1
|
Rybář M, Poli R, Daly I. Simultaneous EEG and fNIRS recordings for semantic decoding of imagined animals and tools. Sci Data 2025; 12:613. [PMID: 40221457 PMCID: PMC11993746 DOI: 10.1038/s41597-025-04967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Semantic neural decoding aims to identify which semantic concepts an individual focuses on at a given moment based on recordings of their brain activity. We investigated the feasibility of semantic neural decoding to develop a new type of brain-computer interface (BCI) that allows direct communication of semantic concepts, bypassing the character-by-character spelling used in current BCI systems. We provide data from our study to differentiate between two semantic categories of animals and tools during a silent naming task and three intuitive sensory-based imagery tasks using visual, auditory, and tactile perception. Participants were instructed to visualize an object (animal or tool) in their minds, imagine the sounds produced by the object, and imagine the feeling of touching the object. Simultaneous electroencephalography (EEG) and near-infrared spectroscopy (fNIRS) signals were recorded from 12 participants. Additionally, EEG signals were recorded from 7 other participants in a follow-up experiment focusing solely on the auditory imagery task. These datasets can serve as a valuable resource for researchers investigating semantic neural decoding, brain-computer interfaces, and mental imagery.
Collapse
Affiliation(s)
- Milan Rybář
- Brain-Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, United Kingdom.
| | - Riccardo Poli
- Brain-Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Ian Daly
- Brain-Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, United Kingdom.
| |
Collapse
|
2
|
Morozova M, Yakovlev L, Syrov N, Lebedev M, Kaplan A. Tactile imagery affects cortical responses to vibrotactile stimulation of the fingertip. Heliyon 2024; 10:e40807. [PMID: 39698084 PMCID: PMC11652922 DOI: 10.1016/j.heliyon.2024.e40807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Mental imagery is a crucial cognitive process, yet its underlying neural mechanisms remain less understood compared to perception. Furthermore, within the realm of mental imagery, the somatosensory domain is particularly underexplored compared to other sensory modalities. This study aims to investigate the influence of tactile imagery (TI) on cortical somatosensory processing. We explored the cortical manifestations of TI by recording EEG activity in healthy human subjects. We investigated event-related somatosensory oscillatory dynamics during TI compared to actual tactile stimulation, as well as somatosensory evoked potentials (SEPs) in response to short vibrational stimuli, examining their amplitude-temporal characteristics and spatial distribution across the scalp. EEG activity exhibited significant changes during TI compared to the no-imagery baseline. TI caused event-related desynchronization (ERD) of the contralateral μ-rhythm, with a notable correlation between ERD during imagery and real stimulation across subjects. TI also modulated several SEP components in sensorimotor and frontal areas, showing increases in the contralateral P100 and P300, contra- and ipsilateral P300, frontal P200, and parietal P600 components. The results clearly indicate that TI affects cortical processing of somatosensory stimuli, impacting EEG responses in various cortical areas. The assessment of SEPs in EEG could serve as a versatile marker of tactile imagery in practical applications. We propose incorporating TI in imagery-based brain-computer interfaces (BCIs) to enhance sensorimotor restoration and sensory substitution. This approach underscores the importance of somatosensory mental imagery in cognitive neuroscience and its potential applications in neurorehabilitation and assistive technologies.
Collapse
Affiliation(s)
- Marina Morozova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Lev Yakovlev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, 518115, Shenzhen, China
| | - Nikolay Syrov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Mikhail Lebedev
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991, Moscow, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Saint Petersburg, Russia
| | - Alexander Kaplan
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
3
|
Miroshnikov A, Yakovlev L, Syrov N, Vasilyev A, Berkmush-Antipova A, Golovanov F, Kaplan A. Differential Hemodynamic Responses to Motor and Tactile Imagery: Insights from Multichannel fNIRS Mapping. Brain Topogr 2024; 38:4. [PMID: 39367153 DOI: 10.1007/s10548-024-01075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
Tactile and motor imagery are crucial components of sensorimotor functioning and cognitive neuroscience research, yet the neural mechanisms of tactile imagery remain underexplored compared to motor imagery. This study employs multichannel functional near-infrared spectroscopy (fNIRS) combined with image reconstruction techniques to investigate the neural hemodynamics associated with tactile (TI) and motor imagery (MI). In a study of 15 healthy participants, we found that MI elicited significantly greater hemodynamic responses (HRs) in the precentral area compared to TI, suggesting the involvement of different cortical areas involved in two different types of sensorimotor mental imagery. Concurrently, the HRs in S1 and parietal areas exhibited comparable patterns in both TI and MI. During MI, both motor and somatosensory areas demonstrated comparable HRs. However, in TI, somatosensory activation was observed to be more pronounced. Our results highlight the distinctive neural profiles of motor versus tactile imagery and indicate fNIRS technique to be sensitive for this. This distinction is significant for fundamental understanding of sensorimotor integration and for developing advanced neurotechnologies, including imagery-based brain-computer interfaces (BCIs) that can differentiate between different types of mental imagery.
Collapse
Affiliation(s)
- Andrei Miroshnikov
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory, 1, building 12, Moscow, 119234, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Alexander Nevsky Street, 14, Kaliningrad, 236041, Russia
| | - Lev Yakovlev
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory, 1, building 12, Moscow, 119234, Russia.
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Alexander Nevsky Street, 14, Kaliningrad, 236041, Russia.
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, building 1, Moscow, 121205, Russia.
| | - Nikolay Syrov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, building 1, Moscow, 121205, Russia
| | - Anatoly Vasilyev
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory, 1, building 12, Moscow, 119234, Russia
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Shelepikhinskaya Naberezhnaya, 2А, 2, Moscow, 123290, Russia
| | - Artemiy Berkmush-Antipova
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Alexander Nevsky Street, 14, Kaliningrad, 236041, Russia
| | - Frol Golovanov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Alexander Nevsky Street, 14, Kaliningrad, 236041, Russia
| | - Alexander Kaplan
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory, 1, building 12, Moscow, 119234, Russia
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, building 1, Moscow, 121205, Russia
| |
Collapse
|
4
|
Morozova M, Nasibullina A, Yakovlev L, Syrov N, Kaplan A, Lebedev M. Tactile versus motor imagery: differences in corticospinal excitability assessed with single-pulse TMS. Sci Rep 2024; 14:14862. [PMID: 38937562 PMCID: PMC11211487 DOI: 10.1038/s41598-024-64665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Tactile Imagery (TI) remains a fairly understudied phenomenon despite growing attention to this topic in recent years. Here, we investigated the effects of TI on corticospinal excitability by measuring motor evoked potentials (MEPs) induced by single-pulse transcranial magnetic stimulation (TMS). The effects of TI were compared with those of tactile stimulation (TS) and kinesthetic motor imagery (kMI). Twenty-two participants performed three tasks in randomly assigned order: imagine finger tapping (kMI); experience vibratory sensations in the middle finger (TS); and mentally reproduce the sensation of vibration (TI). MEPs increased during both kMI and TI, with a stronger increase for kMI. No statistically significant change in MEP was observed during TS. The demonstrated differential effects of kMI, TI and TS on corticospinal excitability have practical implications for devising the imagery-based and TS-based brain-computer interfaces (BCIs), particularly the ones intended to improve neurorehabilitation by evoking plasticity changes in sensorimotor circuitry.
