1
|
Cao L, Wang Z, Yuan Z, Luo Q. mFusion: a multiscale fusion method bridging neuroimages to genes through neurotransmissions in mental health disorders. Commun Biol 2024; 7:1699. [PMID: 39719509 DOI: 10.1038/s42003-024-07404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
Mental health disorders emerge from complex interactions among neurobiological processes across multiple scales, which poses challenges in uncovering pathological pathways from molecular dysfunction to neuroimaging changes. Here, we proposed a multiscale fusion (mFusion) method to evaluate the relevance of each gene to the neuroimaging traits of mental health disorders. We combined gene-neuroimaging associations with gene-positron emission tomography (PET) and PET-neuroimaging associations using protein-protein interaction networks, where various genes traced by PET maps are involved in neurotransmission. Compared with previous methods, the proposed algorithm identified more disease genes on both simulated and empirical data sets. Applying mFusion to eight mental health disorders, we found that these disorders formed three clusters with distinct associated genes. In summary, mFusion is a promising tool of prioritizing genes for mental health disorders by establishing gene-PET-neuroimaging pathways.
Collapse
Affiliation(s)
- Luolong Cao
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Zhenyi Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing, China
| | - Zhiyuan Yuan
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
- Shanghai Research Center of Acupuncture & Meridian, Shanghai, China.
- MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Kanel P, Koeppe RA, Kotagal V, Roytman S, Muller ML, Bohnen NI, Albin RL. Regional serotonin terminal density in aging human brain: A [ 11C]DASB PET study. AGING BRAIN 2023; 3:100071. [PMID: 37408789 PMCID: PMC10318302 DOI: 10.1016/j.nbas.2023.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 03/06/2023] Open
Abstract
There are conflicting results regarding regional age-related changes in serotonin terminal density in human brain. Some imaging studies suggest age-related declines in serotoninergic terminals and perikarya. Other human imaging studies and post-mortem biochemical studies suggest stable brain regional serotoninergic terminal densities across the adult lifespan. In this cross-sectional study, we used [11C]3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile positron emission tomography to quantify brain regional serotonin transporter density in 46 normal subjects, ranging from 25 to 84 years of age. Both voxel-based analyses, using sex as a covariate, and volume-of-interest-based analyses were performed. Both analyses revealed age-related declines in [11C]3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile binding in numerous brain regions, including several neocortical regions, striatum, amygdala, thalamus, dorsal raphe, and other subcortical regions. Similar to some other neurotransmitter systems of subcortical origin, we found evidence of age-related declines in regional serotonin terminal density in both cortical and subcortical regions.
Collapse
Affiliation(s)
- Prabesh Kanel
- University of Michigan Morris K. Udall Center for Excellence in Parkinson’s Disease Research, Ann Arbor, MI 48109, United States
- University of Michigan Parkinson’s Foundation Research Center of Excellence, Ann Arbor, MI 48109, United States
- Dept. of Radiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Robert A. Koeppe
- University of Michigan Morris K. Udall Center for Excellence in Parkinson’s Disease Research, Ann Arbor, MI 48109, United States
- Dept. of Radiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Vikas Kotagal
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI 48105, United States
- Dept. of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Stiven Roytman
- University of Michigan Morris K. Udall Center for Excellence in Parkinson’s Disease Research, Ann Arbor, MI 48109, United States
- Dept. of Radiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Martijn L.T.M. Muller
- University of Michigan Morris K. Udall Center for Excellence in Parkinson’s Disease Research, Ann Arbor, MI 48109, United States
- Dept. of Radiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Nicolaas I. Bohnen
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI 48105, United States
- Dept. of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
- University of Michigan Morris K. Udall Center for Excellence in Parkinson’s Disease Research, Ann Arbor, MI 48109, United States
