1
|
Lendaro E, Van der Sluis CK, Hermansson L, Bunketorp-Käll L, Burger H, Keesom E, Widehammar C, Munoz-Novoa M, McGuire BE, O’Reilly P, Earley EJ, Iqbal S, Kristoffersen MB, Stockselius A, Gudmundson L, Hill W, Diers M, Turner KL, Weiss T, Ortiz-Catalan M. Extended reality used in the treatment of phantom limb pain: a multicenter, double-blind, randomized controlled trial. Pain 2025; 166:571-586. [PMID: 39250328 PMCID: PMC11808706 DOI: 10.1097/j.pain.0000000000003384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024]
Abstract
ABSTRACT Phantom limb pain (PLP) represents a significant challenge after amputation. This study investigated the use of phantom motor execution (PME) and phantom motor imagery (PMI) facilitated by extended reality (XR) for the treatment of PLP. Both treatments used XR, but PME involved overt execution of phantom movements, relying on the decoding of motor intent using machine learning to enable real-time control in XR. In contrast, PMI involved mental rehearsal of phantom movements guided by XR. The study hypothesized that PME would be superior to PMI. A multicenter, double-blind, randomized controlled trial was conducted in 9 outpatient clinics across 7 countries. Eighty-one participants with PLP were randomly assigned to PME or PMI training. The primary outcome was the change in PLP, measured by the Pain Rating Index, from baseline to treatment cessation. Secondary outcomes included various aspects related to PLP, such as the rate of clinically meaningful reduction in pain (CMRP; >50% pain decrease). No evidence was found for superiority of overt execution (PME) over imagery (PMI) using XR. PLP decreased by 64.5% and 68.2% in PME and PMI groups, respectively. Thirty-seven PME participants (71%) and 19 PMI participants (68%) experienced CMRP. Positive changes were recorded in all other outcomes, without group differences. Pain reduction for PME was larger than previously reported. Despite our initial hypothesis not being confirmed, PME and PMI, aided by XR, are likely to offer meaningful PLP relief to most patients. These findings merit consideration of these therapies as viable treatment options and alternatives to pharmacological treatments.
Collapse
Affiliation(s)
- Eva Lendaro
- Department of Electrical Engineering, Chalmers University of Technology, Goteborg, Sweden
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Corry K. Van der Sluis
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, the Netherlands
| | - Liselotte Hermansson
- Department of Prosthetics and Orthotics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Faculty of Medicine and Health, University Health Care Research Centre, Örebro University, Örebro, Sweden
| | - Lina Bunketorp-Käll
- Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Advanced Reconstruction of Extremities, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Burger
- University Rehabilitation Institute, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Els Keesom
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, the Netherlands
- Department of Pediatric Rehabilitation, Treant Hospitals, the Netherlands
| | - Cathrine Widehammar
- Faculty of Medicine and Health, University Health Care Research Centre, Örebro University, Örebro, Sweden
| | - Maria Munoz-Novoa
- Integrum AB, Mölndal, Sweden
- Center for Bionics and Pain Research, Mölndal, Sweden
| | - Brian E. McGuire
- School of Psychology & Centre for Pain Research, University of Galway, Galway, Ireland
| | - Paul O’Reilly
- School of Psychology & Centre for Pain Research, University of Galway, Galway, Ireland
| | - Eric J. Earley
- Department of Electrical Engineering, Chalmers University of Technology, Goteborg, Sweden
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Bone-Anchored Limb Research Group, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sonam Iqbal
- Integrum AB, Mölndal, Sweden
- Center for Bionics and Pain Research, Mölndal, Sweden
| | - Morten B. Kristoffersen
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, the Netherlands
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | | | | | - Wendy Hill
- Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
| | - Martin Diers
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr Universität Bochum, Germany
| | - Kristi L. Turner
- Center for Bionic Medicine, Shirley Ryan Ability Lab, Chicago, IL, United States
| | - Thomas Weiss
- Department of Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| | - Max Ortiz-Catalan
- Department of Electrical Engineering, Chalmers University of Technology, Goteborg, Sweden
- Center for Bionics and Pain Research, Mölndal, Sweden
- Bionics Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Schone HR, Maimon Mor RO, Kollamkulam M, Szymanska MA, Gerrand C, Woollard A, Kang NV, Baker CI, Makin TR. Stable Cortical Body Maps Before and After Arm Amputation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.13.571314. [PMID: 38168448 PMCID: PMC10760201 DOI: 10.1101/2023.12.13.571314] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The adult brain's capacity for cortical reorganization remains debated. Using longitudinal neuroimaging in three adults, followed up to five years before and after arm amputation, we compared cortical activity elicited by movement of the hand (pre-amputation) versus phantom hand (post-amputation) and lips (pre/post-amputation). We observed stable representations of both hand and lips. By directly quantifying activity changes across amputation, we overturn decades of animal and human research, demonstrating amputation does not trigger large-scale cortical reorganization.
Collapse
Affiliation(s)
- Hunter R. Schone
- Institute of Cognitive Neuroscience, University College London, London, UK
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roni O. Maimon Mor
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Experimental Psychology, University College London, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Mathew Kollamkulam
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Craig Gerrand
- Department of Orthopaedic Oncology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, UK
| | | | - Norbert V. Kang
- Plastic Surgery Department, Royal Free Hospital NHS Trust, London, UK
| | - Chris I. Baker
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamar R. Makin
- Institute of Cognitive Neuroscience, University College London, London, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| |
Collapse
|
3
|
Pacheco-Barrios K, Heemels RE, Martinez-Magallanes D, Daibes M, Naqui-Xicota C, Andrade M, Fregni F. Neural correlates of phantom motor execution: A functional neuroimaging systematic review and meta-analysis. Cortex 2024; 181:295-304. [PMID: 39341715 PMCID: PMC11611634 DOI: 10.1016/j.cortex.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Phantom motor execution (PME) shows promise as a new treatment for phantom limb pain (PLP) by inducing motor-related analgesia and retraining the pain network activation. However, the current understanding of the neural correlates underlying PME is limited. Databases were systematically searched for multimodal neuroimaging studies to explore the neural correlates of PME. A narrative synthesis (17 studies, n = 328) and coordinate-based meta-analysis were performed to identify activation commonalities. Contrasting PME-vs-REST revealed differential activation of the supplementary motor area (SMA), post-central gyrus, and dorsolateral superior frontal gyrus; while PME-vs-ME revealed differential activation of the right anterior insula, anterior cingulate, left amygdala, and right striatum. Further narrative synthesis revealed a positive correlation between PME-induced brain activity and PLP intensity, and a specific connectivity pattern during PME on the SMA-M1 network compared to ME and motor imagery. Our results suggest that the PME represents a distinct type of motor network activation, partially overlapping with ME and motor imagery activations but with special activation of interoceptive regulation and mood-related regions. Thus, confirming its potential as a therapeutic approach for PLP.
Collapse
Affiliation(s)
- Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru.
| | - Robin Emily Heemels
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
| | - Daniela Martinez-Magallanes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marianna Daibes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Cristina Naqui-Xicota
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Maria Andrade
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
4
|
Lamorie-Foote K, Kramer DR, Sundaram S, Cavaleri J, Gilbert ZD, Tang AM, Bashford L, Liu CY, Kellis S, Lee B. Primary somatosensory cortex organization for engineering artificial somatosensation. Neurosci Res 2024; 204:1-13. [PMID: 38278220 DOI: 10.1016/j.neures.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Somatosensory deficits from stroke, spinal cord injury, or other neurologic damage can lead to a significant degree of functional impairment. The primary (SI) and secondary (SII) somatosensory cortices encode information in a medial to lateral organization. SI is generally organized topographically, with more discrete cortical representations of specific body regions. SII regions corresponding to anatomical areas are less discrete and may represent a more functional rather than topographic organization. Human somatosensory research continues to map cortical areas of sensory processing with efforts primarily focused on hand and upper extremity information in SI. However, research into SII and other body regions is lacking. In this review, we synthesize the current state of knowledge regarding the cortical organization of human somatosensation and discuss potential applications for brain computer interface. In addition to accurate individualized mapping of cortical somatosensation, further research is required to uncover the neurophysiological mechanisms of how somatosensory information is encoded in the cortex.
Collapse
Affiliation(s)
- Krista Lamorie-Foote
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Daniel R Kramer
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Colorado School of Medicine, Denver, CO, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Texas at Houston, Houston, TX, United States
| | - Luke Bashford
- Department of Biology and Biological Engineering, T&C Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States; Department of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
5
|
Tucciarelli R, Ejaz N, Wesselink DB, Kolli V, Hodgetts CJ, Diedrichsen J, Makin TR. Does Ipsilateral Remapping Following Hand Loss Impact Motor Control of the Intact Hand? J Neurosci 2024; 44:e0948232023. [PMID: 38050100 PMCID: PMC10860625 DOI: 10.1523/jneurosci.0948-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demands. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased; however, this did not match any noticeable improvement in their behavioral task performance. More advanced multivariate fMRI analyses showed that amputees had stronger and more typical representation-relative to controls' contralateral hand representation-compared with one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life.
Collapse
Affiliation(s)
- Raffaele Tucciarelli
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Naveed Ejaz
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
| | - Daan B Wesselink
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Vijay Kolli
- Queen Mary's Hospital, London SW15 5PN, United Kingdom
| | - Carl J Hodgetts
- CUBRIC, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
| | - Jörn Diedrichsen
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
- Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
| | - Tamar R Makin
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
6
|
Sparling T, Iyer L, Pasquina P, Petrus E. Cortical Reorganization after Limb Loss: Bridging the Gap between Basic Science and Clinical Recovery. J Neurosci 2024; 44:e1051232024. [PMID: 38171645 PMCID: PMC10851691 DOI: 10.1523/jneurosci.1051-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the increasing incidence and prevalence of amputation across the globe, individuals with acquired limb loss continue to struggle with functional recovery and chronic pain. A more complete understanding of the motor and sensory remodeling of the peripheral and central nervous system that occurs postamputation may help advance clinical interventions to improve the quality of life for individuals with acquired limb loss. The purpose of this article is to first provide background clinical context on individuals with acquired limb loss and then to provide a comprehensive review of the known motor and sensory neural adaptations from both animal models and human clinical trials. Finally, the article bridges the gap between basic science researchers and clinicians that treat individuals with limb loss by explaining how current clinical treatments may restore function and modulate phantom limb pain using the underlying neural adaptations described above. This review should encourage the further development of novel treatments with known neurological targets to improve the recovery of individuals postamputation.Significance Statement In the United States, 1.6 million people live with limb loss; this number is expected to more than double by 2050. Improved surgical procedures enhance recovery, and new prosthetics and neural interfaces can replace missing limbs with those that communicate bidirectionally with the brain. These advances have been fairly successful, but still most patients experience persistent problems like phantom limb pain, and others discontinue prostheses instead of learning to use them daily. These problematic patient outcomes may be due in part to the lack of consensus among basic and clinical researchers regarding the plasticity mechanisms that occur in the brain after amputation injuries. Here we review results from clinical and animal model studies to bridge this clinical-basic science gap.