Collapse
Affiliation(s)
- Marina Morozova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Aigul Nasibullina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Lev Yakovlev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia.
| | - Nikolay Syrov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Alexander Kaplan
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail Lebedev
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| |
Collapse
|
5
|
Wen H, Zhong Y, Yao L, Wang Y. Neural Correlates of Motor/Tactile Imagery and Tactile Sensation in a BCI paradigm: A High-Density EEG Source Imaging Study. CYBORG AND BIONIC SYSTEMS 2024; 5:0118. [PMID: 38912322 PMCID: PMC11192147 DOI: 10.34133/cbsystems.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/01/2024] [Indexed: 06/25/2024] Open
Abstract
Complementary to brain-computer interface (BCI) based on motor imagery (MI) task, sensory imagery (SI) task provides a way for BCI construction using brain activity from somatosensory cortex. The underlying neurophysiological correlation between SI and MI was unclear and difficult to measure through behavior recording. In this study, we investigated the underlying neurodynamic of motor/tactile imagery and tactile sensation tasks through a high-density electroencephalogram (EEG) recording, and EEG source imaging was used to systematically explore the cortical activation differences and correlations between the tasks. In the experiment, participants were instructed to perform the left and right hand tasks in MI paradigm, sensory stimulation (SS) paradigm and SI paradigm. The statistical results demonstrated that the imagined MI and SI tasks differed from each other within ipsilateral sensorimotor scouts, frontal and right temporal areas in α bands, whereas real SS and imagined SI showed a similar activation pattern. The similarity between SS and SI may provide a way to train the BCI system, while the difference between MI and SI may provide a way to integrate the discriminative information between them to enhance BCI performance. The combination of the tasks and its underlying neurodynamic would provide a new approach for BCI designation for a wider application. BCI studies concentrate on the hybrid decoding method combining MI or SI with SS, but the underlining neurophysiological correlates between them were unclear. MI and SI differed from each other within the ipsilateral sensorimotor cortex in alpha bands. This is a first study to investigate the neurophysiological relationship between MI and SI through an EEG source imaging approach from high-density EEG recording.
Collapse
Affiliation(s)
- Huan Wen
- The Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital,
Zhejiang University School of Medicine, Hangzhou, China
- The Nanhu Brain-Computer Interface Institute, Hangzhou, China
- The MOE Frontiers Science Center for Brain and Brain-Machine Integration,
Zhejiang University, Hangzhou, China
| | - Yucun Zhong
- The Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital,
Zhejiang University School of Medicine, Hangzhou, China
- The Nanhu Brain-Computer Interface Institute, Hangzhou, China
- The MOE Frontiers Science Center for Brain and Brain-Machine Integration,
Zhejiang University, Hangzhou, China
| | - Lin Yao
- The Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital,
Zhejiang University School of Medicine, Hangzhou, China
- The Nanhu Brain-Computer Interface Institute, Hangzhou, China
- The MOE Frontiers Science Center for Brain and Brain-Machine Integration,
Zhejiang University, Hangzhou, China
- The College of Computer Science,
Zhejiang University, Hangzhou, China
- The College of Biomedical Engineering & Instrument Science,
Zhejiang University, Hangzhou, China
| | - Yueming Wang
- The MOE Frontiers Science Center for Brain and Brain-Machine Integration,
Zhejiang University, Hangzhou, China
- The College of Computer Science,
Zhejiang University, Hangzhou, China
- The Qiushi Academy for Advanced Studies, Hangzhou, China
| |
Collapse
|
6
|
Lakshminarayanan K, Shah R, Daulat SR, Moodley V, Yao Y, Sengupta P, Ramu V, Madathil D. Evaluation of EEG Oscillatory Patterns and Classification of Compound Limb Tactile Imagery. Brain Sci 2023; 13:brainsci13040656. [PMID: 37190621 DOI: 10.3390/brainsci13040656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Objective: The purpose of this study was to investigate the cortical activity and digit classification performance during tactile imagery (TI) of a vibratory stimulus at the index, middle, and thumb digits within the left hand in healthy individuals. Furthermore, the cortical activities and classification performance of the compound TI were compared with similar compound motor imagery (MI) with the same digits as TI in the same subjects. Methods: Twelve healthy right-handed adults with no history of upper limb injury, musculoskeletal condition, or neurological disorder participated in the study. The study evaluated the event-related desynchronization (ERD) response and brain-computer interface (BCI) classification performance on discriminating between the digits in the left-hand during the imagery of vibrotactile stimuli to either the index, middle, or thumb finger pads for TI and while performing a motor activity with the same digits for MI. A supervised machine learning technique was applied to discriminate between the digits within the same given limb for both imagery conditions. Results: Both TI and MI exhibited similar patterns of ERD in the alpha and beta bands at the index, middle, and thumb digits within the left hand. While TI had significantly lower ERD for all three digits in both bands, the classification performance of TI-based BCI (77.74 ± 6.98%) was found to be similar to the MI-based BCI (78.36 ± 5.38%). Conclusions: The results of this study suggest that compound tactile imagery can be a viable alternative to MI for BCI classification. The study contributes to the growing body of evidence supporting the use of TI in BCI applications, and future research can build on this work to explore the potential of TI-based BCI for motor rehabilitation and the control of external devices.
