1
|
Basile GA, Quartarone A, Cerasa A, Ielo A, Bonanno L, Bertino S, Rizzo G, Milardi D, Anastasi GP, Saranathan M, Cacciola A. Track-Weighted Dynamic Functional Connectivity Profiles and Topographic Organization of the Human Pulvinar. Hum Brain Mapp 2024; 45:e70062. [PMID: 39639553 PMCID: PMC11621236 DOI: 10.1002/hbm.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
The human pulvinar is considered a prototypical associative thalamic nucleus as it represents a key node in several cortico-subcortical networks. Through this extensive connectivity to widespread brain areas, it has been suggested that the pulvinar may play a central role in modulating cortical oscillatory dynamics of complex cognitive and executive functions. Additionally, derangements of pulvinar activity are involved in different neuropsychiatric conditions including Lewy-body disease, Alzheimer's disease, and schizophrenia. Anatomical investigations in nonhuman primates have demonstrated a topographical organization of cortico-pulvinar connectivity along its dorsoventral and rostrocaudal axes; this specific organization shows only partial overlap with the traditional subdivision into subnuclei (anterior, lateral, medial, and inferior) and is thought to coordinate information processing within specific brain networks. However, despite its relevance in mediating higher-order cognitive functions, such a structural and functional organization of the pulvinar in the human brain remains poorly understood. Track-weighted dynamic functional connectivity (tw-dFC) is a recently developed technique that combines structural and dynamic functional connectivity, allowing the identification of white matter pathways underlying the fluctuations observed in functional connectivity between brain regions over time. Herein, we applied a data-driven parcellation approach to reveal topographically organized connectivity clusters within the human pulvinar complex, in two large cohorts of healthy human subjects. Unsupervised clustering of tw-dFC time series within the pulvinar complex revealed dorsomedial, dorsolateral, ventral anterior, and ventral posterior connectivity clusters. Each of these clusters shows functional coupling to specific, widespread cortico-subcortical white matter brain networks. Altogether, our findings represent a relevant step towards a better understanding of pulvinar anatomy and function, and a detailed characterization of his role in healthy and pathological conditions.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
| | | | - Antonio Cerasa
- Institute of Bioimaging and Complex Biological Systems (IBSBC CNR)MilanItaly
| | - Augusto Ielo
- IRCCS Centro Neurolesi Bonino PulejoMessinaItaly
| | | | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
- Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
| | - Giuseppina Rizzo
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
- Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
| | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
| | - Manojkumar Saranathan
- Department of RadiologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
| |
Collapse
|
2
|
Casamitjana A, Iglesias JE. High-resolution atlasing and segmentation of the subcortex: Review and perspective on challenges and opportunities created by machine learning. Neuroimage 2022; 263:119616. [PMID: 36084858 PMCID: PMC11534291 DOI: 10.1016/j.neuroimage.2022.119616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
This paper reviews almost three decades of work on atlasing and segmentation methods for subcortical structures in human brain MRI. In writing this survey, we have three distinct aims. First, to document the evolution of digital subcortical atlases of the human brain, from the early MRI templates published in the nineties, to the complex multi-modal atlases at the subregion level that are available today. Second, to provide a detailed record of related efforts in the automated segmentation front, from earlier atlas-based methods to modern machine learning approaches. And third, to present a perspective on the future of high-resolution atlasing and segmentation of subcortical structures in in vivo human brain MRI, including open challenges and opportunities created by recent developments in machine learning.
Collapse
Affiliation(s)
- Adrià Casamitjana
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK.
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK; Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA
| |
Collapse
|
3
|
Sammartino F, Marsh R, Yeh FC, Sondergaard A, Changizi BK, Krishna V. Radiological identification of the globus pallidus motor subregion in Parkinson's disease. J Neurosurg 2022; 137:175-183. [PMID: 34740190 DOI: 10.3171/2021.7.jns21858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Globus pallidus (GP) lesioning improves motor symptoms of Parkinson's disease (PD) and is occasionally associated with nonmotor side effects. Although these variable clinical effects were shown to be site-specific within the GP, the motor and nonmotor subregions have not been distinguished radiologically in patients with PD. The GP was recently found to have a distinct radiological signature on diffusion MRI (dMRI), potentially related to its unique cellular content and organization (or tissue architecture). In this study, the authors hypothesize that the magnitude of water diffusivity, a surrogate for tissue architecture, will radiologically distinguish motor from nonmotor GP subregions in patients with PD. They also hypothesize that the therapeutic focused ultrasound pallidotomy lesions will preferentially overlap the motor subregion. METHODS Diffusion MRI from healthy subjects (n = 45, test-retest S1200 cohort) and PD patients (n = 33) was parcellated based on the magnitude of water diffusivity in the GP, as measured orientation distribution function (ODF). A clustering algorithm was used to identify GP parcels with distinct ODF magnitude. The individual parcels were used as seeds for tractography to distinguish motor from nonmotor subregions. The locations of focused ultrasound lesions relative to the GP parcels were also analyzed in 11 patients with PD. RESULTS Radiologically, three distinct parcels were identified within the GP in healthy controls and PD patients: posterior, central, and anterior. The posterior and central parcels comprised the motor subregion and the anterior parcel was classified as a nonmotor subregion based on their tractography connections. The focused ultrasound lesions preferentially overlapped with the motor subregion (posterior more than central). The hotspots for motor improvement were localized in the posterior GP parcel. CONCLUSIONS Using a data-driven approach of ODF-based parcellation, the authors radiologically distinguished GP motor subregions in patients with PD. This method can aid stereotactic targeting in patients with PD undergoing surgical treatments, especially focused ultrasound ablation.