Collapse
Affiliation(s)
- Tawnee Sparling
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Laxmi Iyer
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817
| | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Emily Petrus
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland 20814
| |
Collapse
|
7
|
Weiss T, Koehler H, Croy I. Pain and Reorganization after Amputation: Is Interoceptive Prediction a Key? Neuroscientist 2023; 29:665-675. [PMID: 35950521 PMCID: PMC10623598 DOI: 10.1177/10738584221112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an ongoing discussion on the relevance of brain reorganization following amputation for phantom limb pain. Recent attempts to provide explanations for seemingly controversial findings-specifically, maladaptive plasticity versus persistent functional representation as a complementary process-acknowledged that reorganization in the primary somatosensory cortex is not sufficient to explain phantom limb pain satisfactorily. Here we provide theoretical considerations that might help integrate the data reviewed and suppose a possible additional driver of the development of phantom limb pain-namely, an error in interoceptive predictions to somatosensory sensations and movements of the missing limb. Finally, we derive empirically testable consequences based on our considerations to guide future research.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| | - Hanna Koehler
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Ilona Croy
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
8
|
Amoruso E, Terhune DB, Kromm M, Kirker S, Muret D, Makin TR. Reassessing referral of touch following peripheral deafferentation: The role of contextual bias. Cortex 2023; 167:167-177. [PMID: 37567052 PMCID: PMC11139647 DOI: 10.1016/j.cortex.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/28/2023] [Accepted: 04/21/2023] [Indexed: 08/13/2023]
Abstract
Some amputees have been famously reported to perceive facial touch as arising from their phantom hand. These referred sensations have since been replicated across multiple neurological disorders and were classically interpreted as a perceptual correlate of cortical plasticity. Common to all these and related studies is that participants might have been influenced in their self-reports by the experimental design or related contextual biases. Here, we investigated whether referred sensations reports might be confounded by demand characteristics (e.g., compliance, expectation, suggestion). Unilateral upper-limb amputees (N = 18), congenital one-handers (N = 19), and two-handers (N = 22) were repeatedly stimulated with computer-controlled vibrations on 10 body-parts and asked to report the occurrence of any concurrent sensations on their hand(s). To further manipulate expectations, we gave participants the suggestion that some of these vibrations had a higher probability to evoke referred sensations. We also assessed similarity between (phantom) hand and face representation in primary somatosensory cortex (S1), using functional Magnetic Resonance Imaging (fMRI) multivariate representational similarity analysis. We replicated robust reports of referred sensations in amputees towards their phantom hand; however, the frequency and distribution of reported referred sensations were similar across groups. Moreover, referred sensations were evoked by stimulation of multiple body-parts and similarly reported on both the intact and phantom hand in amputees. Face-to-phantom-hand representational similarity was not different in amputees' missing hand region, compared with controls. These findings weaken the interpretation of referred sensations as a perceptual correlate of S1 plasticity and reveal the need to account for contextual biases when evaluating anomalous perceptual phenomena.
Collapse
Affiliation(s)
- Elena Amoruso
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Devin B Terhune
- Department of Psychology, Goldsmiths, University of London, London SE14 6NW, UK
| | - Maria Kromm
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Stephen Kirker
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK.
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
9
|
Torres FDF, Ramalho BL, Rodrigues MR, Schmaedeke AC, Moraes VH, Reilly KT, Carvalho RDP, Vargas CD. Plasticity of face-hand sensorimotor circuits after a traumatic brachial plexus injury. Front Neurosci 2023; 17:1221777. [PMID: 37609451 PMCID: PMC10440702 DOI: 10.3389/fnins.2023.1221777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Background Interactions between the somatosensory and motor cortices are of fundamental importance for motor control. Although physically distant, face and hand representations are side by side in the sensorimotor cortex and interact functionally. Traumatic brachial plexus injury (TBPI) interferes with upper limb sensorimotor function, causes bilateral cortical reorganization, and is associated with chronic pain. Thus, TBPI may affect sensorimotor interactions between face and hand representations. Objective The aim of this study was to investigate changes in hand-hand and face-hand sensorimotor integration in TBPI patients using an afferent inhibition (AI) paradigm. Method The experimental design consisted of electrical stimulation (ES) applied to the hand or face followed by transcranial magnetic stimulation (TMS) to the primary motor cortex to activate a hand muscle representation. In the AI paradigm, the motor evoked potential (MEP) in a target muscle is significantly reduced when preceded by an ES at short-latency (SAI) or long-latency (LAI) interstimulus intervals. We tested 18 healthy adults (control group, CG), evaluated on the dominant upper limb, and nine TBPI patients, evaluated on the injured or the uninjured limb. A detailed clinical evaluation complemented the physiological investigation. Results Although hand-hand SAI was present in both the CG and the TBPI groups, hand-hand LAI was present in the CG only. Moreover, less AI was observed in TBPI patients than the CG both for face-hand SAI and LAI. Conclusion Our results indicate that sensorimotor integration involving both hand and face sensorimotor representations is affected by TBPI.
Collapse
Affiliation(s)
- Fernanda de Figueiredo Torres
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia Lima Ramalho
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research, Innovation and Dissemination Center for Neuromathematics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Marcelle Ribeiro Rodrigues
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Schmaedeke
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Moraes
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karen T. Reilly
- Trajectoires Team, Lyon Neuroscience Research Center, Lyon, France
- University UCBL Lyon 1, University of Lyon, Lyon, France
| | - Raquel de Paula Carvalho
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research, Innovation and Dissemination Center for Neuromathematics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
- Laboratory of Child Development and Motricity, Department of Human Movement Science, Institute of Health and Society, Universidade Federal de São Paulo, Santos, Brazil
| | - Claudia D. Vargas
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research, Innovation and Dissemination Center for Neuromathematics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Sanders Z, Dempsey‐Jones H, Wesselink DB, Edmondson LR, Puckett AM, Saal HP, Makin TR. Similar somatotopy for active and passive digit representation in primary somatosensory cortex. Hum Brain Mapp 2023; 44:3568-3585. [PMID: 37145934 PMCID: PMC10203813 DOI: 10.1002/hbm.26298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/11/2022] [Accepted: 03/13/2023] [Indexed: 05/07/2023] Open
Abstract
Scientists traditionally use passive stimulation to examine the organisation of primary somatosensory cortex (SI). However, given the close, bidirectional relationship between the somatosensory and motor systems, active paradigms involving free movement may uncover alternative SI representational motifs. Here, we used 7 Tesla functional magnetic resonance imaging to compare hallmark features of SI digit representation between active and passive tasks which were unmatched on task or stimulus properties. The spatial location of digit maps, somatotopic organisation, and inter-digit representational structure were largely consistent between tasks, indicating representational consistency. We also observed some task differences. The active task produced higher univariate activity and multivariate representational information content (inter-digit distances). The passive task showed a trend towards greater selectivity for digits versus their neighbours. Our findings highlight that, while the gross features of SI functional organisation are task invariant, it is important to also consider motor contributions to digit representation.
Collapse
Affiliation(s)
- Zeena‐Britt Sanders
- Wellcome Centre of Integrative NeuroimagingFMRIB, John Radcliffe HospitalOxfordUK
| | - Harriet Dempsey‐Jones
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
- School of PsychologyThe University of QueenslandBrisbaneAustralia
| | - Daan B. Wesselink
- Wellcome Centre of Integrative NeuroimagingFMRIB, John Radcliffe HospitalOxfordUK
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | | | - Alexander M. Puckett
- School of PsychologyThe University of QueenslandBrisbaneAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Hannes P. Saal
- Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Tamar R. Makin
- Wellcome Centre of Integrative NeuroimagingFMRIB, John Radcliffe HospitalOxfordUK
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
11
|
Limakatso K, Cashin AG, Williams S, Devonshire J, Parker R, McAuley JH. The Efficacy of Graded Motor Imagery and Its Components on Phantom Limb Pain and Disability: A Systematic Review and Meta-Analysis. Can J Pain 2023; 7:2188899. [PMID: 37214633 PMCID: PMC10193907 DOI: 10.1080/24740527.2023.2188899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Introduction Graded Motor Imagery (GMI) is a non-invasive and inexpensive therapy used to treat Phantom Limb Pain (PLP) by sequentially activating motor networks in such a way that movement and pain are unpaired. The objective of this systematic review was to critically appraise relevant data on the efficacy of GMI and its components for reducing PLP and disability in amputees. Methods We searched 11 electronic databases for controlled trials investigating GMI and its components in amputees with PLP from inception until February 2023. Two reviewers independently screened studies and extracted relevant data. Study-level data were entered using the inverse variance function of the Review Manager 5 and pooled with the random effects model. Results Eleven studies with varying risk of bias were eligible. No eligible study considered left/right judgement tasks in isolation. Studies showed no effect for imagined movements, but positive effects were seen for GMI [weighted mean difference: -21.29 (95%CI: -31.55, -11.02), I2= 0%] and mirror therapy [weighted mean difference: -8.55 (95%CI: -14.74, -2.35, I2= 61%]. A comparison of mirror therapy versus sham showed no difference [weighted mean difference: -4.43 (95%CI: -16.03, 7.16), I2= 51%]. Conclusion Our findings suggest that GMI and mirror therapy may be effective for reducing PLP. However, this conclusion was drawn from a limited body of evidence, and the certainty of the evidence was very low. Therefore, rigorous, high-quality trials are needed to address the gap in the literature and inform practice.
Collapse
Affiliation(s)
- Katleho Limakatso
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, Australia
| | - Aidan G. Cashin
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, Australia
| | - Sam Williams
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, Australia
| | - Jack Devonshire
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, Australia
| | - Romy Parker
- Pain Management Unit, Department of Anaesthesia and Perioperative Medicine, University of Cape Town, Cape Town, South Africa
| | - James H. McAuley
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, Australia
| |
Collapse
|
12
|
Kuffler DP. Evolving techniques for reducing phantom limb pain. Exp Biol Med (Maywood) 2023; 248:561-572. [PMID: 37158119 PMCID: PMC10350801 DOI: 10.1177/15353702231168150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
At least two million people in the United States of America live with lost limbs, and the number is expected to double by 2050, although the incidence of amputations is significantly greater in other parts of the world. Within days to weeks of the amputation, up to 90% of these individuals develop neuropathic pain, presenting as phantom limb pain (PLP). The pain level increases significantly within one year and remains chronic and severe for about 10%. Amputation-induced changes are considered to underlie the causation of PLP. Techniques applied to the central nervous system (CNS) and peripheral nervous system (PNS) are designed to reverse amputation-induced changes, thereby reducing/eliminating PLP. The primary treatment for PLP is the administration of pharmacological agents, some of which are considered but provide no more than short-term pain relief. Alternative techniques are also discussed, which provide only short-term pain relief. Changes induced by various cells and the factors they release are required to change neurons and their environment to reduce/eliminate PLP. It is concluded that novel techniques that utilize autologous platelet-rich plasma (PRP) may provide long-term PLP reduction/elimination.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan 00901, Puerto Rico
| |
Collapse
|
13
|
Root V, Muret D, Arribas M, Amoruso E, Thornton J, Tarall-Jozwiak A, Tracey I, Makin TR. Complex pattern of facial remapping in somatosensory cortex following congenital but not acquired hand loss. eLife 2022; 11:e76158. [PMID: 36583538 PMCID: PMC9851617 DOI: 10.7554/elife.76158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Cortical remapping after hand loss in the primary somatosensory cortex (S1) is thought to be predominantly dictated by cortical proximity, with adjacent body parts remapping into the deprived area. Traditionally, this remapping has been characterised by changes in the lip representation, which is assumed to be the immediate neighbour of the hand based on electrophysiological research in non-human primates. However, the orientation of facial somatotopy in humans is debated, with contrasting work reporting both an inverted and upright topography. We aimed to fill this gap in the S1 homunculus by investigating the topographic organisation of the face. Using both univariate and multivariate approaches we examined the extent of face-to-hand remapping in individuals with a congenital and acquired missing hand (hereafter one-handers and amputees, respectively), relative to two-handed controls. Participants were asked to move different facial parts (forehead, nose, lips, tongue) during functional MRI (fMRI) scanning. We first confirmed an upright face organisation in all three groups, with the upper-face and not the lips bordering the hand area. We further found little evidence for remapping of both forehead and lips in amputees, with no significant relationship to the chronicity of their phantom limb pain (PLP). In contrast, we found converging evidence for a complex pattern of face remapping in congenital one-handers across multiple facial parts, where relative to controls, the location of the cortical neighbour - the forehead - is shown to shift away from the deprived hand area, which is subsequently more activated by the lips and the tongue. Together, our findings demonstrate that the face representation in humans is highly plastic, but that this plasticity is restricted by the developmental stage of input deprivation, rather than cortical proximity.