- University of Michigan Parkinson’s Foundation Research Center of Excellence, Ann Arbor, MI 48109, United States
- Dept. of Radiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Roger L. Albin
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI 48105, United States
- Dept. of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
- University of Michigan Morris K. Udall Center for Excellence in Parkinson’s Disease Research, Ann Arbor, MI 48109, United States
- University of Michigan Parkinson’s Foundation Research Center of Excellence, Ann Arbor, MI 48109, United States
| |
Collapse
|
3
|
Smith GS, Kuwabara H, Yan H, Nassery N, Yoon M, Kamath V, Kraut M, Gould NF, Savonenko A, Coughlin JM, Lodge M, Pomper MG, Nandi A, Holt D, Dannals RF, Leoutsakos JM. Serotonin Degeneration and Amyloid-β Deposition in Mild Cognitive Impairment: Relationship to Cognitive Deficits. J Alzheimers Dis 2023; 96:215-227. [PMID: 37718818 DOI: 10.3233/jad-230570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Neuropathological and neuroimaging studies have demonstrated degeneration of the serotonin system in Alzheimer's disease (AD). Neuroimaging studies have extended these observations to the preclinical stages of AD, mild cognitive impairment (MCI). Serotonin degeneration has been observed also in transgenic amyloid mouse models, prior to widespread cortical distribution of amyloid-β (Aβ). OBJECTIVE The present study evaluated the regional distribution of the serotonin transporter (5-HTT) and of Aβ in individuals with MCI and healthy older controls, as well as the contribution of 5-HTT and Aβ to cognitive deficits. METHODS Forty-nine MCI participants and 45 healthy older controls underwent positron emission tomography (PET) imaging of 5-HTT and Aβ, structural magnetic resonance imaging and neuropsychological assessments. RESULTS Lower cortical, striatal, and limbic 5-HTT and higher cortical Aβ was observed in MCIs relative to healthy controls. Lower 5-HTT, mainly in limbic regions, was correlated with greater deficits in auditory-verbal and visual-spatial memory and semantic, not phonemic fluency. Higher cortical A β was associated with greater deficits in auditory-verbal and visual-spatial memory and in semantic, not phonemic fluency. When modeling the association between cognition, gray matter volumes and Aβ, inclusion of 5-HTT in limbic and in select cortical regions significantly improved model fit for auditory-verbal and visual-spatial memory and semantic, but not phonemic fluency. CONCLUSIONS These results support the role of serotonin degeneration in the memory and semantic fluency deficits observed in MCI.
Collapse
Affiliation(s)
- Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiroto Kuwabara
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haijuan Yan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Najlla Nassery
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Yoon
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vidya Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Kraut
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neda F Gould
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alena Savonenko
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin Lodge
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G Pomper
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ayon Nandi
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Holt
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Dannals
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeannie M Leoutsakos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
4
|
Fidalgo S, Yeoman MS. Age-Related Changes in Central Nervous System 5-Hydroxytryptamine Signalling and Its Potential Effects on the Regulation of Lifespan. Subcell Biochem 2023; 102:379-413. [PMID: 36600141 DOI: 10.1007/978-3-031-21410-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is an important neurotransmitter in the central nervous system and the periphery. Most 5-HT (~99%) is found in the periphery where it regulates the function of the gastrointestinal (GI) tract and is an important regulator of platelet aggregation. However, the remaining 1% that is found in the central nervous system (CNS) can regulate a range of physiological processes such as learning and memory formation, mood, food intake, sleep, temperature and pain perception. More recent work on the CNS of invertebrate model systems has shown that 5-HT can directly regulate lifespan.This chapter will focus on detailing how CNS 5-HT signalling is altered with increasing age and the potential consequences this has on its ability to regulate lifespan.
