1
|
Omer WE, Abdulhadi K, Shahbal S, Neudert M, Siepmann T. Vestibular Hypofunction in Patients with Presbycusis: A Cross-Sectional Study. J Clin Med 2024; 13:7767. [PMID: 39768690 PMCID: PMC11727745 DOI: 10.3390/jcm13247767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Vestibular Hypofunction (VH) and hearing loss can affect quality of life and lead to disability, especially in the elderly. Studies investigating presbycusis and vestibular function in the aging population have been conducted separately, but few have examined the combination of both conditions in older patients, with inconsistent results that may be due to small sample sizes or heterogeneity in the methods used to assess vestibular function. We aimed to characterize the occurrence of VH in patients with presbycusis using the video head impulse test (vHIT), which is a specific and reliable assessment tool for VH. Methods: A prospective, cross-sectional study of 200 individuals was conducted at Hamad Medical Corporation-Qatar in Doha, Qatar. Adults aged 50 years and older with bilateral age-related hearing loss were screened for eligibility and those who were eligible completed the vHIT. Patient history, demographics, audiological and clinical data were collected. VH was defined as vestibulo-ocular reflex (VOR) gain of <0.79 and presence of corrective saccades. Results: In our study population, (n = 200 mean age 64.1 ± 8.4 [Range = 37], 31.5% females), VH was identified in 12 out of 200 patients (6.0%, 95% CI: 3.3-10.1) with bilateral age-related hearing loss (ARHL), equivalent to approximately 1 in 17 patients. VH was detected in the left ear in 11 patients (5.5%, 95% CI: 2.9-9.9), the right ear in five patients (2.5%, 95% CI: 0.8-5.8), and bilaterally in four patients (2.0%, 95% CI: 0.6-5.4). Conclusions: In our study population, vestibular hypofunction was observed in 6% of patients with bilateral symmetrical age-related sensorineural hearing loss, suggesting that vestibular screening may be useful in this population at risk.
Collapse
Affiliation(s)
- Walid E. Omer
- Audiology Unit, ENT Section, Ambulatory Care Center, Hamad Medical Corporation, Doha 3050, Qatar
- Dresden International University, 01067 Dresden, Germany
| | - Khalid Abdulhadi
- Audiology Unit, ENT Section, Ambulatory Care Center, Hamad Medical Corporation, Doha 3050, Qatar
| | - Saad Shahbal
- Department of Medicine, Hamad Medical Corporation, Doha 3050, Qatar
| | - Marcus Neudert
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany
| | - Timo Siepmann
- Department of Neurology, Medical Faculty, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany
| |
Collapse
|
2
|
Bouisset N, Laakso I. Induced electric fields in MRI settings and electric vestibular stimulations: same vestibular effects? Exp Brain Res 2024; 242:2493-2507. [PMID: 39261353 DOI: 10.1007/s00221-024-06910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024]
Abstract
In Magnetic Resonance Imaging scanner environments, the continuous Lorentz Force is a potent vestibular stimulation. It is nowadays so well known that it is now identified as Magnetic vestibular stimulation (MVS). Alongside MVS, some authors argue that through induced electric fields, electromagnetic induction could also trigger the vestibular system. Indeed, for decades, vestibular-specific electric stimulations (EVS) have been known to precisely impact all vestibular pathways. Here, we go through the literature, looking at potential time varying magnetic field induced vestibular outcomes in MRI settings and comparing them with EVS-known outcomes. To date, although theoretically induction could trigger vestibular responses the behavioral evidence remains poor. Finally, more vestibular-specific work is needed.
Collapse
Affiliation(s)
- Nicolas Bouisset
- Human Threshold Research Group, Lawson Health Research Institute, London, ON, Canada.
- Department of Medical Biophysics, Western University, London, ON, Canada.
