1
|
Hewlett M, Oran O, Liu J, Drangova M. Prospective motion correction for R 2 * and susceptibility mapping using spherical navigators. Magn Reson Med 2025; 93:1642-1656. [PMID: 39627965 PMCID: PMC11782710 DOI: 10.1002/mrm.30385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 02/01/2025]
Abstract
PURPOSE To perform prospective motion correction (PMC) for improvedR 2 * $$ {R}_2^{\ast } $$ and susceptibility mapping using a purely navigator-based approach. METHODS Spherical navigators (SNAVs) were combined with an additional FID readout for simultaneous measurement of motion and zeroth-order field shifts. The resulting FIDSNAVs were interleaved for PMC of a multi-echo gradient echo sequence with retrospectiveB 0 $$ {B}_0 $$ correction. Experiments were performed on a 3T scanner with a 32-channel head coil. Performance was assessed in five volunteers with motion prompts derived from real unintentional motion trajectories. RESULTS At short TEs, PMC alone was sufficient to achieve good image quality; at longer TEs, retrospectiveB 0 $$ {B}_0 $$ correction was often just as important for artifact reduction as motion correction. Both PMC and retrospectiveB 0 $$ {B}_0 $$ correction reduced error inR 2 * $$ {R}_2^{\ast } $$ and susceptibility maps for all participants. Residual artifacts were observed in the most severe motion case. CONCLUSION Combining SNAVs with an additional FID readout enables simultaneous motion and field correction with no additional hardware requirements, improving the fidelity of quantitative mapping in the presence of motion.
Collapse
Affiliation(s)
- Miriam Hewlett
- Robarts Research InstituteThe University of Western Ontario
LondonOntarioCanada
- Department of Medical BiophysicsThe University of Western OntarioLondonOntarioCanada
| | - Omer Oran
- Siemens Healthcare LimitedOakvilleOntarioCanada
| | - Junmin Liu
- Robarts Research InstituteThe University of Western Ontario
LondonOntarioCanada
| | - Maria Drangova
- Robarts Research InstituteThe University of Western Ontario
LondonOntarioCanada
- Department of Medical BiophysicsThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
2
|
Dong Y, Atkinson D, Koolstra K, van Osch MJP, Börnert P. Chemical shift-encoded multishot EPI for navigator-free prostate DWI. Magn Reson Med 2025; 93:1059-1076. [PMID: 39402739 DOI: 10.1002/mrm.30334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 12/29/2024]
Abstract
PURPOSE DWI is an important contrast for prostate MRI to enable early and accurate detection of cancer. This study introduces a Dixon 3-shot-EPI protocol with structured low-rank reconstruction for navigator-free DWI. The aim is to overcome the limitations of single-shot EPI (ssh-EPI), such as geometric distortions and fat signal interference, while addressing the motion-induced phase variations of multishot EPI and simultaneously allowing water/fat separation. METHODS DWI data were acquired from 7 healthy volunteers using both Dixon 3-shot EPI and standard fat-suppressed ssh-EPI with similar scan times for comparison. Two readers evaluated image quality using a 5-point Likert scale regarding different aspects. The ADC values were quantitatively compared between protocols. To show feasibility in a clinical setting, the protocol was applied to two patients. RESULTS From the reader scores, Dixon 3-shot EPI significantly reduced geometric distortion compared with ssh-EPI (p < 0.01), with no significant differences in edge definition, SNR, or overall image quality. There was no significant difference in ADC values between the two protocols. However, the Dixon multishot-EPI protocol offered advantages such as self-referenced B0 map-driven distortion correction, greater flexibility in imaging parameters, and superior fat suppression. In the patient data, the lesion could be clearly identified in both protocols and on the associated ADC maps. CONCLUSION The proposed Dixon 3-shot-EPI protocol shows promise as an alternative to ssh-EPI for prostate DWI, providing reduced geometric distortions and improved fat suppression. It addresses common DWI issues based on EPI and enhances scanning flexibility, indicating potential for optimized imaging.
Collapse
Affiliation(s)
- Yiming Dong
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - David Atkinson
- Center for Medical Imaging, University College London, London, UK
| | | | - Matthias J P van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Börnert
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Philips Research Hamburg, Hamburg, Germany
| |
Collapse
|
3
|
Shang Y, Simegn GL, Gillen K, Yang HJ, Han H. Advancements in MR hardware systems and magnetic field control: B 0 shimming, RF coils, and gradient techniques for enhancing magnetic resonance imaging and spectroscopy. PSYCHORADIOLOGY 2024; 4:kkae013. [PMID: 39258223 PMCID: PMC11384915 DOI: 10.1093/psyrad/kkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
High magnetic field homogeneity is critical for magnetic resonance imaging (MRI), functional MRI, and magnetic resonance spectroscopy (MRS) applications. B0 inhomogeneity during MR scans is a long-standing problem resulting from magnet imperfections and site conditions, with the main issue being the inhomogeneity across the human body caused by differences in magnetic susceptibilities between tissues, resulting in signal loss, image distortion, and poor spectral resolution. Through a combination of passive and active shim techniques, as well as technological advances employing multi-coil techniques, optimal coil design, motion tracking, and real-time modifications, improved field homogeneity and image quality have been achieved in MRI/MRS. The integration of RF and shim coils brings a high shim efficiency due to the proximity of participants. This technique will potentially be applied to high-density RF coils with a high-density shim array for improved B0 homogeneity. Simultaneous shimming and image encoding can be achieved using multi-coil array, which also enables the development of novel encoding methods using advanced magnetic field control. Field monitoring enables the capture and real-time compensation for dynamic field perturbance beyond the static background inhomogeneity. These advancements have the potential to better use the scanner performance to enhance diagnostic capabilities and broaden applications of MRI/MRS in a variety of clinical and research settings. The purpose of this paper is to provide an overview of the latest advances in B0 magnetic field shimming and magnetic field control techniques as well as MR hardware, and to emphasize their significance and potential impact on improving the data quality of MRI/MRS.
Collapse
Affiliation(s)
- Yun Shang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| | - Gizeaddis Lamesgin Simegn
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, United States
| | - Kelly Gillen
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| | - Hsin-Jung Yang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA 90048, United States
| | - Hui Han
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| |
Collapse
|
4
|
Wu W. Dynamic field mapping and distortion correction using single-shot blip-rewound EPI and joint multi-echo reconstruction. Magn Reson Med 2024; 92:82-97. [PMID: 38308081 DOI: 10.1002/mrm.30038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE To develop a method for dynamic∆ B 0 $$ \Delta {B}_0 $$ mapping and distortion correction. METHODS A blip-rewound EPI trajectory was developed to acquire multiple 2D EPI images in a single readout with an interleaved order, which allows a short TE difference. A joint multi-echo reconstruction was utilized to exploit the shared information between EPI images. The reconstructed images from each readout are combined to produce a final magnitude image. A∆ B 0 $$ \Delta {B}_0 $$ map is calculated from the phase of these images for distortion correction. The efficacy of the proposed method is assessed with phantom and in vivo experiments. The performance of the proposed method in the presence of subject motion is also investigated. RESULTS Compared to conventional multi-echo EPI, the proposed method allows dynamic∆ B 0 $$ \Delta {B}_0 $$ mapping at matched resolution with a much shorter TR. Phantom and in vivo results show that the proposed method can provide a comparable magnitude image as conventional single-shot EPI. The∆ B 0 $$ \Delta {B}_0 $$ maps calculated from the proposed method are consistent with conventional multi-echo EPI in the phantom experiment. For in vivo experiments, the proposed method provides a more accurate estimation of∆ B 0 $$ \Delta {B}_0 $$ than conventional multi-echo EPI, which is prone to phase wrapping problems due to the long TE difference. In-vivo scan with subject motion shows the proposed dynamic field mapping method can improve the temporal stability of EPI time series compared to gradient echo (GRE) based static field mapping. CONCLUSION The proposed method allows accurate dynamic∆ B 0 $$ \Delta {B}_0 $$ mapping for robust distortion correction without compromising spatial or temporal resolution.