Collapse
Affiliation(s)
- Victoria Root
- WIN Centre, University of OxfordOxfordUnited Kingdom
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Maite Arribas
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Elena Amoruso
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - John Thornton
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | | | - Irene Tracey
- WIN Centre, University of OxfordOxfordUnited Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| |
Collapse
|
14
|
Donegan T, Ryan BE, Sanchez-Vives MV, Świdrak J. Altered bodily perceptions in chronic neuropathic pain conditions and implications for treatment using immersive virtual reality. Front Hum Neurosci 2022; 16:1024910. [PMID: 36466621 PMCID: PMC9714822 DOI: 10.3389/fnhum.2022.1024910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/18/2022] [Indexed: 08/12/2023] Open
Abstract
Chronic neuropathic pain is highly disabling and difficult to treat and manage. Patients with such conditions often report altered bodily perceptions that are thought to be associated with maladaptive structural and functional alterations in the somatosensory cortex. Manipulating these altered perceptions using body illusions in virtual reality is being investigated and may have positive clinical implications for the treatment of these conditions. Here, we have conducted a narrative review of the evidence for the types of bodily distortions associated with a variety of peripheral and central neuropathic pain conditions. In addition, we summarize the experimental and clinical studies that have explored embodiment and body transformation illusions in immersive virtual reality for neuropathic pain relief, which are thought to target these maladaptive changes, as well as suggesting directions for future research.
Collapse
Affiliation(s)
- Tony Donegan
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Brenda E. Ryan
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria V. Sanchez-Vives
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Justyna Świdrak
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Andersen RA, Aflalo T. Preserved cortical somatotopic and motor representations in tetraplegic humans. Curr Opin Neurobiol 2022; 74:102547. [PMID: 35533644 PMCID: PMC9167753 DOI: 10.1016/j.conb.2022.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022]
Abstract
A rich literature has documented changes in cortical representations of the body in somatosensory and motor cortex. Recent clinical studies of brain-machine interfaces designed to assist paralyzed patients have afforded the opportunity to record from and stimulate human somatosensory, motor, and action-related areas of the posterior parietal cortex. These studies show considerable preserved structure in the cortical somato-motor system. Motor cortex can immediately control assistive devices, stimulation of somatosensory cortex produces sensations in an orderly somatotopic map, and the posterior parietal cortex shows a high-dimensional representation of cognitive action variables. These results are strikingly similar to what would be expected in a healthy subject, demonstrating considerable stability of adult cortex even after severe injury and despite potential plasticity-induced new activations within the same region of cortex. Clinically, these results emphasize the importance of targeting cortical areas for BMI control signals that are consistent with their normal functional role.
Collapse
Affiliation(s)
- Richard A Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, United States; Tianqiao and Chrissy Chen Brain-machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena CA 91125, United States.
| | - Tyson Aflalo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, United States; Tianqiao and Chrissy Chen Brain-machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena CA 91125, United States
| |
Collapse
|
16
|
Shan X, Li J, Zeng L, Wang H, Yang T, Shao Y, Yu M. Motor Imagery-Related Changes of Neural Oscillation in Unilateral Lower Limb Amputation. Front Neurosci 2022; 16:799995. [PMID: 35663556 PMCID: PMC9160601 DOI: 10.3389/fnins.2022.799995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
An amputation is known to seriously affect patient quality of life. This study aimed to investigate changes in neural activity in amputees during the postoperative period using neural electrophysiological techniques. In total, 14 patients with left lower limb amputation and 18 healthy participants were included in our study. All participants were required to perform motor imagery paradigm tasks while electroencephalogram (EEG) data were recorded. Data analysis results indicated that the beta frequency band showed significantly decreased oscillatory activity in motor imaging-related brain regions such as the frontal lobe and the precentral and postcentral gyri in amputees. Furthermore, the functional independent component analysis (fICA) value of neural oscillation negatively correlated with the C4 electrode power value of the motor imagery task in amputees (p < 0.05). Therefore, changes in neural oscillations and beta frequency band in motor imagery regions may be related to brain remodeling in amputees.
Collapse
Affiliation(s)
- Xinying Shan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Jialu Li
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Lingjing Zeng
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Haiteng Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Tianyi Yang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
- *Correspondence: Yongcong Shao,
| | - Mengsun Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Mengsun Yu,
| |
Collapse
|
17
|
Jadidi AF, Stevenson AJT, Zarei AA, Jensen W, Lontis R. Effect of Modulated TENS on Corticospinal Excitability in Healthy Subjects. Neuroscience 2022; 485:53-64. [PMID: 35031397 DOI: 10.1016/j.neuroscience.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
Conventional transcutaneous electrical nerve stimulation (TENS) has been reported to effectively alleviate chronic pain, including phantom limb pain (PLP). Recently, literature has focused on modulated TENS patterns, such as pulse width modulation (PWM) and burst modulation (BM), as alternatives to conventional, non-modulated (NM) sensory neurostimulation to increase the efficiency of rehabilitation. However, there is still limited knowledge of how these modulated TENS patterns affect corticospinal (CS) and motor cortex activity. Therefore, our aim was to first investigate the effect of modulated TENS patterns on CS activity and corticomotor map in healthy subjects. Motor evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS) were recorded from three muscles before and after the application of TENS interventions. Four different TENS patterns (PWM, BM, NM 40 Hz, and NM 100 Hz) were applied. The results revealed significant facilitation of CS excitability following the PWM intervention. We also found an increase in the volume of the motor cortical map following the application of the PWM and NM (40 Hz). Although PLP alleviation has been reported to be associated with an enhancement of corticospinal excitability, the efficiency of the PWM intervention to induce pain alleviation should be validated in a future clinical study in amputees with PLP.
Collapse
Affiliation(s)
- Armita Faghani Jadidi
- Center for Neuroplasticity and Pain (CNAP) Department of Health Science and Technology, Aalborg University, Denmark.
| | | | - Ali Asghar Zarei
- Center for Neuroplasticity and Pain (CNAP) Department of Health Science and Technology, Aalborg University, Denmark
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP) Department of Health Science and Technology, Aalborg University, Denmark
| | - Romulus Lontis
- Center for Neuroplasticity and Pain (CNAP) Department of Health Science and Technology, Aalborg University, Denmark
| |
Collapse
|
18
|
Ramalho BL, Moly J, Raffin E, Bouet R, Harquel S, Farnè A, Reilly KT. Face-hand sensorimotor interactions revealed by afferent inhibition. Eur J Neurosci 2021; 55:189-200. [PMID: 34796553 DOI: 10.1111/ejn.15536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
Reorganization of the sensorimotor cortex following permanent (e.g., amputation) or temporary (e.g., local anaesthesia) deafferentation of the hand has revealed large-scale plastic changes between the hand and face representations that are accompanied by perceptual correlates. The physiological mechanisms underlying this reorganization remain poorly understood. The aim of this study was to investigate sensorimotor interactions between the face and hand using an afferent inhibition transcranial magnetic stimulation protocol in which the motor evoked potential elicited by the magnetic pulse is inhibited when it is preceded by an afferent stimulus. We hypothesized that if face and hand representations in the sensorimotor cortex are functionally coupled, then electrocutaneous stimulation of the face would inhibit hand muscle motor responses. In two separate experiments, we delivered an electrocutaneous stimulus to either the skin over the right upper lip (Experiment 1) or right cheek (Experiment 2) and recorded muscular activity from the right first dorsal interosseous. Both lip and cheek stimulation inhibited right first dorsal interosseous motor evoked potentials. To investigate the specificity of this effect, we conducted two additional experiments in which electrocutaneous stimulation was applied to either the right forearm (Experiment 3) or right upper arm (Experiment 4). Forearm and upper arm stimulation also significantly inhibited the right first dorsal interosseous motor evoked potentials, but this inhibition was less robust than the inhibition associated with face stimulation. These findings provide the first evidence for face-to-hand afferent inhibition.
Collapse
Affiliation(s)
- Bia Lima Ramalho
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France.,Laboratory of Neurobiology II, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, Brazil
| | - Julien Moly
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France
| | - Estelle Raffin
- University Grenoble Alpes, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Romain Bouet
- University UCBL Lyon 1, University of Lyon, Lyon, France.,Brain Dynamics and Cognition Team - DyCog, Lyon Neuroscience Research Center, INSERM U1028, CRNS-UMR5292, Lyon, France
| | - Sylvain Harquel
- University Grenoble Alpes, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.,Laboratoire de Psychologie et NeuroCognition - LPNC, University Grenoble Alpes, CNRS UMR5105, Grenoble, France.,IRMaGe, University Grenoble-Alpes, CHU Grenoble Alpes, INSERM US17, CNRS UMS3552, Grenoble, France
| | - Alessandro Farnè
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France.,Hospices Civils de Lyon, Neuro-immersion, Mouvement and Handicap, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Karen T Reilly
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France
| |
Collapse
|
19
|
Ambron E, Buxbaum LJ, Miller A, Stoll H, Kuchenbecker KJ, Coslett HB. Virtual Reality Treatment Displaying the Missing Leg Improves Phantom Limb Pain: A Small Clinical Trial. Neurorehabil Neural Repair 2021; 35:1100-1111. [PMID: 34704486 DOI: 10.1177/15459683211054164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Phantom limb pain (PLP) is a common and in some cases debilitating consequence of upper- or lower-limb amputation for which current treatments are inadequate. OBJECTIVE This small clinical trial tested whether game-like interactions with immersive VR activities can reduce PLP in subjects with transtibial lower-limb amputation. METHODS Seven participants attended 5-7 sessions in which they engaged in a visually immersive virtual reality experience that did not require leg movements (Cool! TM), followed by 10-12 sessions of targeted lower-limb VR treatment consisting of custom games requiring leg movement. In the latter condition, they controlled an avatar with 2 intact legs viewed in a head-mounted display (HTC Vive TM). A motion-tracking system mounted on the intact and residual limbs controlled the movements of both virtual extremities independently. RESULTS All participants except one experienced a reduction of pain immediately after VR sessions, and their pre session pain levels also decreased over the course of the study. At a group level, PLP decreased by 28% after the treatment that did not include leg movements and 39.6% after the games requiring leg motions. Both treatments were successful in reducing PLP. CONCLUSIONS This VR intervention appears to be an efficacious treatment for PLP in subjects with lower-limb amputation.