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| |
Collapse
|
3
|
Ugolini G, Graf W. Pathways from the superior colliculus and the nucleus of the optic tract to the posterior parietal cortex in macaque monkeys: Functional frameworks for representation updating and online movement guidance. Eur J Neurosci 2024; 59:2792-2825. [PMID: 38544445 DOI: 10.1111/ejn.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
The posterior parietal cortex (PPC) integrates multisensory and motor-related information for generating and updating body representations and movement plans. We used retrograde transneuronal transfer of rabies virus combined with a conventional tracer in macaque monkeys to identify direct and disynaptic pathways to the arm-related rostral medial intraparietal area (MIP), the ventral lateral intraparietal area (LIPv), belonging to the parietal eye field, and the pursuit-related lateral subdivision of the medial superior temporal area (MSTl). We found that these areas receive major disynaptic pathways via the thalamus from the nucleus of the optic tract (NOT) and the superior colliculus (SC), mainly ipsilaterally. NOT pathways, targeting MSTl most prominently, serve to process the sensory consequences of slow eye movements for which the NOT is the key sensorimotor interface. They potentially contribute to the directional asymmetry of the pursuit and optokinetic systems. MSTl and LIPv receive feedforward inputs from SC visual layers, which are potential correlates for fast detection of motion, perceptual saccadic suppression and visual spatial attention. MSTl is the target of efference copy pathways from saccade- and head-related compartments of SC motor layers and head-related reticulospinal neurons. They are potential sources of extraretinal signals related to eye and head movement in MSTl visual-tracking neurons. LIPv and rostral MIP receive efference copy pathways from all SC motor layers, providing online estimates of eye, head and arm movements. Our findings have important implications for understanding the role of the PPC in representation updating, internal models for online movement guidance, eye-hand coordination and optic ataxia.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR9197 CNRS - Université Paris-Saclay, Campus CEA Saclay, Saclay, France
| | - Werner Graf
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| |
Collapse
|
4
|
Rossi S, Cinti A, Viberti F, Benelli A, Neri F, De Monte D, Giannotta A, Romanella S, Smeralda C, Donniacuo A, Prattichizzo D, Pasqualetti P, Santarnecchi E, Mandalà M. Frequency-dependent tuning of the human vestibular "sixth sense" by transcranial oscillatory currents. Clin Neurophysiol 2023; 153:123-132. [PMID: 37481873 DOI: 10.1016/j.clinph.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE The vestibular cortex is a multisensory associative region that, in neuroimaging investigations, is activated by slow-frequency (1-2 Hz) galvanic stimulation of peripheral receptors. We aimed to directly activate the vestibular cortex with biophysically modeled transcranial oscillatory current stimulation (tACS) in the same frequency range. METHODS Thirty healthy subjects and one rare patient with chronic bilateral vestibular deafferentation underwent, in a randomized, double-blind, controlled trial, to tACS at slow (1 or 2 Hz) or higher (10 Hz) frequency and sham stimulations, over the Parieto-Insular Vestibular Cortex (PIVC), while standing on a stabilometric platform. Subjective symptoms of motion sickness were scored by Simulator Sickness Questionnaire and subjects' postural sways were monitored on the platform. RESULTS tACS at 1 and 2 Hz induced symptoms of motion sickness, oscillopsia and postural instability, that were supported by posturographic sway recordings. Both 10 Hz-tACS and sham stimulation on the vestibular cortex did not affect vestibular function. As these effects persisted in a rare patient with bilateral peripheral vestibular areflexia documented by the absence of the Vestibular-Ocular Reflex, the possibility of a current spread toward peripheral afferents is unlikely. Conversely, the 10 Hz-tACS significantly reduced his chronic vestibular symptoms in this patient. CONCLUSIONS Weak electrical oscillations in a frequency range corresponding to the physiological cortical activity of the vestibular system may generate motion sickness and postural sways, both in healthy subjects and in the case of bilateral vestibular deafferentation. SIGNIFICANCE This should be taken into account as a new side effect of tACS in future studies addressing cognitive functions. Higher frequencies of stimulation applied to the vestibular cortex may represent a new interventional option to reduce motion sickness in different scenarios.
Collapse
Affiliation(s)
- Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy; Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Italy.
