1
|
Otikovs M, Zhang Z, Frydman L. Principles and Progress in ultrafast 2D spatiotemporally encoded MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2025; 146-147:101559. [PMID: 40306799 DOI: 10.1016/j.pnmrs.2025.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 05/02/2025]
Abstract
Magnetic resonance imaging (MRI) is an indispensable tool used in both the lab and the clinic. Part of the strength of MRI comes from its ability to deliver anatomical information highlighted with different types of contrasts, including functional and diffusion-oriented acquisitions that are often incompatible with normal, multi-shot scans. For these problems, Nobel-award-winning techniques such as Echo Planar Imaging (EPI) have been essential in opening a manifold of new applications. EPI, however, has challenges when dealing with sharp changes in magnetic susceptibility, including those arising in the presence of air/tissue or air/fat interfaces, from non-ferromagnetic metal implants, as well when the main magnetic field cannot be shimmed to achieve the desired degree of homogeneity, as often is the case in systems built using permanent magnets. Among the techniques being proposed to deal with this kind of problem is spatiotemporally-encoded (SPEN) MRI. The present review focuses on the principles of this technique, with an emphasis on: i) explaining SPEN's resilience to field inhomogeneities, on the basis of expanded bandwidth considerations vis-à-vis EPI; ii) "the good, the bad and the ugly" associated with the undersampling that SPEN usually has to carry out when employing expanded bandwidths; iii) recent developments in data processing algorithms seeking to alleviate the "bad and the ugly" part of these experiments by formulating SPEN image reconstruction as an optimization problem, and then relying on compressed sensing and parallel imaging concepts to achieve improved image quality; and iv) the incorporation of experimental improvements including scan interleaving, simultaneous multi-banding and multi-echo elements, to keep in line with advancements in other areas of fast MRI. The strengths and weaknesses of these data sampling and processing strategies are assessed, and examples of their leverage in functional, but foremost diffusion-weighted, imaging applications, are presented.
Collapse
Affiliation(s)
- Mārtiņš Otikovs
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Zhiyong Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Chitrit O, Bao Q, Cai A, Gabriela Chuartzman S, Zilkha N, Haddad R, Kimchi T, Frydman L. Functional MRI of murine olfactory bulbs at 15.2T reveals characteristic activation patters when stimulated by different odors. Sci Rep 2023; 13:13343. [PMID: 37587261 PMCID: PMC10432392 DOI: 10.1038/s41598-023-39650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Thanks to its increased sensitivity, single-shot ultrahigh field functional MRI (UHF fMRI) could lead to valuable insight about subtle brain functions such as olfaction. However, UHF fMRI experiments targeting small organs next to air voids, such as the olfactory bulb, are severely affected by field inhomogeneity problems. Spatiotemporal Encoding (SPEN) is an emerging single-shot MRI technique that could provide a route for bypassing these complications. This is here explored with single-shot fMRI studies on the olfactory bulbs of male and female mice performed at 15.2T. SPEN images collected on these organs at a 108 µm in-plane resolution yielded remarkably large and well-defined responses to olfactory cues. Under suitable T2* weightings these activation-driven changes exceeded 5% of the overall signal intensity, becoming clearly visible in the images without statistical treatment. The nature of the SPEN signal intensity changes in such experiments was unambiguously linked to olfaction, via single-nostril experiments. These experiments highlighted specific activation regions in the external plexiform region and in glomeruli in the lateral part of the bulb, when stimulated by aversive or appetitive odors, respectively. These strong signal activations were non-linear with concentration, and shed light on how chemosensory signals reaching the olfactory epithelium react in response to different cues. Second-level analyses highlighted clear differences among the appetitive, aversive and neutral odor maps; no such differences were evident upon comparing male against female olfactory activation regions.