Collapse
Affiliation(s)
| | - Mark S Yeoman
- Centre for Stress and Age-Related Disease, School of Applied Sciences, University of Brighton, Brighton, United Kingdom.
| |
Collapse
|
5
|
Veldman ER, Varrone A, Varnäs K, Svedberg MM, Cselényi Z, Tiger M, Gulyás B, Halldin C, Lundberg J. Serotonin 1B receptor density mapping of the human brainstem using positron emission tomography and autoradiography. J Cereb Blood Flow Metab 2022; 42:630-641. [PMID: 34644198 PMCID: PMC8943614 DOI: 10.1177/0271678x211049185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The serotonin 1B (5-HT1B) receptor has lately received considerable interest in relation to psychiatric and neurological diseases, partly due to findings based on quantification using Positron Emission Tomography (PET). Although the brainstem is an important structure in this regard, PET radioligand binding quantification in brainstem areas often shows poor reliability. This study aims to improve PET quantification of 5-HT1B receptor binding in the brainstem.Volumes of interest (VOIs) were selected based on a 3D [3H]AZ10419369 Autoradiography brainstem model, which visualized 5-HT1B receptor distribution in high resolution. Two previously developed VOI delineation methods were tested and compared to a conventional manual method. For a method based on template data, a [11C]AZ10419369 PET template was created by averaging parametric binding potential (BPND) images of 52 healthy subjects. VOIs were generated based on a predefined volume and BPND thresholding and subsequently applied to test-retest [11C]AZ10419369 parametric BPND images of 8 healthy subjects. For a method based on individual subject data, VOIs were generated directly on each individual parametric image.Both methods showed improved reliability compared to a conventional manual VOI. The VOIs created with [11C]AZ10419369 template data can be automatically applied to future PET studies measuring 5-HT1B receptor binding in the brainstem.
Collapse
Affiliation(s)
- Emma R Veldman
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Marie M Svedberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| | - Zsolt Cselényi
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden
| | - Mikael Tiger
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Balázs Gulyás
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Johan Lundberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
6
|
Fazio P, Ferreira D, Svenningsson P, Halldin C, Farde L, Westman E, Varrone A. High-resolution PET imaging reveals subtle impairment of the serotonin transporter in an early non-depressed Parkinson's disease cohort. Eur J Nucl Med Mol Imaging 2020; 47:2407-2416. [PMID: 32020370 PMCID: PMC7396398 DOI: 10.1007/s00259-020-04683-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE The serotonin transporter (SERT) is a biochemical marker for monoaminergic signaling in brain and has been suggested to be involved inthe pathophysiology of Parkinson's disease (PD). The aim of this PET study was to examine SERT availability in relevant brain regions in early stages ofnon-depressed PD patients. METHODS In a cross-sectional study, 18 PD patients (13 M/5F, 64 ± 7 years, range 46-74 years, disease duration 2.9 ± 2.6 years; UPDRS motor 21.9 ± 5.2) and 20 age- and gender-matched healthy control (HC) subjects (15 M/5F, 61 ± 7 years, range 50-72 years) were included. In a subsequent longitudinal phase, ten of the PD patients (7 M/3F, UPDRS motor 20.6 ± 6.9) underwent a second PET measurement after 18-24 months. After a 3-T MRI acquisition, baseline PET measurements were performed with [11C]MADAM using a high-resolution research tomograph. The non-displaceablebinding potential (BPND) was chosen as the outcome measure and was estimated at voxel level on wavelet-aided parametric images, by using the Logan graphical analysis and the cerebellum as reference region. A molecular template was generated to visualize and define different subdivisions of the raphe nuclei in the brainstem. Subortical and cortical regions of interest were segmented using FreeSurfer. Univariate analyses and multivariate network analyses were performed on the PET data. RESULTS The univariate region-based analysis showed no differences in SERT levels when the PD patients were compared with the HC neither at baseline or after 2 years of follow-up. The multivariate network analysis also showed no differences at baseline. However, prominent changes in integration and segregation measures were observed at follow-up, indicating a disconnection of the cortical and subcortical regions from the three nuclei of the raphe. CONCLUSION We conclude that the serotoninergic system in PD patients seems to become involved with a network dysregulation as the disease progresses, suggesting a disturbed serotonergic signaling from raphe nuclei to target subcortical and cortical regions.