| | - Alessandra Cinti
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Francesca Viberti
- Otolaryngology, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Alberto Benelli
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Francesco Neri
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy; Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Italy
| | - David De Monte
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Alessandro Giannotta
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Sara Romanella
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Carmelo Smeralda
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Aniello Donniacuo
- Otolaryngology, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Domenico Prattichizzo
- Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Italy; Siena Robotics and Systems (SiRS) Lab, Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | | | - Emiliano Santarnecchi
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Mandalà
- Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Italy; Otolaryngology, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| |
Collapse
|
5
|
Goothy SSK, Vijayaraghavan R, Chakraborty H. A randomized controlled trial to evaluate the efficacy of electrical vestibular nerve stimulation (VeNS), compared to a sham control for the management of sleep in young adults. J Basic Clin Physiol Pharmacol 2023; 34:391-399. [PMID: 37017648 DOI: 10.1515/jbcpp-2023-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES Preliminary research suggests that electrical vestibular nerve stimulation (VeNS) may improve sleep outcomes by influencing the hypothalamus and brainstem nuclei involved in regulating the circadian rhythm and wakefulness. This randomised, sham-controlled trial aimed to assess the effectiveness of VeNS on insomnia in young adults. METHODS Eighty adults aged 18-24 years were randomly allocated to the intervention (n=40) and control groups (n=40). The intervention group was provided with 30 min per day of VeNS with five sessions weekly for four weeks, while the control group received sham stimulation for the same period. Baseline Insomnia Sleep Index (ISI) scores were recorded weekly. At baseline and at day 28, questionnaires to evaluate emotional states of depression, anxiety and stress, and quality of life (QoL) were completed. The primary outcome was change in ISI with comparison between baseline and day 28. RESULTS The VeNS group significantly reduced their mean ISI score after 7 days usage (p<0.001). At day 28 it was found that mean ISI scores had reduced from 19 to 11 in the VeNS group, and from 19 to 18 in the sham group, and the difference between the groups was significant (p<0.001). Moreover, application of VeNS appeared to significantly improve emotional state and QoL outcomes. CONCLUSIONS This trial demonstrates that regular VeNS usage over four weeks leads to a clinically meaningful decrease in ISI scores in young adults with insomnia. VeNS may have potential as a drug-free and non-invasive therapy to improve sleep outcomes by positively influencing the hypothalamic and brainstem nuclei.
Collapse
Affiliation(s)
- Sai Sailesh Kumar Goothy
- Department of Physiology, Sri Madhusudan Sai Institute of Medical Sciences and Research, Muddenahalli, Karnataka, India
| | | | - Hirok Chakraborty
- Department of Physiology, Manipal Tata Medical College, Manipal Academy of Higher Education, Jamshedpur, Jharkhand, India
| |
Collapse
|
6
|
Li H, Song L, Wang P, Weiss PH, Fink GR, Zhou X, Chen Q. Impaired body-centered sensorimotor transformations in congenitally deaf people. Brain Commun 2022; 4:fcac148. [PMID: 35774184 PMCID: PMC9240416 DOI: 10.1093/braincomms/fcac148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 02/26/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
Congenital deafness modifies an individual’s daily interaction with the environment and alters the fundamental perception of the external world. How congenital deafness shapes the interface between the internal and external worlds remains poorly understood. To interact efficiently with the external world, visuospatial representations of external target objects need to be effectively transformed into sensorimotor representations with reference to the body. Here, we tested the hypothesis that egocentric body-centred sensorimotor transformation is impaired in congenital deafness. Consistent with this hypothesis, we found that congenital deafness induced impairments in egocentric judgements, associating the external objects with the internal body. These impairments were due to deficient body-centred sensorimotor transformation per se, rather than the reduced fidelity of the visuospatial representations of the egocentric positions. At the neural level, we first replicated the previously well-documented critical involvement of the frontoparietal network in egocentric processing, in both congenitally deaf participants and hearing controls. However, both the strength of neural activity and the intra-network connectivity within the frontoparietal network alone could not account for egocentric performance variance. Instead, the inter-network connectivity between the task-positive frontoparietal network and the task-negative default-mode network was significantly correlated with egocentric performance: the more cross-talking between them, the worse the egocentric judgement. Accordingly, the impaired egocentric performance in the deaf group was related to increased inter-network connectivity between the frontoparietal network and the default-mode network and decreased intra-network connectivity within the default-mode network. The altered neural network dynamics in congenital deafness were observed for both evoked neural activity during egocentric processing and intrinsic neural activity during rest. Our findings thus not only demonstrate the optimal network configurations between the task-positive and -negative neural networks underlying coherent body-centred sensorimotor transformations but also unravel a critical cause (i.e. impaired body-centred sensorimotor transformation) of a variety of hitherto unexplained difficulties in sensory-guided movements the deaf population experiences in their daily life.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education , China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University , China
| | - Li Song
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education , China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University , China
| | - Pengfei Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education , China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University , China
| | - Peter H. Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany, Wilhelm-Johnen-Strasse , 52428 Jülich, Germany
- Department of Neurology, University Hospital Cologne, Cologne University , 509737 Cologne, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany, Wilhelm-Johnen-Strasse , 52428 Jülich, Germany
- Department of Neurology, University Hospital Cologne, Cologne University , 509737 Cologne, Germany
| | - Xiaolin Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University , 200062 Shanghai, China
| | - Qi Chen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany, Wilhelm-Johnen-Strasse , 52428 Jülich, Germany
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education , China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University , China
| |
Collapse
|
7
|
Oostwoud Wijdenes L, Wynn SC, Roesink BS, Schutter DJLG, Selen LPJ, Medendorp WP. Assessing corticospinal excitability and reaching hand choice during whole-body motion. J Neurophysiol 2022; 128:19-27. [PMID: 35647760 DOI: 10.1152/jn.00699.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Behavioral studies have shown that humans account for inertial acceleration in their decisions of hand choice when reaching during body motion. Physiologically, it is unclear at what stage of movement preparation information about body motion is integrated in the process of hand selection. Here, we addressed this question by applying transcranial magnetic stimulation over left motor cortex (M1) of human participants who performed a preferential reach task while they were sinusoidally translated on a linear motion platform. If M1 only represents a read-out of the final hand choice, we expect the body motion not to affect the motor-evoked potential (MEP) amplitude. If body motion biases the hand selection process prior to target onset, we expect corticospinal excitability to be influenced by the phase of the motion, with larger MEP amplitudes for phases that show a bias to using the right hand. Behavioral results replicate our earlier findings of a sinusoidal modulation of hand choice bias with motion phase. MEP amplitudes also show a sinusoidal modulation with motion phase, suggesting that body motion influences corticospinal excitability which may ultimately reflect changes of hand preference. The modulation being present prior to target onset suggests that competition between hands is represented throughout the corticospinal tract. Its phase relationship with the motion profile indicates that other processes after target onset take up time until the hand selection process has been completely resolved, and the reach is initiated.