Collapse
Affiliation(s)
- Kishor Lakshminarayanan
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Rakshit Shah
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA
| | - Sohail R Daulat
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Viashen Moodley
- Arizona Center for Hand to Shoulder Surgery, Phoenix, AZ 85004, USA
| | - Yifei Yao
- Soft Tissue Biomechanics Laboratory, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Puja Sengupta
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Vadivelan Ramu
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Deepa Madathil
- Jindal Institute of Behavioral Sciences, O. P. Jindal Global University, Sonipat 131001, Haryana, India
| |
Collapse
|
7
|
Lakshminarayanan K, Ramu V, Rajendran J, Chandrasekaran KP, Shah R, Daulat SR, Moodley V, Madathil D. The Effect of Tactile Imagery Training on Reaction Time in Healthy Participants. Brain Sci 2023; 13:brainsci13020321. [PMID: 36831864 PMCID: PMC9954091 DOI: 10.3390/brainsci13020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Reaction time is an important measure of sensorimotor performance and coordination and has been shown to improve with training. Various training methods have been employed in the past to improve reaction time. Tactile imagery (TI) is a method of mentally simulating a tactile sensation and has been used in brain-computer interface applications. However, it is yet unknown whether TI can have a learning effect and improve reaction time. OBJECTIVE The purpose of this study was to investigate the effect of TI on reaction time in healthy participants. METHODS We examined the reaction time to vibratory stimuli before and after a TI training session in an experimental group and compared the change in reaction time post-training with pre-training in the experimental group as well as the reaction time in a control group. A follow-up evaluation of reaction time was also conducted. RESULTS The results showed that TI training significantly improved reaction time after TI compared with before TI by approximately 25% (pre-TI right-hand mean ± SD: 456.62 ± 124.26 ms, pre-TI left-hand mean ± SD: 448.82 ± 124.50 ms, post-TI right-hand mean ± SD: 340.32 ± 65.59 ms, post-TI left-hand mean ± SD: 335.52 ± 59.01 ms). Furthermore, post-training reaction time showed significant reduction compared with the control group and the improved reaction time had a lasting effect even after four weeks post-training. CONCLUSION These findings indicate that TI training may serve as an alternate imagery strategy for improving reaction time without the need for physical practice.
Collapse
Affiliation(s)
- Kishor Lakshminarayanan
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, India
- Correspondence: ; Tel.: +91-9361-013563
| | - Vadivelan Ramu
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Janaane Rajendran
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Kamala Prasanna Chandrasekaran
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Rakshit Shah
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA
| | - Sohail R. Daulat
- University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Viashen Moodley
- Arizona Center for Hand to Shoulder Surgery, Phoenix, AZ 85004, USA
| | - Deepa Madathil
- Jindal Institute of Behavioural Sciences, O. P. Jindal Global University, Haryana 131001, India
| |
Collapse
|
8
|
Moustafa A, Opoku MP, Belbase S. Using tactile imagery to teach geometry to students with visual impairments in the United Arab Emirates. RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 129:104309. [PMID: 35868199 DOI: 10.1016/j.ridd.2022.104309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Learning geometry is difficult for students with visual impairments (VIs). However, tactile imagery, the process of constructing mental images of physical objects with certain shapes, may help them make sense of geometrical shapes. Thus, discussions have centred on interventions to promote the participation of students with VIs in the learning of shapes. This study explored tactile imagery connecting physical touch to memory as an approach to teaching shapes to students with VIs. Eleven students, five with VIs and six sighted students took part in this experimental design study. A tactile imagery test and intervention lessons were developed for this study. Four tactile imagery domains (tactile discrimination, tactile memory 2D, tactile memory 3D and pattern recall), each made up of 10 tests, guided the design of the tests and training lessons. The students' scores from the pre-test and post-test were subjected to mean computations, Mann-Whitney U tests and the Wilcoxon signed-rank test. The post-test results revealed that students with VIs performed better than their sighted peers. The study concludes with a discussion of the need for teacher educators to consider using tactile imagery as a way of teaching geometry to students with VIs.
Collapse
Affiliation(s)
- Ashraf Moustafa
- Special Education Department, United Arab Emirates University, Al-Ain, the United Arab Emirates
| | - Maxwell Peprah Opoku
- Special Education Department, United Arab Emirates University, Al-Ain, the United Arab Emirates.
| | - Shashidhar Belbase
- Curriculum and Method of Instruction, United Arab Emirates University, Al-Ain, the United Arab Emirates
| |
Collapse
|
9
|
O' Dowd A, Cooney SM, Newell FN. Self-reported vividness of tactile imagery for object properties and body regions: An exploratory study. Conscious Cogn 2022; 103:103376. [PMID: 35849942 DOI: 10.1016/j.concog.2022.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/23/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
Mental imagery ability has been examined principally in the visual domain. Despite evidence for tactile mental representations in the absence of direct stimulation, this ability is poorly understood. We investigated tactile imagery for both active and passive tasks in a large sample (N = 118). Vividness of imagery was tested across two different tasks: somatosensory imagery (of body sensitivity) and tactile imagery (of object properties) in all participants. Evidence for vivid imagery across tactile and somatosensory dimensions was found with a positive, albeit weak, correlation in imagery strength between dimensions. Imagery ratings varied across objects and object properties in the tactile imagery task and across body sites in the somatosensory imagery task. These findings shed light on the capacity for, and characteristics of, tactile mental imagery in the general population and suggest that the ability to experience vivid tactile mental images may mediate performance across a number of perceptual tasks.
Collapse
Affiliation(s)
- A O' Dowd
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - S M Cooney
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Ireland; School of Psychology, University College Dublin, Ireland
| | - F N Newell
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Ireland
| |
Collapse
|
10
|
Wittfoth D, Beise J, Manuel J, Bohne M, Wittfoth M. Bifocal emotion regulation through acupoint tapping in fear of flying. Neuroimage Clin 2022; 34:102996. [PMID: 35378497 PMCID: PMC8980501 DOI: 10.1016/j.nicl.2022.102996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Very few studies have investigated the neural underpinnings of bifocal-multisensory interventions such as acupoint tapping (tapping) despite their well-documented efficacy. The present study aims to investigate the neural and behavioral responses to tapping during the perception of phobic and generally fear-inducing stimulation in a group of participants with fear of flying. We studied 29 flight-phobic participants who were exposed to phobia-related, fear-inducing and neutral stimulation while undergoing fMRI and a bifocal-multisensory intervention session consisting of tapping plus cognitive restructuring in a within-subject design. During tapping we found an up-regulation of neural activation in the amygdala, and a down-regulation in the hippocampus and temporal pole. These effects were different from automatic emotion regulatory processes which entailed down-regulation in the amygdala, hippocampus, and temporal pole. Mean scores (±SD) on the Fear of Flying scale dropped from 2.51(±0.65) before the intervention to 1.27(±0.68) after the intervention (p <.001). The proportion of participants meeting the criteria for fear of flying also dropped from 89.7 percent before the intervention to 24.0 percent after the intervention (p <.001). Taken together, our results lend support to the effectiveness of tapping as a means of emotion regulation across multiple contexts and add to previous findings of increased amygdala activation during tapping, as opposed to amygdala down-regulation found in other emotion regulation techniques. They expand on previous knowledge by suggesting that tapping might modulate the processing of complex visual scene representations and their binding with visceral emotional reponses, reflected by the down-regulation of activation in the hippocampus and temporal pole. Bifocal emotion regulation was useful in ameliorating aversive reactions to phobic stimuli in people with fear of flying.