Collapse
Affiliation(s)
- Odélia Chitrit
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Qingjia Bao
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Aoling Cai
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | | | - Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Lou F, Tang X, Quan Z, Qian M, Wang J, Qu S, Gao Y, Wang Y, Pan G, Lai HY, Roe AW, Zhang X. A 16-channel loop array for in vivo macaque whole-brain imaging at 7 T. Magn Reson Imaging 2023:S0730-725X(23)00110-8. [PMID: 37356599 DOI: 10.1016/j.mri.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Combining multimodal approaches with functional magnetic resonance imaging (fMRI) has catapulted the research on brain circuitries of non-human primates (NHPs) into a new era. However, many studies are constrained by a lack of appropriate RF coils. In this study,a single loop transmit and 16-channel receive array coil was constructed for brain imaging of macaques at 7 Tesla (7 T). The 16 receive channels were mounted on a 3D-printed helmet-shaped form closely fiting the macaque head, with fourteen openings arranged for multimodal devices around the cortical regions. Coil performance was evaluated by quantifying and comparing signal-to-noise ratio (SNR) maps, noise correlations, g-factor maps and flip-angle maps with a 28-channel commercial knee coil. The in vivo results suggested that the macaque coil has higher SNR in cortical regions and better acceleration ability in parallel imaging, which may benefit revealing mesoscale organizations in the brain.
Collapse
Affiliation(s)
- Feiyang Lou
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Xiaocui Tang
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Zhiyan Quan
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Meizhen Qian
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbao Wang
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Shuxian Qu
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yang Gao
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yueming Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Gang Pan
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Hsin-Yi Lai
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Anna Wang Roe
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaotong Zhang
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; College of Electrical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Zheng M, Gao Y, Quan Z, Zhang X. The design and evaluation of single-channel loopole coils at 7T MRI. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8fdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Improving the local uniformity of
B
1
+
field for awake monkey brain magnetic resonance imaging (MRI) at ultra-high fields while facilitating convenient placement and fixation of MRI-compatible multimodal devices for neuroscience study, can eventually advance our understanding of the primate’s brain organization. Approach. A group of single-channel RF coils including conventional loop coils and loopole coils sharing the same size and shape were designed for comparison; their performance as the transmit coil was quantitatively evaluated through a series of numerical electromagnetic (EM) simulations, and further verified by using 7T MRI over a saline phantom and a monkey in vivo. Main results. Compared to conventional loop coils, the optimized loopole coil brought up to 23.5%
B
1
+
uniformity improvement for monkey brain imaging in EM simulations, and this performance was further verified over monkey brain imaging at 7T in vivo. Importantly, we have systematically explored the underlying mechanism regarding the relationship between loopole coils’ current density distribution and
B
1
+
uniformity, observing that it can be approximated as a sinusoidal curve. Significance. The proposed loopole coil design can improve the imaging quality in awake and behaving monkeys, thus benefiting advanced brain research at UHF.
Collapse
|
5
|
Ryu JK, Jung WB, Yu J, Son JP, Lee SK, Kim SG, Park JY. An equal-TE ultrafast 3D gradient-echo imaging method with high tolerance to magnetic susceptibility artifacts: Application to BOLD functional MRI. Magn Reson Med 2020; 85:1986-2000. [PMID: 33107102 DOI: 10.1002/mrm.28564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE To develop an ultrafast 3D gradient echo-based MRI method with constant TE and high tolerance to B0 inhomogeneity, dubbed ERASE (equal-TE rapid acquisition with sequential excitation), and to introduce its use in BOLD functional MRI (fMRI). THEORY AND METHODS Essential features of ERASE, including spin behavior, were characterized, and a comparison study was conducted with conventional EPI. To demonstrate high tolerance to B0 inhomogeneity, in vivo imaging of the mouse brain with a fiber-optic implant was performed at 9.4 T, and human brain imaging (including the orbitofrontal cortex) was performed at 3 T and 7 T. To evaluate the performance of ERASE in BOLD-fMRI, the characteristics of SNR and temporal SNR were analyzed for in vivo rat brains at 9.4 T in comparison with multislice gradient-echo EPI. Percent signal changes and t-scores are also presented. RESULTS For both mouse brain and human brain imaging, ERASE exhibited a high tolerance to magnetic susceptibility artifacts, showing much lower distortion and signal dropout, especially in the regions involving large magnetic susceptibility effects. For BOLD-fMRI, ERASE provided higher temporal SNR and t-scores than EPI, but exhibited similar percent signal changes in in vivo rat brains at 9.4 T. CONCLUSION When compared with conventional EPI, ERASE is much less sensitive, not only to EPI-related artifacts such as Nyquist ghosting, but also to B0 inhomogeneity including magnetic susceptibility effects. It is promising for use in BOLD-fMRI, providing higher temporal SNR and t-scores with constant TE when compared with EPI, although further optimization is needed for human fMRI.