Collapse
Affiliation(s)
- Elisabetta Ambron
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,University of Delaware, Newark, DE, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, Philadelphia, PA, USA.,Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander Miller
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Harrison Stoll
- Moss Rehabilitation Research Institute, Elkins Park, Philadelphia, PA, USA
| | | | - H Branch Coslett
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Zaheer A, Malik AN, Masood T, Fatima S. Effects of phantom exercises on pain, mobility, and quality of life among lower limb amputees; a randomized controlled trial. BMC Neurol 2021; 21:416. [PMID: 34706654 PMCID: PMC8554869 DOI: 10.1186/s12883-021-02441-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/15/2021] [Indexed: 01/16/2023] Open
Abstract
Background The objective of the current study is to evaluate the effects of phantom exercises on phantom limb pain, mobility status, and quality of life in lower limb amputees treated with mirror therapy and routine physiotherapy. Methods It is a randomized controlled trial in which 24 unilateral lower limb amputees (above and below the knee) were randomly assigned to two equal groups i.e., control group (mirror therapy and conventional physical therapy) and experimental group in which, phantom exercises were given, additionally. Physical therapy included conventional therapeutic exercises while phantom exercises include imagining the movement of the phantom limb and attempting to execute these movements Data were collected at baseline, after 2 and 4 weeks of intervention using VAS (pain), AMP (mobility) and RAND SF-36 Version 1.0 (QOL) questionnaires. All statistical analyses were done with IBM SPSS 25.0 with 95% CI. Results Twenty-four amputees (17 males and 7 females) participated in this trial. The Mean age of the participants in experimental and control groups was 45.3 ± 11.1 years and 40.5 ± 12.5 years respectively. After the intervention, the pain (VAS score) was significantly lower in the experimental group (p = 0.003). Similarly, the experimental group demonstrated a significantly better score in the “bodily pain” domain of SF-36 (p = 0.012). Both groups significantly (p < 0.05) improved in other domains of SF-36 and ambulatory potential with no significant (p > 0.05) between-group differences. Conclusions The Addition of phantom exercises resulted in significantly better pain management in lower limb amputees treated with mirror therapy and routine physiotherapy. Trial registration This study is registered in the U.S National Library of Medicine. The clinical trials registration number for this study is NCT04285138 (ClinicalTrials.gov Identifier) (Date: 26/02/2020). Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02441-z.
Collapse
Affiliation(s)
- Anna Zaheer
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan.
| | - Arshad Nawaz Malik
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad Campus, Rawalpindi, Pakistan
| | - Tahir Masood
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia
| | - Sahar Fatima
- Faculty of Allied Health Sciences, University Institute of Physical Therapy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
21
|
Raffin E. The various forms of sensorimotor plasticity following limb amputation and their link with rehabilitation strategies. Rev Neurol (Paris) 2021; 177:1112-1120. [PMID: 34657732 DOI: 10.1016/j.neurol.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Limb amputation is characterized by complex and intermingled brain reorganization processes combining sensorimotor deprivation induced by the loss of the limb per se, and compensatory behaviors, such as the over-use of the intact or remaining limb. While a large body of evidence documents sensorimotor representation plasticity following arm amputation, less investigations have been performed to fully understand the use-dependent plasticity phenomenon and the role of behavioral compensation in brain reorganization. In this article, I will review the findings on sensorimotor plasticity after limb amputation, focusing on these two aspects: sensorimotor deprivation and adaptive patterns of limb usage, and describe the models that attempt to link these reorganizational processes with phantom limb pain. Two main models have been proposed: the maladaptive plasticity model which states that the reorganization of the adjacent cortical territories into the representation of the missing limb is proportional to phantom pain intensity, and the persistent representation model, which rather suggests that the intensity of residual brain activity associated with phantom hand movements scales with phantom limb pain intensity. I will finally illustrate how this fundamental research helps designing new therapeutic strategies for phantom plain relief.
Collapse
Affiliation(s)
- E Raffin
- Defitech Chair in Clinical Neuroengineering, École Polytechnique Fédérale de Lausanne, Center for Neuroprosthetics and Brain Mind Institute, EPFL, UPHUMMEL lab, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, 1202 Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland.
| |
Collapse
|
22
|
Jergova S, Martinez H, Hernandez M, Schachner B, Gross S, Sagen J. Development of a Phantom Limb Pain Model in Rats: Behavioral and Histochemical Evaluation. FRONTIERS IN PAIN RESEARCH 2021; 2:675232. [PMID: 35295448 PMCID: PMC8915728 DOI: 10.3389/fpain.2021.675232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Therapeutic strategies targeting phantom limb pain (PLP) provide inadequate pain relief; therefore, a robust and clinically relevant animal model is necessary. Animal models of PLP are based on a deafferentation injury followed by autotomy behavior. Clinical studies have shown that the presence of pre-amputation pain increases the risk of developing PLP. In the current study, we used Sprague-Dawley male rats with formalin injections or constriction nerve injury at different sites or time points prior to axotomy to mimic clinical scenarios of pre-amputation inflammatory and neuropathic pain. Animals were scored daily for PLP autotomy behaviors, and several pain-related biomarkers were evaluated to discover possible underlying pathological changes. Majority displayed some degree of autotomy behavior following axotomy. Injury prior to axotomy led to more severe PLP behavior compared to animals without preceding injury. Autotomy behaviors were more directed toward the pretreatment insult origin, suggestive of pain memory. Increased levels of IL-1β in cerebrospinal fluid and enhanced microglial responses and the expression of NaV1.7 were observed in animals displaying more severe PLP outcomes. Decreased expression of GAD65/67 was consistent with greater PLP behavior. This study provides a preclinical basis for future understanding and treatment development in the management of PLP.
Collapse
|
23
|
Surgical prevention of terminal neuroma and phantom limb pain: a literature review. Arch Plast Surg 2021; 48:310-322. [PMID: 34024077 PMCID: PMC8143949 DOI: 10.5999/aps.2020.02180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 12/02/2022] Open
Abstract
The incidence of extremity amputation is estimated at about 200,000 cases annually. Over 25% of patients suffer from terminal neuroma or phantom limb pain (TNPLP), resulting in pain, inability to wear a prosthetic device, and lost work. Once TNPLP develops, there is no definitive cure. Therefore, there has been an emerging focus on TNPLP prevention. We examined the current literature on TNPLP prevention in patients undergoing extremity amputation. A literature review was performed using Ovid Medline, Cochrane Collaboration Library, and Google Scholar to identify all original studies that addressed surgical prophylaxis against TNPLP. The search was conducted using both Medical Subject Headings and free-text using the terms “phantom limb pain,” “amputation neuroma,” and “surgical prevention of amputation neuroma.” Fifteen studies met the inclusion criteria, including six prospective trials, two comprehensive literature reviews, four retrospective chart reviews, and three case series/technique reviews. Five techniques were identified, and each was incorporated into a target-based classification system. A small but growing body of literature exists regarding the surgical prevention of TNPLP. Targeted muscle reinnervation (TMR), a form of physiologic target reassignment, has the greatest momentum in the academic surgical community, with multiple recent prospective studies demonstrating superior prevention of TNPLP. Neurorrhaphy and transposition with implantation are supported by less robust evidence, but merit future study as alternatives to TMR.
Collapse
|
24
|
Therrien AS, Howard C, Buxbaum LJ. Aberrant activity in an intact residual muscle is associated with phantom limb pain in above-knee amputees. J Neurophysiol 2021; 125:2135-2143. [PMID: 33949884 DOI: 10.1152/jn.00482.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many individuals who undergo limb amputation experience persistent phantom limb pain (PLP), but the underlying mechanisms of PLP are unknown. The traditional hypothesis was that PLP resulted from maladaptive plasticity in sensorimotor cortex that degrades the neural representation of the missing limb. However, a recent study of individuals with upper limb amputations has shown that PLP is correlated with aberrant electromyographic (EMG) activity in residual muscles, posited to reflect a retargeting of efferent projections from a preserved representation of a missing limb. Here, we assessed EMG activity in a residual thigh muscle (vastus lateralis, VL) in patients with transfemoral amputations during cyclical movements of a phantom foot. VL activity on the amputated side was compared to that recorded on patients' intact side while they moved both the phantom and intact feet synchronously. VL activity in the patient group was also compared to a sample of control participants with no amputation. We show that phantom foot movement is associated with greater VL activity in the amputated leg than that seen in the intact leg as well as that exhibited by controls. The magnitude of residual VL activity was also positively related to ratings of PLP. These results show that phantom limb movement is associated with aberrant activity in a residual muscle after lower-limb amputation and provide evidence of a positive relationship between this activity and phantom limb pain.NEW & NOTEWORTHY This study is the first to assess residual muscle activity during movement of a phantom limb in individuals with lower limb amputations. We find that phantom foot movement is associated with aberrant recruitment of a residual thigh muscle and that this aberrant activity is related to phantom limb pain.
Collapse
Affiliation(s)
| | - Cortney Howard
- Duke Center for Cognitive Neuroscience, Duke Universitygrid.26009.3d, Durham, North Carolina
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania.,Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
DI Pino G, Piombino V, Carassiti M, Ortiz-Catalan M. Neurophysiological models of phantom limb pain: what can be learnt. Minerva Anestesiol 2021; 87:481-487. [PMID: 33432796 DOI: 10.23736/s0375-9393.20.15067-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phantom Limb Pain (PLP) is a dysesthesic painful sensations perceived in the lost limb, resulting from complex interactions between structural and functional nervous systems changes. We analyze its main pathogenetic models and speculate on candidate therapeutic targets. The neuroma model considers PLP to arise from spontaneous activity of residual limb injured axons. Other peripheral-origin models attribute PLP to damage of somatosensory receptors or vascular changes. According to the cortical remapping model, the loss of bidirectional nervous flow and the need to enhance alternative functions trigger reorganization and arm and face skin afferents "invade" the hand territory. On the contrary, the persistent representation model suggests that continued inputs preserve the lost limb representation and that, instead to a shrinkage, PLP is associated with larger representation and stronger cortical activity. In the neuromatrix model, the mismatch between body representation, which remains intact despite limb amputation, and real body appearance generates pain. Another hypothesis is that proprioceptive memories associate specific limb positions with pre-amputation pain and may be recalled by those positions. Finally, the stochastic entanglement model offers a direct relationship between sensorimotor neural reorganization and pain. Amputation disrupts motor and somatosensory circuits, allowing for maladaptive wiring with pain circuits and causing pain without nociception. Relief of PLP depends solely on motor and somatosensory circuitry engagement, making anthropomorphic visual feedback dispensable. Existing and apparently contradicting theories might not be mutually exclusive. All of them involve several intertwined potential mechanisms by which replacing the amputated limb by an artificial one could counteract PLP.
Collapse
Affiliation(s)
- Giovanni DI Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Campus Bio-Medico University, Rome, Italy -
| | - Valeria Piombino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Campus Bio-Medico University, Rome, Italy
| | - Massimiliano Carassiti
- Unit of Anesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | - Max Ortiz-Catalan
- Center for Bionics and Pain Research, Mölndal, Sweden.,Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Operational Area 3, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Li C, Liu SY, Pi W, Zhang PX. Cortical plasticity and nerve regeneration after peripheral nerve injury. Neural Regen Res 2021; 16:1518-1523. [PMID: 33433465 PMCID: PMC8323687 DOI: 10.4103/1673-5374.303008] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With the development of neuroscience, substantial advances have been achieved in peripheral nerve regeneration over the past decades. However, peripheral nerve injury remains a critical public health problem because of the subsequent impairment or absence of sensorimotor function. Uncomfortable complications of peripheral nerve injury, such as chronic pain, can also cause problems for families and society. A number of studies have demonstrated that the proper functioning of the nervous system depends not only on a complete connection from the central nervous system to the surrounding targets at an anatomical level, but also on the continuous bilateral communication between the two. After peripheral nerve injury, the interruption of afferent and efferent signals can cause complex pathophysiological changes, including neurochemical alterations, modifications in the adaptability of excitatory and inhibitory neurons, and the reorganization of somatosensory and motor regions. This review discusses the close relationship between the cerebral cortex and peripheral nerves. We also focus on common therapies for peripheral nerve injury and summarize their potential mechanisms in relation to cortical plasticity. It has been suggested that cortical plasticity may be important for improving functional recovery after peripheral nerve damage. Further understanding of the potential common mechanisms between cortical reorganization and nerve injury will help to elucidate the pathophysiological processes of nerve injury, and may allow for the reduction of adverse consequences during peripheral nerve injury recovery. We also review the role that regulating reorganization mechanisms plays in functional recovery, and conclude with a suggestion to target cortical plasticity along with therapeutic interventions to promote peripheral nerve injury recovery.