Collapse
Affiliation(s)
- Dina Wittfoth
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany.
| | - Jelena Beise
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jorge Manuel
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany; Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Michael Bohne
- Fortbildungsinstitut für PEP, Tiedgestrasse 5, Hannover, Germany
| | - Matthias Wittfoth
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
11
|
Fisher H, Sclocco R, Maeda Y, Kim J, Malatesta C, Gerber J, Audette J, Kettner N, Napadow V. S1 Brain Connectivity in Carpal Tunnel Syndrome Underlies Median Nerve and Functional Improvement Following Electro-Acupuncture. Front Neurol 2021; 12:754670. [PMID: 34777225 PMCID: PMC8578723 DOI: 10.3389/fneur.2021.754670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 12/03/2022] Open
Abstract
Carpal Tunnel Syndrome (CTS) is a median nerve entrapment neuropathy that alters primary somatosensory cortex (S1) organization. While electro-acupuncture (EA), a form of peripheral neuromodulation, has been shown to improve clinical and neurophysiological CTS outcomes, the role of EA-evoked brain response during therapy (within and beyond S1) for improved outcomes is unknown. We investigated S1-associated whole brain fMRI connectivity during both a resting and sustained EA stimulation state in age-matched healthy controls (N = 28) and CTS patients (N = 64), at baseline and after 8 weeks of acupuncture therapy (local, distal, or sham EA). Compared to healthy controls, CTS patients at baseline showed decreased resting state functional connectivity between S1 and thalamic pulvinar nucleus. Increases in S1/pulvinar connectivity strength following verum EA therapy (combined local and distal) were correlated with improvements in median nerve velocity (r = 0.38, p = 0.035). During sustained local EA, compared to healthy controls, CTS patients demonstrated increased functional connectivity between S1 and anterior hippocampus (aHipp). Following 8 weeks of local EA therapy, S1/aHipp connectivity significantly decreased and greater decrease was associated with improvement in patients' functional status (r = 0.64, p = 0.01) and increased median nerve velocity (r = -0.62, p = 0.013). Thus, connectivity between S1 and other brain areas is also disrupted in CTS patients and may be improved following EA therapy. Furthermore, stimulus-evoked fMRI connectivity adds therapy-specific, mechanistic insight to more common resting state connectivity approaches. Specifically, local EA modulates S1 connectivity to sensory and affective processing regions, linked to patient function and median nerve health.
Collapse
Affiliation(s)
- Harrison Fisher
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Roberta Sclocco
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Logan University, Chesterfield, MO, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Yumi Maeda
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Logan University, Chesterfield, MO, United States
| | - Jieun Kim
- Division of Clinical Medicine, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Cristina Malatesta
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Jessica Gerber
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Joseph Audette
- Department of Pain Medicine, Harvard Vanguard Medical Associates, Atrium Health, Boston, MA, United States
| | - Norman Kettner
- Department of Radiology, Logan University, Chesterfield, MO, United States
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Logan University, Chesterfield, MO, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, United States
| |
Collapse
|
12
|
Dance CJ, Ward J, Simner J. What is the Link Between Mental Imagery and Sensory Sensitivity? Insights from Aphantasia. Perception 2021; 50:757-782. [PMID: 34463590 PMCID: PMC8438787 DOI: 10.1177/03010066211042186] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022]
Abstract
People with aphantasia have impoverished visual imagery so struggle to form mental pictures in the mind's eye. By testing people with and without aphantasia, we investigate the relationship between sensory imagery and sensory sensitivity (i.e., hyper- or hypo-reactivity to incoming signals through the sense organs). In Experiment 1 we first show that people with aphantasia report impaired imagery across multiple domains (e.g., olfactory, gustatory etc.) rather than simply vision. Importantly, we also show that imagery is related to sensory sensitivity: aphantasics reported not only lower imagery, but also lower sensory sensitivity. In Experiment 2, we showed a similar relationship between imagery and sensitivity in the general population. Finally, in Experiment 3 we found behavioural corroboration in a Pattern Glare Task, in which aphantasics experienced less visual discomfort and fewer visual distortions typically associated with sensory sensitivity. Our results suggest for the very first time that sensory imagery and sensory sensitivity are related, and that aphantasics are characterised by both lower imagery, and lower sensitivity. Our results also suggest that aphantasia (absence of visual imagery) may be more accurately defined as a subtype of a broader imagery deficit we name dysikonesia, in which weak or absent imagery occurs across multiple senses.
Collapse
Affiliation(s)
- C. J. Dance
- School of Psychology, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
13
|
Schmidt TT, Schröder P, Reinhardt P, Blankenburg F. Rehearsal of tactile working memory: Premotor cortex recruits two dissociable neuronal content representations. Hum Brain Mapp 2021; 42:245-258. [PMID: 33009881 PMCID: PMC7721226 DOI: 10.1002/hbm.25220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022] Open
Abstract
Recent working memory (WM) research has focused on identifying brain regions that retain different types of mental content. Only few neuroimaging studies have explored the mechanism of attention-based refreshing, which is a type of rehearsal and is thought to implement the dynamic components of WM allowing for update of WM contents. Here, we took advantage of the distinct coding properties of the superior parietal lobe (SPL), which retains spatial layout information, and the right inferior frontal gyrus (IFG), which retains frequency information of vibrotactile stimuli during tactile WM. In an fMRI delayed match-to-sample task, participants had to internally rehearse sequences of spatial layouts or vibratory frequencies. Our results replicate the dissociation of SPL and IFG for the retention of layout and frequency information in terms of activation differences between conditions. Additionally, we found strong premotor cortex (PMC) activation during rehearsal of either stimulus type. To explore interactions between these regions we used dynamic causal modeling and found that activation within the network was best explained by a model that allows the PMC to drive activity in the SPL and IFG during rehearsal. This effect was content-specific, meaning that the PMC showed stronger influence on the SPL during pattern rehearsal and stronger influence on the IFG during frequency rehearsal. In line with previously established PMC contributions to sequence processing, our results suggest that it acts as a content-independent area that flexibly recruits content-specific regions to bring a WM item into the focus of attention during the rehearsal of tactile stimulus sequences.
Collapse
Affiliation(s)
- Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| | - Pia Schröder
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| | - Pablo Reinhardt
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| |
Collapse
|
14
|
Wittfoth D, Pfeiffer A, Bohne M, Lanfermann H, Wittfoth M. Emotion regulation through bifocal processing of fear inducing and disgust inducing stimuli. BMC Neurosci 2020; 21:47. [PMID: 33225884 PMCID: PMC7681990 DOI: 10.1186/s12868-020-00597-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We present first-time evidence for the immediate neural and behavioral effects of bifocal emotional processing via visualized tapping for two different types of negative emotions (fear and disgust) in a sample of healthy participants. RESULTS Independent of stimulus type, neural activation in the amygdala is increased during regulation, while activation in the ventral anterior cingulate cortex is decreased. Behavioral responses, as well as lateral and medial occipital regions and the dorsolateral prefrontal cortex show differential regulatory effects with respect to stimulus type. CONCLUSIONS Our findings suggest that emotion regulation through bifocal processing has a neural and behavioral signature that is distinct from previously investigated emotion regulation strategies. They support theoretical models of facilitated access to and processing of emotions during bifocal processing and suggest differential neural and behavioral effects for various types of negative emotions.
