1
|
Saccone EJ, Tian M, Bedny M. Developing cortex is functionally pluripotent: Evidence from blindness. Dev Cogn Neurosci 2024; 66:101360. [PMID: 38394708 PMCID: PMC10899073 DOI: 10.1016/j.dcn.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
How rigidly does innate architecture constrain function of developing cortex? What is the contribution of early experience? We review insights into these questions from visual cortex function in people born blind. In blindness, occipital cortices are active during auditory and tactile tasks. What 'cross-modal' plasticity tells us about cortical flexibility is debated. On the one hand, visual networks of blind people respond to higher cognitive information, such as sentence grammar, suggesting drastic repurposing. On the other, in line with 'metamodal' accounts, sighted and blind populations show shared domain preferences in ventral occipito-temporal cortex (vOTC), suggesting visual areas switch input modality but perform the same or similar perceptual functions (e.g., face recognition) in blindness. Here we bring these disparate literatures together, reviewing and synthesizing evidence that speaks to whether visual cortices have similar or different functions in blind and sighted people. Together, the evidence suggests that in blindness, visual cortices are incorporated into higher-cognitive (e.g., fronto-parietal) networks, which are a major source long-range input to the visual system. We propose the connectivity-constrained experience-dependent account. Functional development is constrained by innate anatomical connectivity, experience and behavioral needs. Infant cortex is pluripotent, the same anatomical constraints develop into different functional outcomes.
Collapse
Affiliation(s)
- Elizabeth J Saccone
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Mengyu Tian
- Center for Educational Science and Technology, Beijing Normal University at Zhuhai, China
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Moses E, Nelson N, Taubert J, Pegna AJ. Oxytocin differentially modulates the early neural responses to faces and non-social stimuli. Soc Cogn Affect Neurosci 2024; 19:nsae010. [PMID: 38372627 PMCID: PMC10876073 DOI: 10.1093/scan/nsae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/30/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024] Open
Abstract
Oxytocin (OT) alters social cognition partly through effects on the processing and appraisal of faces. It is debated whether the hormone also impacts the processing of other, non-social, visual stimuli. To this end, we conducted a randomized, counter-balanced, double-blind, placebo (PL)-controlled within-subjects' electro-encephalography (EEG) study with cismale participants (to control for gender dimorphic hormonal effects; n = 37). Participants received intranasal OT (24IU) and completed a one-back task viewing emotional (fearful/ happy) and neutral faces, and threat (snakes/spiders) and non-threat (mushrooms/flowers) non-social stimuli. OT differentially impacted event-related potentials (ERP)s to faces and non-social stimuli. For faces regardless of emotion, OT evoked greater occipital N1 and anterior P1 amplitudes at ∼155 ms than after PL, and lead to sustained differences over anterior, bilateral parietal and occipital sites from 205 ms onwards. For all non-social stimuli, OT evoked greater right parietal N1 amplitudes, and later only impacted threat stimuli over right parietal and occipital sites. None of these OT-induced modulations was related to individual anxiety levels. This pattern of results indicates that OT differentially modulates the processing of faces and non-social stimuli, and that the hormone's effect on visual processing and cognition does not occur as a function of non-clinical levels of anxiety.
Collapse
Affiliation(s)
- Eleanor Moses
- School of Psychology, The University of Queensland, Brisbane 4072, Australia
| | - Nicole Nelson
- School of Psychology, University of Adelaide, Adelaide 5000, Australia
| | - Jessica Taubert
- School of Psychology, The University of Queensland, Brisbane 4072, Australia
| | - Alan J Pegna
- School of Psychology, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
3
|
Pan T, Zheng Z, Li F, Wang J. Memory matching features bias the ensemble perception of facial identity. Front Psychol 2022; 13:1053358. [DOI: 10.3389/fpsyg.2022.1053358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
IntroductionHumans have the ability to efficiently extract summary statistics (i.e., mean) from a group of similar objects, referred to as ensemble coding. Recent studies have demonstrated that ensemble perception of simple objects is modulated by the visual working memory (VWM) task through matching features in VWM. However, few studies have examined the extending scope of such a matching feature effect and the influence of the organization mode (i.e., the way of combining memory matching features with ensemble properties) on this effect. Two experiments were done to explore these questions.MethodsWe used a dual-task paradigm for both experiments, which included a VWM task and a mean estimation task. Participants were required to adjust a test face to the mean identity face and report whether the irregular objects in a memory probe were identical or different to the studied objects. In Experiment 1, using identity faces as ensemble stimuli, we compared participants’ performances in trials where a subset color matched that of the studied objects to those of trials without color-matching subsets. In Experiment 2, we combined memory matching colors with ensemble properties in common region cues and compared the effect with that of Experiment 1.ResultsResults of Experiments 1 and 2 showed an effect of the VWM task on high-level ensemble perception that was similar to previous studies using a low-level averaging task. However, the combined analysis of Experiments 1 and 2 revealed that memory matching features had less influence on mean estimations when matching features and ensemble properties combined in the common region than when combined as parts of a complete unit.ConclusionThese findings suggest that the impact of memory matching features is not limited by the level of stimulus feature, but can be impacted by the organization between matching features and ensemble target properties.