Collapse
Affiliation(s)
- Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Ulrich T, Riedel M, Pruessmann KP. Servo navigators: Linear regression and feedback control for rigid-body motion correction. Magn Reson Med 2024; 91:1876-1892. [PMID: 38234052 DOI: 10.1002/mrm.29967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/05/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE Navigator-based correction of rigid-body motion reconciling high precision with minimal acquisition, minimal calibration and simple, fast processing. METHODS A short orbital navigator (2.3 ms) is inserted in a three-dimensional (3D) gradient echo sequence for human head imaging. Head rotation and translation are determined by linear regression based on a complex-valued model built either from three reference navigators or in a reference-less fashion, from the first actual navigator. Optionally, the model is expanded by global phase and field offset. Run-time scan correction on this basis establishes servo control that maintains validity of the linear picture by keeping its expansion point stable in the head frame of reference. The technique is assessed in a phantom and demonstrated by motion-corrected imaging in vivo. RESULTS The proposed approach is found to establish stable motion control both with and without reference acquisition. In a phantom, it is shown to accurately detect motion mimicked by rotation of scan geometry as well as change in global B0 . It is demonstrated to converge to accurate motion estimates after perturbation well beyond the linear signal range. In vivo, servo navigation achieved motion detection with precision in the single-digit range of micrometers and millidegrees. Involuntary and intentional motion in the range of several millimeters were successfully corrected, achieving excellent image quality. CONCLUSION The combination of linear regression and feedback control enables prospective motion correction for head imaging with high precision and accuracy, short navigator readouts, fast run-time computation, and minimal demand for reference data.
Collapse
Affiliation(s)
- Thomas Ulrich
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Malte Riedel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Brackenier Y, Wang N, Liao C, Cao X, Schauman S, Yurt M, Cordero-Grande L, Malik SJ, Kerr A, Hajnal JV, Setsompop K. Rapid and accurate navigators for motion and B 0 tracking using QUEEN: Quantitatively enhanced parameter estimation from navigators. Magn Reson Med 2024; 91:2028-2043. [PMID: 38173304 DOI: 10.1002/mrm.29976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE To develop a framework that jointly estimates rigid motion and polarizing magnetic field (B0 ) perturbations (δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ ) for brain MRI using a single navigator of a few milliseconds in duration, and to additionally allow for navigator acquisition at arbitrary timings within any type of sequence to obtain high-temporal resolution estimates. THEORY AND METHODS Methods exist that match navigator data to a low-resolution single-contrast image (scout) to estimate either motion orδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . In this work, called QUEEN (QUantitatively Enhanced parameter Estimation from Navigators), we propose combined motion andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimation from a fast, tailored trajectory with arbitrary-contrast navigator data. To this end, the concept of a quantitative scout (Q-Scout) acquisition is proposed from which contrast-matched scout data is predicted for each navigator. Finally, navigator trajectories, contrast-matched scout, andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ are integrated into a motion-informed parallel-imaging framework. RESULTS Simulations and in vivo experiments show the need to modelδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ to obtain accurate motion parameters estimated in the presence of strongδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Simulations confirm that tailored navigator trajectories are needed to robustly estimate both motion andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Furthermore, experiments show that a contrast-matched scout is needed for parameter estimation from multicontrast navigator data. A retrospective, in vivo reconstruction experiment shows improved image quality when using the proposed Q-Scout and QUEEN estimation. CONCLUSIONS We developed a framework to jointly estimate rigid motion parameters andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ from navigators. Combing a contrast-matched scout with the proposed trajectory allows for navigator deployment in almost any sequence and/or timing, which allows for higher temporal-resolution motion andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimates.
Collapse
Affiliation(s)
| | - Nan Wang
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Sophie Schauman
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Mahmut Yurt
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BNN, Madrid, Spain
| | - Shaihan J Malik
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Adam Kerr
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
- Cognitive and Neurobiological Imaging, Stanford University, Stanford, California, USA
| | - Joseph V Hajnal
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Zhou J, Hagberg GE, Aghaeifar A, Bause J, Zaitsev M, Scheffler K. Prediction of motion induced magnetic fields for human brain MRI at 3 T. MAGMA (NEW YORK, N.Y.) 2023; 36:797-813. [PMID: 36964797 PMCID: PMC10504152 DOI: 10.1007/s10334-023-01076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE Maps of B0 field inhomogeneities are often used to improve MRI image quality, even in a retrospective fashion. These field inhomogeneities depend on the exact head position within the static field but acquiring field maps (FM) at every position is time consuming. Here we propose a forward simulation strategy to obtain B0 predictions at different head-positions. METHODS FM were predicted by combining (1) a multi-class tissue model for estimation of tissue-induced fields, (2) a linear k-space model for capturing gradient imperfections, (3) a dipole estimation for quantifying lower-body perturbing fields (4) and a position-dependent tissue mask to model FM alterations caused by large motion effects. The performance of the combined simulation strategy was compared with an approach based on a rigid body transformation of the FM measured in the reference position to the new position. RESULTS The transformed FM provided inconsistent results for large head movements (> 5° rotation, approximately), while the simulation strategy had a superior prediction accuracy for all positions. The simulated FM was used to optimize B0 shims with up to 22.2% improvement with respect to the transformed FM approach. CONCLUSION The proposed simulation strategy is able to predict movement-induced B0 field inhomogeneities yielding more precise estimates of the ground truth field homogeneity than the transformed FM.
Collapse
Affiliation(s)
- Jiazheng Zhou
- Max Planck Institute for Biological Cybernetics, High-Field Magnetic Resonance Center, Max-Planck-Ring 11, 72076, Tübingen, Germany.
- IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany.
| | - Gisela E Hagberg
- Max Planck Institute for Biological Cybernetics, High-Field Magnetic Resonance Center, Max-Planck-Ring 11, 72076, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Ali Aghaeifar
- Max Planck Institute for Biological Cybernetics, High-Field Magnetic Resonance Center, Max-Planck-Ring 11, 72076, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Jonas Bause
- Max Planck Institute for Biological Cybernetics, High-Field Magnetic Resonance Center, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Maxim Zaitsev
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, High-Field Magnetic Resonance Center, Max-Planck-Ring 11, 72076, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Dong Y, Riedel M, Koolstra K, van Osch MJP, Börnert P. Water/fat separation for self-navigated diffusion-weighted multishot echo-planar imaging. NMR IN BIOMEDICINE 2023; 36:e4822. [PMID: 36031585 PMCID: PMC10078174 DOI: 10.1002/nbm.4822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to develop a self-navigation strategy to improve scan efficiency and image quality of water/fat-separated, diffusion-weighted multishot echo-planar imaging (ms-EPI). This is accomplished by acquiring chemical shift-encoded diffusion-weighted data and using an appropriate water-fat and diffusion-encoded signal model to enable reconstruction directly from k-space data. Multishot EPI provides reduced geometric distortion and improved signal-to-noise ratio in diffusion-weighted imaging compared with single-shot approaches. Multishot acquisitions require corrections for physiological motion-induced shot-to-shot phase errors using either extra navigators or self-navigation principles. In addition, proper fat suppression is important, especially in regions with large B0 inhomogeneity. This makes the use of chemical shift encoding attractive. However, when combined with ms-EPI, shot-to-shot phase navigation can be challenging because of the spatial displacement of fat signals along the phase-encoding direction. In this work, a new model-based, self-navigated water/fat separation reconstruction algorithm is proposed. Experiments in legs and in the head-neck region of 10 subjects were performed to validate the algorithm. The results are compared with an image-based, two-dimensional (2D) navigated water/fat separation approach for ms-EPI and with a conventional fat saturation approach. Compared with the 2D navigated method, the use of self-navigation reduced the shot duration time by 30%-35%. The proposed algorithm provided improved diffusion-weighted water images in both leg and head-neck regions compared with the 2D navigator-based approach. The proposed algorithm also produced better fat suppression compared with the conventional fat saturation technique in the B0 inhomogeneous regions. In conclusion, the proposed self-navigated reconstruction algorithm can produce superior water-only diffusion-weighted EPI images with less artefacts compared with the existing methods.
