (PRODEM). For a maximum of 18 months patients revisited every 6 months for follow-up assessments. ERPs were elicited using an auditory oddball paradigm. P300 and N200 latency was determined with regard to target as well as difference wave ERPs, whereas P50 amplitude was measured from standard stimuli waveforms. RESULTS P300 latency exhibited the strongest association with AD severity (e.g., r = -0.512, p < 0.01 at Pz for target stimuli in probable AD subjects). Further, there were significant Pearson correlations for N200 latency (e.g., r = -0.407, p = 0.026 at Cz for difference waves in probable AD subjects). P50 amplitude, as measured by different detection methods and at various scalp sites, did not significantly correlate with disease severity - neither in probable AD, possible AD, nor in both subgroups of patients combined. ERP markers for the group of possible AD patients did not show any significant correlations with MMSE scores. Post-hoc pairwise comparisons between baseline and 18-months follow-up assessment revealed significant P300 latency differences (e.g., p < 0.001 at Cz for difference waves in probable AD subjects). However, there were no significant correlations between the change rates of P300 latency and MMSE score. CONCLUSIONS P300 and N200 latency significantly correlated with disease severity in probable AD, whereas P50 amplitude did not. P300 latency, which showed the highest correlation coefficients with MMSE, significantly increased over the course of the 18 months study period in probable AD patients. The magnitude of the observed prolongation is in line with other longitudinal AD studies and substantially higher than in normal ageing, as reported in previous trials (no healthy controls were included in our study).
Collapse
Affiliation(s)
- Wolfgang Fruehwirt
- Medical University of Vienna, Institute of Artificial Intelligence and Decision Support, Vienna, Austria; University of Oxford, Department of Engineering Science, Oxford, UK.
| | - Georg Dorffner
- Medical University of Vienna, Institute of Artificial Intelligence and Decision Support, Vienna, Austria
| | - Stephen Roberts
- University of Oxford, Department of Engineering Science, Oxford, UK
| | | | | | - Reinhold Schmidt
- Medical University of Graz, Department of Neurology, Graz, Austria
| | - Peter Dal-Bianco
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Gerhard Ransmayr
- Kepler University Hospital, Department of Neurology 2, Linz, Austria
| | - Heinrich Garn
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Markus Waser
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Thomas Benke
- Medical University of Innsbruck, Department of Neurology, Innsbruck, Austria
| |
Collapse
|
7
|
Josef Golubic S, Aine CJ, Stephen JM, Adair JC, Knoefel JE, Supek S. MEG biomarker of Alzheimer's disease: Absence of a prefrontal generator during auditory sensory gating. Hum Brain Mapp 2017; 38:5180-5194. [PMID: 28714589 DOI: 10.1002/hbm.23724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
Magnetoencephalography (MEG), a direct measure of neuronal activity, is an underexplored tool in the search for biomarkers of Alzheimer's disease (AD). In this study, we used MEG source estimates of auditory gating generators, nonlinear correlations with neuropsychological results, and multivariate analyses to examine the sensitivity and specificity of gating topology modulation to detect AD. Our results demonstrated the use of MEG localization of a medial prefrontal (mPFC) gating generator as a discrete (binary) detector of AD at the individual level and resulted in recategorizing the participant categories in: (1) controls with mPFC generator localized in response to both the standard and deviant tones; (2) a possible preclinical stage of AD participants (a lower functioning group of controls) in which mPFC activation was localized to the deviant tone only; and (3) symptomatic AD in which mPFC activation was not localized to either the deviant or standard tones. This approach showed a large effect size (0.9) and high accuracy, sensitivity, and specificity (100%) in identifying symptomatic AD patients within a limited research sample. The present results demonstrate high potential of mPFC activation as a noninvasive biomarker of AD pathology during putative preclinical and clinical stages. Hum Brain Mapp 38:5180-5194, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Cheryl J Aine
- Department of Radiology, UNM School of Medicine, Albuquerque, New Mexico.,The Mind Research Network, Albuquerque, New Mexico
| | | | - John C Adair
- Department of Neurology, UNM School of Medicine, Albuquerque, New Mexico.,New Mexico VA Healthcare System, Albuquerque, New Mexico
| | - Janice E Knoefel
- Department of Neurology, UNM School of Medicine, Albuquerque, New Mexico.,Department of Internal Medicine, UNM School of Medicine, Albuquerque, New Mexico
| | - Selma Supek
- Department of Physics, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|
8
|
Green DL, Payne L, Polikar R, Moberg PJ, Wolk DA, Kounios J. P50: A candidate ERP biomarker of prodromal Alzheimer's disease. Brain Res 2015; 1624:390-397. [PMID: 26256251 DOI: 10.1016/j.brainres.2015.07.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Reductions of cerebrospinal fluid (CSF) amyloid-beta (Aβ42) and elevated phosphorylated-tau (p-Tau) reflect in vivo Alzheimer's disease (AD) pathology and show utility in predicting conversion from mild cognitive impairment (MCI) to dementia. We investigated the P50 event-related potential component as a noninvasive biomarker of AD pathology in non-demented elderly. METHODS 36 MCI patients were stratified into amyloid positive (MCI-AD, n=17) and negative (MCI-Other, n=19) groups using CSF levels of Aβ42. All amyloid positive patients were also p-Tau positive. P50s were elicited with an auditory oddball paradigm. RESULTS MCI-AD patients yielded larger P50s than MCI-Other. The best amyloid-status predictor model showed 94.7% sensitivity, 94.1% specificity and 94.4% total accuracy. DISCUSSION P50 predicted amyloid status in MCI patients, thereby showing a relationship with AD pathology versus MCI from another etiology. The P50 may have clinical utility for inexpensive pre-screening and assessment of Alzheimer's pathology.
Collapse
Affiliation(s)
- Deborah L Green
- Department of Psychology, Drexel University, Stratton Hall, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Lisa Payne
- Volen National Center for Complex Systems, Brandeis University, 145 South Street, Waltham, MA 02453, USA
| | - Robi Polikar
- Department of Electrical and Computer Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Paul J Moberg
- Department of Neuropsychiatry, University of Pennsylvania, 10(th) floor, Gates Building, 3401 Spruce Street, Philadelphia, PA 19104, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Ralston House, 3615 Chestnut Street, Philadelphia, PA 19104, USA
| | - John Kounios
- Department of Psychology, Drexel University, Stratton Hall, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Recasens M, Leung S, Grimm S, Nowak R, Escera C. Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: an MEG study. Neuroimage 2015; 108:75-86. [PMID: 25528656 DOI: 10.1016/j.neuroimage.2014.12.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/24/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022] Open
|