1
|
Klein SD, Collins PF, Lozano-Wun V, Grund P, Luciana M. Frontostriatal Networks Undergo Functional Specialization During Adolescence that Follows a Ventral-Dorsal Gradient: Developmental Trajectories and Longitudinal Associations. J Neurosci 2025; 45:e1233232025. [PMID: 40064508 PMCID: PMC11984081 DOI: 10.1523/jneurosci.1233-23.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 04/12/2025] Open
Abstract
Seminal studies in animal neuroscience demonstrate that frontostriatal circuits exhibit a ventral-dorsal functional gradient to integrate neural functions related to reward processing and cognitive control. Prominent neurodevelopmental models posit that heightened reward-seeking and risk-taking during adolescence result from maturational imbalances between frontostriatal neural systems underlying reward processing and cognitive control. The present study investigated whether the development of ventral (VS) and dorsal (DS) striatal resting-state connectivity (rsFC) networks along this proposed functional gradient relates to putative imbalances between reward and executive systems posited by a dual neural systems theory of adolescent development. 163 participants aged 11-25 years (54% female, 90% white) underwent resting scans at baseline and biennially thereafter, yielding 339 scans across four assessment waves. We observed developmental increases in VS rsFC with brain areas implicated in reward processing (e.g., subgenual cingulate gyrus and medial orbitofrontal cortex) and concurrent decreases with areas implicated in executive function (e.g., ventrolateral and dorsolateral prefrontal cortices). DS rsFC exhibited the opposite pattern. More rapid developmental increases in VS rsFC with reward areas were associated with developmental improvements in reward-based decision making, whereas increases in DS rsFC with executive function areas were associated with improved executive function, though each network exhibited some crossover in function. Collectively, these findings suggest that typical adolescent neurodevelopment is characterized by a divergence in ventral and dorsal frontostriatal connectivity that may relate to developmental improvements in affective decision-making and executive function.Significance Statement Anatomical studies in nonhuman primates demonstrate that frontostriatal circuits are essential for integration of neural functions underlying reward processing and cognition, with human neuroimaging studies linking alterations in these circuits to psychopathology. The present study characterized the developmental trajectories of frontostriatal resting state networks from childhood to young adulthood. We demonstrate that ventral and dorsal aspects of the striatum exhibit distinct age-related changes that predicted developmental improvements in reward-related decision making and executive function. These results highlight that adolescence is characterized by distinct changes in frontostriatal networks that may relate to normative increases in risk-taking. Atypical developmental trajectories of frontostriatal networks may contribute to adolescent-onset psychopathology.
Collapse
Affiliation(s)
- Samuel D Klein
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
| | - Paul F Collins
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
| | - Vanessa Lozano-Wun
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
| | - Peter Grund
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
| | - Monica Luciana
- University of Minnesota-Twin Cities Department of Psychology, Elliot Hall, 75 E River Road, Minneapolis, MN
- Masonic Institute for the Developing Brain, 2025 E River Pkwy, Minneapolis, MN, USA
| |
Collapse
|
2
|
Ng CT, Chen XY, Chang TT. Distinct Behavioural and Brain Response Profiles Between Arithmetic Word Problem Solving and Sentence Comprehension in Third and Fourth Graders. Eur J Neurosci 2025; 61:e70003. [PMID: 39853837 DOI: 10.1111/ejn.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Word problems are essential for math learning and education, bridging numerical knowledge with real-world applications. Despite their importance, the neural mechanisms underlying word problem solving, especially in children, remain poorly understood. Here, we examine children's cognitive and brain response profiles for arithmetic word problems (AWPs), which involve one-step mathematical operations, and compare them with nonarithmetic word problems (NWPs), structured as parallel narratives without numerical operations. Behavioural results suggested that AWP performance was associated with both reading comprehension and arithmetic fluency, whereas NWP performance correlated only with reading comprehension. Neuroimaging results revealed distinct neural substrates: AWP solving primarily activated the anterior insula, middle frontal gyrus and intraparietal sulcus, whereas NWP solving engaged in the inferior frontal gyrus, middle temporal gyrus and angular gyrus. Critically, we observed a developmental shift: Children showed heightened prefrontal activation during AWP solving, contrasting with increased posterior parietal engagement in adults. Moreover, although adults demonstrated brain-behaviour associations, with slower AWP solving linked to stronger parietal activation, this relationship was absent in children. Taken together, these findings suggest that AWP solving recruits specialized arithmetic brain circuits that undergo a frontal-to-parietal trajectory. Our study thus provides a neurological basis for AWP solving in children, emphasizing the crucial role of the fronto-insular-parietal network. These insights into brain-based contributions to developmental differences may guide the development of targeted remediation strategies and educational interventions tailored to individual learning needs.
Collapse
Affiliation(s)
- Chan-Tat Ng
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Xin-Yu Chen
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Ting-Ting Chang
- Department of Psychology, National Chengchi University, Taipei, Taiwan
- Research Center for Mind, Brain & Learning, National Chengchi University, Taipei, Taiwan
| |
Collapse
|
3
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Istomina A, Arsalidou M. Add, subtract and multiply: Meta-analyses of brain correlates of arithmetic operations in children and adults. Dev Cogn Neurosci 2024; 69:101419. [PMID: 39098250 PMCID: PMC11342769 DOI: 10.1016/j.dcn.2024.101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/24/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024] Open
Abstract
Mathematical operations are cognitive actions we take to calculate relations among numbers. Arithmetic operations, addition, subtraction, multiplication, and division are elemental in education. Addition is the first one taught in school and is most popular in functional magnetic resonance imaging (fMRI) studies. Division, typically taught last is least studied with fMRI. fMRI meta-analyses show that arithmetic operations activate brain areas in parietal, cingulate and insular cortices for children and adults. Critically, no meta-analysis examines concordance across brain correlates of separate arithmetic operations in children and adults. We review and examine using quantitative meta-analyses data from fMRI articles that report brain coordinates separately for addition, subtraction, multiplication, and division in children and adults. Results show that arithmetic operations elicit common areas of concordance in fronto-parietal and cingulo-opercular networks in adults and children. Between operations differences are observed primarily for adults. Interestingly, higher within-group concordance, expressed in activation likelihood estimates, is found in brain areas associated with the cingulo-opercular network rather than the fronto-parietal network in children, areas also common between adults and children. Findings are discussed in relation to constructivist cognitive theory and practical directions for future research.