Collapse
Affiliation(s)
- Yiming Dong
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Malte Riedel
- Institute for Biomedical EngineeringETH Zurich and University of ZurichZurichSwitzerland
| | - Kirsten Koolstra
- Division of Image Processing, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Matthias J. P. van Osch
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter Börnert
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Philips Research HamburgHamburgGermany
| |
Collapse
|
9
|
Wallace TE, Kober T, Stockmann JP, Polimeni JR, Warfield SK, Afacan O. Real-time shimming with FID navigators. Magn Reson Med 2022; 88:2548-2563. [PMID: 36093989 PMCID: PMC9529812 DOI: 10.1002/mrm.29421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE To implement a method for real-time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improvingT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality. METHODS FIDnavs were embedded in a gradient echo sequence and a subject-specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID-navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement inT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality with real-time shimming, 10 volunteers were scanned at 3T while performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID-navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra-high field. RESULTS Applying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID-navigated real-time shimming led to a substantial reduction in field fluctuations and a consequent improvement inT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality in volunteers performing deep-breathing and nose-touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively. CONCLUSION FIDnavs facilitate rapid measurement and application of field coefficients for slice-wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improvesT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra-high field.
Collapse
Affiliation(s)
- Tess E Wallace
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jason P Stockmann
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Jonathan R Polimeni
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Brackenier Y, Cordero‐Grande L, Tomi‐Tricot R, Wilkinson T, Bridgen P, Price A, Malik SJ, De Vita E, Hajnal JV. Data‐driven motion‐corrected brain
MRI
incorporating pose‐dependent
B
0
fields. Magn Reson Med 2022; 88:817-831. [PMID: 35526212 PMCID: PMC9324873 DOI: 10.1002/mrm.29255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
Abstract
Purpose To develop a fully data‐driven retrospective intrascan motion‐correction framework for volumetric brain MRI at ultrahigh field (7 Tesla) that includes modeling of pose‐dependent changes in polarizing magnetic (B0) fields. Theory and Methods Tissue susceptibility induces spatially varying B0 distributions in the head, which change with pose. A physics‐inspired B0 model has been deployed to model the B0 variations in the head and was validated in vivo. This model is integrated into a forward parallel imaging model for imaging in the presence of motion. Our proposal minimizes the number of added parameters, enabling the developed framework to estimate dynamic B0 variations from appropriately acquired data without requiring navigators. The effect on data‐driven motion correction is validated in simulations and in vivo. Results The applicability of the physics‐inspired B0 model was confirmed in vivo. Simulations show the need to include the pose‐dependent B0 fields in the reconstruction to improve motion‐correction performance and the feasibility of estimating B0 evolution from the acquired data. The proposed motion and B0 correction showed improved image quality for strongly corrupted data at 7 Tesla in simulations and in vivo. Conclusion We have developed a motion‐correction framework that accounts for and estimates pose‐dependent B0 fields. The method improves current state‐of‐the‐art data‐driven motion‐correction techniques when B0 dependencies cannot be neglected. The use of a compact physics‐inspired B0 model together with leveraging the parallel imaging encoding redundancy and previously proposed optimized sampling patterns enables a purely data‐driven approach.
Collapse
Affiliation(s)
- Yannick Brackenier
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
| | - Lucilio Cordero‐Grande
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
- Biomedical Image Technologies, ETSI Telecomunicación Universidad Politécnica de Madrid and CIBER‐BNN Madrid Spain
| | - Raphael Tomi‐Tricot
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
- MR Research Collaborations Siemens Healthcare Limited Frimley United Kingdom
| | - Thomas Wilkinson
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
| | - Philippa Bridgen
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
| | - Anthony Price
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
| | - Shaihan J. Malik
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
| | - Enrico De Vita
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
| | - Joseph V. Hajnal
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences King's College London, St. Thomas' Hospital London United Kingdom
| |
Collapse
|
11
|
Bayih SG, Jankiewicz M, Alhamud A, van der Kouwe AJW, Meintjes EM. Self-navigated prospective motion correction for 3D-EPI acquisition. Magn Reson Med 2022; 88:211-223. [PMID: 35344618 DOI: 10.1002/mrm.29202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/31/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Although 3D EPI is more susceptible to motion artifacts than 2D EPI, it presents some benefits for functional MRI, including the absence of spin-history artifacts, greater potential for parallel imaging acceleration, and better functional sensitivity in high-resolution imaging. Here we present a self-navigated 3D-EPI sequence suitable for prospective motion-corrected functional MRI without additional hardware or pulses. METHODS For each volume acquisition, the first 24 of the 52 partitions being acquired are accumulated to a new feedback block that was added to the image reconstruction pipeline. After zero-filling the remaining partitions, the feedback block constructs a volumetric self-navigator (vSNav), co-registers it to the reference vSNav acquired during the first volume acquisition, and sends motion estimates to the sequence. The sequence then updates its FOV and acquires subsequent partitions with the adjusted FOV, until the next update is received. The sequence was validated without and with intentional motion in phantom and in vivo on a 3T Skyra. RESULTS For phantom scans, the FOV was updated 0.704 s after acquisition of the vSNav partitions, and for in vivo scans after 0.768 s. Both phantom and in vivo data demonstrated stable motion estimates in the absence of motion. For in vivo acquisitions, prospective head-pose estimates using the vSNav's and retrospective estimates with FLIRT (FMRIB's Linear Image Registration Tool) agreed to within 0.23 mm (< 10% of the slice thickness) and 0.14° in all directions. CONCLUSION Depending when motion occurs during a volume acquisition, the proposed method fully corrects the FOV and recovers image quality within one volume acquisition.
Collapse
Affiliation(s)
- Samuel Getaneh Bayih
- Biomedical Engineering Research Center, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Marcin Jankiewicz
- Biomedical Engineering Research Center, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Center, University of Cape Town, Cape Town, South Africa
| | - A Alhamud
- Biomedical Engineering Research Center, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Center, University of Cape Town, Cape Town, South Africa.,The Modern Pioneer Center and ArSMRM for MRI Training and Development, Tripoli, Libya
| | - André J W van der Kouwe
- Biomedical Engineering Research Center, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ernesta M Meintjes
- Biomedical Engineering Research Center, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Center, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Shahdloo M, Schüffelgen U, Papp D, Miller KL, Chiew M. Model-based dynamic off-resonance correction for improved accelerated fMRI in awake behaving nonhuman primates. Magn Reson Med 2022; 87:2922-2932. [PMID: 35081259 PMCID: PMC9306555 DOI: 10.1002/mrm.29167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
Purpose To estimate dynamic off‐resonance due to vigorous body motion in accelerated fMRI of awake behaving nonhuman primates (NHPs) using the echo‐planar imaging reference navigator, in order to attenuate the effects of time‐varying off‐resonance on the reconstruction. Methods In NHP fMRI, the animal’s head is usually head‐posted, and the dynamic off‐resonance is mainly caused by motion in body parts that are distant from the brain and have low spatial frequency. Hence, off‐resonance at each frame can be approximated as a spatially linear perturbation of the off‐resonance at a reference frame, and is manifested as a relative linear shift in k‐space. Using GRAPPA operators, we estimated these shifts by comparing the navigator at each time frame with that at the reference frame. Estimated shifts were then used to correct the data at each frame. The proposed method was evaluated in phantom scans, simulations, and in vivo data. Results The proposed method is shown to successfully estimate spatially low‐order dynamic off‐resonance perturbations, including induced linear off‐resonance perturbations in phantoms, and is able to correct retrospectively corrupted data in simulations. Finally, it is shown to reduce ghosting artifacts and geometric distortions by up to 20% in simultaneous multislice in vivo acquisitions in awake‐behaving NHPs. Conclusion A method is proposed that does not need sequence modification or extra acquisitions and makes accelerated awake behaving NHP imaging more robust and reliable, reducing the gap between what is possible with NHP protocols and state‐of‐the‐art human imaging.