Collapse
|
4
|
Li X, Zhu Q, Vanduffel W. Submillimeter fMRI reveals an extensive, fine-grained and functionally-relevant scene-processing network in monkeys. Prog Neurobiol 2022; 211:102230. [DOI: 10.1016/j.pneurobio.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
|
5
|
Cermeño-Aínsa S. The perception/cognition distincton: Challenging the representational account. Conscious Cogn 2021; 95:103216. [PMID: 34649065 DOI: 10.1016/j.concog.2021.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
A central goal for cognitive science and philosophy of mind is to distinguish between perception and cognition. The representational approach has emerged as a prominent candidate to draw such a distinction. The idea is that perception and cognition differ in the content and the format in which the information is represented -just as perceptual representations are nonconceptual in content and iconic in format, cognitive representations are conceptual in content and discursive in format. This paper argues against this view. I argue that both perception and cognition can use conceptual and nonconceptual contents and be vehiculated in iconic and discursive formats. If correct, the representational strategy to distinguish perception from cognition fails.
Collapse
Affiliation(s)
- Sergio Cermeño-Aínsa
- Autonomous University of Barcelona, Cognitive Science and Language (CCiL), Edifici B, Campus de la UAB, 08193 Bellaterra, (Cerdanyola del Vallès), Spain.
| |
Collapse
|
6
|
Chaisilprungraung T, Park S. "Scene" from inside: The representation of Observer's space in high-level visual cortex. Neuropsychologia 2021; 161:108010. [PMID: 34454940 DOI: 10.1016/j.neuropsychologia.2021.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Human observers are remarkably adept at perceiving and interacting with visual stimuli around them. Compared to visual stimuli like objects or faces, scenes are unique in that they provide enclosures for observers. An observer looks at a scene by being physically inside the scene. The current research explored this unique observer-scene relationship by studying the neural representation of scenes' spatial boundaries. Previous studies hypothesized that scenes' boundaries were processed in sets of high-level visual cortices. Notably, the parahippocampal place area (PPA), exhibited neural sensitivity to scenes that had closed vs. open spatial boundaries (Kravitz et al., 2011; Park et al., 2011). We asked whether this sensitivity reflected the openness of landscape (e.g., forest vs. beach), or the openness of the environment immediately surrounding the observer (i.e., whether a scene was viewed from inside vs. outside a room). Across two human fMRI experiments, we found that the PPA, as well as another well-known navigation-processing area, the occipital place area (OPA), processed scenes' boundaries according to the observer's space rather than the landscape. Moreover, we found that the PPA's activation pattern was susceptible to manipulations involving mid-level perceptual properties of scenes (e.g., rectilinear pattern of window frames), while the OPA's response was not. Our results have important implications for research in visual scene processing and suggest an important role of an observer's location in representing the spatial boundary, beyond the low-level visual input of a landscape.
Collapse
Affiliation(s)
| | - Soojin Park
- Department of Psychology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
7
|
Çelik E, Keles U, Kiremitçi İ, Gallant JL, Çukur T. Cortical networks of dynamic scene category representation in the human brain. Cortex 2021; 143:127-147. [PMID: 34411847 DOI: 10.1016/j.cortex.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Humans have an impressive ability to rapidly process global information in natural scenes to infer their category. Yet, it remains unclear whether and how scene categories observed dynamically in the natural world are represented in cerebral cortex beyond few canonical scene-selective areas. To address this question, here we examined the representation of dynamic visual scenes by recording whole-brain blood oxygenation level-dependent (BOLD) responses while subjects viewed natural movies. We fit voxelwise encoding models to estimate tuning for scene categories that reflect statistical ensembles of objects and actions in the natural world. We find that this scene-category model explains a significant portion of the response variance broadly across cerebral cortex. Cluster analysis of scene-category tuning profiles across cortex reveals nine spatially-segregated networks of brain regions consistently across subjects. These networks show heterogeneous tuning for a diverse set of dynamic scene categories related to navigation, human activity, social interaction, civilization, natural environment, non-human animals, motion-energy, and texture, suggesting that the organization of scene category representation is quite complex.