Collapse
|
5
|
Ng C, Huang P, Cho Y, Lee P, Liu Y, Chang T. Frontoparietal and salience network synchronizations during nonsymbolic magnitude processing predict brain age and mathematical performance in youth. Hum Brain Mapp 2024; 45:e26777. [PMID: 39046114 PMCID: PMC11267564 DOI: 10.1002/hbm.26777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
The development and refinement of functional brain circuits crucial to human cognition is a continuous process that spans from childhood to adulthood. Research increasingly focuses on mapping these evolving configurations, with the aim to identify markers for functional impairments and atypical development. Among human cognitive systems, nonsymbolic magnitude representations serve as a foundational building block for future success in mathematical learning and achievement for individuals. Using task-based frontoparietal (FPN) and salience network (SN) features during nonsymbolic magnitude processing alongside machine learning algorithms, we developed a framework to construct brain age prediction models for participants aged 7-30. Our study revealed differential developmental profiles in the synchronization within and between FPN and SN networks. Specifically, we observed a linear increase in FPN connectivity, concomitant with a decline in SN connectivity across the age span. A nonlinear U-shaped trajectory in the connectivity between the FPN and SN was discerned, revealing reduced FPN-SN synchronization among adolescents compared to both pediatric and adult cohorts. Leveraging the Gradient Boosting machine learning algorithm and nested fivefold stratified cross-validation with independent training datasets, we demonstrated that functional connectivity measures of the FPN and SN nodes predict chronological age, with a correlation coefficient of .727 and a mean absolute error of 2.944 between actual and predicted ages. Notably, connectivity within the FPN emerged as the most contributing feature for age prediction. Critically, a more matured brain age estimate is associated with better arithmetic performance. Our findings shed light on the intricate developmental changes occurring in the neural networks supporting magnitude representations. We emphasize brain age estimation as a potent tool for understanding cognitive development and its relationship to mathematical abilities across the critical developmental period of youth. PRACTITIONER POINTS: This study investigated the prolonged changes in the brain's architecture across childhood, adolescence, and adulthood, with a focus on task-state frontoparietal and salience networks. Distinct developmental pathways were identified: frontoparietal synchronization strengthens consistently throughout development, while salience network connectivity diminishes with age. Furthermore, adolescents show a unique dip in connectivity between these networks. Leveraging advanced machine learning methods, we accurately predicted individuals' ages based on these brain circuits, with a more mature estimated brain age correlating with better math skills.
Collapse
Affiliation(s)
- Chan‐Tat Ng
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
| | - Po‐Hsien Huang
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Yi‐Cheng Cho
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
| | - Pei‐Hong Lee
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Yi‐Chang Liu
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Ting‐Ting Chang
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| |
Collapse
|
6
|
McGrady ME, Ketterl TG, Webster RT, Schwartz LE, Brock MY, Szulczewski L, Burke M, Hommel KA, Pai ALH, Mara CA, Steele AC, Regan GG, Norris RE. Feasibility pilot trial of a tailored medication adherence-promotion intervention for adolescents and young adults with cancer: Study design and protocol. Contemp Clin Trials 2024; 139:107483. [PMID: 38431133 PMCID: PMC10960689 DOI: 10.1016/j.cct.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Medication non-adherence is common among adolescents and young adults (AYAs) with cancer and associated with poor health outcomes. AYAs with cancer endorse multiple barriers to adherence that differ across individuals, suggesting that tailoring intervention content to an AYA's specific barriers may have the potential to improve adherence. The purpose of this manuscript is to report on ORBIT-guided Phase I design efforts to create the first tailored adherence-promotion intervention for AYAs with cancer and the study protocol for the ongoing Phase II pilot feasibility trial. METHODS Phase I design included qualitative interviews (n = 15 AYAs) to understand patient preferences for adherence-promotion care, development and refinement of a best-worst scaling exercise barriers tool (n = 5 AYAs), and development of intervention modules and a tailoring algorithm. In the ongoing Phase II pilot feasibility trial, AYAs (ages 15-24 years) with cancer currently taking oral chemotherapy or prophylactic medication will be recruited from three children's hospitals. Feasibility, acceptability, and usability will be assessed and these outcomes along with data on medication adherence will be used to inform the next phases of intervention development and testing. CONCLUSIONS If promising, this program of research ultimately has the potential to equip clinicians with additional strategies for supporting adherence among AYAs with cancer. NCT05706610.
Collapse
Affiliation(s)
- Meghan E McGrady
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Patient and Family Wellness Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Tyler G Ketterl
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Rachel Tillery Webster
- Department of Psychology and Biobehavioral Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA; Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Laura E Schwartz
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Patient and Family Wellness Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Margaret Y Brock
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Patient and Family Wellness Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lauren Szulczewski
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Patient and Family Wellness Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Kevin A Hommel
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ahna L H Pai
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Patient and Family Wellness Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Constance A Mara
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amii C Steele
- Division of Pediatric Psychology and Neuropsychology, Levine Children's Hospital at Atrium Health, Charlotte, NC, USA
| | - Gillian G Regan
- Division of Pediatric Psychology and Neuropsychology, Levine Children's Hospital at Atrium Health, Charlotte, NC, USA
| | - Robin E Norris
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
7
|
Thomson AR, Hwa H, Pasanta D, Hopwood B, Powell HJ, Lawrence R, Tabuenca ZG, Arichi T, Edden RAE, Chai X, Puts NA. The developmental trajectory of 1H-MRS brain metabolites from childhood to adulthood. Cereb Cortex 2024; 34:bhae046. [PMID: 38430105 PMCID: PMC10908220 DOI: 10.1093/cercor/bhae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
Human brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
| | - Hannah Hwa
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Benjamin Hopwood
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Helen J Powell
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Ross Lawrence
- Division of Cognitive Neurology, Department of Neurology, Johns Hopkins University, 1629 Thames Street Suite 350, Baltimore, MD 21231, United States
| | - Zeus G Tabuenca
- Department of Statistical Methods, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, 1st Floor, South Wing, St Thomas’ Hospital, London, SE1 7EH, United Kingdom
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD 21287, United States
- F.M. Kirby Research Centre for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, United States
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, QC H3A2B4, Canada
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
| |
Collapse
|
8
|
Chen NF, Chang TT. Arithmetic problem size modulates brain activations in females but not in males. Eur J Neurosci 2023; 58:3299-3314. [PMID: 37468321 DOI: 10.1111/ejn.16100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Numerous empirical studies have reported that males and females perform equally well in mathematical achievement. However, still to date, very limited is understood about the brain response profiles that are particularly characteristic of males and females when solving mathematical problems. The present study aimed to tackle this issue by manipulating arithmetic problem size to investigate functional significance using functional magnetic resonance imaging (fMRI) in young adults. Participants were instructed to complete two runs of simple calculation tasks with either large or small problem sizes. Behavioural results suggested that the performance did not differ between females and males. Neuroimaging data revealed that sex/gender-related patterns of problem size effect were found in the brain regions that are conventionally associated with arithmetic, including the left middle frontal gyrus (MFG), left intraparietal sulcus (IPS) and insula. Specifically, females demonstrated substantial brain responses of problem size effect in these regions, whereas males showed marginal effects. Moreover, the machine learning method implemented over the brain signal levels within these regions demonstrated that sex/gender is discriminable. These results showed sex/gender effects in the activating patterns varying as a function of the distinct math problem size, even in a simple calculation task. Accordingly, our findings suggested that females and males use two complementary brain resources to achieve equally successful performance levels and highlight the pivotal role of neuroimaging facilities in uncovering neural mechanisms that may not be behaviourally salient.