Collapse
Affiliation(s)
- Mo Shahdloo
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Urs Schüffelgen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Daniel Papp
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,NeuroPoly Lab, Electrical Engineering Department, Polytechnique Montréal, Montreal, Canada
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Poblador Rodriguez E, Moser P, Auno S, Eckstein K, Dymerska B, van der Kouwe A, Gruber S, Trattnig S, Bogner W. Real-time motion and retrospective coil sensitivity correction for CEST using volumetric navigators (vNavs) at 7T. Magn Reson Med 2021; 85:1909-1923. [PMID: 33165952 PMCID: PMC7839562 DOI: 10.1002/mrm.28555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To explore the impact of temporal motion-induced coil sensitivity changes on CEST-MRI at 7T and its correction using interleaved volumetric EPI navigators, which are applied for real-time motion correction. METHODS Five healthy volunteers were scanned via CEST. A 4-fold correction pipeline allowed the mitigation of (1) motion, (2) motion-induced coil sensitivity variations, ΔB1- , (3) motion-induced static magnetic field inhomogeneities, ΔB0 , and (4) spatially varying transmit RF field fluctuations, ΔB1+ . Four CEST measurements were performed per session. For the first 2, motion correction was turned OFF and then ON in absence of voluntary motion, whereas in the other 2 controlled head rotations were performed. During post-processing ΔB1- was removed additionally for the motion-corrected cases, resulting in a total of 6 scenarios to be compared. In all cases, retrospective ∆B0 and - ΔB1+ corrections were performed to compute artifact-free magnetization transfer ratio maps with asymmetric analysis (MTRasym ). RESULTS Dynamic ΔB1- correction successfully mitigated signal deviations caused by head motion. In 2 frontal lobe regions of volunteer 4, induced relative signal errors of 10.9% and 3.9% were reduced to 1.1% and 1.0% after correction. In the right frontal lobe, the motion-corrected MTRasym contrast deviated 0.92%, 1.21%, and 2.97% relative to the static case for Δω = 1, 2, 3 ± 0.25 ppm. The additional application of ΔB1- correction reduced these deviations to 0.10%, 0.14%, and 0.42%. The fully corrected MTRasym values were highly consistent between measurements with and without intended head rotations. CONCLUSION Temporal ΔB1- cause significant CEST quantification bias. The presented correction pipeline including the proposed retrospective ΔB1- correction significantly reduced motion-related artifacts on CEST-MRI.
Collapse
Affiliation(s)
- Esau Poblador Rodriguez
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Philipp Moser
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Sami Auno
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Korbinian Eckstein
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Barbara Dymerska
- Medical Physics and Bioengineering, University College London, London, United Kingdom
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| |
Collapse
|
14
|
Shrestha Kakkar L, Usman M, Arridge S, Kirkham A, Atkinson D. Characterization of B 0-field fluctuations in prostate MRI. Phys Med Biol 2020; 65:21NT01. [PMID: 32992306 PMCID: PMC8528180 DOI: 10.1088/1361-6560/abbc7f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 11/11/2022]
Abstract
Multi-parametric MRI is increasingly used for prostate cancer detection. Improving information from current sequences, such as T2-weighted and diffusion-weighted (DW) imaging, and additional sequences, such as magnetic resonance spectroscopy (MRS) and chemical exchange saturation transfer (CEST), may enhance the performance of multi-parametric MRI. The majority of these techniques are sensitive to B0-field variations and may result in image distortions including signal pile-up and stretching (echo planar imaging (EPI) based DW-MRI) or unwanted shifts in the frequency spectrum (CEST and MRS). Our aim is to temporally and spatially characterize B0-field changes in the prostate. Ten male patients are imaged using dual-echo gradient echo sequences with varying repetitions on a 3 T scanner to evaluate the temporal B0-field changes within the prostate. A phantom is also imaged to consider no physiological motion. The spatial B0-field variations in the prostate are reported as B0-field values (Hz), their spatial gradients (Hz/mm) and the resultant distortions in EPI based DW-MRI images (b-value = 0 s/mm2 and two oppositely phase encoded directions). Over a period of minutes, temporal changes in B0-field values were ≤19 Hz for minimal bowel motion and ≥30 Hz for large motion. Spatially across the prostate, the B0-field values had an interquartile range of ≤18 Hz (minimal motion) and ≤44 Hz (large motion). The B0-field gradients were between -2 and 5 Hz/mm (minimal motion) and 2 and 12 Hz/mm (large motion). Overall, B0-field variations can affect DW, MRS and CEST imaging of the prostate.
Collapse
Affiliation(s)
| | - Muhammad Usman
- Centre for Medical Imaging Computing, University College London, High Holborn, London, UK
| | - Simon Arridge
- Centre for Medical Imaging Computing, University College London, High Holborn, London, UK
| | - Alex Kirkham
- Radiology Department, University College Hospital, Euston Road, London, UK
| | - David Atkinson
- Centre for Medical Imaging, University College London, Foley Street, London, UK
| |
Collapse
|
15
|
Simultaneous feedback control for joint field and motion correction in brain MRI. Neuroimage 2020; 226:117286. [PMID: 32992003 DOI: 10.1016/j.neuroimage.2020.117286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/21/2020] [Accepted: 08/14/2020] [Indexed: 11/23/2022] Open
Abstract
T2*-weighted gradient-echo sequences count among the most widely used techniques in neuroimaging and offer rich magnitude and phase contrast. The susceptibility effects underlying this contrast scale with B0, making T2*-weighted imaging particularly interesting at high field. High field also benefits baseline sensitivity and thus facilitates high-resolution studies. However, enhanced susceptibility effects and high target resolution come with inherent challenges. Relying on long echo times, T2*-weighted imaging not only benefits from enhanced local susceptibility effects but also suffers from increased field fluctuations due to moving body parts and breathing. High resolution, in turn, renders neuroimaging particularly vulnerable to motion of the head. This work reports the implementation and characterization of a system that aims to jointly address these issues. It is based on the simultaneous operation of two control loops, one for field stabilization and one for motion correction. The key challenge with this approach is that the two loops both operate on the magnetic field in the imaging volume and are thus prone to mutual interference and potential instability. This issue is addressed at the levels of sensing, timing, and control parameters. Performance assessment shows the resulting system to be stable and exhibit adequate loop decoupling, precision, and bandwidth. Simultaneous field and motion control is then demonstrated in examples of T2*-weighted in vivo imaging at 7T.
Collapse
|
16
|
Wallace TE, Polimeni JR, Stockmann JP, Hoge WS, Kober T, Warfield SK, Afacan O. Dynamic distortion correction for functional MRI using FID navigators. Magn Reson Med 2020; 85:1294-1307. [PMID: 32970869 DOI: 10.1002/mrm.28505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a method for slice-wise dynamic distortion correction for EPI using rapid spatiotemporal B0 field measurements from FID navigators (FIDnavs) and to evaluate the efficacy of this new approach relative to an established data-driven technique. METHODS A low-resolution reference image was used to create a forward model of FIDnav signal changes to enable estimation of spatiotemporal B0 inhomogeneity variations up to second order from measured FIDnavs. Five volunteers were scanned at 3 T using a 64-channel coil with FID-navigated EPI. The accuracy of voxel shift measurements and geometric distortion correction was assessed for experimentally induced magnetic field perturbations. The temporal SNR was evaluated in EPI time-series acquired at rest and with a continuous nose-touching action, before and after image realignment. RESULTS Field inhomogeneity coefficients and voxel shift maps measured using FIDnavs were in excellent agreement with multi-echo EPI measurements. The FID-navigated distortion correction accurately corrected image geometry in the presence of induced magnetic field perturbations, outperforming the data-driven approach in regions with large field offsets. In functional MRI scans with nose touching, FIDnav-based correction yielded temporal SNR gains of 30% in gray matter. Following image realignment, which accounted for global image shifts, temporal SNR gains of 3% were achieved. CONCLUSIONS Our proposed application of FIDnavs enables slice-wise dynamic distortion correction with high temporal efficiency. We achieved improved signal stability by leveraging the encoding information from multichannel coils. This approach can be easily adapted to other EPI-based sequences to improve temporal SNR for a variety of clinical and research applications.