Collapse
Affiliation(s)
- Ci Li
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Song-Yang Liu
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Wei Pi
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Peking University; National Center for Trauma Medicine, Beijing, China
| |
Collapse
|
27
|
Jiang S, Zheng K, Wang W, Pei Y, Qiu E, Zhu G. Phantom Limb Pain and Sensations in Chinese Malignant Tumor Amputees: A Retrospective Epidemiological Study. Neuropsychiatr Dis Treat 2021; 17:1579-1587. [PMID: 34045860 PMCID: PMC8149272 DOI: 10.2147/ndt.s299771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Phantom limb pain (PLP) was a common problem in malignant tumor amputees that can cause considerable suffering. The purposes of this study were to determine the incidence and factors associated with the occurrence of post-operation PLP, stump limb pain (SLP), and phantom limb sensations (PLS) in tumor amputees within the first month after surgery. Additionally, differences in phantom phenomena between upper and lower extremities were investigated. METHODS In total, 162 amputees participated in this retrospective study who underwent malignant limb amputation between 2012 and 2019. Clinical characteristics were collected from medical records and reconfirmed by telephone interviews. A numerical rating scale (NRS) was used to quantitate phantom phenomena. We used analysis of variance and non-parametric statistics for categorical variables and ordinal variables separately. RESULTS In the first month after malignant amputation, the incidence of PLP was 54.3%, that of PLS was 65.4%, and that of SLP was 32.7%. The duration of preoperative pain and amputation level was significantly different for the incidence of acute PLP. Further subgroup analysis of amputation level showed that patients whose amputation level was below the wrist and ankle joints had a significantly reduced incidence of PLP (p<0.0083 in Bonferroni test). Binary logistics regression analysis determined that amputation level was the primary risk factor for the incidence of PLP. Factors related to the severity of postoperative PLP also included amputation level, preoperative pain, and amputation times. By comparing the differences between upper and lower limbs after amputation, we found that the incidence of PLS was higher after lower limb amputation, but there was no significant difference in the incidence of PLP and SLP. Preoperative experience of chemotherapy was not a risk factor for PLP. CONCLUSION Proximal amputation and long-term preoperative pain seemed to count more for PLP incidence. Further research may be required to individually determine factors associated with the occurrence and chronicity of phantom phenomena.
Collapse
Affiliation(s)
- Shuang Jiang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Department of Pain Medicine (Psychology Clinic), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People's Republic of China
| | - Ke Zheng
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People's Republic of China
| | - Wei Wang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People's Republic of China
| | - Yi Pei
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People's Republic of China
| | - Enduo Qiu
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People's Republic of China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
28
|
Muret D, Makin TR. The homeostatic homunculus: rethinking deprivation-triggered reorganisation. Curr Opin Neurobiol 2020; 67:115-122. [PMID: 33248404 DOI: 10.1016/j.conb.2020.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022]
Abstract
While amputation was considered a prominent model for cortical reorganisation, recent evidence highlights persistent representation of the missing hand. We offer a new perspective on the literature of amputation-triggered sensorimotor plasticity, by emphasising the need for homeostasis and emerging evidence of latent activity distributed across the homunculus. We argue that deprivation uncovers pre-existing latent activity, which can manifest as remapping, but that since this activity was already there, remapping could in some instances correspond to functional stability of the system rather than reorganisation. Adaptive behaviour and Hebbian-like plasticity may also play crucial roles in maintaining the functional organisation of the homunculus when deprivation occurs in adulthood or in early development. Collectively, we suggest that the brain's need for stability may underlie several key phenotypes for brain remapping, previously interpreted as consequential to reorganisation. Nevertheless, reorganisation may still be possible, especially when cortical changes contribute to the stability of the system.
Collapse
Affiliation(s)
- Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.
| |
Collapse
|
29
|
Duarte D, Bauer CCC, Pinto CB, Saleh Velez FG, Estudillo-Guerra MA, Pacheco-Barrios K, Gunduz ME, Crandell D, Merabet L, Fregni F. Cortical plasticity in phantom limb pain: A fMRI study on the neural correlates of behavioral clinical manifestations. Psychiatry Res Neuroimaging 2020; 304:111151. [PMID: 32738724 PMCID: PMC9394643 DOI: 10.1016/j.pscychresns.2020.111151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022]
Abstract
The neural mechanism of phantom limb pain (PLP) is related to the intense brain reorganization process implicating plasticity after deafferentation mostly in sensorimotor system. There is a limited understanding of the association between the sensorimotor system and PLP. We used a novel task-based functional magnetic resonance imaging (fMRI) approach to (1) assess neural activation within a-priori selected regions-of-interested (motor cortex [M1], somatosensory cortex [S1], and visual cortex [V1]), (2) quantify the cortical representation shift in the affected M1, and (3) correlate these changes with baseline clinical characteristics. In a sample of 18 participants, we found a significantly increased activity in M1 and S1 as well as a shift in motor cortex representation that was not related to PLP intensity. In an exploratory analyses (not corrected for multiple comparisons), they were directly correlated with time since amputation; and there was an association between increased activity in M1 with a lack of itching sensation and V1 activation was negatively correlated with PLP. Longer periods of amputation lead to compensatory changes in sensory-motor areas; and itching seems to be a protective marker for less signal changes. We confirmed that PLP intensity is not associated with signal changes in M1 and S1 but in V1.
Collapse
Affiliation(s)
- D Duarte
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Department of Psychiatry and Behavioural Neurosciences, McMaster University. 100 West 5th Street, Hamilton, ON L8N 3K7, Canada
| | - C C C Bauer
- McGovern Institute for Brain Research, MIT. 43 Vassar St, Cambridge, MA 02139, USA; Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, 76230 Juriquilla, Querétaro, 76230, México; Department of Psychology, Northeastern University, 805 Columbus Avenue, Boston, MA 02139, USA.
| | - C B Pinto
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - F G Saleh Velez
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; University of Chicago Medical Center, Department of Neurology, University of Chicago. 5841 S Maryland Ave # C411, Chicago, IL 60637, USA
| | - M A Estudillo-Guerra
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - K Pacheco-Barrios
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru. Av. La Fontana 750 Edificio El Cubo, La Molina - Perú
| | - M E Gunduz
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - D Crandell
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - L Merabet
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School. 243 Charles St, Boston, MA 02114, USA
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Massachusetts General Hospital, Harvard Medical School. 55 Fruit St, Boston, MA 02114, USA.
| |
Collapse
|
30
|
Pacheco-Barrios K, Meng X, Fregni F. Neuromodulation Techniques in Phantom Limb Pain: A Systematic Review and Meta-analysis. PAIN MEDICINE (MALDEN, MASS.) 2020; 21:2310-2322. [PMID: 32176286 PMCID: PMC7593798 DOI: 10.1093/pm/pnaa039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the effects of neuromodulation techniques in adults with phantom limb pain (PLP). METHODS A systematic search was performed, comprising randomized controlled trials (RCTs) and quasi-experimental (QE) studies that were published from database inception to February 2019 and that measured the effects of neuromodulation in adults with PLP. Hedge's g effect size (ES) and 95% confidence intervals were calculated, and random-effects meta-analyses were performed. RESULTS Fourteen studies (nine RCTs and five QE noncontrolled studies) were included. The meta-analysis of RCTs showed significant effects for i) excitatory primary motor cortex (M1) stimulation in reducing pain after stimulation (ES = -1.36, 95% confidence interval [CI] = -2.26 to -0.45); ii) anodal M1 transcranial direct current stimulation (tDCS) in lowering pain after stimulation (ES = -1.50, 95% CI = -2.05 to 0.95), and one-week follow-up (ES = -1.04, 95% CI = -1.64 to 0.45). The meta-analysis of noncontrolled QE studies demonstrated a high rate of pain reduction after stimulation with transcutaneous electrical nerve stimulation (rate = 67%, 95% CI = 60% to 73%) and at one-year follow-up with deep brain stimulation (rate = 73%, 95% CI = 63% to 82%). CONCLUSIONS The evidence from RCTs suggests that excitatory M1 stimulation-specifically, anodal M1 tDCS-has a significant short-term effect in reducing pain scale scores in PLP. Various neuromodulation techniques appear to have a significant and positive impact on PLP, but due to the limited amount of data, it is not possible to draw more definite conclusions.
Collapse
Affiliation(s)
- Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Xianguo Meng
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Shandong First Medical University & Shandong Academy of Medical Sciences, College of Sport Medicine and Rehabilitation, Jinan, Shandong Province, P.R. China
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Makin TR, Flor H. Brain (re)organisation following amputation: Implications for phantom limb pain. Neuroimage 2020; 218:116943. [PMID: 32428706 PMCID: PMC7422832 DOI: 10.1016/j.neuroimage.2020.116943] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Following arm amputation the region that represented the missing hand in primary somatosensory cortex (S1) becomes deprived of its primary input, resulting in changed boundaries of the S1 body map. This remapping process has been termed 'reorganisation' and has been attributed to multiple mechanisms, including increased expression of previously masked inputs. In a maladaptive plasticity model, such reorganisation has been associated with phantom limb pain (PLP). Brain activity associated with phantom hand movements is also correlated with PLP, suggesting that preserved limb functional representation may serve as a complementary process. Here we review some of the most recent evidence for the potential drivers and consequences of brain (re)organisation following amputation, based on human neuroimaging. We emphasise other perceptual and behavioural factors consequential to arm amputation, such as non-painful phantom sensations, perceived limb ownership, intact hand compensatory behaviour or prosthesis use, which have also been related to both cortical changes and PLP. We also discuss new findings based on interventions designed to alter the brain representation of the phantom limb, including augmented/virtual reality applications and brain computer interfaces. These studies point to a close interaction of sensory changes and alterations in brain regions involved in body representation, pain processing and motor control. Finally, we review recent evidence based on methodological advances such as high field neuroimaging and multivariate techniques that provide new opportunities to interrogate somatosensory representations in the missing hand cortical territory. Collectively, this research highlights the need to consider potential contributions of additional brain mechanisms, beyond S1 remapping, and the dynamic interplay of contextual factors with brain changes for understanding and alleviating PLP.
Collapse
Affiliation(s)
- Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Germany; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
32
|
Electroacupuncture-Induced Plasticity between Different Representations in Human Motor Cortex. Neural Plast 2020; 2020:8856868. [PMID: 32855632 PMCID: PMC7443218 DOI: 10.1155/2020/8856868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 08/01/2020] [Indexed: 11/18/2022] Open
Abstract
Somatosensory stimulation can effectively induce plasticity in the motor cortex representation of the stimulated body part. Specific interactions have been reported between different representations within the primary motor cortex. However, studies evaluating somatosensory stimulation-induced plasticity between different representations within the primary motor cortex are sparse. The purpose of this study was to investigate the effect of somatosensory stimulation on the modulation of plasticity between different representations within the primary motor cortex. Twelve healthy volunteers received both electroacupuncture (EA) and sham EA at the TE5 acupoint (located on the forearm). Plasticity changes in different representations, including the map volume, map area, and centre of gravity (COG) were evaluated by transcranial magnetic stimulation (TMS) before and after the intervention. EA significantly increased the map volume of the forearm and hand representations compared to those of sham EA and significantly reduced the map volume of the face representation compared to that before EA. No significant change was found in the map volume of the upper arm and leg representations after EA, and likewise, no significant changes in map area and COG were observed. These results suggest that EA functions as a form of somatosensory stimulation to effectively induce plasticity between different representations within the primary motor cortex, which may be related to the extensive horizontal intrinsic connectivity between different representations. The cortical plasticity induced by somatosensory stimulation might be purposefully used to modulate human cortical function.