Collapse
Affiliation(s)
- Leonie Oostwoud Wijdenes
- Donders Institute of Brain, Cognition and Behaviour, grid.5590.9Radboud University Nijmegen, Nijmegen, Netherlands
| | - Syanah C Wynn
- School of Psychology, grid.6572.6University of Birmingham, Birmingham, United Kingdom
| | - Béla Sebastiaan Roesink
- Donders Institute of Brain, Cognition and Behaviour, grid.5590.9Radboud University Nijmegen, Nijmegen, Netherlands
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, grid.5477.1Utrecht University, Utrecht, Netherlands
| | - Luc P J Selen
- Donders Institute for Brain Cognition and Behaviour, grid.5590.9Radboud University Nijmegen, Nijmegen, Netherlands
| | - W Pieter Medendorp
- Donders institute for Brain, Cognition and Behaviour, grid.5590.9Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
8
|
Hu H, Fang Z, Qian Z, Yao L, Tao L, Qin B. Stress Assessment of Vestibular Endurance Training for Civil Aviation Flight Students Based on EEG. Front Hum Neurosci 2021; 15:582636. [PMID: 34489658 PMCID: PMC8417248 DOI: 10.3389/fnhum.2021.582636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: The main goal of this study is to clarify the electroencephalogram (EEG) characteristics of the stress response caused by vestibular endurance training under real conditions. Methods: Ten pilot trainees received a series of acute anti-vertigo training stimulations on the rotary ladder while recording electroencephalographic data (64 electrodes). Afterward, the anti-vertigo ability of the subject was tested for the best performance after 1 month of training and verified whether it is related to the EEG signals we collected before. Results: (1) The absolute power of α waves in the C3 and C4 regions is the same as the difference between 1 min before and 2 min after stimulation, and their activity is enhanced by stimulation. Otherwise, the activation of the C3 region after 5 min of stimulation is still significantly changed. (2) Through Spearman's correlation analysis, we found that the α waves in the C3 and C4 the greater the power change, the better the performance of the subject in the proficient stage. Conclusion: C3 and C4 areas are specific brain regions of the stress response of anti-vertigo endurance training, and the absolute power of the α wave can be used as a parameter for identifying the degree of motion sickness (MS). The absolute power changes of α waves in the C3 and C4 areas are positively correlated with their anti-vertigo potential. Significance: Increasing the absolute power of α wave in the C3 and C4 is a manifestation of MS stress adaptability.