Collapse
Affiliation(s)
- Tess E Wallace
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan R Polimeni
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jason P Stockmann
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - W Scott Hoge
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Gilchrist S, Kinchesh P, Zarghami N, Khrapitchev AA, Sibson NR, Kersemans V, Smart SC. Improved detection of molecularly targeted iron oxide particles in mouse brain using B 0 field stabilised high resolution MRI. Magn Reson Imaging 2020; 67:101-108. [PMID: 31935444 PMCID: PMC7049896 DOI: 10.1016/j.mri.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE High resolution multi-gradient echo (MGE) scanning is typically used for detection of molecularly targeted iron oxide particles. The images of individual echoes are often combined to generate a composite image with improved SNR from the early echoes and boosted contrast from later echoes. In 3D implementations prolonged scanning at high gradient duty cycles induces a B0 shift that predominantly affects image alignment in the slow phase encoding dimension of 3D MGE images. The effect corrupts the composite echo image and limits the image resolution that is realised. A real-time adaptive B0 stabilisation during respiration gated 3D MGE scanning is shown to reduce image misalignment and improve detection of molecularly targeted iron oxide particles in composite images of the mouse brain. METHODS An optional B0 measurement block consisting of a 16 μs hard pulse with FA 1°, an acquisition delay of 3.2 ms, followed by gradient spoiling in all three axes was added to a respiration gated 3D MGE scan. During the acquisition delay of each B0 measurement block the NMR signal was routed to a custom built B0 stabilisation unit which mixed the signal to an audio frequency nominally centred around 1000 Hz to enable an Arduino based single channel receiver to measure frequency shifts. The frequency shift was used to effect correction to the main magnetic field via the B0 coil. The efficacy of B0 stabilisation and respiration gating was validated in vivo and used to improve detection of molecularly targeted microparticles of iron oxide (MPIO) in a mouse model of acute neuroinflammation. RESULTS Without B0 stabilisation 3D MGE image data exhibit varying mixtures of translation, scaling and blurring, which compromise the fidelity of the composite image. The real-time adaptive B0 stabilisation minimises corruption of the composite image as the images from the different echoes are properly aligned. The improved detection of molecularly targeted MPIO easily compensates for the scan time penalty of 14% incurred by the B0 stabilisation method employed. Respiration gating of the B0 measurement and the MRI scan was required to preserve high resolution detail, especially towards the back of the brain. CONCLUSIONS High resolution imaging for the detection of molecularly targeted iron oxide particles in the mouse brain requires good stabilisation of the main B0 field, and can benefit from a respiration gated image acquisition strategy.
Collapse
Affiliation(s)
- Stuart Gilchrist
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom.
| | - Paul Kinchesh
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Niloufar Zarghami
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Alexandre A Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Veerle Kersemans
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Sean C Smart
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| |
Collapse
|
18
|
Moser P, Eckstein K, Hingerl L, Weber M, Motyka S, Strasser B, van der Kouwe A, Robinson S, Trattnig S, Bogner W. Intra-session and inter-subject variability of 3D-FID-MRSI using single-echo volumetric EPI navigators at 3T. Magn Reson Med 2019; 83:1920-1929. [PMID: 31721294 PMCID: PMC7065144 DOI: 10.1002/mrm.28076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/25/2019] [Accepted: 10/22/2019] [Indexed: 01/25/2023]
Abstract
Purpose In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI has many benefits including high detection sensitivity, in particular for J‐coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D‐FID‐MRSI sequence with single‐echo, imaging‐based volumetric navigators (se‐vNavs) for real‐time motion/shim‐correction (SHMOCO), which is 2× quicker than the original double‐echo navigators (de‐vNavs), hence allowing more efficient integration also in short‐TR sequences. Methods The tracking accuracy (position and B0‐field) of our proposed se‐vNavs was compared to the original de‐vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra‐session stability of a 5:40 min 3D‐FID‐MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter‐subject coefficients of variation (CV) and intra‐class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed. Results Phantom and in vivo scans showed highly consistent tracking performance for se‐vNavs compared to the original de‐vNavs, but lower frequency drift. Up to ~30% better intra‐subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m‐Ins ratios to tCr. ICCs were good‐to‐high (91% for Glx/tCr in motor cortex), whereas the inter‐subject variability was ~11–19%. Conclusion Real‐time motion/shim corrected 3D‐FID‐MRSI with time‐efficient CRT‐sampling at 3T allows reliable, high‐resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI.
Collapse
Affiliation(s)
- Philipp Moser
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Korbinian Eckstein
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Hingerl
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stanislav Motyka
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Strasser
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Simon Robinson
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Wolfgang Bogner
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Simegn GL, Alhamud A, van der Kouwe AJW, Meintjes E, Robertson F. Repeatability and reproducibility of prospective motion- and shim corrected 2D glycoCEST MRI. Quant Imaging Med Surg 2019; 9:1674-1685. [PMID: 31728311 DOI: 10.21037/qims.2019.09.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Repeated glycoCEST MRI measurements on the same subject should produce similar results under the same environmental and experimental conditions. However, fluctuations in the static B0 field, which may occur between and within measurements due to heating of the shim iron or subject motion, may alter results and affect reproducibility. Here we investigate the repeatability and reproducibility of glycoCEST measurements and examine the effectiveness of a real-time shim- and motion navigated chemical exchange saturation transfer (CEST) sequence to improve reproducibility. Methods In nine subjects, double volumetric navigated (DvNav)-CEST acquisitions in the calf muscle were repeated five times in each of two sessions-the first without correction, and the second with real-time shim- and motion correction applied. In both sessions a dynamically changing field was introduced by running a 5-minute gradient intensive diffusion sequence. We evaluated the effect of the introduced B0 inhomogeneity on the reproducibility of glycoCEST, where the small chemical shift difference between the hydroxyl and bulk water protons at 3 T makes CEST quantification extremely sensitive to magnetic field inhomogeneities. Results With real-time shim- and motion correction, glycoCEST results were relatively consistent with mean coefficient of variation (CoV) 2.7%±1.4% across all subjects, whereas without correction the results were less consistent with CoV 84%±71%. Conclusions Our results demonstrate that real-time shim- and motion correction can mitigate effects of B0 field fluctuations and improve reproducibility of glycoCEST data. This is important when conducting longitudinal studies or when using glycoCEST MRI to assess treatment or physiological responses over time.
Collapse
Affiliation(s)
- Gizeaddis Lamesgin Simegn
- School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia.,UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Ali Alhamud
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre (CUBIC), Cape Town, South Africa.,Al-Zintan University, Faculty of Medicine, Alzintan, Libya
| | - Andre J W van der Kouwe
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Athinoula A. Martinos Center for Biomedical Imaging/MGH, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Ernesta Meintjes
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre (CUBIC), Cape Town, South Africa.,Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Frances Robertson
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre (CUBIC), Cape Town, South Africa.,Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
Wallace TE, Afacan O, Kober T, Warfield SK. Rapid measurement and correction of spatiotemporal B 0 field changes using FID navigators and a multi-channel reference image. Magn Reson Med 2019; 83:575-589. [PMID: 31463976 DOI: 10.1002/mrm.27957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To measure spatiotemporal B0 field changes in real time using FID navigators (FIDnavs) and to demonstrate the efficacy of retrospectively correcting high-resolution T 2 * -weighted images using a novel FIDnav framework. METHODS A forward model of the complex FIDnav signals was generated by simulating the effect of changes in the underlying B0 inhomogeneity coefficients, with spatial encoding provided by a multi-channel reference image. Experiments were performed at 3T to assess the accuracy of B0 field estimates from FIDnavs acquired from a 64-channel head coil under different shim settings and in 5 volunteers performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Second-order, in-plane spherical harmonic (SH) inhomogeneity coefficients estimated from FIDnavs were incorporated into an iterative reconstruction to retrospectively correct 2D gradient-echo images acquired in both axial and sagittal planes. RESULTS Spatiotemporal B0 field changes measured from rapidly acquired FIDnavs were in good agreement with the results of second-order SH fitting to the measured field maps. FIDnav field estimates accounted for a significant proportion of the ΔB0 variance induced by deep breathing (64 ± 21%) and nose touching (67 ± 34%) across all volunteers. Ghosting, blurring, and intensity modulation artifacts in T 2 * -weighted images, induced by spatiotemporal field changes, were visibly reduced following retrospective correction with FIDnav inhomogeneity coefficients. CONCLUSIONS Spatially resolved B0 inhomogeneity changes up to second order can be characterized in real time using the proposed approach. Retrospective FIDnav correction substantially improves T 2 * -weighted image quality in the presence of strong B0 field modulations, with potential for real-time shimming.