Collapse
Affiliation(s)
- Dina Wittfoth
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany.
| | - Antonia Pfeiffer
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Michael Bohne
- Fortbildungsinstitut für PEP, Tiedgestrasse 5, Hannover, Germany
| | - Heinrich Lanfermann
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Matthias Wittfoth
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
15
|
de Haan EH, Dijkerman HC. Somatosensation in the Brain: A Theoretical Re-evaluation and a New Model. Trends Cogn Sci 2020; 24:529-541. [DOI: 10.1016/j.tics.2020.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/09/2020] [Accepted: 04/17/2020] [Indexed: 01/24/2023]
|
16
|
Ragni F, Tucciarelli R, Andersson P, Lingnau A. Decoding stimulus identity in occipital, parietal and inferotemporal cortices during visual mental imagery. Cortex 2020; 127:371-387. [PMID: 32289581 DOI: 10.1016/j.cortex.2020.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022]
Abstract
In the absence of input from the external world, humans are still able to generate vivid mental images. This cognitive process, known as visual mental imagery, involves a network of prefrontal, parietal, inferotemporal, and occipital regions. Using multivariate pattern analysis (MVPA), previous studies were able to distinguish between the different orientations of imagined gratings, but not between more complex imagined stimuli, such as common objects, in early visual cortex (V1). Here we asked whether letters, simple shapes, and objects can be decoded in early visual areas during visual mental imagery. In a delayed spatial judgment task, we asked participants to observe or imagine stimuli. To examine whether it is possible to discriminate between neural patterns during perception and visual mental imagery, we performed ROI-based and whole-brain searchlight-based MVPA. We were able to decode imagined stimuli in early visual (V1, V2), parietal (SPL, IPL, aIPS), inferotemporal (LOC) and prefrontal (PMd) areas. In a subset of these areas (i.e., V1, V2, LOC, SPL, IPL and aIPS), we also obtained significant cross-decoding across visual imagery and perception. Moreover, we observed a linear relationship between behavioral accuracy and the amplitude of the BOLD signal in parietal and inferotemporal cortices, but not in early visual cortex, in line with the view that these areas contribute to the ability to perform visual imagery. Together, our results suggest that in the absence of bottom-up visual inputs, patterns of functional activation in early visual cortex allow distinguishing between different imagined stimulus exemplars, most likely mediated by signals from parietal and inferotemporal areas.
Collapse
Affiliation(s)
- Flavio Ragni
- Center for Mind/Brain Science (CIMeC), University of Trento, Rovereto, TN, Italy
| | - Raffaele Tucciarelli
- Center for Mind/Brain Science (CIMeC), University of Trento, Rovereto, TN, Italy; Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Patrik Andersson
- Center for Mind/Brain Science (CIMeC), University of Trento, Rovereto, TN, Italy; Stockholm University Brain Imaging Centre (SUBIC), Stockholm, Sweden
| | - Angelika Lingnau
- Center for Mind/Brain Science (CIMeC), University of Trento, Rovereto, TN, Italy; Department of Psychology, Royal Holloway University of London, Egham, London, UK; Institute of Psychology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
17
|
Kaas A, Goebel R, Valente G, Sorger B. Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing. Front Hum Neurosci 2019; 13:427. [PMID: 31920588 PMCID: PMC6915074 DOI: 10.3389/fnhum.2019.00427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022] Open
Abstract
Real-time functional magnetic resonance imaging (fMRI) is a promising non-invasive method for brain-computer interfaces (BCIs). BCIs translate brain activity into signals that allow communication with the outside world. Visual and motor imagery are often used as information-encoding strategies, but can be challenging if not grounded in recent experience in these modalities, e.g., in patients with locked-in-syndrome (LIS). In contrast, somatosensory imagery might constitute a more suitable information-encoding strategy as the somatosensory function is often very robust. Somatosensory imagery has been shown to activate the somatotopic cortex, but it has been unclear so far whether it can be reliably detected on a single-trial level and successfully classified according to specific somatosensory imagery content. Using ultra-high field 7-T fMRI, we show reliable and high-accuracy single-trial decoding of left-foot (LF) vs. right-hand (RH) somatosensory imagery. Correspondingly, higher decoding accuracies were associated with greater spatial separation of hand and foot decoding-weight patterns in the primary somatosensory cortex (S1). Exploiting these novel neuroscientific insights, we developed-and provide a proof of concept for-basic BCI communication by showing that binary (yes/no) answers encoded by somatosensory imagery can be decoded with high accuracy in simulated real-time (in 7 subjects) as well as in real-time (1 subject). This study demonstrates that body part-specific somatosensory imagery differentially activates somatosensory cortex in a topographically specific manner; evidence which was surprisingly still lacking in the literature. It also offers proof of concept for a novel somatosensory imagery-based fMRI-BCI control strategy, with particularly high potential for visually and motor-impaired patients. The strategy could also be transferred to lower MRI field strengths and to mobile functional near-infrared spectroscopy. Finally, given that communication BCIs provide the BCI user with a form of feedback based on their brain signals and can thus be considered as a specific form of neurofeedback, and that repeated use of a BCI has been shown to enhance underlying representations, we expect that the current BCI could also offer an interesting new approach for somatosensory rehabilitation training in the context of stroke and phantom limb pain.
Collapse
Affiliation(s)
- Amanda Kaas
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
18
|
Vikström P, Carlsson I, Rosén B, Björkman A. Patients' views on early sensory relearning following nerve repair-a Q-methodology study. J Hand Ther 2019; 31:443-450. [PMID: 28967458 DOI: 10.1016/j.jht.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/12/2017] [Accepted: 07/09/2017] [Indexed: 02/03/2023]
Abstract
STUDY DESIGN Descriptive study. INTRODUCTION Early sensory relearning where the dynamic capacity of the brain is used has been shown to improve sensory outcome after nerve repair. However, no previous studies have examined how patients experience early sensory relearning. PURPOSE OF THE STUDY To describe patient's views on early sensory relearning. METHODS Statements' scores were analyzed by factor analysis. RESULTS Thirty-seven consecutive adult patients with median and/or ulnar nerve repair who completed early sensory relearning were included. Three factors were identified, explaining 45% of the variance: (1) "Believe sensory relearning is meaningful, manage to get an illusion of touch and complete the sensory relearning"; (2) "Do not get an illusion of touch easily and need support in their sensory relearning" (3) "Are not motivated, manage to get an illusion of touch but do not complete sensory relearning". DISCUSSION Many patients succeed in implementing their sensory relearning. However, a substantial part of the patient population need more support, have difficulties to create illusion of touch, and lack motivation to complete the sensory relearning. To enhance motivation and meaningfulness by relating the training clearly to everyday occupations and to the patient's life situation is a suggested way to proceed. CONCLUSION The three unique factors indicate motivation and sense of meaningfulness as key components which should be taken into consideration in developing programs for person-centered early sensory relearning. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Pernilla Vikström
- Department of Translational Medicine-Hand Surgery, Skåne University Hospital and Lund University, Malmö, Sweden.