Collapse
Affiliation(s)
- Jae-Kyun Ryu
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Jaeyong Yu
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeong Pyo Son
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seung-Kyun Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seong-Gi Kim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jang-Yeon Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Zhang X, Zhang J, Gao Y, Qian M, Qu S, Quan Z, Yu M, Chen X, Wang Y, Pan G, Adriany G, Roe AW. A 16-Channel Dense Array for In Vivo Animal Cortical MRI/fMRI on 7T Human Scanners. IEEE Trans Biomed Eng 2020; 68:1611-1618. [PMID: 32991277 DOI: 10.1109/tbme.2020.3027296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The purpose of the present study was to fabricate a novel RF coil exclusively for visualizing submillimeter tissue structure and probing neuronal activity in cerebral cortex over anesthetized and awake animals on 7T human scanners. METHODS A novel RF coil design has been proposed for visualizing submillimeter tissue structure and probing neuronal activity in cerebral cortex over anesthetized and awake animals on 7T human scanners: a local transmit coil was utilized to save space for auxiliary device installation; 16 receive-only loops were densely arranged over a 5 cm-diameter circular area, with a diameter of 1.3 cm for each loop. RESULTS In anesthetized macaque experiments, 60 μm T2*-weighted images were successfully obtained with cortical gyri and sulci exquisitely visualized; over awake macaques, bilateral activations of visual areas including V1, V2, V4, and MST were distinctly detected at 1 mm; over the cat, robust activations were recorded in areas 17 and 18 (V1 and V2) as well as in their connected area of lateral geniculate nucleus (LGN) at 0.3 mm resolution. CONCLUSION The promising brain imaging results along with flexibility in various size use of the presented design can be an effective and maneuverable solution to take one step close towards mesoscale cortical-related imaging. SIGNIFICANCE High-spatial-resolution brain imaging over large animals by using ultra-high-field (UHF) MRI will be helpful to understand and reveal functional brain organizations and the underlying mechanism in diseases.
Collapse
|
7
|
Huang J, Chen L, Chan KWY, Cai C, Cai S, Chen Z. Super-resolved water/fat image reconstruction based on single-shot spatiotemporally encoded MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 314:106736. [PMID: 32361511 DOI: 10.1016/j.jmr.2020.106736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Single-shot spatiotemporally encoded (SPEN) MRI has been validated to possess considerable performance in both spatial and temporal resolution. Water/fat separation is essential for MRI applications in which only water signal is needed. In this article, a super-resolved water/fat image reconstruction method (dubbed SWAF) combined prior knowledge was developed based on single-shot SPEN MRI. The point spread function of spatiotemporal encoding under multiple chemical shifts situation was derived and used for constructing an equation for SWAF image reconstruction. By processing the prior chemical shift information with filtering operation, an initial spin density profile of water/fat and a weighting matrix for water/fat residual artifacts suppression were obtained to guide the reconstruction process. A l1 norm minimization problem with regularization was exploited to reconstruct separated water/fat images with high spatial resolution and less residual/aliasing artifacts. Numeric simulation and experiments on water-oil phantom and rat abdomen/neck imaging demonstrated the effectiveness and robustness of this new method. The SWAF method proposed herein would promote the application of SPEN MRI in the cases where water/fat separation is required.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China; Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Kamimura HAS, Conti A, Toschi N, Konofagou EE. Ultrasound neuromodulation: mechanisms and the potential of multimodal stimulation for neuronal function assessment. FRONTIERS IN PHYSICS 2020; 8:150. [PMID: 32509757 PMCID: PMC7274478 DOI: 10.3389/fphy.2020.00150] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Focused ultrasound (FUS) neuromodulation has shown that mechanical waves can interact with cell membranes and mechanosensitive ion channels, causing changes in neuronal activity. However, the thorough understanding of the mechanisms involved in these interactions are hindered by different experimental conditions for a variety of animal scales and models. While the lack of complete understanding of FUS neuromodulation mechanisms does not impede benefiting from the current known advantages and potential of this technique, a precise characterization of its mechanisms of action and their dependence on experimental setup (e.g., tuning acoustic parameters and characterizing safety ranges) has the potential to exponentially improve its efficacy as well as spatial and functional selectivity. This could potentially reach the cell type specificity typical of other, more invasive techniques e.g., opto- and chemogenetics or at least orientation-specific selectivity afforded by transcranial magnetic stimulation. Here, the mechanisms and their potential overlap are reviewed along with discussions on the potential insights into mechanisms that magnetic resonance imaging sequences along with a multimodal stimulation approach involving electrical, magnetic, chemical, light, and mechanical stimuli can provide.