Collapse
Affiliation(s)
- Tess E Wallace
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachussetts.,Harvard Medical School, Boston, Massachussetts
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachussetts.,Harvard Medical School, Boston, Massachussetts
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachussetts.,Harvard Medical School, Boston, Massachussetts
| |
Collapse
|
21
|
Poblador Rodriguez E, Moser P, Dymerska B, Robinson S, Schmitt B, van der Kouwe A, Gruber S, Trattnig S, Bogner W. A comparison of static and dynamic ∆B 0 mapping methods for correction of CEST MRI in the presence of temporal B 0 field variations. Magn Reson Med 2019; 82:633-646. [PMID: 30924210 PMCID: PMC6563466 DOI: 10.1002/mrm.27750] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE To assess the performance, in the presence of scanner instabilities, of three dynamic correction methods which integrate ∆B0 mapping into the chemical exchange saturation transfer (CEST) measurement and three established static ∆B0 -correction approaches. METHODS A homogeneous phantom and five healthy volunteers were scanned with a CEST sequence at 7 T. The in vivo measurements were performed twice: first with unaltered system frequency and again applying frequency shifts during the CEST acquisition. In all cases, retrospective voxel-wise ∆B0 -correction was performed using one intrinsic and two extrinsic [prescans with dual-echo gradient-echo and water saturation shift referencing (WASSR)] static approaches. These were compared with two intrinsic [using phase data directly generated by single-echo or double-echo GRE (gradient-echo) CEST readout (CEST-GRE-2TE)] and one extrinsic [phase from interleaved dual-echo EPI (echo planar imaging) navigator (NAV-EPI-2TE)] dynamic ∆B0 -correction approaches [allowing correction of each Z-spectral point before magnetization transfer ratio asymmetry (MTRasym) analysis]. RESULTS All three dynamic methods successfully mapped the induced drift. The intrinsic approaches were affected by the CEST labeling near water (∆ω < |0.3| ppm). The MTRasym contrast was distorted by the frequency drift in the brain by up to 0.21%/Hz when static ∆B0 -corrections were applied, whereas the dynamic ∆B0 corrections reduced this to <0.01%/Hz without the need of external scans. The CEST-GRE-2TE and NAV-EPI-2TE resulted in highly consistent MTRasym values with/without drift for all subjects. CONCLUSION Reliable correction of scanner instabilities is essential to establish clinical CEST MRI. The three dynamic approaches presented improved the ∆B0 -correction performance significantly in the presence of frequency drift compared to established static methods. Among them, the self-corrected CEST-GRE-2TE was the most accurate and straightforward to implement.
Collapse
Affiliation(s)
- Esau Poblador Rodriguez
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Philipp Moser
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Barbara Dymerska
- Medical Physics and Bioengineering, University College London, London, United Kingdom
| | - Simon Robinson
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | | | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| |
Collapse
|
22
|
Moser P, Hingerl L, Strasser B, Považan M, Hangel G, Andronesi OC, van der Kouwe A, Gruber S, Trattnig S, Bogner W. Whole-slice mapping of GABA and GABA + at 7T via adiabatic MEGA-editing, real-time instability correction, and concentric circle readout. Neuroimage 2019; 184:475-489. [PMID: 30243974 PMCID: PMC7212034 DOI: 10.1016/j.neuroimage.2018.09.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/20/2018] [Accepted: 09/15/2018] [Indexed: 01/29/2023] Open
Abstract
An adiabatic MEscher-GArwood (MEGA)-editing scheme, using asymmetric hyperbolic secant editing pulses, was developed and implemented in a B1+-insensitive, 1D-semiLASER (Localization by Adiabatic SElective Refocusing) MR spectroscopic imaging (MRSI) sequence for the non-invasive mapping of γ-aminobutyric acid (GABA) over a whole brain slice. Our approach exploits the advantages of edited-MRSI at 7T while tackling challenges that arise with ultra-high-field-scans. Spatial-spectral encoding, using density-weighted, concentric circle echo planar trajectory readout, enabled substantial MRSI acceleration and an improved point-spread-function, thereby reducing extracranial lipid signals. Subject motion and scanner instabilities were corrected in real-time using volumetric navigators optimized for 7T, in combination with selective reacquisition of corrupted data to ensure robust subtraction-based MEGA-editing. Simulations and phantom measurements of the adiabatic MEGA-editing scheme demonstrated stable editing efficiency even in the presence of ±0.15 ppm editing frequency offsets and B1+ variations of up to ±30% (as typically encountered in vivo at 7T), in contrast to conventional Gaussian editing pulses. Volunteer measurements were performed with and without global inversion recovery (IR) to study regional GABA levels and their underlying, co-edited, macromolecular (MM) signals at 2.99 ppm. High-quality in vivo spectra allowed mapping of pure GABA and MM-contaminated GABA+ (GABA + MM) along with Glx (Glu + Gln), with high-resolution (eff. voxel size: 1.4 cm3) and whole-slice coverage in 24 min scan time. Metabolic ratio maps of GABA/tNAA, GABA+/tNAA, and Glx/tNAA were correlated linearly with the gray matter fraction of each voxel. A 2.15-fold increase in gray matter to white matter contrast was observed for GABA when enabling IR, which we attribute to the higher abundance of macromolecules at 2.99 ppm in the white matter than in the gray matter. In conclusion, adiabatic MEGA-editing with 1D-semiLASER selection is as a promising approach for edited-MRSI at 7T. Our sequence capitalizes on the benefits of ultra-high-field MRSI while successfully mitigating the challenges related to B0/B1+ inhomogeneities, prolonged scan times, and motion/scanner instability artifacts. Robust and accurate 2D mapping has been shown for the neurotransmitters GABA and Glx.
Collapse
Affiliation(s)
- Philipp Moser
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MRI, Vienna, Austria.
| | - Lukas Hingerl
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michal Považan
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gilbert Hangel
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Ovidiu C Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| |
Collapse
|
23
|
Simegn GL, Van der Kouwe AJW, Robertson FC, Meintjes EM, Alhamud A. Real-time simultaneous shim and motion measurement and correction in glycoCEST MRI using double volumetric navigators (DvNavs). Magn Reson Med 2018; 81:2600-2613. [PMID: 30506877 DOI: 10.1002/mrm.27597] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE CEST MRI allows for indirect detection of molecules with exchangeable protons, measured as a reduction in water signal because of continuous transfer of saturated protons. CEST requires saturation pulses on the order of a second, as well as repeated acquisitions at different offset frequencies. The resulting extended scan time makes CEST susceptible to subject motion, which introduces field inhomogeneity, shifting offset frequencies and causing distortions in CEST spectra that resemble true CEST effects. This is a particular problem for molecules that resonate close to water, such as hydroxyl group in glycogen. To address this, a technique for real-time measurement and correction of motion and field inhomogeneity is proposed. METHODS A CEST sequence was modified to include double volumetric navigators (DvNavs) for real-time simultaneous motion and shim correction. Phantom tests were conducted to investigate the effects of motion and shim changes on CEST quantification and to validate the accuracy of DvNav motion and shim estimates. To evaluate DvNav shim and motion correction in vivo, acquisitions including 5 experimental conditions were performed in the calf muscle of 2 volunteers. RESULTS Phantom data show that DvNav-CEST accurately estimates frequency and linear gradient changes because of motion and corrects resulting image distortions. In addition, DvNav-CEST improves CEST quantification in vivo in the presence of motion. CONCLUSION The proposed technique allows for real-time simultaneous motion and shim correction with no additional scanning time, enabling accurate CEST quantification even in the presence of motion and field inhomogeneity.