Collapse
Affiliation(s)
| | | | - Fang-Cheng Yeh
- 2Department of Neurological Surgery, University of Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
4
|
Frey J, Cagle J, Johnson KA, Wong JK, Hilliard JD, Butson CR, Okun MS, de Hemptinne C. Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches. Front Neurol 2022; 13:825178. [PMID: 35356461 PMCID: PMC8959612 DOI: 10.3389/fneur.2022.825178] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) has advanced treatment options for a variety of neurologic and neuropsychiatric conditions. As the technology for DBS continues to progress, treatment efficacy will continue to improve and disease indications will expand. Hardware advances such as longer-lasting batteries will reduce the frequency of battery replacement and segmented leads will facilitate improvements in the effectiveness of stimulation and have the potential to minimize stimulation side effects. Targeting advances such as specialized imaging sequences and "connectomics" will facilitate improved accuracy for lead positioning and trajectory planning. Software advances such as closed-loop stimulation and remote programming will enable DBS to be a more personalized and accessible technology. The future of DBS continues to be promising and holds the potential to further improve quality of life. In this review we will address the past, present and future of DBS.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jackson Cagle
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kara A. Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Justin D. Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Christopher R. Butson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Coralie de Hemptinne
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Milardi D, Antonio Basile G, Faskowitz J, Bertino S, Quartarone A, Anastasi G, Bramanti A, Ciurleo R, Cacciola A. Effects of diffusion signal modeling and segmentation approaches on subthalamic nucleus parcellation. Neuroimage 2022; 250:118959. [PMID: 35122971 DOI: 10.1016/j.neuroimage.2022.118959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
The subthalamic nucleus (STN) is commonly used as a surgical target for deep brain stimulation in movement disorders such as Parkinson's Disease. Tractography-derived connectivity-based parcellation (CBP) has been recently proposed as a suitable tool for non-invasive in vivo identification and pre-operative targeting of specific functional territories within the human STN. However, a well-established, accurate and reproducible protocol for STN parcellation is still lacking. The present work aims at testing the effects of different tractography-based approaches for the reconstruction of STN functional territories. We reconstructed functional territories of the STN on the high-quality dataset of 100 unrelated healthy subjects and on the test-retest dataset of the Human Connectome Project (HCP) repository. Connectivity-based parcellation was performed with a hypothesis-driven approach according to cortico-subthalamic connectivity, after dividing cortical areas into three groups: associative, limbic and sensorimotor. Four parcellation pipelines were compared, combining different signal modeling techniques (single-fiber vs multi-fiber) and different parcellation approaches (winner takes all parcellation vs fiber density thresholding). We tested these procedures on STN regions of interest obtained from three different, commonly employed, subcortical atlases. We evaluated the pipelines both in terms of between-subject similarity, assessed on the cohort of 100 unrelated healthy subjects, and of within-subject similarity, using a second cohort of 44 subjects with available test-retest data. We found that each parcellation provides converging results in terms of location of the identified parcels, but with significative variations in size and shape. All pipelines obtained very high within-subject similarity, with tensor-based approaches outperforming multi-fiber pipelines. On the other hand, higher between-subject similarity was found with multi-fiber signal modeling techniques combined with fiber density thresholding. We suggest that a fine-tuning of tractography-based parcellation may lead to higher reproducibility and aid the development of an optimized surgical targeting protocol.
Collapse
Affiliation(s)
- Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Joshua Faskowitz
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giuseppe Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno"- University of Salerno, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| |
Collapse
|
6
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
7
|
Soares C, Reich MM, Costa F, Lange F, Roothans J, Reis C, Vaz R, Rosas MJ, Volkmann J. Predicting Outcome in a Cohort of Isolated and Combined Dystonia within Probabilistic Brain Mapping. Mov Disord Clin Pract 2021; 8:1234-1239. [PMID: 34761057 PMCID: PMC8564825 DOI: 10.1002/mdc3.13345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background Probabilistic brain mapping is a promising tool to estimate the expected benefit of pallidal deep brain stimulation (GPi‐DBS) in patients with isolated dystonia (IsoD). Objectives To investigate the role of probabilistic mapping in combined dystonia (ComD). Methods We rendered the pallidal atlas and the volume of tissue activated (VTA) for a cohort of patients with IsoD (n = 20) and ComD (n = 10) that underwent GPi‐DBS. The VTA was correlated with clinical improvement. Afterwards, each VTA was applied on the previously published probabilistic model (Reich et al., 2019). The correlation between predicted and observed clinical benefit was studied in a linear regression model. Results A good correlation between observed and predicted outcome was found for both patients with IsoD (n = 14) and ComD (n = 7) (r2 = 0.32; P < 0.05). In ComD, 42% of the variance in DBS response is explained by VTA‐based outcome map. Conclusion A probabilistic model would be helpful in clinical practice to circumvent unpredictable and less impressive motor results often found in ComD.