Collapse
Affiliation(s)
- Haixu Hu
- Sports Training College of Nanjing Sport Institute, Nanjing, China.,Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhou Fang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Liuye Yao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Ling Tao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Bing Qin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
9
|
Yoshimura N, Umetsu K, Tonin A, Maruyama Y, Harada K, Rana A, Ganesh G, Chaudhary U, Koike Y, Birbaumer N. Binary Semantic Classification Using Cortical Activation with Pavlovian-Conditioned Vestibular Responses in Healthy and Locked-In Individuals. Cereb Cortex Commun 2021; 2:tgab046. [PMID: 34447933 PMCID: PMC8382900 DOI: 10.1093/texcom/tgab046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 11/14/2022] Open
Abstract
To develop a more reliable brain–computer interface (BCI) for patients in the completely locked-in state (CLIS), here we propose a Pavlovian conditioning paradigm using galvanic vestibular stimulation (GVS), which can induce a strong sensation of equilibrium distortion in individuals. We hypothesized that associating two different sensations caused by two-directional GVS with the thoughts of “yes” and “no” by individuals would enable us to emphasize the differences in brain activity associated with the thoughts of yes and no and hence help us better distinguish the two from electroencephalography (EEG). We tested this hypothesis with 11 healthy and 1 CLIS participant. Our results showed that, first, conditioning of GVS with the thoughts of yes and no is possible. And second, the classification of whether an individual is thinking “yes” or “no” is significantly improved after the conditioning, even in the absence of subsequent GVS stimulations. We observed average classification accuracy of 73.0% over 11 healthy individuals and 85.3% with the CLIS patient. These results suggest the establishment of GVS-based Pavlovian conditioning and its usability as a noninvasive BCI.
Collapse
Affiliation(s)
- Natsue Yoshimura
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Kaito Umetsu
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Alessandro Tonin
- Wyss-Center for Bio and NeuroEngineering, Geneva CH-1202, Switzerland
| | - Yasuhisa Maruyama
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Kyosuke Harada
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Aygul Rana
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Gowrishankar Ganesh
- Laboratorie d'Informatique, de Robotique et de Microelectronique de Montpellier, U. Montpellier, CNRS, 34095 Montpellier, France
| | - Ujwal Chaudhary
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Yasuharu Koike
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Uyaroglu FG, Ucar R, Acarer A, Celebisoy N. What might cervical vestibular-evoked myogenic potential abnormalities mean in essential tremor? Neurol Sci 2021; 42:5271-5276. [PMID: 33860393 DOI: 10.1007/s10072-021-05248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
AIM/BACKGROUND Essential tremor (ET) is one of the most common movement disorders. However, its pathogenesis is unclear. Human vestibular reflexes are essential not only for gait and posture but also for goal-directed voluntary movements. In this study, cervical vestibular-evoked myogenic potentials (cVEMPs), the electrophysiological equivalent of the vestibulo-collic reflex was studied in ET patients to understand the interaction between the tremor network and the vestibular neural pathways. METHODS cVEMPs were recorded in 40 ET patients and 40 age and sex-matched healthy controls (HCs). The latencies of peaks p13 and n23 and peak-to-peak amplitude of p13-n23 were measured. RESULTS There was no statistically significant difference between the p13 latencies of the HC and ET groups (p 0.79 and p 0.23 for the right and left sides respectively). n23 latency was shortened bilaterally in the ET group (p 0.009 and p 0.02 for the right and left sides respectively). p13-n23 amplitudes of the ET patients were bilaterally reduced when compared with the HC (p <0.001 and p 0.001 for the right and left sides respectively). CONCLUSION Information provided by vestibular afferents is crucial in the control of voluntary movements in humans. Despite this silent but significant effect, the role of the vestibular system in movement disorders is often overlooked. In this study, it was found that cVEMP responses reflecting the activity of the vestibulo-collic pathway were affected in ET which can be either caused by dysfunctional structures or pathways responsible from ET or an additional disorder of vestibular information processing in these patients.
Collapse
Affiliation(s)
- Feray Gulec Uyaroglu
- Department of Neurology, Izmir Tepecik Education and Research Hospital, Izmir, Turkey
| | - Roza Ucar
- Department of Neurology, Izmir Tepecik Education and Research Hospital, Izmir, Turkey
| | - Ahmet Acarer
- Department of Neurology and Clinical Neurophysiology, Ege University Medical School, Bornova, 35100, Izmir, Turkey
| | - Nese Celebisoy
- Department of Neurology and Clinical Neurophysiology, Ege University Medical School, Bornova, 35100, Izmir, Turkey.