Collapse
Affiliation(s)
- Nai-Feng Chen
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Ting-Ting Chang
- Department of Psychology, National Chengchi University, Taipei, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| |
Collapse
|
9
|
Yang QF, Xie RB, Zhang R, Ding W. Harsh Childhood Discipline and Developmental Changes in Adolescent Aggressive Behavior: The Mediating Role of Self-Compassion. Behav Sci (Basel) 2023; 13:725. [PMID: 37754002 PMCID: PMC10525461 DOI: 10.3390/bs13090725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Harsh discipline during childhood (psychological aggression and corporal punishment) has been found to be an early risk factor for adolescent aggressive behavior. However, previous studies have mainly examined the relationship between harsh discipline as a whole and the level of adolescent aggressive behavior. This study investigates the effects of childhood psychological aggression and corporal punishment on the initial levels and rate of change in adolescent aggressive behavior, as well as the mediating role of self-compassion in this relationship. Using cluster sampling, a three-wave follow-up assessment was conducted on 1214 high-school students (60.7% boys; mean age at Wave 1 = 15.46 ± 0.71). The results showed that childhood psychological aggression and corporal punishment had a positive predictive effect on the development level of adolescent aggressive behavior. However, only childhood psychological aggression significantly directly attenuated the decline rate of adolescent aggressive behavior. In addition, both childhood psychological aggression and corporal punishment indirectly affected the initial levels and growth rate of adolescent aggressive behavior through self-compassion. These findings could provide potential targets for prevention and intervention programs aimed at improving aggressive behavior in Chinese adolescents.
Collapse
Affiliation(s)
| | | | | | - Wan Ding
- Parent Education Research Center, Intelligent Laboratory of Child and Adolescent Mental Health and Crisis Intervention of Zhejiang Province, School of Psychology, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
10
|
Liu R, Bell MA. Fearful temperament in middle childhood predicts adolescent attention bias and anxiety symptoms: The moderating role of frontal EEG asymmetry. Dev Psychopathol 2023; 35:1335-1345. [PMID: 34895372 PMCID: PMC9189245 DOI: 10.1017/s0954579421001231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The current study provided first analyses of the moderating effect of baseline-to-task frontal EEG asymmetry on the associations between 9-year fearful temperament and adolescent attention bias to threat as well as anxiety symptoms. Participants include a community sample of 122 children (60 boys, 62 girls; Mage = 14.66 years; Range = 11.82-18.13 years). Baseline-to-task frontal EEG asymmetry at age 9 moderated the relation between fearful temperament at age 9 and adolescent anxiety symptoms. Specifically, fearful temperament predicted adolescent anxiety symptoms when children showed greater right activation from baseline to an executive function task, but not greater left activation. Baseline-to-task frontal EEG asymmetry moderated the association between fearful temperament and sustained (i.e., stimulus onset asynchrony is 1250 ms) but not automatic attention bias (i.e., stimulus onset asynchrony is 500 ms). Children with greater left frontal activation from baseline to task more efficiently direct attention away from threat. Adolescent automatic attention bias to threat was related to concurrent anxiety symptoms. These findings illustrate the importance of considering frontal EEG asymmetry to shape how fearful children process threat and to influence their behavioral problems.
Collapse
Affiliation(s)
- Ran Liu
- The Division of Child and Adolescent Psychiatry, Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, USA
| | | |
Collapse
|
11
|
Tablante J, Krossa L, Azimi T, Chen L. Dysfunctions associated with the intraparietal sulcus and a distributed network in individuals with math learning difficulties: An ALE meta-analysis. Hum Brain Mapp 2023; 44:2726-2740. [PMID: 36807960 PMCID: PMC10089103 DOI: 10.1002/hbm.26240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Math learning difficulty (MLD) is a learning disorder characterized by persistent impairments in the understanding and application of numbers independent of intelligence or schooling. The current study aims to review existing neuroimaging studies to characterize the neurobiological basis in MLD for their quantity and arithmetic dysfunctions. We identified a total of 24 studies with 728 participants through the literature. Using the activation likelihood estimate (ALE) method, we found that the most consistent neurobiological dysfunction in MLD was observed in the right intraparietal sulcus (IPS) with distinct patterns of the anterior and posterior aspects. Meanwhile, neurobiological dysfunctions were also observed in a distributed network including the fusiform gyrus, inferior temporal gyrus, insula, prefrontal cortex, anterior cingulate cortex, and claustrum. Our results suggest a core dysfunction in the right anterior IPS and left fusiform gyrus with atypically upregulated functions in brain regions for attention, working memory, visual processing, and motivation, serving as the neurobiological basis of MLD.
Collapse
Affiliation(s)
| | - Lani Krossa
- Neuroscience ProgramSanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Tannaz Azimi
- Neuroscience ProgramSanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Lang Chen
- Neuroscience ProgramSanta Clara UniversitySanta ClaraCaliforniaUSA
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| |
Collapse
|
12
|
Mo Z, Grennan G, Kulkarni A, Ramanathan D, Balasubramani PP, Mishra J. Parietal alpha underlies slower cognitive responses during interference processing in adolescents. Behav Brain Res 2023; 443:114356. [PMID: 36801472 DOI: 10.1016/j.bbr.2023.114356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Adolescence is a critical period when cognitive control is rapidly maturing across several core dimensions. Here, we evaluated how healthy adolescents (13-17 years of age, n = 44) versus young adults (18-25 years of age, n = 49) differ across a series of cognitive assessments with simultaneous electroencephalography (EEG) recordings. Cognitive tasks included selective attention, inhibitory control, working memory, as well as both non-emotional and emotional interference processing. We found that adolescents displayed significantly slower responses than young adults specifically on the interference processing tasks. Evaluation of EEG event-related spectral perturbations (ERSPs) on the interference tasks showed that adolescents consistently had greater event-related desynchronization in alpha/beta frequencies in parietal regions. Midline frontal theta activity was also greater in the flanker interference task in adolescents, suggesting greater cognitive effort. Parietal alpha activity predicted age-related speed differences during non-emotional flanker interference processing, and frontoparietal connectivity, specifically midfrontal theta - parietal alpha functional connectivity predicted speed effects during emotional interference. Overall, our neuro-cognitive results illustrate developing cognitive control in adolescents particularly for interference processing, predicted by differential alpha band activity and connectivity in parietal brain regions.
Collapse
Affiliation(s)
- Zihao Mo
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Gillian Grennan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Atharv Kulkarni
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Mental Health, VA San Diego Medical Center, San Diego, CA, USA
| | | | - Jyoti Mishra
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Suárez-Pellicioni M, Prado J, Booth JR. Neurocognitive mechanisms underlying multiplication and subtraction performance in adults and skill development in children: a scoping review. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Chang T, Chen N, Fan Y. Uncovering sex/gender differences of arithmetic in the human brain: Insights from fMRI studies. Brain Behav 2022; 12:e2775. [PMID: 36128729 PMCID: PMC9575600 DOI: 10.1002/brb3.2775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 11/07/2022] Open
Abstract
Over the long run, STEM fields had been perceived as dominant by males, despite that numerous studies have shown that female students do not underperform their male classmates in mathematics and science. In this review, we discuss whether and how sex/gender shows specificity in arithmetic processing using a cognitive neuroscience approach not only to capture contemporary differences in brain and behavior but also to provide exclusive brain bases knowledge that is unseen in behavioral outcomes alone. We begin by summarizing studies that had examined sex differences/similarities in behavioral performance of mathematical learning, with a specific focus on large-scale meta-analytical data. We then discuss how the magnetic resonance imaging (MRI) approach can contribute to understanding neural mechanisms underlying sex-specific effects of mathematical learning by reviewing structural and functional data. Finally, we close this review by proposing potential research issues for further exploration of the sex effect using neuroimaging technology. Through the lens of advancement in the neuroimaging technique, we seek to provide insights into uncovering sex-specific neural mechanisms of learning to inform and achieve genuine gender equality in education.