Collapse
Affiliation(s)
- Carolina Soares
- Neurology Department Centro Hospitalar Universitário de São João, EPE Porto Portugal.,Department of Clinic Neurosciences and Mental Health, Faculty of Medicine University of Porto Porto Portugal
| | - Martin M Reich
- Neurology Department Julius-Maximilians-University Würzburg Würzburg Germany
| | - Francisca Costa
- Department of Medical Imaging, Neuroradiology Unit, Centro Hospitalar Vila Nova de Gaia/Espinho Porto Portugal
| | - Florian Lange
- Neurology Department Julius-Maximilians-University Würzburg Würzburg Germany
| | - Jonas Roothans
- Neurology Department Julius-Maximilians-University Würzburg Würzburg Germany
| | - Carina Reis
- Neuroradiology Department Centro Hospitalar Universitário de São João Porto Portugal
| | - Rui Vaz
- Neurosurgery Department Centro Hospitalar Universitário de São João Porto Portugal.,Department of Clinic Neurosciences and Mental Health, Faculty of Medicine University of Porto Porto Portugal
| | - Maria José Rosas
- Neurology Department Centro Hospitalar Universitário de São João, EPE Porto Portugal
| | - Jens Volkmann
- Neurology Department Julius-Maximilians-University Würzburg Würzburg Germany
| |
Collapse
|
8
|
Bertino S, Basile GA, Bramanti A, Ciurleo R, Tisano A, Anastasi GP, Milardi D, Cacciola A. Ventral intermediate nucleus structural connectivity-derived segmentation: anatomical reliability and variability. Neuroimage 2021; 243:118519. [PMID: 34461233 DOI: 10.1016/j.neuroimage.2021.118519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/24/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
The Ventral intermediate nucleus (Vim) of thalamus is the most targeted structure for the treatment of drug-refractory tremors. Since methodological differences across existing studies are remarkable and no gold-standard pipeline is available, in this study, we tested different parcellation pipelines for tractography-derived putative Vim identification. Thalamic parcellation was performed on a high quality, multi-shell dataset and a downsampled, clinical-like dataset using two different diffusion signal modeling techniques and two different voxel classification criteria, thus implementing a total of four parcellation pipelines. The most reliable pipeline in terms of inter-subject variability has been picked and parcels putatively corresponding to motor thalamic nuclei have been selected by calculating similarity with a histology-based mask of Vim. Then, spatial relations with optimal stimulation points for the treatment of essential tremor have been quantified. Finally, effect of data quality and parcellation pipelines on a volumetric index of connectivity clusters has been assessed. We found that the pipeline characterized by higher-order signal modeling and threshold-based voxel classification criteria was the most reliable in terms of inter-subject variability regardless data quality. The maps putatively corresponding to Vim were those derived by precentral and dentate nucleus-thalamic connectivity. However, tractography-derived functional targets showed remarkable differences in shape and sizes when compared to a ground truth model based on histochemical staining on seriate sections of human brain. Thalamic voxels connected to contralateral dentate nucleus resulted to be the closest to literature-derived stimulation points for essential tremor but at the same time showing the most remarkable inter-subject variability. Finally, the volume of connectivity parcels resulted to be significantly influenced by data quality and parcellation pipelines. Hence, caution is warranted when performing thalamic connectivity-based segmentation for stereotactic targeting.