Collapse
Affiliation(s)
- Emin Çelik
- Neuroscience Program, Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.
| | - Umit Keles
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - İbrahim Kiremitçi
- Neuroscience Program, Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Jack L Gallant
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, CA, USA
| | - Tolga Çukur
- Neuroscience Program, Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| |
Collapse
|
8
|
Foster C, Bülthoff I, Bartels A, Zhao M. Investigating holistic face processing within and outside of face-responsive brain regions. Neuroimage 2020; 226:117565. [PMID: 33221444 DOI: 10.1016/j.neuroimage.2020.117565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/18/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022] Open
Abstract
It has been shown that human faces are processed holistically (i.e. as indecomposable wholes, rather than by their component parts) and this holistic face processing is linked to brain activity in face-responsive brain regions. Although several brain regions outside of the face-responsive network are also sensitive to relational processing and perceptual grouping, whether these non-face-responsive regions contribute to holistic processing remains unclear. Here, we investigated holistic face processing in the composite face paradigm both within and outside of face-responsive brain regions. We recorded participants' brain activity using fMRI while they performed a composite face task. Behavioural results indicate that participants tend to judge the same top face halves as different when they are aligned with different bottom face halves but not when they are misaligned, demonstrating a composite face effect. Neuroimaging results revealed significant differences in responses to aligned and misaligned faces in the lateral occipital complex (LOC), and trends in the anterior part of the fusiform face area (FFA2) and transverse occipital sulcus (TOS), suggesting that these regions are sensitive to holistic versus part-based face processing. Furthermore, the retrosplenial cortex (RSC) and the parahippocampal place area (PPA) showed a pattern of neural activity consistent with a holistic representation of face identity, which also correlated with the strength of the behavioural composite face effect. These results suggest that neural activity in brain regions both within and outside of the face-responsive network contributes to the composite-face effect.
Collapse
Affiliation(s)
- Celia Foster
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany.
| | | | - Andreas Bartels
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Centre for Integrative Neuroscience, Tübingen, Germany; Department of Psychology, University of Tübingen, Tübingen, Germany; Bernstein Center for Computational Neuroscience, Tübingen, Germany
| | - Mintao Zhao
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; School of Psychology, University of East Anglia, Norwich, UK.
| |
Collapse
|
9
|
Abstract
Humans are remarkably adept at perceiving and understanding complex real-world scenes. Uncovering the neural basis of this ability is an important goal of vision science. Neuroimaging studies have identified three cortical regions that respond selectively to scenes: parahippocampal place area, retrosplenial complex/medial place area, and occipital place area. Here, we review what is known about the visual and functional properties of these brain areas. Scene-selective regions exhibit retinotopic properties and sensitivity to low-level visual features that are characteristic of scenes. They also mediate higher-level representations of layout, objects, and surface properties that allow individual scenes to be recognized and their spatial structure ascertained. Challenges for the future include developing computational models of information processing in scene regions, investigating how these regions support scene perception under ecologically realistic conditions, and understanding how they operate in the context of larger brain networks.
Collapse
Affiliation(s)
- Russell A Epstein
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Chris I Baker
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
10
|
Dima DC, Perry G, Singh KD. Spatial frequency supports the emergence of categorical representations in visual cortex during natural scene perception. Neuroimage 2018; 179:102-116. [PMID: 29902586 PMCID: PMC6057270 DOI: 10.1016/j.neuroimage.2018.06.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/01/2018] [Accepted: 06/09/2018] [Indexed: 11/22/2022] Open
Abstract
In navigating our environment, we rapidly process and extract meaning from visual cues. However, the relationship between visual features and categorical representations in natural scene perception is still not well understood. Here, we used natural scene stimuli from different categories and filtered at different spatial frequencies to address this question in a passive viewing paradigm. Using representational similarity analysis (RSA) and cross-decoding of magnetoencephalography (MEG) data, we show that categorical representations emerge in human visual cortex at ∼180 ms and are linked to spatial frequency processing. Furthermore, dorsal and ventral stream areas reveal temporally and spatially overlapping representations of low and high-level layer activations extracted from a feedforward neural network. Our results suggest that neural patterns from extrastriate visual cortex switch from low-level to categorical representations within 200 ms, highlighting the rapid cascade of processing stages essential in human visual perception.