Collapse
Affiliation(s)
- Hermes A. S. Kamimura
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New Yor, NY, USA
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Elisa E. Konofagou
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New Yor, NY, USA
| |
Collapse
|
9
|
Sakurai K, Shintani T, Jomura N, Matsuda T, Sumiyoshi A, Hisatsune T. Hyper BOLD Activation in Dorsal Raphe Nucleus of APP/PS1 Alzheimer's Disease Mouse during Reward-Oriented Drinking Test under Thirsty Conditions. Sci Rep 2020; 10:3915. [PMID: 32127559 PMCID: PMC7054396 DOI: 10.1038/s41598-020-60894-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disease, causes behavioural abnormalities such as disinhibition, impulsivity, and hyperphagia. Preclinical studies using AD model mice have investigated these phenotypes by measuring brain activity in awake, behaving mice. In this study, we monitored the behavioural alterations of impulsivity and hyperphagia in middle-aged AD model mice. As a behavioural readout, we trained the mice to accept a water-reward under thirsty conditions. To analyse brain activity, we developed a measure for licking behaviour combined with visualisation of whole brain activity using awake fMRI. In a water-reward learning task, the AD model mice showed significant hyperactivity of the dorsal raphe nucleus in thirsty conditions. In summary, we successfully visualised altered brain activity in AD model mice during reward-oriented behaviour for the first time using awake fMRI. This may help in understanding the causes of behavioural alterations in AD patients.
Collapse
Affiliation(s)
- Keisuke Sakurai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Teppei Shintani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Naohiro Jomura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Takeshi Matsuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Akira Sumiyoshi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, 263-8555, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
10
|
Gao Y, Mareyam A, Sun Y, Witzel T, Arango N, Kuang I, White J, Roe AW, Wald L, Stockmann J, Zhang X. A 16-channel AC/DC array coil for anesthetized monkey whole-brain imaging at 7T. Neuroimage 2020; 207:116396. [PMID: 31778818 PMCID: PMC7309650 DOI: 10.1016/j.neuroimage.2019.116396] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/07/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) in monkeys is important for bridging the gap between invasive animal brain studies and non-invasive human brain studies. To resolve the finer functional structure of the monkey brain, ultra-high-field (UHF) MR is essential, and high-performance, close-fitting RF receive coils are typically desired to fully leverage the intrinsic gains provided by UHF MRI. Moreover, static field (B0) inhomogeneity arising from the tissue susceptibility interface is more severe at UHF, presenting an obstacle to achieving high-resolution fMRI. B0 shim of the monkey head is challenging due to its smaller size and more complex sources of B0 offsets in multi-modal imaging tasks. In the present work, we have customized an array coil for lightly-anesthetized monkey fMRI in the 7T human scanner that combines RF and multi-coil (MC) B0 shim functionality (also referred to as AC/DC coils) to provide high imaging SNR and high-spatial-order, rapidly switchable B0-shim capability. Additional space was retained on the coil to render it compatible with monkey multi-modal imaging studies. Both MC global (whole-volume) and dynamic (slice-optimized) shim methods were tested and evaluated, and the benefits of MC shim for fMRI experiments was also studied. A minor reduction in RF coil performance was found after introducing additional B0 shim circuitry. However, the proposed RF coil provided higher image SNR and more uniform contrast compared to a commercially available coil for human knee imaging. Compared with static 2nd-order shim, the B0 inhomogeneity was reduced by 56.8%, and 95-percentile B0 offset was reduced to within 28.2 Hz through MC shim, versus 68.7 Hz with 2nd-order static shim. As a result, functional image quality could be improved, and brain activation can be better detected using the proposed AC/DC monkey coil.