Collapse
Affiliation(s)
- Ting‐Ting Chang
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Nai‐Feng Chen
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
| | - Yang‐Teng Fan
- Graduate Institute of MedicineYuan Ze UniversityTaoyuanTaiwan
| |
Collapse
|
15
|
Lynn A, Wilkey ED, Price GR. Predicting children's math skills from task-based and resting-state functional brain connectivity. Cereb Cortex 2022; 32:4204-4214. [PMID: 34974615 PMCID: PMC9764435 DOI: 10.1093/cercor/bhab476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
A critical goal of cognitive neuroscience is to predict behavior from neural structure and function, thereby providing crucial insights into who might benefit from clinical and/or educational interventions. Across development, the strength of functional connectivity among a distributed set of brain regions is associated with children's math skills. Therefore, in the present study we use connectome-based predictive modeling to investigate whether functional connectivity during numerical processing and at rest "predicts" children's math skills (N = 31, Mage = 9.21 years, 14 Female). Overall, we found that functional connectivity during symbolic number comparison and rest, but not during nonsymbolic number comparison, predicts children's math skills. Each task revealed a largely distinct set of predictive connections distributed across canonical brain networks and major brain lobes. Most of these predictive connections were negatively correlated with children's math skills so that weaker connectivity predicted better math skills. Notably, these predictive connections were largely nonoverlapping across task states, suggesting children's math abilities may depend on state-dependent patterns of network segregation and/or regional specialization. Furthermore, the current predictive modeling approach moves beyond brain-behavior correlations and toward building models of brain connectivity that may eventually aid in predicting future math skills.
Collapse
Affiliation(s)
- Andrew Lynn
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN 37212, USA
| | - Eric D Wilkey
- Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - Gavin R Price
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Tong H, Maloney TC, Payne MF, King CD, Ting TV, Kashikar-Zuck S, Coghill RC, López-Solà M. Processing of pain by the developing brain: evidence of differences between adolescent and adult females. Pain 2022; 163:1777-1789. [PMID: 35297790 PMCID: PMC9391252 DOI: 10.1097/j.pain.0000000000002571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Adolescence is a sensitive period for both brain development and the emergence of chronic pain particularly in females. However, the brain mechanisms supporting pain perception during adolescence remain unclear. This study compares perceptual and brain responses to pain in female adolescents and adults to characterize pain processing in the developing brain. Thirty adolescent (ages 13-17 years) and 30 adult (ages 35-55 years) females underwent a functional magnetic resonance imaging scan involving acute pain. Participants received 12 ten-second noxious pressure stimuli that were applied to the left thumbnail at 2.5 and 4 kg/cm 2 , and rated pain intensity and unpleasantness on a visual analogue scale. We found a significant group-by-stimulus intensity interaction on pain ratings. Compared with adults, adolescents reported greater pain intensity and unpleasantness in response to 2.5 kg/cm 2 but not 4 kg/cm 2 . Adolescents showed greater medial-lateral prefrontal cortex and supramarginal gyrus activation in response to 2.5 kg/cm 2 and greater medial prefrontal cortex and rostral anterior cingulate responses to 4 kg/cm 2 . Adolescents showed greater pain-evoked responses in the neurologic pain signature and greater activation in the default mode and ventral attention networks. Also, the amygdala and associated regions played a stronger role in predicting pain intensity in adolescents, and activity in default mode and ventral attention regions more strongly mediated the relationship between stimulus intensity and pain ratings. This study provides first evidence of greater low-pain sensitivity and pain-evoked brain responses in female adolescents (vs adult women) in regions important for nociceptive, affective, and cognitive processing, which may be associated with differences in peripheral nociception.
Collapse
Affiliation(s)
- Han Tong
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Thomas C. Maloney
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael F. Payne
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Christopher D. King
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Tracy V. Ting
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Susmita Kashikar-Zuck
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Robert C. Coghill
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marina López-Solà
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Serra Hunter Program, Unit of Psychological Medicine, Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Wang C, Ren T, Zhang X, Dou W, Jia X, Li BM. The longitudinal development of large-scale functional brain networks for arithmetic ability from childhood to adolescence. Eur J Neurosci 2022; 55:1825-1839. [PMID: 35304780 DOI: 10.1111/ejn.15651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Arithmetic ability is an important high-level cognitive function that requires interaction among multiple brain regions. Previous studies on arithmetic development have focused on task-induced activation in isolated brain regions or functional connectivity among particular seed regions. However, it remains largely unknown whether and how functional connectivity among large-scale brain modules contributes to arithmetic development. In the present study, we used a longitudinal sample of task-based functional magnetic resonance imaging (fMRI) data comprising 63 typically developing children, with two testing points being about two years apart. With graph theory, we examined the longitudinal development of large-scale brain modules for a multiplication task in younger (mean age 9.88 at time 1) and older children (mean age 12.34 at time 1), respectively. The results showed that the default-mode (DMN) and frontal-parietal networks (FPN) became increasingly segregated over time. Specifically, intra-connectivity within the DMN and FPN increased significantly with age, and inter-connectivity between the DMN and visual network decreased significantly with age. Such developmental changes were mainly observed in the younger children, but not in the older children. Moreover, the change in network segregation of the DMN was positively correlated with longitudinal gain in arithmetic performance in the younger children, and individual difference in network segregation of the FPN was positively correlated with arithmetic performance at time 2 in the older children. Taken together, the present results highlight the development of the functional architecture in large-scale brain networks from childhood to adolescence, which may provide insights into potential neural mechanisms underlying arithmetic development.
Collapse
Affiliation(s)
- Chunjie Wang
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tian Ren
- Institute of Brain Science and Department of Psychology, Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Xinyuan Zhang
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wenjie Dou
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xi Jia
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bao-Ming Li
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
18
|
Schneider N, Bruchhage MMK, O'Neill BV, Hartweg M, Tanguy J, Steiner P, Mutungi G, O'Regan J, Mcsweeney S, D'Sa V, Deoni SCL. A Nutrient Formulation Affects Developmental Myelination in Term Infants: A Randomized Clinical Trial. Front Nutr 2022; 9:823893. [PMID: 35242798 PMCID: PMC8886575 DOI: 10.3389/fnut.2022.823893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background and Objectives Observational studies suggest differences between breast-fed and formula-fed infants in developmental myelination, a key brain process for learning. The study aims to investigate the efficacy of a blend of docosahexaenoic acid (DHA), arachidonic acid (ARA), iron, vitamin B12, folic acid, and sphingomyelin (SM) from a uniquely processed whey protein concentrate enriched in alpha-lactalbumin and phospholipids compared with a control formulation on myelination, cognitive, and behavioral development in the first 6 months of life. Methods These are 6-month results from an ongoing two-center, randomized controlled trial with a 12-month intervention period (completed for all participants). In this study, full term, neurotypical infants of both sexes (N = 81) were randomized into investigational (N = 42) or control groups (N = 39). In addition, non-randomized breast-fed children (N = 108) serve as a natural reference group. Main outcomes are myelination (MRI), cognitive (Bayley Scales of Infant and Toddler Development, 3rd edition [Bayley-III]), social-emotional development (Ages and Stages Questionnaires: Social-Emotional, 2nd edition [ASQ:SE-2]), sleep (Brief Infant Sleep Questionnaire [BISQ]), and safety (growth and adverse events [AEs]). Results The full analyses set comprises N = 66 infants. Significant differences in myelin structure, volume, and rate of myelination were observed in favor of the investigational myelin blend at 3 and 6 months of life. Effects were demonstrated for whole brain myelin and for cerebellar, parietal, occipital, and temporal regions, known to be functionally involved in sensory, motor, and language skills. No statistically significant differences were found for early behavior and cognition scores. Conclusions This is the first study demonstrating the efficacy of a myelin nutrient blend in well-nourished, term infants on developmental myelination, which may be foundational for later cognitive and learning outcomes. Clinical Trial Registration ClinicalTrials.gov, identifier: NCT03111927.