Collapse
Affiliation(s)
- Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | - Adriana Tisano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| |
Collapse
|
9
|
Basile GA, Bertino S, Bramanti A, Ciurleo R, Anastasi GP, Milardi D, Cacciola A. In Vivo Super-Resolution Track-Density Imaging for Thalamic Nuclei Identification. Cereb Cortex 2021; 31:5613-5636. [PMID: 34296740 DOI: 10.1093/cercor/bhab184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/12/2022] Open
Abstract
The development of novel techniques for the in vivo, non-invasive visualization and identification of thalamic nuclei has represented a major challenge for human neuroimaging research in the last decades. Thalamic nuclei have important implications in various key aspects of brain physiology and many of them show selective alterations in various neurologic and psychiatric disorders. In addition, both surgical stimulation and ablation of specific thalamic nuclei have been proven to be useful for the treatment of different neuropsychiatric diseases. The present work aimed at describing a novel protocol for histologically guided delineation of thalamic nuclei based on short-tracks track-density imaging (stTDI), which is an advanced imaging technique exploiting high angular resolution diffusion tractography to obtain super-resolved white matter maps. We demonstrated that this approach can identify up to 13 distinct thalamic nuclei bilaterally with very high inter-subject (ICC: 0.996, 95% CI: 0.993-0.998) and inter-rater (ICC:0.981; 95% CI:0.963-0.989) reliability, and that both subject-based and group-level thalamic parcellation show a fair share of similarity to a recent standard-space histological thalamic atlas. Finally, we showed that stTDI-derived thalamic maps can be successfully employed to study structural and functional connectivity of the thalamus and may have potential implications both for basic and translational research, as well as for presurgical planning purposes.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno", University of Salerno, 84084 Baronissi, Italy
| | - Rosella Ciurleo
- IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy
| | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| |
Collapse
|
10
|
Merola A, Singh J, Reeves K, Changizi B, Goetz S, Rossi L, Pallavaram S, Carcieri S, Harel N, Shaikhouni A, Sammartino F, Krishna V, Verhagen L, Dalm B. New Frontiers for Deep Brain Stimulation: Directionality, Sensing Technologies, Remote Programming, Robotic Stereotactic Assistance, Asleep Procedures, and Connectomics. Front Neurol 2021; 12:694747. [PMID: 34367055 PMCID: PMC8340024 DOI: 10.3389/fneur.2021.694747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few years, while expanding its clinical indications from movement disorders to epilepsy and psychiatry, the field of deep brain stimulation (DBS) has seen significant innovations. Hardware developments have introduced directional leads to stimulate specific brain targets and sensing electrodes to determine optimal settings via feedback from local field potentials. In addition, variable-frequency stimulation and asynchronous high-frequency pulse trains have introduced new programming paradigms to efficiently desynchronize pathological neural circuitry and regulate dysfunctional brain networks not responsive to conventional settings. Overall, these innovations have provided clinicians with more anatomically accurate programming and closed-looped feedback to identify optimal strategies for neuromodulation. Simultaneously, software developments have simplified programming algorithms, introduced platforms for DBS remote management via telemedicine, and tools for estimating the volume of tissue activated within and outside the DBS targets. Finally, the surgical accuracy has improved thanks to intraoperative magnetic resonance or computerized tomography guidance, network-based imaging for DBS planning and targeting, and robotic-assisted surgery for ultra-accurate, millimetric lead placement. These technological and imaging advances have collectively optimized DBS outcomes and allowed “asleep” DBS procedures. Still, the short- and long-term outcomes of different implantable devices, surgical techniques, and asleep vs. awake procedures remain to be clarified. This expert review summarizes and critically discusses these recent innovations and their potential impact on the DBS field.
Collapse
Affiliation(s)
- Aristide Merola
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jaysingh Singh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kevin Reeves
- Department of Psychiatry, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Barbara Changizi
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Steven Goetz
- Medtronic PLC Neuromodulation, Minneapolis, MN, United States
| | | | | | | | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ammar Shaikhouni
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Francesco Sammartino
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Leo Verhagen
- Movement Disorder Section, Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Brian Dalm
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
11
|
Au KLK, Wong JK, Tsuboi T, Eisinger RS, Moore K, Lemos Melo Lobo Jofili Lopes J, Holland MT, Holanda VM, Peng-Chen Z, Patterson A, Foote KD, Ramirez-Zamora A, Okun MS, Almeida L. Globus Pallidus Internus (GPi) Deep Brain Stimulation for Parkinson's Disease: Expert Review and Commentary. Neurol Ther 2021; 10:7-30. [PMID: 33140286 PMCID: PMC8140010 DOI: 10.1007/s40120-020-00220-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/08/2020] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION The globus pallidus internus (GPi) region has evolved as a potential target for deep brain stimulation (DBS) in Parkinson's disease (PD). DBS of the GPi (GPi DBS) is an established, safe and effective method for addressing many of the motor symptoms associated with advanced PD. It is important that clinicians fully understand this target when considering GPi DBS for individual patients. METHODS The literature on GPi DBS in PD has been comprehensively reviewed, including the anatomy, physiology and potential pitfalls that may be encountered during surgical targeting and post-operative management. Here, we review and address the implications of lead location on GPi DBS outcomes. Additionally, we provide a summary of randomized controlled clinical trials conducted on DBS in PD, together with expert commentary on potential applications of the GPi as target. Finally, we highlight future technologies that will likely impact GPi DBS, including closed-loop adaptive approaches (e.g. sensing-stimulating capabilities), advanced methods for image-based targeting and advances in DBS programming, including directional leads and pulse shaping. RESULTS There are important disease characteristics and factors to consider prior to selecting the GPi as the DBS target of PD surgery. Prior to and during implantation of the leads it is critical to consider the neuroanatomy, which can be defined through the combination of image-based targeting and intraoperative microelectrode recording strategies. There is an increasing body of literature on GPi DBS in patients with PD suggesting both short- and long-term benefits. Understanding the GPi target can be useful in choosing between the subthalamic (STN), GPi and ventralis intermedius nucleus as lead locations to address the motor symptoms and complications of PD. CONCLUSION GPi DBS can be effectively used in select cases of PD. As the ongoing DBS target debate continues (GPi vs. STN as DBS target), clinicians should keep in mind that GPi DBS has been shown to be an effective treatment strategy for a variety of symptoms, including bradykinesia, rigidity and tremor control. GPi DBS also has an important, direct anti-dyskinetic effect. GPi DBS is easier to program in the outpatient setting and will allow for more flexibility in medication adjustments (e.g. levodopa). Emerging technologies, including GPi closed-loop systems, advanced tractography-based targeting and enhanced programming strategies, will likely be future areas of GPi DBS expansion. We conclude that although the GPi as DBS target may not be appropriate for all PD patients, it has specific clinical advantages.