Collapse
|
33
|
Al-Shahry FS, Alquhatani M, Sudersanadas K, Iqbal RM. Preliminary Testing of Efficacy of the Invented Sensory Re-education Device (SRED) on Patients with Peripheral Neuropathy. Open Neurol J 2020. [DOI: 10.2174/1874205x02014010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Sensory rehabilitation is considered one of the challenges and a persistent functional deficit in the long term. All rehabilitation paradigms use re-education in many different ways. The main issue here is that the brain mostly recognizes, considers and reacts with structured, and consistent input. Likewise, all the sensory rehabilitation techniques try to use a systematic input (type, pattern, timing and intensity) to regain or re-establish any type of sensation but none of these are perfectly systematic.
Methods:
For this reason, we developed a Sensory Re-Education Device (SRED) which allows a systematic sensory input “type, pattern, timing and intensity input” supported by software to operate the system and manage the data. Five senses (light touch, pinprick, hot-cold, vibration, and smell) were uploaded and constructed to allow different types, intensities, frequencies, patterns, and timing. Eight cases of Breast Cancer (BC) post-chemotherapy and Diabetes Mellitus II (DM2) were recruited for eight sessions. (Only hot-cold, smell, and light touch were used in this trial.)
Result:
The outcome was very impressive, as most of the patients regained their sensibility at a rate of over 80%.
Conclusion:
The outcome and the related treatment factors were showing a positive consistency. This is very encouraging, though a large sample is required to establish significance. The team members welcome any feedback, suggestions, and critiques via the PI email below.
Collapse
|
34
|
Pacheco-Barrios K, Pinto CB, Saleh Velez FG, Duarte D, Gunduz ME, Simis M, Lepesteur Gianlorenco AC, Barouh JL, Crandell D, Guidetti M, Battistella L, Fregni F. Structural and functional motor cortex asymmetry in unilateral lower limb amputation with phantom limb pain. Clin Neurophysiol 2020; 131:2375-2382. [PMID: 32828040 DOI: 10.1016/j.clinph.2020.06.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The role of motor cortex reorganization in the development and maintenance of phantom limb pain (PLP) is still unclear. This study aims to evaluate neurophysiological and structural motor cortex asymmetry in patients with PLP and its relationship with pain intensity. METHODS Cross-sectional analysis of an ongoing randomized-controlled trial. We evaluated the motor cortex asymmetry through two techniques: i) changes in cortical excitability indexed by transcranial magnetic stimulation (motor evoked potential, paired-pulse paradigms and cortical mapping), and ii) voxel-wise grey matter asymmetry analysis by brain magnetic resonance imaging. RESULTS We included 62 unilateral traumatic lower limb amputees with a mean PLP of 5.9 (SD = 1.79). We found, in the affected hemisphere, an anterior shift of the hand area center of gravity (23 mm, 95% CI 6 to 38, p = 0.005) and a disorganized and widespread representation. Regarding voxel-wise grey matter asymmetry analysis, data from 21 participants show a loss of grey matter volume in the motor area of the affected hemisphere. This asymmetry seems negatively associated with time since amputation. For TMS data, only the ICF ratio is negatively correlated with PLP intensity (r = -0.25, p = 0.04). CONCLUSION There is an asymmetrical reorganization of the motor cortex in patients with PLP, characterized by a disorganized, widespread, and shifted hand cortical representation and a loss in grey matter volume in the affected hemisphere. This reorganization seems to reduce across time since amputation. However, it is not associated with pain intensity. SIGNIFICANCE These findings are significant to understand the role of the motor cortex reorganization in patients with PLP, showing that the pain intensity may be related with other neurophysiological factors, not just cortical reorganization.
Collapse
Affiliation(s)
- K Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - C B Pinto
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - F G Saleh Velez
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; University of Chicago Medical Center, Department of Neurology, University of Chicago, Chicago, IL, USA
| | - D Duarte
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada
| | - M E Gunduz
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Simis
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - A C Lepesteur Gianlorenco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - J L Barouh
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - D Crandell
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - M Guidetti
- Università degli Studi di Milano, Dipartimento di scienze della Salute, "Aldo Ravelli" Center for Neurotechnolgy and Experimental Brain Therapeutics, Milano, Italy
| | - L Battistella
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - F Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Assessment of cortical reorganization and preserved function in phantom limb pain: a methodological perspective. Sci Rep 2020; 10:11504. [PMID: 32661345 PMCID: PMC7359300 DOI: 10.1038/s41598-020-68206-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Phantom limb pain (PLP) has been associated with reorganization in primary somatosensory cortex (S1) and preserved S1 function. Here we examined if methodological differences in the assessment of cortical representations might explain these findings. We used functional magnetic resonance imaging during a virtual reality movement task, analogous to the classical mirror box task, in twenty amputees with and without PLP and twenty matched healthy controls. We assessed the relationship between task-related activation maxima and PLP intensity in S1 and motor cortex (M1) in individually-defined or group-conjoint regions of interest (ROI) (overlap of task-related activation between the groups). We also measured cortical distances between both locations and correlated them with PLP intensity. Amputees compared to controls showed significantly increased activation in M1, S1 and S1M1 unrelated to PLP. Neural activity in M1 was positively related to PLP intensity in amputees with PLP when a group-conjoint ROI was chosen. The location of activation maxima differed between groups in S1 and M1. Cortical distance measures were unrelated to PLP. These findings suggest that sensory and motor maps differentially relate to PLP and that methodological differences might explain discrepant findings in the literature.
Collapse
|
36
|
Münger M, Pinto CB, Pacheco-Barrios K, Duarte D, Gunduz ME, Simis M, Battistella LR, Fregni F. Protective and Risk Factors for Phantom Limb Pain and Residual Limb Pain Severity. Pain Pract 2020; 20:578-587. [PMID: 32176435 PMCID: PMC7363546 DOI: 10.1111/papr.12881] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The exact mechanisms underlying the development and maintenance of phantom limb pain (PLP) are still unclear. This study aimed to identify the factors affecting pain intensity in patients with chronic, lower limb, traumatic PLP. METHODS This is a cross-sectional analysis of patients with PLP. We assessed amputation-related and pain-related clinical and demographic variables. We used univariate and multivariate models to evaluate the associated factors modulating PLP and residual limb pain (RLP) intensity. RESULTS We included 71 unilateral traumatic lower limb amputees. Results showed that (1) amputation-related perceptions were experienced by a large majority of the patients with chronic PLP (sensations: 90.1%, n = 64; residual pain: 81.7%, n = 58); (2) PLP intensity has 2 significant protective factors (phantom limb movement and having effective treatment for PLP previously) and 2 significant risk factors (phantom limb sensation intensity and age); and (3) on the other hand, for RLP, risk factors are different: presence of pain before amputation and level of amputation (in addition to the same protective factors). CONCLUSION These results suggest different neurobiological mechanisms to explain PLP and RLP intensity. While PLP risk factors seem to be related to maladaptive plasticity, since phantom sensation and older age are associated with more pain, RLP risk factors seem to have components leading to neuropathic pain, such as the amount of neural lesion and previous history of chronic pain. Interestingly, the phantom movement appears to be protective for both phenomena.
Collapse
Affiliation(s)
- Marionna Münger
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neuropsychology, Institute of Psychology, University of Zurich, 8050 Zurich, Switzerland
| | - Camila B. Pinto
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru
| | - Dante Duarte
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Muhamed Enes Gunduz
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marcel Simis
- Department of Physical Medicine and Rehabilitation, Instituto de Reabilitação Lucy Montoro
| | | | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Gunduz ME, Pinto CB, Saleh Velez FG, Duarte D, Pacheco-Barrios K, Lopes F, Fregni F. Motor Cortex Reorganization in Limb Amputation: A Systematic Review of TMS Motor Mapping Studies. Front Neurosci 2020; 14:314. [PMID: 32372907 PMCID: PMC7187753 DOI: 10.3389/fnins.2020.00314] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: The purpose of this systematic review is to evaluate motor cortex reorganization in amputees as indexed by transcranial magnetic stimulation (TMS) cortical mapping and its relationship with phantom limb pain (PLP). Methods: Pubmed database were systematically searched. Three independent researchers screened the relevant articles, and the data of motor output maps, including the number of effective stimulation sites, center of gravity (CoG) shift, and their clinical correlations were extracted. We calculated a pooled CoG shift for motor cortex TMS mapping. Results: The search yielded 468 articles, 11 were included. Three studies performed correlation between the cortical changes and PLP intensity, and only one study compared cortical mapping changes between amputees with pain and without pain. Results showed (i) enlarged excitable area and a shift of CoG of neighboring areas toward the deafferented limb area; (ii) no correlation between motor cortex reorganization and level of pain and (iii) greater cortical reorganization in patients with PLP compared to amputation without pain. Conclusion: Our review supports the evidence for cortical reorganization in the affected hemisphere following an amputation. The motor cortex reorganization could be a potential clinical target for prevention and treatment response of PLP.
Collapse
Affiliation(s)
- Muhammed Enes Gunduz
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Camila Bonin Pinto
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Faddi Ghassan Saleh Velez
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Dante Duarte
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Kevin Pacheco-Barrios
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States.,Unidad de Investigación Para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Fernanda Lopes
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Felipe Fregni
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| |
Collapse
|
38
|
Maimon-Mor RO, Schone HR, Moran R, Brugger P, Makin TR. Motor control drives visual bodily judgements. Cognition 2020; 196:104120. [PMID: 31945591 PMCID: PMC7033558 DOI: 10.1016/j.cognition.2019.104120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
The 'embodied cognition' framework proposes that our motor repertoire shapes visual perception and cognition. But recent studies showing normal visual body representation in individuals born without hands challenges the contribution of motor control on visual body representation. Here, we studied hand laterality judgements in three groups with fundamentally different visual and motor hand experiences: two-handed controls, one-handers born without a hand (congenital one-handers) and one-handers with an acquired amputation (amputees). Congenital one-handers, lacking both motor and first-person visual information of their missing hand, diverged in their performance from the other groups, exhibiting more errors for their intact hand and slower reaction-times for challenging hand postures. Amputees, who have lingering non-visual motor control of their missing (phantom) hand, performed the task similarly to controls. Amputees' reaction-times for visual laterality judgements correlated positively with their phantom hand's motor control, such that deteriorated motor control associated with slower visual laterality judgements. Finally, we have implemented a computational simulation to describe how a mechanism that utilises a single hand representation in congenital one-handers as opposed to two in controls, could replicate our empirical results. Together, our findings demonstrate that motor control is a driver in making visual bodily judgments.