Collapse
Affiliation(s)
- Yang Gao
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; School of Medicine, Zhejiang University, Hangzhou, China
| | - Azma Mareyam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Yi Sun
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Nicolas Arango
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Irene Kuang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jacob White
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; School of Medicine, Zhejiang University, Hangzhou, China
| | - Lawrence Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Jason Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Xiaotong Zhang
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Ryu J, Han S, Oh S, Lee J, Kim S, Park J. A new ultrafast 3D gradient echo‐based imaging method using quadratic‐phase encoding. Magn Reson Med 2019; 82:237-250. [DOI: 10.1002/mrm.27711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Jae‐Kyun Ryu
- Center for Neuroscience Imaging Research Institute for Basic Science Suwon Republic of Korea
- Department of Biomedical Engineering Sungkyunkwan University Suwon Republic of Korea
| | - SoHyun Han
- Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts
| | - Se‐Hong Oh
- Division of Biomedical Engineering Hankuk University of Foreign Studies Yongin Republic of Korea
| | - Joonsung Lee
- Center for Neuroscience Imaging Research Institute for Basic Science Suwon Republic of Korea
| | - Seong‐Gi Kim
- Center for Neuroscience Imaging Research Institute for Basic Science Suwon Republic of Korea
- Department of Biomedical Engineering Sungkyunkwan University Suwon Republic of Korea
| | - Jang‐Yeon Park
- Center for Neuroscience Imaging Research Institute for Basic Science Suwon Republic of Korea
- Department of Biomedical Engineering Sungkyunkwan University Suwon Republic of Korea
| |
Collapse
|
12
|
Roussel T, Frydman L, Le Bihan D, Ciobanu L. Brain sugar consumption during neuronal activation detected by CEST functional MRI at ultra-high magnetic fields. Sci Rep 2019; 9:4423. [PMID: 30872689 PMCID: PMC6418181 DOI: 10.1038/s41598-019-40986-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 02/27/2019] [Indexed: 01/28/2023] Open
Abstract
Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) indirectly measures brain activity based on neurovascular coupling, a reporter that limits both the spatial and temporal resolution of the technique as well as the cellular and metabolic specificity. Emerging methods using functional spectroscopy (fMRS) and diffusion-weighted fMRI suggest that metabolic and structural modifications are also taking place in the activated cells. This paper explores an alternative metabolic imaging approach based on Chemical Exchange Saturation Transfer (CEST) to assess potential metabolic changes induced by neuronal stimulation in rat brains at 17.2 T. An optimized CEST-fMRI data acquisition and processing protocol was developed and used to experimentally assess the feasibility of glucoCEST-based fMRI. Images acquired under glucose-sensitizing conditions showed a substantial negative contrast that highlighted the same brain regions as those activated with BOLD-fMRI. We ascribe this novel fMRI contrast to CEST's ability to monitor changes in the local concentration of glucose, a metabolite closely coupled to neuronal activity. Our findings are in good agreement with literature employing other modalities. The use of CEST-based techniques for fMRI is not limited to glucose detection; other metabolic pathways involved in neuronal activation could be potentially probed. Moreover, being non invasive, it is conceivable that the same approach can be used for human studies.