Collapse
Affiliation(s)
- Nora Schneider
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
- *Correspondence: Nora Schneider
| | - Muriel M. K. Bruchhage
- Department of Pediatrics, Brown University, Providence, RI, United States
- Rhode Island Hospital, Hasbro Children's Hospital, Providence, RI, United States
- Department of Psychology, Stavanger University, Stavanger, Norway
| | - Barry V. O'Neill
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Mickaël Hartweg
- Clinical Research Unit, Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Jérôme Tanguy
- Clinical Research Unit, Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Pascal Steiner
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Gisella Mutungi
- Nestlé Nutrition, Société des Produits Nestlé SA, Vevey, Switzerland
| | | | | | - Viren D'Sa
- Department of Pediatrics, Brown University, Providence, RI, United States
- Rhode Island Hospital, Hasbro Children's Hospital, Providence, RI, United States
| | - Sean C. L. Deoni
- Department of Pediatrics, Brown University, Providence, RI, United States
- Rhode Island Hospital, Hasbro Children's Hospital, Providence, RI, United States
| |
Collapse
|
19
|
Brignoni‐Pérez E, Matejko AA, Jamal NI, Eden GF. Functional neuroanatomy of arithmetic in monolingual and bilingual adults and children. Hum Brain Mapp 2021; 42:4880-4895. [PMID: 34255408 PMCID: PMC8449110 DOI: 10.1002/hbm.25587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Prior studies on the brain bases of arithmetic have not focused on (or even described) their participants' language backgrounds. Yet, unlike monolinguals, early bilinguals have the capacity to solve arithmetic problems in both of their two languages. This raises the question whether this ability, or any other experience that comes with being bilingual, affects brain activity for arithmetic in bilinguals relative to monolinguals. Here, we used functional magnetic resonance imaging to compare brain activity in 44 English monolinguals and 44 Spanish-English early bilinguals, during the solving of arithmetic problems in English. We used a factorial design to test for a main effect of bilingual Language Experience. Based on the known modulating roles of arithmetic operation and age, we used two arithmetic tasks (addition and subtraction) and studied two age groups (adults and children). When collapsing across operations and age, we found broad bilateral activation for arithmetic in both the monolingual group and the bilingual group. However, an analysis of variance revealed that there was no effect of Language Experience, nor an interaction of Language Experience with Operation or Age Group. Bayesian analyses within regions of interest chosen for their role in arithmetic further supported the finding of no effect of Language Experience on brain activity underlying arithmetic. We conclude that early bilingualism does not influence the functional neuroanatomy of simple arithmetic.
Collapse
Affiliation(s)
- Edith Brignoni‐Pérez
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Anna A. Matejko
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Nasheed I. Jamal
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Guinevere F. Eden
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
20
|
Artemenko C. Developmental fronto-parietal shift of brain activation during mental arithmetic across the lifespan: A registered report protocol. PLoS One 2021; 16:e0256232. [PMID: 34432831 PMCID: PMC8386861 DOI: 10.1371/journal.pone.0256232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022] Open
Abstract
Arithmetic processing is represented in a fronto-parietal network of the brain. However, activation within this network undergoes a shift from domain-general cognitive processing in the frontal cortex towards domain-specific magnitude processing in the parietal cortex. This is at least what is known about development from findings in children and young adults. In this registered report, we set out to replicate the fronto-parietal activation shift for arithmetic processing and explore for the first time how neural development of arithmetic continues during aging. This study focuses on the behavioral and neural correlates of arithmetic and arithmetic complexity across the lifespan, i.e., childhood, where arithmetic is first learned, young adulthood, when arithmetic skills are already established, and old age, when there is lifelong arithmetic experience. Therefore, brain activation during mental arithmetic will be measured in children, young adults, and the elderly using functional near-infrared spectroscopy (fNIRS). Arithmetic complexity will be manipulated by the carry and borrow operations in two-digit addition and subtraction. The findings of this study will inform educational practice, since the carry and borrow operations are considered as obstacles in math achievement, and serve as a basis for developing interventions in the elderly, since arithmetic skills are important for an independent daily life.
Collapse
Affiliation(s)
- Christina Artemenko
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
21
|
Linear and nonlinear profiles of weak behavioral and neural differentiation between numerical operations in children with math learning difficulties. Neuropsychologia 2021; 160:107977. [PMID: 34329664 DOI: 10.1016/j.neuropsychologia.2021.107977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/23/2022]
Abstract
Mathematical knowledge is constructed hierarchically during development from a basic understanding of addition and subtraction, two foundational and inter-related, but semantically distinct, numerical operations. Early in development, children show remarkable variability in their numerical problem-solving skills and difficulties in solving even simple addition and subtraction problems are a hallmark of math learning difficulties. Here, we use novel quantitative analyses to investigate whether less distinct representations are associated with poor problem-solving abilities in children during the early stages of math-skill acquisition. Crucially, we leverage dimensional and categorical analyses to identify linear and nonlinear neurobehavioral profiles of individual differences in math skills. Behaviorally, performance on the two different numerical operations was less differentiated in children with low math abilities, and lower problem-solving efficiency stemmed from weak evidence-accumulation during problem-solving. Children with low numerical abilities also showed less differentiated neural representations between addition and subtraction operations in multiple cortical areas, including the fusiform gyrus, intraparietal sulcus, anterior temporal cortex and insula. Furthermore, analysis of multi-regional neural representation patterns revealed significantly higher network similarity and aberrant integration of representations within a fusiform gyrus-intraparietal sulcus pathway important for manipulation of numerical quantity. These findings identify the lack of distinct neural representations as a novel neurobiological feature of individual differences in children's numerical problem-solving abilities, and an early developmental biomarker of low math skills. More generally, our approach combining dimensional and categorical analyses overcomes pitfalls associated with the use of arbitrary cutoffs for probing neurobehavioral profiles of individual differences in math abilities.
Collapse
|
22
|
Ng CT, Lung TC, Chang TT. Operation-Specific Lexical Consistency Effect in Fronto-Insular-Parietal Network During Word Problem Solving. Front Hum Neurosci 2021; 15:631438. [PMID: 33776671 PMCID: PMC7987662 DOI: 10.3389/fnhum.2021.631438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
The practice of mathematical word problem is ubiquitous and thought to impact academic achievement. However, the underlying neural mechanisms are still poorly understood. In this study, we investigate how lexical consistency of word problem description is modulated in adults' brain responses during word problem solution. Using functional magnetic resonance imaging methods, we examined compare word problems that included relational statements, such as "A dumpling costs 9 dollars. A wonton is 2 dollars less than a dumpling. How much does a wonton cost?" and manipulated lexical consistency (consistent: the relational term consistent with the operation to be performed, e.g., more-addition/inconsistent: e.g., less-addition) and problem operation (addition/subtraction). We found a consistency by operation interaction in the widespread fronto-insular-parietal activations, including the anterior insula, dorsoanterior cingulate cortex, middle frontal gyrus, and intraparietal sulcus, such that inconsistent problems engaged stronger activations than consistent problems for addition, whereas the consistency effect was inverse for subtraction. Critically, these results were more salient in the less successful problem solvers than their more successful peers. Our study is the first to demonstrate that lexical consistency effects on arithmetic neural networks are modulated during reading word problem that required distinct arithmetic operations. More broadly, our study has strong potentials to add linkage between neuroscience and education by remediating deficits and enhance instruction design in the school curriculum.