Collapse
Affiliation(s)
- Ka Loong Kelvin Au
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| | - Joshua K Wong
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Takashi Tsuboi
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Robert S Eisinger
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kathryn Moore
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | | | - Marshall T Holland
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Vanessa M Holanda
- Center of Neurology and Neurosurgery Associates (CENNA), Hospital Beneficência Portuguesa de São Paulo, São Paulo, Brazil
- Department of Neurosurgery, Mayo Clinic Jackonsville, Jacksonville, FL, USA
| | - Zhongxing Peng-Chen
- Facultad de Medicina Clínica Alemana, Hospital Padre Hurtado-Universidad del Desarrollo, Santiago, Chile
| | - Addie Patterson
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Leonardo Almeida
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Chari A, Budhdeo S, Sparks R, Barone DG, Marcus HJ, Pereira EAC, Tisdall MM. Brain-Machine Interfaces: The Role of the Neurosurgeon. World Neurosurg 2020; 146:140-147. [PMID: 33197630 DOI: 10.1016/j.wneu.2020.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Neurotechnology is set to expand rapidly in the coming years as technological innovations in hardware and software are translated to the clinical setting. Given our unique access to patients with neurologic disorders, expertise with which to guide appropriate treatments, and technical skills to implant brain-machine interfaces (BMIs), neurosurgeons have a key role to play in the progress of this field. We outline the current state and key challenges in this rapidly advancing field, including implant technology, implant recipients, implantation methodology, implant function, and ethical, regulatory, and economic considerations. Our key message is to encourage the neurosurgical community to proactively engage in collaborating with other health care professionals, engineers, scientists, ethicists, and regulators in tackling these issues. By doing so, we will equip ourselves with the skills and expertise to drive the field forward and avoid being mere technicians in an industry driven by those around us.
Collapse
Affiliation(s)
- Aswin Chari
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom.
| | - Sanjay Budhdeo
- Department for Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom; OwkinInc, New York, New York, USA
| | - Rachel Sparks
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Damiano G Barone
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Hani J Marcus
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom; Wellcome EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| | - Erlick A C Pereira
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, United Kingdom
| | - Martin M Tisdall
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
13
|
Bertino S, Basile GA, Anastasi G, Bramanti A, Fonti B, Cavallaro F, Bruschetta D, Milardi D, Cacciola A. Anatomical Characterization of the Human Structural Connectivity between the Pedunculopontine Nucleus and Globus Pallidus via Multi-Shell Multi-Tissue Tractography. ACTA ACUST UNITED AC 2020; 56:medicina56090452. [PMID: 32906651 PMCID: PMC7557768 DOI: 10.3390/medicina56090452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Background and objectives: The internal (GPi) and external segments (GPe) of the globus pallidus represent key nodes in the basal ganglia system. Connections to and from pallidal segments are topographically organized, delineating limbic, associative and sensorimotor territories. The topography of pallidal afferent and efferent connections with brainstem structures has been poorly investigated. In this study we sought to characterize in-vivo connections between the globus pallidus and the pedunculopontine nucleus (PPN) via diffusion tractography. Materials and Methods: We employed structural and diffusion data of 100 subjects from the Human Connectome Project repository in order to reconstruct the connections between the PPN and the globus pallidus, employing higher order tractography techniques. We assessed streamline count of the reconstructed bundles and investigated spatial relations between pallidal voxels connected to the PPN and pallidal limbic, associative and sensorimotor functional territories. Results: We successfully reconstructed pallidotegmental tracts for the GPi and GPe in all subjects. The number of streamlines connecting the PPN with the GPi was greater than the number of those joining it with the GPe. PPN maps within pallidal segments exhibited a distinctive spatial organization, being localized in the ventromedial portion of the GPi and in the ventral-anterior portion in the GPe. Regarding their spatial relations with tractography-derived maps of pallidal functional territories, the highest value of percentage overlap was noticed between PPN maps and the associative territory. Conclusions: We successfully reconstructed the anatomical course of the pallidotegmental pathways and comprehensively characterized their topographical arrangement within both pallidal segments. PPM maps were localized in the ventromedial aspect of the GPi, while they occupied the anterior pole and the most ventral portion of the GPe. A better understanding of the spatial and topographical arrangement of the pallidotegmental pathways may have pathophysiological and therapeutic implications in movement disorders.
Collapse
Affiliation(s)
- Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
- Correspondence: (S.B.); (A.C.); Tel.: +39-090-2217143 (S.B. & A.C.)