Collapse
Affiliation(s)
- Tangi Roussel
- NeuroSpin, Commissariat à l'Energie Atomique et aux Energies Alternatives, Univerisité Paris-Saclay, Gif-sur-Yvette, France
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Denis Le Bihan
- NeuroSpin, Commissariat à l'Energie Atomique et aux Energies Alternatives, Univerisité Paris-Saclay, Gif-sur-Yvette, France
| | - Luisa Ciobanu
- NeuroSpin, Commissariat à l'Energie Atomique et aux Energies Alternatives, Univerisité Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Spatial contribution of hippocampal BOLD activation in high-resolution fMRI. Sci Rep 2019; 9:3152. [PMID: 30816226 PMCID: PMC6395694 DOI: 10.1038/s41598-019-39614-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
While the vascular origin of the BOLD-fMRI signal is established, the exact neurovascular coupling events contributing to this signal are still incompletely understood. Furthermore, the hippocampal spatial properties of the BOLD activation are not elucidated, although electrophysiology approaches have already revealed the precise spatial patterns of neural activity. High magnetic field fMRI offers improved contrast and allows for a better correlation with the underlying neuronal activity because of the increased contribution to the BOLD signal of small blood vessels. Here, we take advantage of these two benefits to investigate the spatial characteristics of the hippocampal activation in a rat model before and after changing the hippocampal plasticity by long-term potentiation (LTP). We found that the hippocampal BOLD signals evoked by electrical stimulation at the perforant pathway increased more at the radiatum layer of the hippocampal CA1 region than at the pyramidal cell layer. The return to the baseline of the hippocampal BOLD activation was prolonged after LTP induction compared with that before most likely due vascular or neurovascular coupling changes. Based on these results, we conclude that high resolution BOLD-fMRI allows the segregation of hippocampal subfields probably based on their underlying vascular or neurovascular coupling features.
Collapse
|
14
|
Marhabaie S, Bodenhausen G, Pelupessy P. Susceptibility contrast by echo shifting in spatially encoded single-scan MRI. Phys Chem Chem Phys 2017; 19:14210-14213. [PMID: 28537619 DOI: 10.1039/c7cp01898c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To overcome the effects of static field inhomogeneities, single-scan hybrid imaging techniques that use k-space encoding in one direction and spatial encoding in the other have been shown to be superior to traditional imaging techniques based on full k-space encoding. Like traditional imaging methods, hybrid methods can be implemented in different ways that favor different sources of contrast. So far, little attention appears to have been paid to these aspects. By modifying an established hybrid imaging sequence called Rapid Acquisition by Sequential Excitation and Refocusing (RASER) so as to obtain Echo-Shifted RASER sequences, we show that by shifting spin echoes one can tune the contrast due to inhomogeneous T decay.
Collapse
Affiliation(s)
- Sina Marhabaie
- Département de Chimie, École Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France.
| | | | | |
Collapse
|
15
|
Keilholz SD, Pan WJ, Billings J, Nezafati M, Shakil S. Noise and non-neuronal contributions to the BOLD signal: applications to and insights from animal studies. Neuroimage 2016; 154:267-281. [PMID: 28017922 DOI: 10.1016/j.neuroimage.2016.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/21/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023] Open
Abstract
The BOLD signal reflects hemodynamic events within the brain, which in turn are driven by metabolic changes and neural activity. However, the link between BOLD changes and neural activity is indirect and can be influenced by a number of non-neuronal processes. Motion and physiological cycles have long been known to affect the BOLD signal and are present in both humans and animal models. Differences in physiological baseline can also contribute to intra- and inter-subject variability. The use of anesthesia, common in animal studies, alters neural activity, vascular tone, and neurovascular coupling. Most intriguing, perhaps, are the contributions from other processes that do not appear to be neural in origin but which may provide information about other aspects of neurophysiology. This review discusses different types of noise and non-neuronal contributors to the BOLD signal, sources of variability for animal studies, and insights to be gained from animal models.
Collapse
Affiliation(s)
- Shella D Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States; Neuroscience Program, Emory University, Atlanta, GA, United States.
| | - Wen-Ju Pan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States
| | - Jacob Billings
- Neuroscience Program, Emory University, Atlanta, GA, United States
| | - Maysam Nezafati
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States
| | - Sadia Shakil
- Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
16
|
Soares JM, Magalhães R, Moreira PS, Sousa A, Ganz E, Sampaio A, Alves V, Marques P, Sousa N. A Hitchhiker's Guide to Functional Magnetic Resonance Imaging. Front Neurosci 2016; 10:515. [PMID: 27891073 PMCID: PMC5102908 DOI: 10.3389/fnins.2016.00515] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
Functional Magnetic Resonance Imaging (fMRI) studies have become increasingly popular both with clinicians and researchers as they are capable of providing unique insights into brain functions. However, multiple technical considerations (ranging from specifics of paradigm design to imaging artifacts, complex protocol definition, and multitude of processing and methods of analysis, as well as intrinsic methodological limitations) must be considered and addressed in order to optimize fMRI analysis and to arrive at the most accurate and grounded interpretation of the data. In practice, the researcher/clinician must choose, from many available options, the most suitable software tool for each stage of the fMRI analysis pipeline. Herein we provide a straightforward guide designed to address, for each of the major stages, the techniques, and tools involved in the process. We have developed this guide both to help those new to the technique to overcome the most critical difficulties in its use, as well as to serve as a resource for the neuroimaging community.