| |
Collapse
|
11
|
Martin CZ, Lapierre P, Haché S, Lucien D, Green AM. Vestibular contributions to online reach execution are processed via mechanisms with knowledge about limb biomechanics. J Neurophysiol 2021; 125:1022-1045. [PMID: 33502952 DOI: 10.1152/jn.00688.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies of reach control with the body stationary have shown that proprioceptive and visual feedback signals contributing to rapid corrections during reaching are processed by neural circuits that incorporate knowledge about the physical properties of the limb (an internal model). However, among the most common spatial and mechanical perturbations to the limb are those caused by our body's own motion, suggesting that processing of vestibular signals for online reach control may reflect a similar level of sophistication. We investigated this hypothesis using galvanic vestibular stimulation (GVS) to selectively activate the vestibular sensors, simulating body rotation, as human subjects reached to remembered targets in different directions (forward, leftward, rightward). If vestibular signals contribute to purely kinematic/spatial corrections for body motion, GVS should evoke reach trajectory deviations of similar size in all directions. In contrast, biomechanical modeling predicts that if vestibular processing for online reach control takes into account knowledge of the physical properties of the limb and the forces applied on it by body motion, then GVS should evoke trajectory deviations that are significantly larger during forward and leftward reaches as compared with rightward reaches. When GVS was applied during reaching, the observed deviations were on average consistent with this prediction. In contrast, when GVS was instead applied before reaching, evoked deviations were similar across directions, as predicted for a purely spatial correction mechanism. These results suggest that vestibular signals, like proprioceptive and visual feedback, are processed for online reach control via sophisticated neural mechanisms that incorporate knowledge of limb biomechanics.NEW & NOTEWORTHY Studies examining proprioceptive and visual contributions to rapid corrections for externally applied mechanical and spatial perturbations during reaching have provided evidence for flexible processing of sensory feedback that accounts for musculoskeletal system dynamics. Notably, however, such perturbations commonly arise from our body's own motion. In line with this, we provide compelling evidence that, similar to proprioceptive and visual signals, vestibular signals are processed for online reach control via sophisticated mechanisms that incorporate knowledge of limb biomechanics.
Collapse
Affiliation(s)
- Christophe Z Martin
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe Lapierre
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Simon Haché
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Diderot Lucien
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Andrea M Green
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Garzorz I, Deroy O. Why There Is a Vestibular Sense, or How Metacognition Individuates the Senses. Multisens Res 2020; 34:261-280. [PMID: 33706282 DOI: 10.1163/22134808-bja10026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/23/2020] [Indexed: 11/19/2022]
Abstract
Should the vestibular system be counted as a sense? This basic conceptual question remains surprisingly controversial. While it is possible to distinguish specific vestibular organs, it is not clear that this suffices to identify a genuine vestibular sense because of the supposed absence of a distinctive vestibular personal-level manifestation. The vestibular organs instead contribute to more general multisensory representations, whose name still suggest that they have a distinct 'sensory' contribution. The vestibular case shows a good example of the challenge of individuating the senses when multisensory interactions are the norm, neurally, representationally and phenomenally. Here, we propose that an additional metacognitive criterion can be used to single out a distinct sense, besides the existence of specific organs and despite the fact that the information coming from these organs is integrated with other sensory information. We argue that it is possible for human perceivers to monitor information coming from distinct organs, despite their integration, as exhibited and measured through metacognitive performance. Based on the vestibular case, we suggest that metacognitive awareness of the information coming from sensory organs constitutes a new criterion to individuate a sense through both physiological and personal criteria. This new way of individuating the senses accommodates both the specialised nature of sensory receptors as well as the intricate multisensory aspect of neural processes and experience, while maintaining the idea that each sense contributes something special to how we monitor the world and ourselves, at the subjective level.
Collapse
Affiliation(s)
- Isabelle Garzorz
- Faculty of Philosophy and Philosophy of Science, Ludwig Maximilian University, Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), University Hospital of Munich, Ludwig Maximilian University, Munich, Germany
| | - Ophelia Deroy
- Faculty of Philosophy and Philosophy of Science, Ludwig Maximilian University, Munich, Germany.,Munich Center for Neuroscience, Ludwig Maximilian University, Munich, Germany.,Institute of Philosophy, School of Advanced Study, University of London, London, UK
| |
Collapse
|
13
|
Marigold DS, Lajoie K, Heed T. No effect of triple-pulse TMS medial to intraparietal sulcus on online correction for target perturbations during goal-directed hand and foot reaches. PLoS One 2019; 14:e0223986. [PMID: 31626636 PMCID: PMC6799897 DOI: 10.1371/journal.pone.0223986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/02/2019] [Indexed: 11/30/2022] Open
Abstract
Posterior parietal cortex (PPC) is central to sensorimotor processing for goal-directed hand and foot movements. Yet, the specific role of PPC subregions in these functions is not clear. Previous human neuroimaging and transcranial magnetic stimulation (TMS) work has suggested that PPC lateral to the intraparietal sulcus (IPS) is involved in directing the arm, shaping the hand, and correcting both finger-shaping and hand trajectory during movement. The lateral localization of these functions agrees with the comparably lateral position of the hand and fingers within the motor and somatosensory homunculi along the central sulcus; this might suggest that, in analogy, (goal-directed) foot movements would be mediated by medial portions of PPC. However, foot movement planning activates similar regions for both hand and foot movement along the caudal-to-rostral axis of PPC, with some effector-specificity evident only rostrally, near the central regions of sensorimotor cortex. Here, we attempted to test the causal involvement of PPC regions medial to IPS in hand and foot reaching as well as online correction evoked by target displacement. Participants made hand and foot reaches towards identical visual targets. Sometimes, the target changed position 100–117 ms into the movement. We disturbed cortical processing over four positions medial to IPS with three pulses of TMS separated by 40 ms, both during trials with and without target displacement. We timed TMS to disrupt reach execution and online correction. TMS did not affect endpoint error, endpoint variability, or reach trajectories for hand or foot. While these negative results await replication with different TMS timing and parameters, we conclude that regions medial to IPS are involved in planning, rather than execution and online control, of goal-directed limb movements.