| | - Ingela Carlsson
- Department of Translational Medicine-Hand Surgery, Skåne University Hospital and Lund University, Malmö, Sweden
| | - Birgitta Rosén
- Department of Translational Medicine-Hand Surgery, Skåne University Hospital and Lund University, Malmö, Sweden
| | - Anders Björkman
- Department of Translational Medicine-Hand Surgery, Skåne University Hospital and Lund University, Malmö, Sweden
| |
Collapse
|
19
|
Kim Y, Usui N, Miyazaki A, Haji T, Matsumoto K, Taira M, Nakamura K, Katsuyama N. Cortical Regions Encoding Hardness Perception Modulated by Visual Information Identified by Functional Magnetic Resonance Imaging With Multivoxel Pattern Analysis. Front Syst Neurosci 2019; 13:52. [PMID: 31632245 PMCID: PMC6779815 DOI: 10.3389/fnsys.2019.00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/11/2019] [Indexed: 01/09/2023] Open
Abstract
Recent studies have revealed that hardness perception is determined by visual information along with the haptic input. This study investigated the cortical regions involved in hardness perception modulated by visual information using functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA). Twenty-two healthy participants were enrolled. They were required to place their left and right hands at the front and back, respectively, of a mirror attached to a platform placed above them while lying in a magnetic resonance scanner. In conditions SFT, MED, and HRD, one of three polyurethane foam pads of varying hardness (soft, medium, and hard, respectively) was presented to the left hand in a given trial, while only the medium pad was presented to the right hand in all trials. MED was defined as the control condition, because the visual and haptic information was congruent. During the scan, the participants were required to push the pad with the both hands while observing the reflection of the left hand and estimate the hardness of the pad perceived by the right (hidden) hand based on magnitude estimation. Behavioral results showed that the perceived hardness was significantly biased toward softer or harder in >73% of the trials in conditions SFT and HRD; we designated these trials as visually modulated (SFTvm and HRDvm, respectively). The accuracy map was calculated individually for each of the pair-wise comparisons of (SFTvm vs. MED), (HRDvm vs. MED), and (SFTvm vs. HRDvm) by a searchlight MVPA, and the cortical regions encoding the perceived hardness with visual modulation were identified by conjunction of the three accuracy maps in group analysis. The cluster was observed in the right sensory motor cortex, left anterior intraparietal sulcus (aIPS), bilateral parietal operculum (PO), and occipito-temporal cortex (OTC). Together with previous findings on such cortical regions, we conclude that the visual information of finger movements processed in the OTC may be integrated with haptic input in the left aIPS, and the subjective hardness perceived by the right hand with visual modulation may be processed in the cortical network between the left PO and aIPS.
Collapse
Affiliation(s)
- Yuri Kim
- Primate Research Institute, Kyoto University, Inuyama, Japan.,Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuo Usui
- Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Tomoki Haji
- Tamagawa University Brain Science Institute, Tokyo, Japan
| | | | - Masato Taira
- Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Narumi Katsuyama
- Primate Research Institute, Kyoto University, Inuyama, Japan.,Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
20
|
Liang T, Chen X, Ye C, Zhang J, Liu Q. Electrophysiological evidence supports the role of sustained visuospatial attention in maintaining visual WM contents. Int J Psychophysiol 2019; 146:54-62. [PMID: 31639381 DOI: 10.1016/j.ijpsycho.2019.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/13/2019] [Accepted: 09/26/2019] [Indexed: 11/16/2022]
Abstract
Recent empirical and theoretical work suggests that there is a close relationship between visual working memory (WM) and visuospatial attention. Here, we investigated whether visuospatial attention was involved in maintaining object representations in visual WM. To this end, the alpha lateralization and contralateral delay activity (CDA) were analyzed as neural markers for visuospatial attention and visual WM storage, respectively. In the single-task condition, participants performed a grating change-detection task. To probe the role of visuospatial attention in maintaining WM contents, two color squares were presented above and below the fixation point during the retention interval, which remained visible until the detection display was present. In the dual-task condition, participants were required to maintain lateralized gratings while staring at the center-presented color squares, to detect possible subsequent color change. With this task, sustained visuospatial attention that guided to individual memory representations was disrupted. The behavioral data showed that, the insertion of secondary task significantly deteriorated WM performance. For electrophysiological data, we divided the retention interval into two stages, the early stage and late stage, bounded by the onset of the secondary task. We found that CDA amplitude was lower under the dual-task condition than the single-task condition during the late stage, but not the early stage, and the extent to which CDA reduced tracked the impaired memory performance at the individual level. Also, alpha lateralization only could be observed in the single-task condition of the late stage, and completely disappeared in the dual-task condition, indicating the disruption of visuospatial attention directed to memory representations. Individuals who experienced greater visuospatial attention disruption, as indicated by the alpha lateralization, had lower maintenance-associated neural activity (CDA), and suffered greater impairment of memory performance. These findings confirm that sustained visuospatial attention continues improving visual WM processing after the initial encoding phase, and most likely participates in this process by supporting the maintenance of representations in an active state.
Collapse
Affiliation(s)
- Tengfei Liang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610000, China; Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
| | - Xiaoyu Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
| | - Chaoxiong Ye
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610000, China; Department of Psychology, University of Jyvaskyla, Jyväskylä 40014, Finland
| | - Jiafeng Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
| | - Qiang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610000, China; Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China.