Collapse
Affiliation(s)
- José M. Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Pedro S. Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Alexandre Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
- Department of Informatics, University of MinhoBraga, Portugal
| | - Edward Ganz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Adriana Sampaio
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of MinhoBraga, Portugal
| | - Victor Alves
- Department of Informatics, University of MinhoBraga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
- Clinical Academic Center – BragaBraga, Portugal
| |
Collapse
|
17
|
Huang J, Zhang M, Lu J, Cai C, Chen L, Cai S. A fast chemical exchange saturation transfer imaging scheme based on single-shot spatiotemporal encoding. Magn Reson Med 2016; 77:1786-1796. [PMID: 27120691 DOI: 10.1002/mrm.26258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 01/31/2023]
Abstract
PURPOSE To design a new approach that can not only keep the spatial and temporal resolution but also have better built-in immunity to magnetic field inhomogeneity and chemical shift effects than the single-shot echo planar imaging (EPI) for chemical exchange saturation transfer (CEST) MRI. METHOD The single-shot spatiotemporally encoded (SPEN) MRI sequence was combined with a continuous wave saturation pulse for fast CEST MRI (CEST-SPEN MRI). The resulting images were super-resolved reconstructed by a hybrid method that solves the l1 norm minimization together with total variation (TV) regularization. Partial Lorentzian fitting was used to analyze the subsequent Z-spectra. RESULTS Experimental results of a creatine phantom and in vivo tumor rat brains show that CEST-SPEN MRI has good capability in providing CEST-based and NOE-based contrast images. CONCLUSIONS Compared with CEST-EPI, CEST-SPEN MRI has better immunity to magnetic field inhomogeneity and provides better contrast images within identical acquisition time, especially under an identical inhomogeneous field. Magn Reson Med 77:1786-1796, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Miao Zhang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jianhua Lu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.,Meizhouwan Vocational Technology College, Putian, China
| | - Congbo Cai
- Department of Communication Engineering, Xiamen University, Xiamen, China
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| |
Collapse
|
18
|
Solomon E, Liberman G, Nissan N, Frydman L. Robust diffusion tensor imaging by spatiotemporal encoding: Principles and in vivo demonstrations. Magn Reson Med 2016; 77:1124-1133. [PMID: 26968710 DOI: 10.1002/mrm.26197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE Evaluate the usefulness of single-shot and of interleaved spatiotemporally encoded (SPEN) methods to perform diffusion tensor imaging (DTI) under various preclinical and clinical settings. METHODS A formalism for analyzing SPEN DTI data is presented, tailored to account for the spatially dependent b-matrix weightings introduced by the sequence's use of swept pulses acting while in the presence of field gradients. Using these b-matrix calculations, SPEN's ability to deliver DTI measurements was tested on phantoms as well as ex vivo and in vivo. In the latter case, DTI involved scans on mice brains and on human lactating breasts. RESULTS For both ex vivo and in vivo investigations, SPEN data proved less sensitive to distortions arising from Bo field inhomogeneities and from eddy currents, than conventional single-shot alternatives. Further resolution enhancement could be achieved using referenceless methods for interleaved SPEN data acquisitions. CONCLUSION The robustness of SPEN-based sequences vis-à-vis field instabilities and heterogeneities, enables the implementation of DTI experiments with good sensitivity and resolution even in challenging environments in both preclinical and clinical settings. Magn Reson Med 77:1124-1133, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Eddy Solomon
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gilad Liberman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Nissan
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.,Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|