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
| | - Giuseppe Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
| | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (A.B.); (B.F.)
| | - Bartolo Fonti
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (A.B.); (B.F.)
| | - Filippo Cavallaro
- Physical Rehabilitation Medicine and Sport Medicine Unit, University Hospital Policlinico “G. Martino”, 98124 Messina, Italy; (F.C.); (D.B.)
| | - Daniele Bruschetta
- Physical Rehabilitation Medicine and Sport Medicine Unit, University Hospital Policlinico “G. Martino”, 98124 Messina, Italy; (F.C.); (D.B.)
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
- Physical Rehabilitation Medicine and Sport Medicine Unit, University Hospital Policlinico “G. Martino”, 98124 Messina, Italy; (F.C.); (D.B.)
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
- Correspondence: (S.B.); (A.C.); Tel.: +39-090-2217143 (S.B. & A.C.)
| |
Collapse
|
14
|
Bertino S, Basile GA, Bramanti A, Anastasi GP, Quartarone A, Milardi D, Cacciola A. Spatially coherent and topographically organized pathways of the human globus pallidus. Hum Brain Mapp 2020; 41:4641-4661. [PMID: 32757349 PMCID: PMC7555102 DOI: 10.1002/hbm.25147] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022] Open
Abstract
Internal and external segments of globus pallidus (GP) exert different functions in basal ganglia circuitry, despite their main connectional systems share the same topographical organization, delineating limbic, associative, and sensorimotor territories. The identification of internal GP sensorimotor territory has therapeutic implications in functional neurosurgery settings. This study is aimed at assessing the spatial coherence of striatopallidal, subthalamopallidal, and pallidothalamic pathways by using tractography‐derived connectivity‐based parcellation (CBP) on high quality diffusion MRI data of 100 unrelated healthy subjects from the Human Connectome Project. A two‐stage hypothesis‐driven CBP approach has been carried out on the internal and external GP. Dice coefficient between functionally homologous pairs of pallidal maps has been computed. In addition, reproducibility of parcellation according to different pathways of interest has been investigated, as well as spatial relations between connectivity maps and existing optimal stimulation points for dystonic patients. The spatial organization of connectivity clusters revealed anterior limbic, intermediate associative and posterior sensorimotor maps within both internal and external GP. Dice coefficients showed high degree of coherence between functionally similar maps derived from the different bundles of interest. Sensorimotor maps derived from the subthalamopallidal pathway resulted to be the nearest to known optimal pallidal stimulation sites for dystonic patients. Our findings suggest that functionally homologous afferent and efferent connections may share similar spatial territory within the GP and that subcortical pallidal connectional systems may have distinct implications in the treatment of movement disorders.
Collapse
Affiliation(s)
- Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
15
|
Xiao Y, Lau JC, Hemachandra D, Gilmore G, Khan AR, Peters TM. Image Guidance in Deep Brain Stimulation Surgery to Treat Parkinson's Disease: A Comprehensive Review. IEEE Trans Biomed Eng 2020; 68:1024-1033. [PMID: 32746050 DOI: 10.1109/tbme.2020.3006765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deep brain stimulation (DBS) is an effective therapy as an alternative to pharmaceutical treatments for Parkinson's disease (PD). Aside from factors such as instrumentation, treatment plans, and surgical protocols, the success of the procedure depends heavily on the accurate placement of the electrode within the optimal therapeutic targets while avoiding vital structures that can cause surgical complications and adverse neurologic effects. Although specific surgical techniques for DBS can vary, interventional guidance with medical imaging has greatly contributed to the development, outcomes, and safety of the procedure. With rapid development in novel imaging techniques, computational methods, and surgical navigation software, as well as growing insights into the disease and mechanism of action of DBS, modern image guidance is expected to further enhance the capacity and efficacy of the procedure in treating PD. This article surveys the state-of-the-art techniques in image-guided DBS surgery to treat PD, and discusses their benefits and drawbacks, as well as future directions on the topic.
Collapse
|
16
|
da Silva NM, Forsyth R, McEvoy A, Miserocchi A, de Tisi J, Vos SB, Winston GP, Duncan J, Wang Y, Taylor PN. Network reorganisation following anterior temporal lobe resection and relation with post-surgery seizure relapse: A longitudinal study. NEUROIMAGE-CLINICAL 2020; 27:102320. [PMID: 32623138 PMCID: PMC7334605 DOI: 10.1016/j.nicl.2020.102320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/12/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
Diffusion changes assessed at two time points following epilepsy surgery. Graph theory and connectometry revealed substantial longitudinal diffusion changes. Changes were found beyond the site of resection. Postoperative seizure freedom associated with longitudinal structural changes.