Collapse
Affiliation(s)
- Chan-Tat Ng
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Tzu-Chen Lung
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, United States
| | - Ting-Ting Chang
- Department of Psychology, National Chengchi University, Taipei, Taiwan.,Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan
| |
Collapse
|
23
|
Suárez-Pellicioni M, Berteletti I, Booth JR. Early Engagement of Parietal Cortex for Subtraction Solving Predicts Longitudinal Gains in Behavioral Fluency in Children. Front Hum Neurosci 2020; 14:163. [PMID: 32528262 PMCID: PMC7264824 DOI: 10.3389/fnhum.2020.00163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
There is debate in the literature regarding how single-digit arithmetic fluency is achieved over development. While the Fact-retrieval hypothesis suggests that with practice, children shift from quantity-based procedures to verbally retrieving arithmetic problems from long-term memory, the Schema-based hypothesis claims that problems are solved through quantity-based procedures and that practice leads to these procedures becoming more automatic. To test these hypotheses, a sample of 46 typically developing children underwent functional magnetic resonance imaging (fMRI) when they were 11 years old (time 1), and 2 years later (time 2). We independently defined regions of interest (ROIs) involved in verbal and quantity processing using rhyming and numerosity judgment localizer tasks, respectively. The verbal ROIs consisted of left middle/superior temporal gyri (MTG/STG) and left inferior frontal gyrus (IFG), whereas the quantity ROIs consisted of bilateral inferior/superior parietal lobules (IPL/SPL) and bilateral middle frontal gyri (MFG)/right IFG. Participants also solved a single-digit subtraction task in the scanner. We defined the extent to which children relied on verbal vs. quantity mechanisms by selecting the 100 voxels showing maximal activation at time 1 from each ROI, separately for small and large subtractions. We studied the brain mechanisms at time 1 that predicted gains in subtraction fluency and how these mechanisms changed over time with improvement. When looking at brain activation at time 1, we found that improvers showed a larger neural problem size effect in bilateral parietal cortex, whereas no effects were found in verbal regions. Results also revealed that children who showed improvement in behavioral fluency for large subtraction problems showed decreased activation over time for large subtractions in both parietal and frontal regions implicated in quantity, whereas non-improvers maintained similar levels of activation. All children, regardless of improvement, showed decreased activation over time for large subtraction problems in verbal regions. The greater parietal problem size effect at time 1 and the reduction in activation over time for the improvers in parietal and frontal regions implicated in quantity processing is consistent with the Schema-based hypothesis arguing for more automatic procedures with increasing skill. The lack of a problem size effect at time 1 and the overall decrease in verbal regions, regardless of improvement, is inconsistent with the Fact-retrieval hypothesis.
Collapse
Affiliation(s)
- Macarena Suárez-Pellicioni
- Department of Educational Studies in Psychology, Research Methodology, and Counseling, The University of Alabama, Tuscaloosa, AL, United States
| | - Ilaria Berteletti
- Educational Neuroscience Program, Gallaudet University, Washington, DC, United States
| | - James R. Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
24
|
Iuculano T, Padmanabhan A, Chen L, Nicholas J, Mitsven S, de Los Angeles C, Menon V. Neural correlates of cognitive variability in childhood autism and relation to heterogeneity in decision-making dynamics. Dev Cogn Neurosci 2020; 42:100754. [PMID: 32452464 PMCID: PMC7160429 DOI: 10.1016/j.dcn.2020.100754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/11/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
Heterogeneity in cognitive and academic abilities is a prominent feature of autism spectrum disorder (ASD), yet little is known about its underlying causes. Here we combine functional brain imaging during numerical problem-solving with hierarchical drift-diffusion models of behavior and standardized measures of numerical abilities to investigate neural mechanisms underlying cognitive variability in children with ASD, and their IQ-matched Typically Developing (TD) peers. Although the two groups showed similar levels of brain activation, the relation to individual abilities differed markedly in ventral temporal-occipital, parietal and prefrontal regions important for numerical cognition: children with ASD showed a positive correlation between functional brain activation and numerical abilities, whereas TD children showed the opposite pattern. Despite similar accuracy and response times, decision thresholds were significantly higher in the ASD group, suggesting greater evidence required for problem-solving. Critically, the relationship between individual abilities and engagement of prefrontal control systems anchored in the anterior insula was differentially moderated by decision threshold in subgroups of children with ASD. Our findings uncover novel cognitive and neural sources of variability in academically-relevant cognitive skills in ASD and suggest that multilevel measures and latent decision-making dynamics can aid in characterization of cognitive variability and heterogeneity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- T Iuculano
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, United States; Centre National de la Recherche Scientifique & Université de Paris, La Sorbonne - UMR CNRS 8240, 75005, Paris, France.
| | - A Padmanabhan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, United States
| | - L Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, United States
| | - J Nicholas
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, United States
| | - S Mitsven
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, United States
| | - C de Los Angeles
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, United States
| | - V Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, United States; Stanford Neuroscience Institute, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
25
|
Artemenko C, Sitnikova MA, Soltanlou M, Dresler T, Nuerk HC. Functional lateralization of arithmetic processing in the intraparietal sulcus is associated with handedness. Sci Rep 2020; 10:1775. [PMID: 32020021 PMCID: PMC7000739 DOI: 10.1038/s41598-020-58477-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
Functional lateralization is established for various cognitive functions, but was hardly ever investigated for arithmetic processing. Most neurocognitive models assume a central role of the bilateral intraparietal sulcus (IPS) in arithmetic processing and there is some evidence for more pronounced left-hemispheric activation for symbolic arithmetic. However, evidence was mainly obtained by studies in right-handers. Therefore, we conducted a functional near-infrared spectroscopy (fNIRS) study, in which IPS activation of left-handed adults was compared to right-handed adults in a symbolic approximate calculation task. The results showed that left-handers had a stronger functional right-lateralization in the IPS than right-handers. This finding has important consequences, as the bilateral IPS activation pattern for arithmetic processing seems to be shaped by functional lateralization and thus differs between left- and right-handers. We propose three possible accounts for the observed functional lateralization of arithmetic processing.
Collapse
Affiliation(s)
- Christina Artemenko
- Department of Psychology, University of Tuebingen, Tuebingen, Germany.