Collapse
Affiliation(s)
- Gizeaddis L Simegn
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Andre J W Van der Kouwe
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Athinoula A. Martinos Center for Biomedical Imaging/MGH, Charlestown, Massachusetts.,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Frances C Robertson
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre (CUBIC-UCT), Cape Town, South Africa
| | - Ernesta M Meintjes
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre (CUBIC-UCT), Cape Town, South Africa
| | - Ali Alhamud
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre (CUBIC-UCT), Cape Town, South Africa
| |
Collapse
|
24
|
Baum GL, Roalf DR, Cook PA, Ciric R, Rosen AFG, Xia C, Elliott MA, Ruparel K, Verma R, Tunç B, Gur RC, Gur RE, Bassett DS, Satterthwaite TD. The impact of in-scanner head motion on structural connectivity derived from diffusion MRI. Neuroimage 2018; 173:275-286. [PMID: 29486323 PMCID: PMC5911236 DOI: 10.1016/j.neuroimage.2018.02.041] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/27/2022] Open
Abstract
Multiple studies have shown that data quality is a critical confound in the construction of brain networks derived from functional MRI. This problem is particularly relevant for studies of human brain development where important variables (such as participant age) are correlated with data quality. Nevertheless, the impact of head motion on estimates of structural connectivity derived from diffusion tractography methods remains poorly characterized. Here, we evaluated the impact of in-scanner head motion on structural connectivity using a sample of 949 participants (ages 8-23 years old) who passed a rigorous quality assessment protocol for diffusion magnetic resonance imaging (dMRI) acquired as part of the Philadelphia Neurodevelopmental Cohort. Structural brain networks were constructed for each participant using both deterministic and probabilistic tractography. We hypothesized that subtle variation in head motion would systematically bias estimates of structural connectivity and confound developmental inference, as observed in previous studies of functional connectivity. Even following quality assurance and retrospective correction for head motion, eddy currents, and field distortions, in-scanner head motion significantly impacted the strength of structural connectivity in a consistency- and length-dependent manner. Specifically, increased head motion was associated with reduced estimates of structural connectivity for network edges with high inter-subject consistency, which included both short- and long-range connections. In contrast, motion inflated estimates of structural connectivity for low-consistency network edges that were primarily shorter-range. Finally, we demonstrate that age-related differences in head motion can both inflate and obscure developmental inferences on structural connectivity. Taken together, these data delineate the systematic impact of head motion on structural connectivity, and provide a critical context for identifying motion-related confounds in studies of structural brain network development.
Collapse
Affiliation(s)
- Graham L Baum
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Rastko Ciric
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Adon F G Rosen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Cedric Xia
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Mark A Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Ragini Verma
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Birkan Tunç
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
25
|
Liu J, de Zwart JA, van Gelderen P, Murphy-Boesch J, Duyn JH. Effect of head motion on MRI B 0 field distribution. Magn Reson Med 2018; 80:2538-2548. [PMID: 29770481 PMCID: PMC6239980 DOI: 10.1002/mrm.27339] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE To identify and characterize the sources of B0 field changes due to head motion, to reduce motion sensitivity in human brain MRI. METHODS B0 fields were measured in 5 healthy human volunteers at various head poses. After measurement of the total field, the field originating from the subject was calculated by subtracting the external field generated by the magnet and shims. A subject-specific susceptibility model was created to quantify the contribution of the head and torso. The spatial complexity of the field changes was analyzed using spherical harmonic expansion. RESULTS Minor head pose changes can cause substantial and spatially complex field changes in the brain. For rotations and translations of approximately 5 º and 5 mm, respectively, at 7 T, the field change that is associated with the subject's magnetization generates a standard deviation (SD) of about 10 Hz over the brain. The stationary torso contributes to this subject-associated field change significantly with a SD of about 5 Hz. The subject-associated change leads to image-corrupting phase errors in multi-shot <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msubsup><mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mo>*</mml:mo></mml:msubsup> </mml:mrow> </mml:math> -weighted acquisitions. CONCLUSION The B0 field changes arising from head motion are problematic for multishot <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msubsup><mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mo>*</mml:mo></mml:msubsup> </mml:mrow> </mml:math> -weighted imaging. Characterization of the underlying sources provides new insights into mitigation strategies, which may benefit from individualized predictive field models in addition to real-time field monitoring and correction strategies.
Collapse
Affiliation(s)
- Jiaen Liu
- Advanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jacco A de Zwart
- Advanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Peter van Gelderen
- Advanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Joseph Murphy-Boesch
- Advanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jeff H Duyn
- Advanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Andersson JLR, Graham MS, Drobnjak I, Zhang H, Campbell J. Susceptibility-induced distortion that varies due to motion: Correction in diffusion MR without acquiring additional data. Neuroimage 2017; 171:277-295. [PMID: 29277648 PMCID: PMC5883370 DOI: 10.1016/j.neuroimage.2017.12.040] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/17/2017] [Accepted: 12/13/2017] [Indexed: 12/01/2022] Open
Abstract
Because of their low bandwidth in the phase-encode (PE) direction, the susceptibility-induced off-resonance field causes distortions in echo planar imaging (EPI) images. It is therefore crucial to correct for susceptibility-induced distortions when performing diffusion studies using EPI. The susceptibility-induced field is caused by the object (head) disrupting the field and it is typically assumed that it remains constant within a framework defined by the object, (i.e. it follows the object as it moves in the scanner). However, this is only approximately true. When a non-spherical object rotates around an axis other than that parallel with the magnetic flux (the z-axis) it changes the way it disrupts the field, leading to different distortions. Hence, if using a single field to correct for distortions there will be residual distortions in the volumes where the object orientation is substantially different to that when the field was measured. In this paper we present a post-processing method for estimating the field as it changes with motion during the course of an experiment. It only requires a single measured field and knowledge of the orientation of the subject when that field was acquired. The volume-to-volume changes of the field as a consequence of subject movement are estimated directly from the diffusion data without the need for any additional or special acquisitions. It uses a generative model that predicts how each volume would look predicated on field change and inverts that model to yield an estimate of the field changes. It has been validated on both simulations and experimental data. The results show that we are able to track the field with high accuracy and that we are able to correct the data for the adverse effects of the changing field.
Collapse
Affiliation(s)
- Jesper L R Andersson
- FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Mark S Graham
- Centre for Medical Image Computing & Department of Computer Science, University College London, London, United Kingdom
| | - Ivana Drobnjak
- Centre for Medical Image Computing & Department of Computer Science, University College London, London, United Kingdom
| | - Hui Zhang
- Centre for Medical Image Computing & Department of Computer Science, University College London, London, United Kingdom
| | - Jon Campbell
- FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Dosenbach NUF, Koller JM, Earl EA, Miranda-Dominguez O, Klein RL, Van AN, Snyder AZ, Nagel BJ, Nigg JT, Nguyen AL, Wesevich V, Greene DJ, Fair DA. Real-time motion analytics during brain MRI improve data quality and reduce costs. Neuroimage 2017; 161:80-93. [PMID: 28803940 PMCID: PMC5731481 DOI: 10.1016/j.neuroimage.2017.08.025] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 11/30/2022] Open
Abstract
Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional 'buffer data', an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more.