Objective To characterise temporal lobe epilepsy (TLE) surgery-induced changes in brain network properties, as measured using diffusion weighted MRI, and investigate their association with postoperative seizure-freedom. Methods For 48 patients who underwent anterior temporal lobe resection, diffusion weighted MRI was acquired pre-operatively, 3–4 months post-operatively (N = 48), and again 12 months post-operatively (N = 13). Data for 17 controls were also acquired over the same period. After registering all subjects to a common space, we performed two complementary analyses of the subjects’ quantitative anisotropy (QA) maps. 1) A connectometry analysis which is sensitive to changes in subsections of fasciculi. 2) A graph theory approach which integrates connectivity information across the wider brain network. Results We found significant postoperative alterations in QA in patients relative to controls measured over the same period. Reductions were primarily located in the uncinate fasciculus and inferior fronto-occipital fasciculus ipsilaterally for all patients. Larger reductions were associated with postoperative seizure-freedom in left TLE. Increased QA was mainly located in corona radiata and corticopontine tracts. Graph theoretic analysis revealed widespread increases in nodal betweenness centrality, which were not associated with patient outcomes. Conclusion Substantial alterations in QA occur in the months after epilepsy surgery, suggesting Wallerian degeneration and strengthening of specific white matter tracts. Greater reductions in QA were related to postoperative seizure freedom in left TLE.
Collapse
Affiliation(s)
- Nádia Moreira da Silva
- CNNP lab(1), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rob Forsyth
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew McEvoy
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Anna Miserocchi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Jane de Tisi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Sjoerd B Vos
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom; Centre for Medical Image Computing, University College London, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
| | - Gavin P Winston
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom; Department of Medicine, Division of Neurology, Queen's University, Kingston, Canada
| | - John Duncan
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
| | - Yujiang Wang
- CNNP lab(1), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Peter N Taylor
- CNNP lab(1), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|
17
|
Deep Brain Stimulation for Gilles de la Tourette Syndrome: Toward Limbic Targets. Brain Sci 2020; 10:brainsci10050301. [PMID: 32429219 PMCID: PMC7287742 DOI: 10.3390/brainsci10050301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a complex neurodevelopmental disorder characterized by tics and, frequently, psychiatric and behavioral comorbidities. Above all, obsessive compulsive disorder/behavior (OCD/OCB) influences the clinical picture and has a severe impact on quality of life, eventually more than the tics themselves. Deep brain stimulation (DBS) is an effective therapy in selected, refractory cases. Clinical response to DBS may vary according to the clinical picture, comorbidities, and to the anatomical target. This retrospective study compares the results obtained from DBS in the ventralis oralis/centromedian-parascicular nucleus of the thalamus (Voi-Cm/Pf) (41 patients) and antero-medial Globus Pallidus internus (am-GPi) (14 patients), evaluating clinical response over time by means of Yale Global Tic Severity Scale (YGTSS) and Yale–Brown Obsessive-Compulsive Scale (YBOCS) scores over a period of 48 months. A significant and stable improvement in the YGTSS and YBOCS has been obtained in both groups (p < 0.001). There was a significant difference in YBOCS improvement over time between the am-GPi group and the Voi-Cm/Pf group, indicating a better and faster control of OCD/OCB symptoms in the former group. The ratio of hardware removal was 23% and limited to 13 patients in the Voi-Cm/Pf group. These results confirm that DBS is an effective therapy in treating GTS and suggest that the am-GPi might be superior to Voi-Cm/Pf in alleviating comorbid OCD/OCB.
Collapse
|
18
|
Wong JK, Middlebrooks EH, Grewal SS, Almeida L, Hess CW, Okun MS. A Comprehensive Review of Brain Connectomics and Imaging to Improve Deep Brain Stimulation Outcomes. Mov Disord 2020; 35:741-751. [PMID: 32281147 DOI: 10.1002/mds.28045] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/01/2020] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
DBS is an effective neuromodulatory therapy that has been applied in various conditions, including PD, essential tremor, dystonia, Tourette syndrome, and other movement disorders. There have also been recent examples of applications in epilepsy, chronic pain, and neuropsychiatric conditions. Innovations in neuroimaging technology have been driving connectomics, an emerging whole-brain network approach to neuroscience. Two rising techniques are functional connectivity profiling and structural connectivity profiling. Functional connectivity profiling explores the operational relationships between multiple regions of the brain with respect to time and stimuli. Structural connectivity profiling approximates physical connections between different brain regions through reconstruction of axonal fibers. Through these techniques, complex relationships can be described in various disease states, such as PD, as well as in response to therapy, such as DBS. These advances have expanded our understanding of human brain function and have provided a partial in vivo glimpse into the underlying brain circuits underpinning movement and other disorders. This comprehensive review will highlight the contemporary concepts in brain connectivity as applied to DBS, as well as introduce emerging considerations in movement disorders. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joshua K Wong
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| | | | - Sanjeet S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| | - Christopher W Hess
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
19
|
Strafella AP. Imaging tools to map in vivo the human brain. Mov Disord 2020; 34:931-933. [PMID: 31322772 DOI: 10.1002/mds.27732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, University Health Network (UNH), University of Toronto, Ontario, Canada.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Ontario, Canada