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany.
| | - Maria A Sitnikova
- Department of Psychology, Pedagogical Institute, Belgorod National Research University, Belgorod, Russia
- Research and Project Centre for Cognitive Neuroscience and Neurotechnologies, Belgorod National Research University, Belgorod, Russia
| | - Mojtaba Soltanlou
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
| | - Thomas Dresler
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- Research and Project Centre for Cognitive Neuroscience and Neurotechnologies, Belgorod National Research University, Belgorod, Russia
| |
Collapse
|
26
|
Kuhl U, Friederici AD, Skeide MA, Friederici AD, Emmrich F, Brauer J, Wilcke A, Neef N, Boltze J, Skeide M, Kirsten H, Schaadt G, Müller B, Kraft I, Czepezauer I, Dörr L. Early cortical surface plasticity relates to basic mathematical learning. Neuroimage 2020; 204:116235. [DOI: 10.1016/j.neuroimage.2019.116235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/09/2019] [Accepted: 09/27/2019] [Indexed: 01/20/2023] Open
|
27
|
Chang TT, Lung TC, Ng CT, Metcalfe AWS. Fronto-insular-parietal network engagement underlying arithmetic word problem solving. Hum Brain Mapp 2018; 40:1927-1941. [PMID: 30565340 DOI: 10.1002/hbm.24502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 01/05/2023] Open
Abstract
Mathematical word problems are ubiquitous and standard for teaching and evaluating generalization of mathematical knowledge for real-world contexts. It is therefore concerning that the neural mechanisms of word problem solving are not well understood, as these insights represent strong potential for improving education and remediating deficits in this domain. Here, we investigate neural response to word problems via functional magnetic resonance imaging (fMRI). Healthy adults performed sentence judgment tasks on word problems that either contained one-step mathematical operations, or nonarithmetic judgments on parallel narratives without any numerical information. Behavioral results suggested that the composite efficiency measurement of combining accuracy and RT did not differ between the two problem types. Arithmetic sentence judgments elicited greater activation in the fronto-insular-parietal network including intraparietal sulcus (IPS), dorsolateral prefrontal cortex (PFC), and anterior insula (AI) than narrative sentence judgment. Narrative sentence judgments, conversely, resulted in greater activation predominantly in the left ventral PFC, angular gyrus and perisylvian cortex compared with reading arithmetic sentences. Moreover, task-dependent functional connectivity analyses showed the AI circuits were more strongly coupled with IPS during arithmetic sentence judgments than nonarithmetic sentences. Finally, activations in the IPS during arithmetic were highly correlated with out-of-scanner performance on a distinct set of problems with the same characteristics. These results show arithmetic word problem performance differences may rely more heavily on fronto-insular-parietal circuits for mathematical model building than narrative text comprehension of similar difficulty. More broadly, our study suggests that quantitative measurements of brain mechanisms can provide pivotal role for uncovering crucial arithmetic skills.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department of Psychology, National Chengchi University, Taipei, Taiwan.,Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Tzu-Chen Lung
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Chan-Tat Ng
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | | |
Collapse
|
28
|
Skagenholt M, Träff U, Västfjäll D, Skagerlund K. Examining the Triple Code Model in numerical cognition: An fMRI study. PLoS One 2018; 13:e0199247. [PMID: 29953456 PMCID: PMC6023115 DOI: 10.1371/journal.pone.0199247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/04/2018] [Indexed: 01/11/2023] Open
Abstract
The Triple Code Model (TCM) of numerical cognition argues for the existence of three representational codes for number: Arabic digits, verbal number words, and analog nonsymbolic magnitude representations, each subserved by functionally dissociated neural substrates. Despite the popularity of the TCM, no study to date has explored all three numerical codes within one fMRI paradigm. We administered three tasks, associated with each of the aforementioned numerical codes, in order to explore the neural correlates of numerosity processing in a sample of adults (N = 46). Independent task-control contrast analyses revealed task-dependent activity in partial support of the model, but also highlight the inherent complexity of a distributed and overlapping fronto-parietal network involved in all numerical codes. The results indicate that the TCM correctly predicts the existence of some functionally dissociated neural substrates, but requires an update that accounts for interactions with attentional processes. Parametric contrasts corresponding to differences in task difficulty revealed specific neural correlates of the distance effect, where closely spaced numbers become more difficult to discriminate than numbers spaced further apart. A conjunction analysis illustrated overlapping neural correlates across all tasks, in line with recent proposals for a fronto-parietal network of number processing. We additionally provide tentative results suggesting the involvement of format-independent numerosity-sensitive retinotopic maps in the early visual stream, extending previous findings of nonsymbolic stimulus selectivity. We discuss the functional roles of the components associated with the model, as well as the purported fronto-parietal network, and offer arguments in favor of revising the TCM.
Collapse
Affiliation(s)
- Mikael Skagenholt
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Management and Engineering, Division of Economics, JEDI-Lab, Linköping University, Linköping, Sweden
| | - Ulf Träff
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
| | - Daniel Västfjäll
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Management and Engineering, Division of Economics, JEDI-Lab, Linköping University, Linköping, Sweden
- Decision Research, Eugene, OR, United States of America
- Department of Psychology, University of Oregon, Eugene, OR, United States of America
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Kenny Skagerlund
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Management and Engineering, Division of Economics, JEDI-Lab, Linköping University, Linköping, Sweden
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| |
Collapse
|
29
|
Peters L, De Smedt B. Arithmetic in the developing brain: A review of brain imaging studies. Dev Cogn Neurosci 2018; 30:265-279. [PMID: 28566139 PMCID: PMC6969129 DOI: 10.1016/j.dcn.2017.05.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 11/28/2022] Open
Abstract
Brain imaging studies on academic achievement offer an exciting window on experience-dependent cortical plasticity, as they allow us to understand how developing brains change when children acquire culturally transmitted skills. This contribution focuses on the learning of arithmetic, which is quintessential to mathematical development. The nascent body of brain imaging studies reveals that arithmetic recruits a large set of interconnected areas, including prefrontal, posterior parietal, occipito-temporal and hippocampal areas. This network undergoes developmental changes in its function, connectivity and structure, which are not yet fully understood. This network only partially overlaps with what has been found in adults, and clear differences are observed in the recruitment of the hippocampus, which are related to the development of arithmetic fact retrieval. Despite these emerging trends, the literature remains scattered, particularly in the context of atypical development. Acknowledging the distributed nature of the arithmetic network, future studies should focus on connectivity and analytic approaches that investigate patterns of brain activity, coupled with a careful design of the arithmetic tasks and assessments of arithmetic strategies. Such studies will produce a more comprehensive understanding of how the arithmetical brain unfolds, how it changes over time, and how it is impaired in atypical development.
Collapse
Affiliation(s)
- Lien Peters
- Parenting and Special Education Research Unit, Faculty of Psychology, Educational Sciences KU Leuven, University of Leuven, Belgium
| | - Bert De Smedt
- Parenting and Special Education Research Unit, Faculty of Psychology, Educational Sciences KU Leuven, University of Leuven, Belgium.
| |
Collapse
|
30
|
Artemenko C, Soltanlou M, Ehlis AC, Nuerk HC, Dresler T. The neural correlates of mental arithmetic in adolescents: a longitudinal fNIRS study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2018; 14:5. [PMID: 29524965 PMCID: PMC5845230 DOI: 10.1186/s12993-018-0137-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/01/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Arithmetic processing in adults is known to rely on a frontal-parietal network. However, neurocognitive research focusing on the neural and behavioral correlates of arithmetic development has been scarce, even though the acquisition of arithmetic skills is accompanied by changes within the fronto-parietal network of the developing brain. Furthermore, experimental procedures are typically adjusted to constraints of functional magnetic resonance imaging, which may not reflect natural settings in which children and adolescents actually perform arithmetic. Therefore, we investigated the longitudinal neurocognitive development of processes involved in performing the four basic arithmetic operations in 19 adolescents. By using functional near-infrared spectroscopy, we were able to use an ecologically valid task, i.e., a written production paradigm. RESULTS A common pattern of activation in the bilateral fronto-parietal network for arithmetic processing was found for all basic arithmetic operations. Moreover, evidence was obtained for decreasing activation during subtraction over the course of 1 year in middle and inferior frontal gyri, and increased activation during addition and multiplication in angular and middle temporal gyri. In the self-paced block design, parietal activation in multiplication and left angular and temporal activation in addition were observed to be higher for simple than for complex blocks, reflecting an inverse effect of arithmetic complexity. CONCLUSIONS In general, the findings suggest that the brain network for arithmetic processing is already established in 12-14 year-old adolescents, but still undergoes developmental changes.