Collapse
Affiliation(s)
- Roni O Maimon-Mor
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK.
| | - Hunter R Schone
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Rani Moran
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, UK
| | - Peter Brugger
- Department of Neurology, Neuropsychology Unit, University Hospital Zurich, Switzerland
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK
| |
Collapse
|
39
|
Limakatso K, Madden VJ, Manie S, Parker R. The effectiveness of graded motor imagery for reducing phantom limb pain in amputees: a randomised controlled trial. Physiotherapy 2020; 109:65-74. [PMID: 31992445 DOI: 10.1016/j.physio.2019.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/10/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate whether graded motor imagery (GMI) is effective for reducing phantom limb pain (PLP) in people who have undergone limb amputations. DESIGN A single-blinded randomised, controlled trial. SETTING Physiotherapy out-patient departments in three secondary level hospitals in Cape Town, South Africa. PARTICIPANTS Twenty-one adults (≥18 years) who had undergone unilateral upper or lower limb amputations and had self-reported PLP persisting beyond three months. INTERVENTIONS A 6-week GMI programme was compared to routine physiotherapy. The study outcomes were evaluated at baseline, 6 weeks, 3 months and 6 months. OUTCOME MEASURES The pain severity scale of the Brief Pain Inventory (BPI) was used to assess the primary outcome - PLP. The pain interference scale of the BPI and the EuroQol EQ-5D-5L were used to assess the secondary outcomes - pain interference with function and health-related quality of life (HRQoL) respectively. RESULTS The participants in the experimental group had significantly greater improvements in pain than the control group at 6 weeks and 6 months. Further, the participants in the experimental group had significantly greater improvements than the control group in pain interference at all follow-up points. There was no between-group difference in HRQoL. CONCLUSION The results of the current study suggest that GMI is better than routine physiotherapy for reducing PLP. Based on the significant reduction in PLP and pain interference within the participants who received GMI, and the ease of application, GMI may be a viable treatment for treating PLP in people who have undergone limb amputations. CLINICAL TRIAL REGISTRATION NUMBER (PACTR201701001979279).
Collapse
Affiliation(s)
- Katleho Limakatso
- Pain Management Unit, Department of Anaesthesia and Perioperative Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Victoria J Madden
- Pain Management Unit, Department of Anaesthesia and Perioperative Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Shamila Manie
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Romy Parker
- Pain Management Unit, Department of Anaesthesia and Perioperative Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
40
|
Nakagawa K, Takemi M, Nakanishi T, Sasaki A, Nakazawa K. Cortical reorganization of lower-limb motor representations in an elite archery athlete with congenital amputation of both arms. NEUROIMAGE-CLINICAL 2019; 25:102144. [PMID: 31958685 PMCID: PMC6970184 DOI: 10.1016/j.nicl.2019.102144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023]
Abstract
We investigated cortical reorganization in an amputated archer who used his feet. Lower-limb motor representations were examined using fMRI and TMS mapping. M1 areas innervating lower-limb muscles were larger in the amputated athlete. The toe and knee representations were expanded towards the lateral part of the M1. Paralympic athletes have a unique and dynamic M1 plasticity.
Despite their disabilities, top Paralympic athletes have better motor skills than able-bodied athletes. However, the neural underpinnings of these better motor skills remain unclear. We investigated the reorganization of the primary motor cortex (M1) in a Paralympic athlete with congenital amputation of both arms who holds the world record for the farthest accurate shot in archery (Amputee Archer: AA). We recorded brain activity during contraction of right toe, ankle, knee, and hip joint muscles in the AA and 12 able-bodied control subjects using functional magnetic resonance imaging. The results revealed that M1 activation was more widespread in the AA compared with control subjects during all tasks, and shifted towards the lateral part of the M1 during contraction of toe and knee muscles. We also conducted a motor mapping experiment using navigated transcranial magnetic stimulation. The M1 area receiving stimulation elicited motor-evoked potentials from the toe, lower-leg, and thigh muscles, which were larger in the AA compared with 12 control subjects. Furthermore, the AA's motor maps were shifted towards the lateral side of M1. These results suggest an expansion of lower-limb M1 representation towards the lateral side of M1, including the trunk and upper-limb representations, and an expansion of the area of corticomotor neurons innervating the lower limb muscles in the AA. This unique M1 reorganization could underpin the AA's excellent archery performance in the absence of upper limbs. The current results suggest that Paralympic athletes may exhibit extreme M1 plasticity, which could arise through a combination of rigorous long-term motor training and compensatory M1 reorganization for missing body parts.
Collapse
Affiliation(s)
- Kento Nakagawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan; The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan; Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Mitsuaki Takemi
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honmachi, Kawaguchi, Saitama, 332-0012, Japan
| | - Tomoya Nakanishi
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan; The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Atsushi Sasaki
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan; The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
41
|
Remapping in Cerebral and Cerebellar Cortices Is Not Restricted by Somatotopy. J Neurosci 2019; 39:9328-9342. [PMID: 31611305 PMCID: PMC6867820 DOI: 10.1523/jneurosci.2599-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 07/16/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022] Open
Abstract
A fundamental organizing principle in the somatosensory and motor systems is somatotopy, where specific body parts are represented separately and adjacently to other body parts, resulting in a body map. Different terminals of the sensorimotor network show varied somatotopic layouts, in which the relative position, distance, and overlap between body-part representations differ. Since somatotopy is best characterized in the primary somatosensory (S1) and motor (M1) cortices, these terminals have been the main focus of research on somatotopic remapping following loss of sensory input (e.g., arm amputation). Cortical remapping is generally considered to be driven by the layout of the underlying somatotopy, such that neighboring body-part representations tend to activate the deprived brain region. Here, we challenge the assumption that somatotopic layout restricts remapping, by comparing patterns of remapping in humans born without one hand (hereafter, one-handers, n = 26) across multiple terminals of the sensorimotor pathway. We first report that, in the cerebellum of one-handers, the deprived hand region represents multiple body parts. Importantly, the native representations of some of these body parts do not neighbor the deprived hand region. We further replicate our previous findings, showing a similar pattern of remapping in the deprived hand region of the cerebral cortex in one-handers. Finally, we report preliminary results of a similar remapping pattern in the putamen of one-handers. Since these three sensorimotor terminals (cerebellum, cerebrum, putamen) contain different somatotopic layouts, the parallel remapping they undergo demonstrates that the mere spatial layout of body-part representations may not exclusively dictate remapping in the sensorimotor systems. SIGNIFICANCE STATEMENT When a hand is missing, the brain region that typically processes information from that hand may instead process information from other body parts, a phenomenon termed remapping. It is commonly thought that only body parts whose information is processed in regions neighboring the hand region could “take up” the resources of this now deprived region. Here we demonstrate that information from multiple body parts is processed in the hand regions of both the cerebral cortex and cerebellum. The native brain regions of these body parts have varying levels of overlap with the hand regions of the cerebral cortex and cerebellum, and do not necessarily neighbor the hand regions. We therefore propose that proximity between brain regions does not limit brain remapping.
Collapse
|
42
|
Molina-Rueda F, Navarro-Fernández C, Cuesta-Gómez A, Alguacil-Diego IM, Molero-Sánchez A, Carratalá-Tejada M. Neuroplasticity Modifications Following a Lower-Limb Amputation: A Systematic Review. PM R 2019; 11:1326-1334. [PMID: 30989836 DOI: 10.1002/pmrj.12167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although there are studies that have examined brain functional reorganization following upper-limb amputation, understanding of the brain changes that occur in people with lower-limb amputation is limited. OBJECTIVE To investigate modifications in the brain following lower-limb amputation. METHODS We included case-control studies that evaluate neuroplasticity in the central nervous system using neuroimaging techniques. A literature search was conducted using MEDLINE, CINAHL, Web of Science, Scopus, and Cochrane. RESULTS Eleven articles were included (total n = 204 people with unilateral lower-limb amputation). These studies showed an increase in cerebellar gray matter volume in prosthesis users, as well as a decrease in thickness of the premotor cortex, orbitofrontal cortex, temporo-occipital junction, precentral gyrus, visual areas, and somatosensory cortex. Regarding white matter, the trials observed a decrease in the integrity at the corona radiata, the connections between the premotor areas, the fronto-occipital fasciculus and the corpus callosum. In addition, a decreased functional connectivity between cortical and subcortical areas has been described. CONCLUSIONS Lower-limb amputation causes changes in several brain structures that may occur in the absence of pain and regardless of prosthesis use. The modifications observed include thinning or loss of gray matter volume, decrease in the integrity of the white matter connections between brain structures and changes in the functional connectivity between cortical and subcortical areas. LEVEL OF EVIDENCE I.
Collapse
Affiliation(s)
- Francisco Molina-Rueda
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Cristian Navarro-Fernández
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Alicia Cuesta-Gómez
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Isabel M Alguacil-Diego
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Alberto Molero-Sánchez
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - María Carratalá-Tejada
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
43
|
Bocci T, De Carolis G, Ferrucci R, Paroli M, Mansani F, Priori A, Valeriani M, Sartucci F. Cerebellar Transcranial Direct Current Stimulation (ctDCS) Ameliorates Phantom Limb Pain and Non-painful Phantom Limb Sensations. THE CEREBELLUM 2019; 18:527-535. [DOI: 10.1007/s12311-019-01020-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Wesselink DB, van den Heiligenberg FM, Ejaz N, Dempsey-Jones H, Cardinali L, Tarall-Jozwiak A, Diedrichsen J, Makin TR. Obtaining and maintaining cortical hand representation as evidenced from acquired and congenital handlessness. eLife 2019; 8:37227. [PMID: 30717824 PMCID: PMC6363469 DOI: 10.7554/elife.37227] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/12/2019] [Indexed: 12/26/2022] Open
Abstract
A key question in neuroscience is how cortical organisation relates to experience. Previously we showed that amputees experiencing highly vivid phantom sensations maintain cortical representation of their missing hand (Kikkert et al., 2016). Here, we examined the role of sensory hand experience on persistent hand representation by studying individuals with acquired and congenital hand loss. We used representational similarity analysis in primary somatosensory and motor cortex during missing and intact hand movements. We found that key aspects of acquired amputees’ missing hand representation persisted, despite varying vividness of phantom sensations. In contrast, missing hand representation of congenital one-handers, who do not experience phantom sensations, was significantly reduced. Across acquired amputees, individuals’ reported motor control over their phantom hand positively correlated with the extent to which their somatosensory hand representation was normally organised. We conclude that once cortical organisation is formed, it is remarkably persistent, despite long-term attenuation of peripheral signals.
Collapse
Affiliation(s)
- Daan B Wesselink
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Fiona Mz van den Heiligenberg
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Naveed Ejaz
- Brain and Mind Institute, University of Western Ontario, London, Canada.,Department of Computer Science, University of Western Ontario, London, Canada
| | - Harriet Dempsey-Jones
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Lucilla Cardinali
- Brain and Mind Institute, University of Western Ontario, London, Canada.,Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Jörn Diedrichsen
- Brain and Mind Institute, University of Western Ontario, London, Canada.,Department of Computer Science, University of Western Ontario, London, Canada
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
45
|
Selective sensory deafferentation induces structural and functional brain plasticity. NEUROIMAGE-CLINICAL 2018; 21:101633. [PMID: 30584013 PMCID: PMC6411904 DOI: 10.1016/j.nicl.2018.101633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 12/08/2018] [Indexed: 02/07/2023]
Abstract
Sensory-motor integration models have been proposed aiming to explain how the brain uses sensory information to guide and check the planning and execution of movements. Sensory neuronopathy (SN) is a peculiar disease characterized by exclusive, severe and widespread sensory loss. It is a valuable condition to investigate how sensory deafferentation impacts brain organization. We thus recruited patients with clinical and electrophysiological criteria for SN to perform structural and functional MRI analyses. We investigated volumetric changes in gray matter (GM) using anatomical images; the microstructure of WM within segmented regions of interest (ROI), via diffusion images; and brain activation related to a finger tapping task. All significant results were related to the long disease duration subgroup of patients. Structural analysis showed hypertrophy of the caudate nucleus, whereas the diffusion study identified reduction of fractional anisotropy values in ROIs located around the thalamus and the striatum. We also found differences regarding finger-tapping activation in the posterior parietal regions and in the medial areas of the cerebellum. Our results stress the role of the caudate nucleus over the other basal ganglia in the sensory-motor integration models, and suggest an inhibitory function of a recently discovered tract between the thalamus and the striatum. Overall, our findings confirm plasticity in the adult brain and open new avenues to design neurorehabilitation strategies.