Collapse
Affiliation(s)
- Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Program in Occupational Therapy, Washington University, St. Louis, MO, USA.
| | - Jonathan M Koller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric A Earl
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Oscar Miranda-Dominguez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Rachel L Klein
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bonnie J Nagel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Joel T Nigg
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Annie L Nguyen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Victoria Wesevich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deanna J Greene
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
28
|
Graham MS, Drobnjak I, Jenkinson M, Zhang H. Quantitative assessment of the susceptibility artefact and its interaction with motion in diffusion MRI. PLoS One 2017; 12:e0185647. [PMID: 28968429 PMCID: PMC5624609 DOI: 10.1371/journal.pone.0185647] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/16/2017] [Indexed: 01/15/2023] Open
Abstract
In this paper we evaluate the three main methods for correcting the susceptibility-induced artefact in diffusion-weighted magnetic-resonance (DW-MR) data, and assess how correction is affected by the susceptibility field's interaction with motion. The susceptibility artefact adversely impacts analysis performed on the data and is typically corrected in post-processing. Correction strategies involve either registration to a structural image, the application of an acquired field-map or the use of additional images acquired with different phase-encoding. Unfortunately, the choice of which method to use is made difficult by the absence of any systematic comparisons of them. In this work we quantitatively evaluate these methods, by extending and employing a recently proposed framework that allows for the simulation of realistic DW-MR datasets with artefacts. Our analysis separately evaluates the ability for methods to correct for geometric distortions and to recover lost information in regions of signal compression. In terms of geometric distortions, we find that registration-based methods offer the poorest correction. Field-mapping techniques are better, but are influenced by noise and partial volume effects, whilst multiple phase-encode methods performed best. We use our simulations to validate a popular surrogate metric of correction quality, the comparison of corrected data acquired with AP and LR phase-encoding, and apply this surrogate to real datasets. Furthermore, we demonstrate that failing to account for the interaction of the susceptibility field with head movement leads to increased errors when analysing DW-MR data. None of the commonly used post-processing methods account for this interaction, and we suggest this may be a valuable area for future methods development.
Collapse
Affiliation(s)
- Mark S. Graham
- Centre for Medical Image Computing & Department of Computer Science, University College London, London, United Kingdom
| | - Ivana Drobnjak
- Centre for Medical Image Computing & Department of Computer Science, University College London, London, United Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Hui Zhang
- Centre for Medical Image Computing & Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
29
|
Bollmann S, Kasper L, Vannesjo SJ, Diaconescu AO, Dietrich BE, Gross S, Stephan KE, Pruessmann KP. Analysis and correction of field fluctuations in fMRI data using field monitoring. Neuroimage 2017; 154:92-105. [PMID: 28077303 DOI: 10.1016/j.neuroimage.2017.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022] Open
Abstract
This work investigates the role of magnetic field fluctuations as a confound in fMRI. In standard fMRI experiments with single-shot EPI acquisition at 3 Tesla the uniform and gradient components of the magnetic field were recorded with NMR field sensors. By principal component analysis it is found that differences of field evolution between the EPI readouts are explainable by few components relating to slow and within-shot field dynamics of hardware and physiological origin. The impact of fluctuating field components is studied by selective data correction and assessment of its influence on image fluctuation and SFNR. Physiological field fluctuations, attributed to breathing, were found to be small relative to those of hardware origin. The dominant confounds were hardware-related and attributable to magnet drift and thermal changes. In raw image time series, field fluctuation caused significant SFNR loss, reflected by a 67% gain upon correction. Large part of this correction can be accomplished by traditional image realignment, which addresses slow and spatially uniform field changes. With realignment, explicit field correction increased the SFNR on the order of 6%. In conclusion, field fluctuations are a relevant confound in fMRI and can be addressed effectively by retrospective data correction. Based on the physics involved it is anticipated that the advantage of full field correction increases with field strength, with non-Cartesian readouts, and upon phase-sensitive BOLD analysis.
Collapse
Affiliation(s)
- Saskia Bollmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8092 Zurich, Switzerland.
| | - Lars Kasper
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8092 Zurich, Switzerland; Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 8032 Zurich, Switzerland
| | - S Johanna Vannesjo
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8092 Zurich, Switzerland
| | - Andreea O Diaconescu
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 8032 Zurich, Switzerland
| | - Benjamin E Dietrich
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8092 Zurich, Switzerland
| | - Simon Gross
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8092 Zurich, Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 8032 Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, UK; Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
30
|
Johnson PM, Liu J, Wade T, Tavallaei MA, Drangova M. Retrospective 3D motion correction using spherical navigator echoes. Magn Reson Imaging 2016; 34:1274-1282. [PMID: 27451402 DOI: 10.1016/j.mri.2016.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/06/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE To develop and evaluate a rapid spherical navigator echo (SNAV) motion correction technique, then apply it for retrospective correction of brain images. METHODS The pre-rotated, template matching SNAV method (preRot-SNAV) was developed in combination with a novel hybrid baseline strategy, which includes acquired and interpolated templates. Specifically, the SNAV templates are only rotated around X- and Y-axis; for each rotated SNAV, simulated baseline templates that mimic object rotation about the Z-axis were interpolated. The new method was first evaluated with phantom experiments. Then, a customized SNAV-interleaved gradient echo sequence was used to image three volunteers performing directed head motion. The SNAV motion measurements were used to retrospectively correct the brain images. Experiments were performed using a 3.0T whole-body MRI scanner and both single and 8-channel head coils. RESULTS Phantom rotations and translations measured using the hybrid baselines agreed to within 0.9° and 1mm compared to those measured with the original preRot-SNAV method. Retrospective motion correction of in vivo images using the hybrid preRot-SNAV effectively corrected for head rotation up to 4° and 4mm. CONCLUSIONS The presented hybrid approach enables the acquisition of pre-rotated baseline templates in as little as 2.5s, and results in accurate measurement of rotations and translations. Retrospective 3D motion correction successfully reduced motion artifacts in vivo.
Collapse
Affiliation(s)
- Patricia M Johnson
- Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Junmin Liu
- Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Trevor Wade
- Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Mohammad Ali Tavallaei
- Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Ontario, Canada
| | - Maria Drangova
- Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
31
|
Taylor PA, Alhamud A, van der Kouwe A, Saleh MG, Laughton B, Meintjes E. Assessing the performance of different DTI motion correction strategies in the presence of EPI distortion correction. Hum Brain Mapp 2016; 37:4405-4424. [PMID: 27436169 DOI: 10.1002/hbm.23318] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/16/2016] [Accepted: 07/05/2016] [Indexed: 11/07/2022] Open
Abstract
Diffusion tensor imaging (DTI) is susceptible to several artifacts due to eddy currents, echo planar imaging (EPI) distortion and subject motion. While several techniques correct for individual distortion effects, no optimal combination of DTI acquisition and processing has been determined. Here, the effects of several motion correction techniques are investigated while also correcting for EPI distortion: prospective correction, using navigation; retrospective correction, using two different popular packages (FSL and TORTOISE); and the combination of both methods. Data from a pediatric group that exhibited incidental motion in varying degrees are analyzed. Comparisons are carried while implementing eddy current and EPI distortion correction. DTI parameter distributions, white matter (WM) maps and probabilistic tractography are examined. The importance of prospective correction during data acquisition is demonstrated. In contrast to some previous studies, results also show that the inclusion of retrospective processing also improved ellipsoid fits and both the sensitivity and specificity of group tractographic results, even for navigated data. Matches with anatomical WM maps are highest throughout the brain for data that have been both navigated and processed using TORTOISE. The inclusion of both prospective and retrospective motion correction with EPI distortion correction is important for DTI analysis, particularly when studying subject populations that are prone to motion. Hum Brain Mapp 37:4405-4424, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paul A Taylor
- Department of Human Biology, Faculty of Health Sciences, MRC/UCT Medical Imaging Research Unit, University of Cape Town, South Africa.,African Institute for Mathematical Sciences, Muizenberg, Western Cape, South Africa.,Scientific and Statistical Computing Core, National Institutes of Health, Bethesda, Maryland
| | - A Alhamud
- Department of Human Biology, Faculty of Health Sciences, MRC/UCT Medical Imaging Research Unit, University of Cape Town, South Africa
| | - Andre van der Kouwe
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Muhammad G Saleh
- Department of Human Biology, Faculty of Health Sciences, MRC/UCT Medical Imaging Research Unit, University of Cape Town, South Africa
| | - Barbara Laughton
- Department of Paediatrics and Child Health, Stellenbosch University, Children's Infection Diseases Clinical Research Unit, South Africa
| | - Ernesta Meintjes
- Department of Human Biology, Faculty of Health Sciences, MRC/UCT Medical Imaging Research Unit, University of Cape Town, South Africa
| |
Collapse
|