Collapse
Affiliation(s)
- Diana C Dima
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom.
| | - Gavin Perry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| |
Collapse
|
11
|
Kronbichler L, Stelzig-Schöler R, Pearce BG, Tschernegg M, Said-Yürekli S, Reich LA, Weber S, Aichhorn W, Kronbichler M. Schizophrenia and Category-Selectivity in the Brain: Normal for Faces but Abnormal for Houses. Front Psychiatry 2018; 9:47. [PMID: 29527179 PMCID: PMC5829027 DOI: 10.3389/fpsyt.2018.00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Face processing is regularly found to be impaired in schizophrenia (SZ), thus suggesting that social malfunctioning might be caused by dysfunctional face processing. Most studies focused on emotional face processes, whereas non-emotional face processing received less attention. While current reports on abnormal face processing in SZ are mixed, examinations of non-emotional face processing compared to adequate control stimuli may clarify whether SZ is characterized by a face-processing deficit. Patients with SZ (n = 28) and healthy controls (n = 30) engaged in an fMRI scan where images of non-emotional faces and houses were presented. A simple inverted-picture detection task warranted the participants' attention. Region of interest (ROI) analyses were conducted on face-sensitive regions including the fusiform face area, the occipital face area, and the superior temporal sulcus. Scene-sensitivity was assessed in the parahippocampal place area (PPA) and served as control condition. Patients did not show aberrant face-related neural processes in face-sensitive regions. This finding was also evident when analyses were done on individually defined ROIs or on in-house-localizer ROIs. Patients revealed a decreased specificity toward house stimuli as reflected in decreased neural response toward houses in the PPA. Again, this result was supported by supplementary analyses. Neural activation toward neutral faces was not found to be impaired in SZ, therefore speaking against an overall face-processing deficit. Aberrant activation in scene-sensitive PPA is also found in assessments of memory processes in SZ. It is up to future studies to show how impairments in PPA relate to functional outcome in SZ.
Collapse
Affiliation(s)
- Lisa Kronbichler
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria.,Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Renate Stelzig-Schöler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Brandy-Gale Pearce
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Melanie Tschernegg
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Sarah Said-Yürekli
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria.,Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Luise Antonia Reich
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Weber
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Aichhorn
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria.,Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
12
|
A surgical approach to the anatomo-functional structure of language. Neurochirurgie 2017; 63:122-128. [DOI: 10.1016/j.neuchi.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022]
|
13
|
Groen IIA, Silson EH, Baker CI. Contributions of low- and high-level properties to neural processing of visual scenes in the human brain. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0102. [PMID: 28044013 DOI: 10.1098/rstb.2016.0102] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2016] [Indexed: 11/12/2022] Open
Abstract
Visual scene analysis in humans has been characterized by the presence of regions in extrastriate cortex that are selectively responsive to scenes compared with objects or faces. While these regions have often been interpreted as representing high-level properties of scenes (e.g. category), they also exhibit substantial sensitivity to low-level (e.g. spatial frequency) and mid-level (e.g. spatial layout) properties, and it is unclear how these disparate findings can be united in a single framework. In this opinion piece, we suggest that this problem can be resolved by questioning the utility of the classical low- to high-level framework of visual perception for scene processing, and discuss why low- and mid-level properties may be particularly diagnostic for the behavioural goals specific to scene perception as compared to object recognition. In particular, we highlight the contributions of low-level vision to scene representation by reviewing (i) retinotopic biases and receptive field properties of scene-selective regions and (ii) the temporal dynamics of scene perception that demonstrate overlap of low- and mid-level feature representations with those of scene category. We discuss the relevance of these findings for scene perception and suggest a more expansive framework for visual scene analysis.This article is part of the themed issue 'Auditory and visual scene analysis'.
Collapse
Affiliation(s)
- Iris I A Groen
- Laboratory of Brain and Cognition, National Institutes of Health, 10 Center Drive 10-3N228, Bethesda, MD, USA
| | - Edward H Silson
- Laboratory of Brain and Cognition, National Institutes of Health, 10 Center Drive 10-3N228, Bethesda, MD, USA
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institutes of Health, 10 Center Drive 10-3N228, Bethesda, MD, USA
| |
Collapse
|