Collapse
Affiliation(s)
- Patrik Fazio
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, RegionStockholm, Karolinska University Hospital, SE-17176, R5:02, Visionsgatan 70A, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel Ferreira
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Christer Halldin
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, RegionStockholm, Karolinska University Hospital, SE-17176, R5:02, Visionsgatan 70A, Stockholm, Sweden
| | - Lars Farde
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, RegionStockholm, Karolinska University Hospital, SE-17176, R5:02, Visionsgatan 70A, Stockholm, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Andrea Varrone
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, RegionStockholm, Karolinska University Hospital, SE-17176, R5:02, Visionsgatan 70A, Stockholm, Sweden
| |
Collapse
|
7
|
Reduced serotonin receptors and transporters in normal aging adults: a meta-analysis of PET and SPECT imaging studies. Neurobiol Aging 2019; 80:1-10. [PMID: 31055162 DOI: 10.1016/j.neurobiolaging.2019.03.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 12/31/2022]
Abstract
Alterations in serotonin (5-HT) function have been hypothesized to underlie a range of physiological, emotional, and cognitive changes in older age. Here, we conducted a quantitative synthesis and comparison of the effects of age on 5-HT receptors and transporters from cross-sectional positron emission tomography and single-photon emission computed tomography imaging studies. Random-effects meta-analyses of 31 studies including 1087 healthy adults yielded large negative effects of age in 5-HT-2A receptors (largest in global cortex), moderate negative effects of age in 5-HT transporters (largest in thalamus), and small negative effects of age in 5-HT-1A receptors (largest in parietal cortex). Presynaptic 5-HT-1A autoreceptors in raphe/midbrain, however, were preserved across adulthood. Adult age differences were significantly larger in 5-HT-2A receptors compared with 5-HT-1A receptors. A meta-regression showed that 5-HT target, radionuclide, and publication year significantly moderated the age effects. The findings overall identify reduced serotonergic signal transmission in healthy aging. The evidence for the relative preservation of 5-HT-1A compared with 5-HT-2A receptors may partially explain psychological age differences, such as why older adults use more emotion-focused rather than problem-focused coping strategies.
Collapse
|
8
|
Varnäs K, Cselényi Z, Jucaite A, Halldin C, Svenningsson P, Farde L, Varrone A. PET imaging of [ 11C]PBR28 in Parkinson's disease patients does not indicate increased binding to TSPO despite reduced dopamine transporter binding. Eur J Nucl Med Mol Imaging 2018; 46:367-375. [PMID: 30270409 PMCID: PMC6333720 DOI: 10.1007/s00259-018-4161-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/07/2018] [Indexed: 11/29/2022]
Abstract
Purpose To examine the hypothesis that cerebral binding to the 18 kDa translocator protein (TSPO), a marker of microglia activation, is elevated in Parkinson’s disease (PD), and to assess the relationship between brain TSPO binding and dopaminergic pathology in PD. Methods The radioligand [11C]PBR28 was used for quantitative assessment of brain TSPO in 16 control subjects and 16 PD patients. To analyse the relationship between dopaminergic pathology and brain TSPO binding, PET studies of the dopamine transporter (DAT) were undertaken in PD patients using the DAT radioligand [18F]FE-PE2I. The total distribution volume of [11C]PBR28 was quantified in nigrostriatal regions, limbic cortices and thalamus, and the binding potential of [18F]FE-PE2I was quantified in nigrostriatal regions. Results Based on genotype analysis of the TSPO rs6971 polymorphism, 16 subjects (8 control subjects and 8 PD patients) were identified as high-affinity binders, and the remaining subjects were identified as mixed-affinity binders. A two-way ANOVA showed a strong main effect of TSPO genotype on the cerebral binding of [11C]PBR28, whereas no statistically significant main effect of diagnostic group, or a group by genotype interaction was found for any of the regions analysed. [18F]FE-PE2I PET studies in patients indicated a marked reduction in nigrostriatal binding to DAT. However, no correlations between the binding parameters were found for [11C]PBR28 and [18F]FE-PE2I. Conclusion The findings do not support the hypothesis of elevated cerebral TSPO binding or a relationship between TSPO binding and dopaminergic pathology in PD. Electronic supplementary material The online version of this article (10.1007/s00259-018-4161-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.