Collapse
Affiliation(s)
- Daniel S. Marigold
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kim Lajoie
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tobias Heed
- Biopsychology and Cognitive Neuroscience, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
- Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
14
|
Oostwoud Wijdenes L, van Beers RJ, Medendorp WP. Vestibular modulation of visuomotor feedback gains in reaching. J Neurophysiol 2019; 122:947-957. [DOI: 10.1152/jn.00616.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Humans quickly and sophisticatedly correct their movements in response to changes in the world, such as when reaching to a target that abruptly changes its location. The vigor of these movement corrections is time-dependent, increasing if the time left to make the correction decreases, which can be explained by optimal feedback control (OFC) theory as an increase of optimal feedback gains. It is unknown whether corrections for changes in the world are as sophisticated under full-body motion. For successful visually probed motor corrections during full-body motion, not only the motion of the hand relative to the body needs to be taken into account, but also the motion of the hand in the world should be considered, because their relative positions are changing. Here, in two experiments, we show that visuomotor feedback corrections in response to target jumps are more vigorous for faster passive full-body translational acceleration than for slower acceleration, suggesting that vestibular information modulates visuomotor feedback gains. Interestingly, these corrections do not demonstrate the time-dependent characteristics that body-stationary visuomotor feedback gains typically show, such that an optimal feedback control model fell short to explain them. We further show that the vigor of corrections generally decreased over the course of trials within the experiment, suggesting that the sensorimotor system adjusted its gains when learning to integrate the vestibular input into hand motor control. NEW & NOTEWORTHY Vestibular information is used in the control of reaching movements to world-stationary visual targets, while the body moves. Here, we show that vestibular information also modulates the corrective reach responses when the target changes position during the body motion: visuomotor feedback gains increase for faster body acceleration. Our results suggest that vestibular information is integrated into fast visuomotor control of reaching movements.
Collapse
Affiliation(s)
- Leonie Oostwoud Wijdenes
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Robert J. van Beers
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W. Pieter Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Ugolini G, Prevosto V, Graf W. Ascending vestibular pathways to parietal areas MIP and LIPv and efference copy inputs from the medial reticular formation: Functional frameworks for body representations updating and online movement guidance. Eur J Neurosci 2019; 50:2988-3013. [DOI: 10.1111/ejn.14426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriella Ugolini
- Paris‐Saclay Institute of Neuroscience (UMR9197) CNRS ‐ Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Vincent Prevosto
- Paris‐Saclay Institute of Neuroscience (UMR9197) CNRS ‐ Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
- Department of Biomedical Engineering Pratt School of Engineering Durham North Carolina
- Department of Neurobiology Duke School of Medicine Duke University Durham North Carolina
| | - Werner Graf
- Department of Physiology and Biophysics Howard University Washington District of Columbia
| |
Collapse
|
16
|
Ganesh G, Nakamura K, Saetia S, Tobar AM, Yoshida E, Ando H, Yoshimura N, Koike Y. Utilizing sensory prediction errors for movement intention decoding: A new methodology. SCIENCE ADVANCES 2018; 4:eaaq0183. [PMID: 29750195 PMCID: PMC5942911 DOI: 10.1126/sciadv.aaq0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
We propose a new methodology for decoding movement intentions of humans. This methodology is motivated by the well-documented ability of the brain to predict sensory outcomes of self-generated and imagined actions using so-called forward models. We propose to subliminally stimulate the sensory modality corresponding to a user's intended movement, and decode a user's movement intention from his electroencephalography (EEG), by decoding for prediction errors-whether the sensory prediction corresponding to a user's intended movement matches the subliminal sensory stimulation we induce. We tested our proposal in a binary wheelchair turning task in which users thought of turning their wheelchair either left or right. We stimulated their vestibular system subliminally, toward either the left or the right direction, using a galvanic vestibular stimulator and show that the decoding for prediction errors from the EEG can radically improve movement intention decoding performance. We observed an 87.2% median single-trial decoding accuracy across tested participants, with zero user training, within 96 ms of the stimulation, and with no additional cognitive load on the users because the stimulation was subliminal.