| |
Collapse
|
21
|
Ibáñez-Marcelo E, Campioni L, Phinyomark A, Petri G, Santarcangelo EL. Topology highlights mesoscopic functional equivalence between imagery and perception: The case of hypnotizability. Neuroimage 2019; 200:437-449. [DOI: 10.1016/j.neuroimage.2019.06.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/15/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022] Open
|
22
|
Language Processing. Cognition 2019. [DOI: 10.1017/9781316271988.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Methods of Cognitive Psychology. Cognition 2019. [DOI: 10.1017/9781316271988.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Cognitive Psychologists’ Approach to Research. Cognition 2019. [DOI: 10.1017/9781316271988.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Visual Imagery. Cognition 2019. [DOI: 10.1017/9781316271988.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Index. Cognition 2019. [DOI: 10.1017/9781316271988.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Decision Making and Reasoning. Cognition 2019. [DOI: 10.1017/9781316271988.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Attention. Cognition 2019. [DOI: 10.1017/9781316271988.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Long-Term Memory Structure. Cognition 2019. [DOI: 10.1017/9781316271988.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Problem Solving. Cognition 2019. [DOI: 10.1017/9781316271988.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Preface. Cognition 2019. [DOI: 10.1017/9781316271988.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Sensory and Working Memory. Cognition 2019. [DOI: 10.1017/9781316271988.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Memory Retrieval. Cognition 2019. [DOI: 10.1017/9781316271988.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Visual Perception. Cognition 2019. [DOI: 10.1017/9781316271988.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
References. Cognition 2019. [DOI: 10.1017/9781316271988.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Language Structure. Cognition 2019. [DOI: 10.1017/9781316271988.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Concepts and Categories. Cognition 2019. [DOI: 10.1017/9781316271988.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Long-Term Memory Processes. Cognition 2019. [DOI: 10.1017/9781316271988.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Glossary. Cognition 2019. [DOI: 10.1017/9781316271988.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Schmidt TT, Blankenburg F. The Somatotopy of Mental Tactile Imagery. Front Hum Neurosci 2019; 13:10. [PMID: 30833894 PMCID: PMC6387936 DOI: 10.3389/fnhum.2019.00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/10/2019] [Indexed: 01/19/2023] Open
Abstract
To what degree mental imagery (MI) bears on the same neuronal processes as perception has been a central question in the neurophysiological study of imagery. Sensory-recruitment models suggest that imagery of sensory material heavily relies on the involvement of sensory cortices. Empirical evidence mainly stems from the study of visual imagery and suggests that it depends on the mentally imagined material whether hierarchically lower regions are recruited. However, evidence from other modalities is necessary to infer generalized principles. In this fMRI study we used the somatotopic organization of the primary somatosensory cortex (SI) to test in how far MI of tactile sensations activates topographically sensory brain areas. Participants (N = 19) either perceived or imagined vibrotactile stimuli on their left or right thumbs or big toes. The direct comparison to a corresponding perception condition revealed that SI was somatotopically recruited during imagery. While stimulus driven bottom-up processing induced activity throughout all SI subareas, i.e., BA1, BA3a, BA3b, and BA2 defined by probabilistic cytoarchitectonic maps, top-down recruitment during imagery was limited to the hierarchically highest subarea BA2.
Collapse
Affiliation(s)
- Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
41
|
Shared neural representations of tactile roughness intensities by somatosensation and touch observation using an associative learning method. Sci Rep 2019; 9:77. [PMID: 30635598 PMCID: PMC6329784 DOI: 10.1038/s41598-018-37378-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/05/2018] [Indexed: 01/20/2023] Open
Abstract
Previous human fMRI studies have reported activation of somatosensory areas not only during actual touch, but also during touch observation. However, it has remained unclear how the brain encodes visually evoked tactile intensities. Using an associative learning method, we investigated neural representations of roughness intensities evoked by (a) tactile explorations and (b) visual observation of tactile explorations. Moreover, we explored (c) modality-independent neural representations of roughness intensities using a cross-modal classification method. Case (a) showed significant decoding performance in the anterior cingulate cortex (ACC) and the supramarginal gyrus (SMG), while in the case (b), the bilateral posterior parietal cortices, the inferior occipital gyrus, and the primary motor cortex were identified. Case (c) observed shared neural activity patterns in the bilateral insula, the SMG, and the ACC. Interestingly, the insular cortices were identified only from the cross-modal classification, suggesting their potential role in modality-independent tactile processing. We further examined correlations of confusion patterns between behavioral and neural similarity matrices for each region. Significant correlations were found solely in the SMG, reflecting a close relationship between neural activities of SMG and roughness intensity perception. The present findings may deepen our understanding of the brain mechanisms underlying intensity perception of tactile roughness.
Collapse
|
42
|
Brain regions that retain the spatial layout of tactile stimuli during working memory – A ‘tactospatial sketchpad’? Neuroimage 2018; 178:531-539. [DOI: 10.1016/j.neuroimage.2018.05.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 11/17/2022] Open
|
43
|
Yao L, Mrachacz-Kersting N, Sheng X, Zhu X, Farina D, Jiang N. A Multi-Class BCI Based on Somatosensory Imagery. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1508-1515. [DOI: 10.1109/tnsre.2018.2848883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
de Borst AW, de Gelder B. Mental Imagery Follows Similar Cortical Reorganization as Perception: Intra-Modal and Cross-Modal Plasticity in Congenitally Blind. Cereb Cortex 2018; 29:2859-2875. [DOI: 10.1093/cercor/bhy151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/27/2018] [Accepted: 06/05/2018] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cortical plasticity in congenitally blind individuals leads to cross-modal activation of the visual cortex and may lead to superior perceptual processing in the intact sensory domains. Although mental imagery is often defined as a quasi-perceptual experience, it is unknown whether it follows similar cortical reorganization as perception in blind individuals. In this study, we show that auditory versus tactile perception evokes similar intra-modal discriminative patterns in congenitally blind compared with sighted participants. These results indicate that cortical plasticity following visual deprivation does not influence broad intra-modal organization of auditory and tactile perception as measured by our task. Furthermore, not only the blind, but also the sighted participants showed cross-modal discriminative patterns for perception modality in the visual cortex. During mental imagery, both groups showed similar decoding accuracies for imagery modality in the intra-modal primary sensory cortices. However, no cross-modal discriminative information for imagery modality was found in early visual cortex of blind participants, in contrast to the sighted participants. We did find evidence of cross-modal activation of higher visual areas in blind participants, including the representation of specific-imagined auditory features in visual area V4.
Collapse
Affiliation(s)
- A W de Borst
- Department of Computer Science, University College London, London, UK
- Brain and Emotion Lab, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - B de Gelder
- Department of Computer Science, University College London, London, UK
- Brain and Emotion Lab, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
45
|
Nature, Mind, and Medicine: A Model for Mind–Body Healing. Explore (NY) 2018; 14:268-276. [DOI: 10.1016/j.explore.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 09/26/2017] [Accepted: 01/31/2018] [Indexed: 11/20/2022]
|
46
|
de Borst AW, de Gelder B. fMRI-based Multivariate Pattern Analyses Reveal Imagery Modality and Imagery Content Specific Representations in Primary Somatosensory, Motor and Auditory Cortices. Cereb Cortex 2018; 27:3994-4009. [PMID: 27473324 DOI: 10.1093/cercor/bhw211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/13/2016] [Indexed: 11/12/2022] Open
Abstract
Previous studies have shown that the early visual cortex contains content-specific representations of stimuli during visual imagery, and that these representational patterns of imagery content have a perceptual basis. To date, there is little evidence for the presence of a similar organization in the auditory and tactile domains. Using fMRI-based multivariate pattern analyses we showed that primary somatosensory, auditory, motor, and visual cortices are discriminative for imagery of touch versus sound. In the somatosensory, motor and visual cortices the imagery modality discriminative patterns were similar to perception modality discriminative patterns, suggesting that top-down modulations in these regions rely on similar neural representations as bottom-up perceptual processes. Moreover, we found evidence for content-specific representations of the stimuli during auditory imagery in the primary somatosensory and primary motor cortices. Both the imagined emotions and the imagined identities of the auditory stimuli could be successfully classified in these regions.