Collapse
|
46
|
Wareham AP, Sparkes V. Effect of one session of mirror therapy on phantom limb pain and recognition of limb laterality in military traumatic lower limb amputees: a pilot study. BMJ Mil Health 2018; 166:146-150. [PMID: 30429289 DOI: 10.1136/jramc-2018-001001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 01/15/2023]
Abstract
Up to 70 % of military amputees suffer phantom limb pain (PLP), which is difficult to treat. PLP has been attributed to cortical reorganisation and associated with impaired laterality. Repeated sessions of mirror therapy (MT) can benefit PLP; however, anecdotal evidence suggests one MT session could be effective. In a one-group pretest and post-test design, 16 UK military unilateral lower limb amputees (median age: 31.0, 95% CI 25.0 to 36.8 years) undertook one 10 min MT session. Visual analogue scale (VAS) pain and laterality (accuracy and reaction time) measurements were taken pre-MT and post-MT. Median VAS PLP did not differ significantly between pre-MT 15 mm (2-53 mm) and post-MT 12 mm (1-31) (p=0.875) scores. For the amputated limb, there were no significant differences between pre-MT and post-MT scores for laterality accuracy, 95.3%, 95% CI 90.5% to 97.6% and 96.7%, 95% CI 90.0% to 99.4%, respectively (p=0.778), or reaction time, 1.42 s, 95% CI 1.11 to 2.11 s and 1.42 s, 95% CI 1.08 to 2.02 s, respectively (p=0.629). Laterality was also not different between limbs for accuracy, p=0.484, or reaction time, p=0.716, and did not correlate with PLP severity. No confounding variables predicted individual responses to MT. Therefore, one 10 min MT session does not affect laterality and is not effective as standard treatment for PLP in military lower limb amputees. However, substantial PLP improvement for one individual and resolution of a stuck phantom limb for another infers that MT may benefit specific patients. No correlation found between PLP and laterality implies associated cortical reorganisation may not be the main driver for PLP. Further research, including neuroimaging, is needed to help clinicians effectively target PLP.
Collapse
Affiliation(s)
- Andrew P Wareham
- Centre for Complex Trauma, Defence Medical Rehabilitation Centre Headley Court, Surrey, UK
| | - V Sparkes
- School of Healthcare Sciences, Arthritis Research UK Biomechanics and Bioengineering Centre, Cardiff University, Cardiff, UK
| |
Collapse
|
47
|
Dubois JD, Poitras I, Voisin JIA, Mercier C. Effect of pain on deafferentation-induced modulation of somatosensory evoked potentials. PLoS One 2018; 13:e0206141. [PMID: 30346981 PMCID: PMC6197665 DOI: 10.1371/journal.pone.0206141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/08/2018] [Indexed: 11/18/2022] Open
Abstract
There is a large body of evidence showing substantial sensorimotor reorganizations after an amputation. These reorganizations are believed to contribute to the development of phantom limb pain, but alternatively, pain might influence the plasticity triggered by the deafferentation. The aim of this study was to test whether pain impacts on deafferentation-induced plasticity in the somatosensory pathways. Fifteen healthy subjects participated in 2 experimental sessions (Pain, No Pain) in which somatosensory evoked potentials (SSEPs) associated with electrical stimulation of the ulnar nerve were assessed before and after temporary ischemic deafferentation induced by inflation of a cuff around the wrist. In the Pain session capsaicin cream was applied on the dorsum of the hand 30 minutes prior to cuff inflation. Results show that pain decreased the amplitude of the N20 (main effect of condition, p = 0.033), with a similar trend for the P25. Temporary ischemic deafferentation had a significant effect on SSEPs (main effect of time), with an increase in the P25 (p = 0.013) and the P45 amplitude (p = 0.005), together with a reduction of the P90 amplitude (p = 0.002). Finally, a significant time x condition interaction, reflecting state-dependent plasticity, was found for the P90 only, the presence of pain decreasing the reduction of amplitude observed in response to deafferentation. In conclusion, these results show that nociceptive input can influence the plasticity induced by a deafferentation, which could be a contributing factor in the cortical somatosensory reorganization observed in chronic pain populations.
Collapse
Affiliation(s)
- Jean-Daniel Dubois
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
| | - Isabelle Poitras
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
| | - Julien I. A. Voisin
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
48
|
Touillet A, Peultier-Celli L, Nicol C, Jarrassé N, Loiret I, Martinet N, Paysant J, De Graaf JB. Characteristics of phantom upper limb mobility encourage phantom-mobility-based prosthesis control. Sci Rep 2018; 8:15459. [PMID: 30337602 PMCID: PMC6193985 DOI: 10.1038/s41598-018-33643-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
There is an increasing need to extend the control possibilities of upper limb amputees over their prosthetics, especially given the development of devices with numerous active joints. One way of feeding pattern recognition myoelectric control is to rely on the myoelectric activities of the residual limb associated with phantom limb movements (PLM). This study aimed to describe the types, characteristics, potential influencing factors and trainability of upper limb PLM. Seventy-six below- and above-elbow amputees with major amputation underwent a semi-directed interview about their phantom limb. Amputation level, elapsed time since amputation, chronic pain and use of prostheses of upper limb PLM were extracted from the interviews. Thirteen different PLM were found involving the hand, wrist and elbow. Seventy-six percent of the patients were able to produce at least one type of PLM; most of them could execute several. Amputation level, elapsed time since amputation, chronic pain and use of myoelectric prostheses were not found to influence PLM. Five above-elbow amputees participated in a PLM training program and consequently increased both endurance and speed of their PLM. These results clearly encourage further research on PLM-associated muscle activation patterns for future PLM-based modes of prostheses control.
Collapse
Affiliation(s)
- Amélie Touillet
- IRR Louis Pierquin - UGECAM Nord-est, 75 Boulevard Lobau, CS 34209, 54042, Nancy Cedex, France.
| | - Laetitia Peultier-Celli
- Development, Adaptation and Handicap, University of Lorraine, 30 Rue du Jardin Botanique CS 30156, 54603, Nancy, France
| | | | - Nathanaël Jarrassé
- Sorbonne Université, CNRS, INSERM, Institut des Systèmes Intelligents et de Robotique, ISIR, 75005, Paris, France
| | - Isabelle Loiret
- IRR Louis Pierquin - UGECAM Nord-est, 75 Boulevard Lobau, CS 34209, 54042, Nancy Cedex, France
| | - Noël Martinet
- IRR Louis Pierquin - UGECAM Nord-est, 75 Boulevard Lobau, CS 34209, 54042, Nancy Cedex, France
| | - Jean Paysant
- IRR Louis Pierquin - UGECAM Nord-est, 75 Boulevard Lobau, CS 34209, 54042, Nancy Cedex, France
| | | |
Collapse
|
49
|
Zhang J, Zhang Y, Wang L, Sang L, Li L, Li P, Yin X, Qiu M. Brain Functional Connectivity Plasticity Within and Beyond the Sensorimotor Network in Lower-Limb Amputees. Front Hum Neurosci 2018; 12:403. [PMID: 30356798 PMCID: PMC6189475 DOI: 10.3389/fnhum.2018.00403] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
Cerebral neuroplasticity after amputation has been elucidated by functional neuroimaging. However, little is known concerning how brain network-level functional reorganization of the sensorimotor system evolves following lower-limb amputation. We studied 32 unilateral lower-limb amputees (LLAs) and 32 matched healthy controls (HCs) using resting-state functional magnetic resonance imaging (rs-fMRI). A regions of interest (ROI)-wise connectivity analysis was performed with ROIs in eight brain regions in the sensorimotor network to investigate intra-network changes, and seed-based whole-brain functional connectivity (FC) with a seed in the contralateral primary sensorimotor cortex (S1M1) was used to study the FC reorganization between the sensorimotor region (S1M1) and other parts of the brain in the LLAs. The ROI-wise connectivity analysis showed that the LLAs had decreased FC, mainly between the subcortical nuclei and the contralateral S1M1 (p < 0.05, FDR corrected). Seed-based whole-brain FC analysis revealed that brain regions with decreased FC with the contralateral S1M1 extended beyond the sensorimotor network to the prefrontal and visual cortices (p < 0.05, FDR corrected). Moreover, correlation analysis showed that decreased FC between the subcortical and the cortical regions in the sensorimotor network progressively increased in relation to the time since amputation. These findings indicated a cascade of cortical reorganization at a more extensive network level following lower-limb amputation, and also showed promise for the development of a possible neurobiological marker of changes in FC related to motor function recovery in LLAs.
Collapse
Affiliation(s)
- Jingna Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ye Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Li Wang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Linqiong Sang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Lei Li
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pengyue Li
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Xuntao Yin
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mingguo Qiu
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| |
Collapse
|
50
|
Ortiz-Catalan M. The Stochastic Entanglement and Phantom Motor Execution Hypotheses: A Theoretical Framework for the Origin and Treatment of Phantom Limb Pain. Front Neurol 2018; 9:748. [PMID: 30237784 PMCID: PMC6135916 DOI: 10.3389/fneur.2018.00748] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/17/2018] [Indexed: 12/28/2022] Open
Abstract
Phantom limb pain (PLP) is a debilitating condition common after amputation that can considerably hinder patients' quality of life. Several treatments have reported promising results in alleviating PLP. However, clinical evaluations are usually performed in small cohorts and rigorous clinical trials are scarce. In addition, the underlying mechanisms by which novel interventions alleviate PLP are often unclear, potentially because the condition itself is poorly understood. This article presents a theoretical framework of PLP that can be used as groundwork for hypotheses of novel treatments. Current hypotheses on the origins of PLP are discussed in relation to available clinical findings. Stochastic entanglement of the pain neurosignature, or connectome, with impaired sensorimotor circuitry is proposed as an alternative hypothesis for the genesis of PLP, and the implications and predictions this hypothesis entails are examined. In addition, I present a hypothesis for the working mechanism of Phantom Motor Execution (PME) as a treatment of PLP, along with its relation to the aforementioned stochastic entanglement hypothesis, which deals with PLP's incipience. PME aims to reactivate the original central and peripheral circuitry involved in motor control of the missing limb, along with increasing dexterity of stump muscles. The PME hypothesis entails that training of phantom movements induces gradual neural changes similar to those of perfecting a motor skill, and these purposefully induced neural changes disentangle pain processing circuitry by competitive plasticity. This is a testable hypothesis that can be examined by brain imaging and behavioral studies on subjects undergoing PME treatment. The proposed stochastic entanglement hypothesis of PLP can be generalized to neuropathic pain due to sensorimotor impairment, and can be used to design suitable therapeutic treatments.
Collapse
Affiliation(s)
- Max Ortiz-Catalan
- Biomechatronics and Neurorehabilitation Laboratory, Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Integrum AB, Mölndal, Sweden
| |
Collapse
|