Collapse
Affiliation(s)
- Gowrishankar Ganesh
- CNRS-AIST (Centre National de la Recherche Scientifique–National Institute of Advanced Industrial Science and Technology) Joint Robotics Laboratory (JRL), UMI3218/RL, Tsukuba Central 1, 1-1-1 Umezono, Tsukuba, Japan
| | - Keigo Nakamura
- CNRS-AIST (Centre National de la Recherche Scientifique–National Institute of Advanced Industrial Science and Technology) Joint Robotics Laboratory (JRL), UMI3218/RL, Tsukuba Central 1, 1-1-1 Umezono, Tsukuba, Japan
| | | | | | - Eiichi Yoshida
- CNRS-AIST (Centre National de la Recherche Scientifique–National Institute of Advanced Industrial Science and Technology) Joint Robotics Laboratory (JRL), UMI3218/RL, Tsukuba Central 1, 1-1-1 Umezono, Tsukuba, Japan
| | | | - Natsue Yoshimura
- Tokyo Institute of Technology, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | |
Collapse
|
17
|
Oostwoud Wijdenes L, Medendorp WP. State Estimation for Early Feedback Responses in Reaching: Intramodal or Multimodal? Front Integr Neurosci 2017; 11:38. [PMID: 29311860 PMCID: PMC5742230 DOI: 10.3389/fnint.2017.00038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/08/2017] [Indexed: 11/13/2022] Open
Abstract
Humans are highly skilled in controlling their reaching movements, making fast and task-dependent movement corrections to unforeseen perturbations. To guide these corrections, the neural control system requires a continuous, instantaneous estimate of the current state of the arm and body in the world. According to Optimal Feedback Control theory, this estimate is multimodal and constructed based on the integration of forward motor predictions and sensory feedback, such as proprioceptive, visual and vestibular information, modulated by context, and shaped by past experience. But how can a multimodal estimate drive fast movement corrections, given that the involved sensory modalities have different processing delays, different coordinate representations, and different noise levels? We develop the hypothesis that the earliest online movement corrections are based on multiple single modality state estimates rather than one combined multimodal estimate. We review studies that have investigated online multimodal integration for reach control and offer suggestions for experiments to test for the existence of intramodal state estimates. If proven true, the framework of Optimal Feedback Control needs to be extended with a stage of intramodal state estimation, serving to drive short-latency movement corrections.
Collapse
Affiliation(s)
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
18
|
Keyser J, Medendorp WP, Selen LPJ. Task-dependent vestibular feedback responses in reaching. J Neurophysiol 2017; 118:84-92. [PMID: 28356472 DOI: 10.1152/jn.00112.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
When reaching for an earth-fixed object during self-rotation, the motor system should appropriately integrate vestibular signals and sensory predictions to compensate for the intervening motion and its induced inertial forces. While it is well established that this integration occurs rapidly, it is unknown whether vestibular feedback is specifically processed dependent on the behavioral goal. Here, we studied whether vestibular signals evoke fixed responses with the aim to preserve the hand trajectory in space or are processed more flexibly, correcting trajectories only in task-relevant spatial dimensions. We used galvanic vestibular stimulation to perturb reaching movements toward a narrow or a wide target. Results show that the same vestibular stimulation led to smaller trajectory corrections to the wide than the narrow target. We interpret this reduced compensation as a task-dependent modulation of vestibular feedback responses, tuned to minimally intervene with the task-irrelevant dimension of the reach. These task-dependent vestibular feedback corrections are in accordance with a central prediction of optimal feedback control theory and mirror the sophistication seen in feedback responses to mechanical and visual perturbations of the upper limb.NEW & NOTEWORTHY Correcting limb movements for external perturbations is a hallmark of flexible sensorimotor behavior. While visual and mechanical perturbations are corrected in a task-dependent manner, it is unclear whether a vestibular perturbation, naturally arising when the body moves, is selectively processed in reach control. We show, using galvanic vestibular stimulation, that reach corrections to vestibular perturbations are task dependent, consistent with a prediction of optimal feedback control theory.
Collapse
Affiliation(s)
- Johannes Keyser
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - W Pieter Medendorp
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Luc P J Selen
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|