Collapse
Affiliation(s)
- Aline W de Borst
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Limburg 6200 MD, the Netherlands
| | - Beatrice de Gelder
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Limburg 6200 MD, the Netherlands.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
47
|
Safron A, Klimaj V, Sylva D, Rosenthal AM, Li M, Walter M, Bailey JM. Neural Correlates of Sexual Orientation in Heterosexual, Bisexual, and Homosexual Women. Sci Rep 2018; 8:673. [PMID: 29330483 PMCID: PMC5766543 DOI: 10.1038/s41598-017-18372-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/11/2017] [Indexed: 11/24/2022] Open
Abstract
We used fMRI to investigate neural correlates of responses to erotic pictures and videos in heterosexual (N = 26), bisexual (N = 26), and homosexual (N = 24) women, ages 25–50. We focused on the ventral striatum, an area of the brain associated with desire, extending previous findings from the sexual psychophysiology literature in which homosexual women had greater category specificity (relative to heterosexual and bisexual women) in their responses to male and female erotic stimuli. We found that homosexual women’s subjective and neural responses reflected greater bias towards female stimuli, compared with bisexual and heterosexual women, whose responses did not significantly differ. These patterns were also suggested by whole brain analyses, with homosexual women showing category-specific activations of greater extents in visual and auditory processing areas. Bisexual women tended to show more mixed patterns, with activations more responsive to female stimuli in sensory processing areas, and activations more responsive to male stimuli in areas associated with social cognition.
Collapse
Affiliation(s)
- Adam Safron
- Department of Psychology, Northwestern University, Evanston, Illinois, USA.
| | - Victoria Klimaj
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
| | - David Sylva
- Department of Psychiatry, Kaiser Permanente, Oakland, California, USA
| | - A M Rosenthal
- Department of Psychiatry, Kaiser Permanente, Oakland, California, USA
| | - Meng Li
- Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Psychiatry, Eberhard Karls University, Tubingen, Germany
| | - Martin Walter
- Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Psychiatry, Eberhard Karls University, Tubingen, Germany
| | - J Michael Bailey
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
48
|
Tihanyi BT, Ferentzi E, Beissner F, Köteles F. The neuropsychophysiology of tingling. Conscious Cogn 2017; 58:97-110. [PMID: 29096941 DOI: 10.1016/j.concog.2017.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
Abstract
Tingling is a bodily sensation experienced under a variety of conditions from everyday experiences to experimental and therapeutic situations. It can be induced by both peripheral or afferent (external stimulation, peripheral pathology) and higher cognitive (expectation) processes. The paper summarizes the current scientific knowledge on the neurophysiological and psychological concomitants of the tingling sensation. Four possible models are identified and presented: the afferent, the attention-disclosed, the attention-evoked, and the efferent model. Of these, only the attention-disclosed model, i.e., attention discloses the sensation by opening the gate for suppressed sensory information, appears to be able to explain every aspect of the tingling phenomenon. Terminological issues and the possible role of the tingling phenomenon in medically unexplained symptoms, nocebo and placebo reactions, and body-oriented therapeutic interventions are also discussed.
Collapse
Affiliation(s)
- Benedek T Tihanyi
- Institute of Health Promotion and Sport Sciences, ELTE Eötvös Loránd University, Hungary; Doctoral School of Psychology, ELTE Eötvös Loránd University, Hungary
| | - Eszter Ferentzi
- Institute of Health Promotion and Sport Sciences, ELTE Eötvös Loránd University, Hungary; Doctoral School of Psychology, ELTE Eötvös Loránd University, Hungary
| | - Florian Beissner
- Somatosensory and Autonomic Therapy Research, Institute of Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Ferenc Köteles
- Institute of Health Promotion and Sport Sciences, ELTE Eötvös Loránd University, Hungary.
| |
Collapse
|
49
|
Content-Specific Codes of Parametric Vibrotactile Working Memory in Humans. J Neurosci 2017; 37:9771-9777. [PMID: 28893928 DOI: 10.1523/jneurosci.1167-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 01/03/2023] Open
Abstract
To understand how the brain handles mentally represented information flexibly in the absence of sensory stimulation, working memory (WM) studies have been essential. A seminal finding in monkey research is that neurons in the prefrontal cortex (PFC) retain stimulus-specific information when vibrotactile frequencies were memorized. A direct mapping between monkey studies and human research is still controversial. Although oscillatory signatures, in terms of frequency-dependent parametric beta-band modulation, have been observed recently in human EEG studies, the content specificity of these representations in terms of multivariate pattern analysis has not yet been shown. Here, we used fMRI in combination with multivariate classification techniques to determine which brain regions retain information during WM. In a retro-cue delayed-match-to-sample task, human subjects memorized the frequency of vibrotactile stimulation over a 12 s delay phase. Using an assumption-free whole-brain searchlight approach, we tested with support vector regression which brain regions exhibited multivariate parametric WM codes of the maintained frequencies during the WM delay. Interestingly, our analysis revealed an overlap with regions previously identified in monkeys composed of bilateral premotor cortices, supplementary motor area, and the right inferior frontal gyrus as part of the PFC. Therefore, our results establish a link between the WM codes found in monkeys and those in humans and emphasize the importance of the PFC for information maintenance during WM also in humans.SIGNIFICANCE STATEMENT Working memory (WM) research in monkeys has identified a network of regions, including prefrontal regions, to code stimulus-specific information when vibrotactile frequencies are memorized. Here, we performed an fMRI study during which human subjects had to memorize vibratory frequencies in parallel to previous monkey research. Using an assumption-free, whole-brain searchlight decoding approach, we identified for the first time regions in the human brain that exhibit multivariate patterns of activity to code the vibratory frequency parametrically during WM. Our results parallel previous monkey findings and show that the supplementary motor area, premotor, and the right prefrontal cortex are involved in vibrotactile WM coding in humans.
Collapse
|
50
|
Projecting the self outside the body: Body representations underlying proprioceptive imagery. Cognition 2017; 162:41-47. [DOI: 10.1016/j.cognition.2017.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 01/01/2023]
|