| | - Zsolt Cselényi
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Aurelija Jucaite
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Translational Neuropharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden
| |
Collapse
|
9
|
Pillai RLI, Zhang M, Yang J, Boldrini M, Mann JJ, Oquendo MA, Parsey RV, DeLorenzo C. Will imaging individual raphe nuclei in males with major depressive disorder enhance diagnostic sensitivity and specificity? Depress Anxiety 2018; 35:411-420. [PMID: 29365217 PMCID: PMC5934332 DOI: 10.1002/da.22721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/01/2017] [Accepted: 01/05/2018] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Positron emission tomography (PET) studies in major depressive disorder (MDD) have reported higher serotonin 1A (5-HT1A ) autoreceptor binding in the raphe. In males, the difference is so large that it can potentially be used as the first biological marker for MDD. However, the raphe includes several nuclei, which project to different regions of the brain and spinal cord and may be differentially involved in disease. We aimed to identify 5-HT1A differences in individual raphe nuclei using PET in order to determine whether use of subnuclei would provide greater sensitivity and specificity of diagnosing MDD. METHODS We identified individual nuclei using a hybrid set-level technique on an average [11 C]-WAY100635 PET image derived from 52 healthy volunteers (HV). We delineated three nuclei: dorsal raphe nucleus (DRN), median raphe nucleus (MRN), and raphe magnus (RMg). An atlas image of these nuclei was created and nonlinearly warped to each subject (through an associated MRI) in a separate sample of 41 males (25 HV, 16 MDD) who underwent [11 C]-WAY100635 PET. RESULTS 5-HT1A binding was elevated in DRN in MDD (P < .01), and was not different in the RMg and MRN between groups. Receiver operating characteristic (ROC) curves showed that combining DRN and MRN produces highest sensitivity (94%) and specificity (84%) to identify MDD. CONCLUSION In agreement with postmortem studies, we found higher 5-HT1A autoreceptor binding in MDD selectively in the DRN. 5-HT1A autoreceptor binding in the combined DRN and MRN is a better biomarker for MDD than in the raphe as a whole.
Collapse
Affiliation(s)
| | - Mengru Zhang
- Department of Applied Mathematics and Statistics, Columbia University, 630 W 168 St, New York, NY 10032
| | - Jie Yang
- Department of Family, Population, & Preventive Medicine, Columbia University, 630 W 168 St, New York, NY 10032
| | - Maura Boldrini
- Department of Psychiatry, Molecular Imaging and Neuropathology Division, University of Pennsylvania, 3525 Market Street, Philadelphia, PA 19104
| | - J. John Mann
- Department of Psychiatry, Molecular Imaging and Neuropathology Division, University of Pennsylvania, 3525 Market Street, Philadelphia, PA 19104
| | - Maria A. Oquendo
- Department of Psychiatry, University of Pennsylvania, 3525 Market Street, Philadelphia, PA 19104
| | - Ramin V. Parsey
- Department of Psychiatry, Stony Brook University, 101 Nicolls Rd, Stony Brook NY 11794
| | - Christine DeLorenzo
- Department of Psychiatry, Stony Brook University, 101 Nicolls Rd, Stony Brook NY 11794,Department of Psychiatry, Molecular Imaging and Neuropathology Division, University of Pennsylvania, 3525 Market Street, Philadelphia, PA 19104
| |
Collapse
|
10
|
Nigrostriatal dopamine transporter availability in early Parkinson's disease. Mov Disord 2018; 33:592-599. [DOI: 10.1002/mds.27316] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 11/07/2022] Open
|