Collapse
Affiliation(s)
- Christina Artemenko
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
| | - Mojtaba Soltanlou
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- Graduate Training Centre of Neuroscience/IMPRS for Cognitive and Systems Neuroscience, Tuebingen, Germany
- Leibniz-Institut für Wissensmedien, Tuebingen, Germany
| | - Ann-Christine Ehlis
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Hans-Christoph Nuerk
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- Leibniz-Institut für Wissensmedien, Tuebingen, Germany
| | - Thomas Dresler
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
31
|
Chang TT, Lee PH, Metcalfe AWS. Intrinsic insula network engagement underlying children's reading and arithmetic skills. Neuroimage 2017; 167:162-177. [PMID: 29162521 DOI: 10.1016/j.neuroimage.2017.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/24/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023] Open
Abstract
The neural substrates of children's reading and arithmetic skills have long been of great interest to cognitive neuroscientists. However, most previous studies have focused on the contrast between these skills as specific domains. Here, we investigate the potentially shared processes across these domains by focusing on how the neural circuits associated with cognitive control influence reading and arithmetic proficiency in 8-to-10-year-old children. Using a task-free resting state approach, we correlated the intrinsic functional connectivity of the right anterior insula (rAI) network with performance on assessments of Chinese character recognition, reading comprehension, subtraction, and multiplication performance. A common rAI network strengthened for reading and arithmetic skill, including the right middle temporal gyrus (MTG) and superior temporal gyrus (STG) in the lateral temporal cortex, as well as the inferior frontal gyrus (IFG). In addition, performance measures evidenced rAI network specializations. Single character recognition was uniquely associated with connectivity to the right superior parietal lobule (SPL). Reading comprehension only, rather than character recognition, was associated with connectivity to the right IFG, MTG and angular gyrus (AG). Furthermore, subtraction was associated with connectivity to premotor cortex whereas multiplication was associated with the supramarginal gyrus. Only reading comprehension and multiplication were associated with hyper connectivity within local rAI network. These results indicate that during a critical period for children's acquisition of reading and arithmetic, these skills are supported by both intra-network synchronization and inter-network connectivity of rAI circuits. Domain-general intrinsic insular connectivity at rest contained also, functional components that segregated into different sets of skill-related networks. The embedded components of cognitive control may be essential to understanding the interplay of multiple functional circuits necessary to more fully characterize cognitive skill acquisition.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department of Psychology, National Chengchi University, Taipei, Taiwan; Research Center for Mind, Brain & Learning, National Chengchi University, Taipei, Taiwan.
| | - Pei-Hong Lee
- Research Center for Mind, Brain & Learning, National Chengchi University, Taipei, Taiwan
| | - Arron W S Metcalfe
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Canada; Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
32
|
Wang C, Weng J, Yao Y, Dong S, Liu Y, Chen F. Effect of abacus training on executive function development and underlying neural correlates in Chinese children. Hum Brain Mapp 2017; 38:5234-5249. [PMID: 28727223 PMCID: PMC6867117 DOI: 10.1002/hbm.23728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/17/2017] [Accepted: 07/07/2017] [Indexed: 01/19/2023] Open
Abstract
Executive function (EF) refers to a set of cognitive abilities involved in self-regulated behavior. Given the critical role of EF in cognition, strategies for improving EF have attracted intensive attention in recent years. Previous studies have explored the effects of abacus-based mental calculation (AMC) training on several cognitive abilities. However, it remains unclear whether AMC training affects EF and its neural correlates. In this study, participants were randomly assigned to AMC or control groups upon starting primary school. The AMC group received 2 h AMC training every week, while the control group did not have any abacus experience. Neural activity during an EF task was examined using functional MRI for both groups in their 4th and 6th grades. Our results showed that the AMC group performed better and faster than the control group in both grades. They also had lower activation in the frontoparietal reigons than the control group in the 6th grade. From the 4th to the 6th grade, the AMC group showed activation decreases in the frontoparietal regions, while the control group exhibited an opposite pattern. Furthermore, voxel-wise regression analyses revealed that better performance was associated with lower task-relevant brain activity in the AMC group but associated with greater task-relevant brain activity in the control group. These results suggest that long-term AMC training, with calculation ability as its original target, may improve EF and enhance neural efficiency of the frontoparietal regions during development. Hum Brain Mapp 38:5234-5249, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chunjie Wang
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| | - Jian Weng
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| | - Yuan Yao
- Department of PsychologySuzhou University of Science and TechnologySuzhouChina
| | - Shanshan Dong
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| | - Yuqiu Liu
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| | - Feiyan Chen
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| |
Collapse
|
33
|
Arsalidou M, Pawliw-Levac M, Sadeghi M, Pascual-Leone J. Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies. Dev Cogn Neurosci 2017; 30:239-250. [PMID: 28844728 PMCID: PMC6969084 DOI: 10.1016/j.dcn.2017.08.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/05/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023] Open
Abstract
Children use numbers every day and typically receive formal mathematical training from an early age, as it is a main subject in school curricula. Despite an increase in children neuroimaging studies, a comprehensive neuropsychological model of mathematical functions in children is lacking. Using quantitative meta-analyses of functional magnetic resonance imaging (fMRI) studies, we identify concordant brain areas across articles that adhere to a set of selection criteria (e.g., whole-brain analysis, coordinate reports) and report brain activity to tasks that involve processing symbolic and non-symbolic numbers with and without formal mathematical operations, which we called respectively number tasks and calculation tasks. We present data on children 14 years and younger, who solved these tasks. Results show activity in parietal (e.g., inferior parietal lobule and precuneus) and frontal (e.g., superior and medial frontal gyri) cortices, core areas related to mental-arithmetic, as well as brain regions such as the insula and claustrum, which are not typically discussed as part of mathematical problem solving models. We propose a topographical atlas of mathematical processes in children, discuss findings within a developmental constructivist theoretical model, and suggest practical methodological considerations for future studies.
Collapse
Affiliation(s)
- Marie Arsalidou
- Department of Psychology, Faculty of Health, York University, Toronto, Canada; Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation.
| | | | - Mahsa Sadeghi
- Department of Psychology, Faculty of Health, York University, Toronto, Canada
| | - Juan Pascual-Leone
- Department of Psychology, Faculty of Health, York University, Toronto, Canada
| |
Collapse
|
34
|
The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation. Neurosci Biobehav Rev 2016; 70:13-32. [DOI: 10.1016/j.neubiorev.2016.07.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 12/18/2022]
|