| |
Collapse
|
20
|
Zittel S, Hidding U, Trumpfheller M, Baltzer VL, Gulberti A, Schaper M, Biermann M, Buhmann C, Engel AK, Gerloff C, Westphal M, Stadler J, Köppen JA, Pötter-Nerger M, Moll CKE, Hamel W. Pallidal lead placement in dystonia: leads of non-responders are contained within an anatomical range defined by responders. J Neurol 2020; 267:1663-1671. [PMID: 32067124 PMCID: PMC7293687 DOI: 10.1007/s00415-020-09753-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 01/10/2023]
Abstract
Background Deep brain stimulation (DBS) within the pallidum represents an effective and well-established treatment for isolated dystonia. However, clinical outcome after surgery may be variable with limited response in 10–25% of patients. The effect of lead location on clinical improvement is still under debate. Objective To identify stimulated brain regions associated with the most beneficial clinical outcome in dystonia patients. Methods 18 patients with cervical and generalized dystonia with chronic DBS of the internal pallidum were investigated. Patients were grouped according to their clinical improvement into responders, intermediate responders and non-responders. Magnetic resonance and computed tomography images were co-registered, and the volume of tissue activated (VTA) with respect to the pallidum of individual patients was analysed. Results VTAs in responders (n = 11), intermediate responders (n = 3) and non-responders (n = 4) intersected with the posterior internal (GPi) and external (GPe) pallidum and the subpallidal area. VTA heat maps showed an almost complete overlap of VTAs of responders, intermediate and non-responders. VTA coverage of the GPi was not higher in responders. In contrast, VTAs of intermediate and non-responders covered the GPi to a significantly larger extent in the left hemisphere (p < 0.01). Conclusions DBS of ventral parts of the posterior GPi, GPe and the adjacent subpallidal area containing pallidothalamic output projections resulted in favourable clinical effects. Of note, non-responders were also stimulated within the same area. This suggests that factors other than mere lead location (e.g., clinical phenotype, genetic background) have determined clinical outcome in the present cohort. Electronic supplementary material The online version of this article (10.1007/s00415-020-09753-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ute Hidding
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Alessandro Gulberti
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Schaper
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maxine Biermann
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Johannes A Köppen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Abstract
Deep brain stimulation is the most advanced and effective neuromodulation therapy for Parkinson disease, essential tremor, and generalized dystonia. This article discusses how imaging improves surgical techniques and outcomes and widens possibilities in translational neuroscience in Parkinson disease, essential tremor, generalized dystonia, and epilepsy. In movement disorders diffusion tensor imaging allows anatomic segment of cortical areas and different functional subregions within deep-seated targets to understand the side effects of stimulation and gain more data to describe the therapeutic mechanism of action. The introduction of visualization of white matter tracks increases the safety of neurosurgical techniques in functional neurosurgery and neuro-oncology.
Collapse
Affiliation(s)
- Lorand Eross
- Department of Functional Neurosurgery, Center of Neuromodulation, National Institute of Clinical Neurosciences, Amerikai út 57, Budapest 1145, Hungary.
| | - Jonathan Riley
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University Buffalo Medical, 955 Main Street, Buffalo, NY 14203, USA
| | - Elad I Levy
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University Buffalo, 955 Main Street, Buffalo, NY 14203, USA
| | - Kunal Vakharia
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University Buffalo, 955 Main Street, Buffalo, NY 14203, USA
| |
Collapse
|
22
|
Milardi D, Quartarone A, Bramanti A, Anastasi G, Bertino S, Basile GA, Buonasera P, Pilone G, Celeste G, Rizzo G, Bruschetta D, Cacciola A. The Cortico-Basal Ganglia-Cerebellar Network: Past, Present and Future Perspectives. Front Syst Neurosci 2019; 13:61. [PMID: 31736719 PMCID: PMC6831548 DOI: 10.3389/fnsys.2019.00061] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
Much of our present understanding of the function and operation of the basal ganglia rests on models of anatomical connectivity derived from tract-tracing approaches in rodents and primates. However, the last years have been characterized by promising step forwards in the in vivo investigation and comprehension of brain connectivity in humans. The aim of this review is to revise the current knowledge on basal ganglia circuits, highlighting similarities and differences across species, in order to widen the current perspective on the intricate model of the basal ganglia system. This will allow us to explore the implications of additional direct pathways running from cortex to basal ganglia and between basal ganglia and cerebellum recently described in animals and humans.
Collapse
Affiliation(s)
- Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Salvatore Bertino
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | - Giuseppe Celeste
- I.S.A.S.I.E. Caianello, National Research Council, Messina, Italy
| | - Giuseppina Rizzo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Daniele Bruschetta
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Clayden JD, Thomas DL, Kraskov A. Tractography-based parcellation does not provide strong evidence of anatomical organisation within the thalamus. Neuroimage 2019; 199:418-426. [PMID: 31185275 DOI: 10.1016/j.neuroimage.2019.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 11/18/2022] Open
Abstract
Connectivity-based parcellation of subcortical structures using diffusion tractography is now a common paradigm in neuroscience. These analyses often imply voxel-level specificity of connectivity, and the formation of compact, spatially coherent clusters is often taken as strong imaging-based evidence for anatomically distinct subnuclei in an individual. In this study, we demonstrate that internal structure in diffusion anisotropy is not necessary for a plausible parcellation to be obtained, by spatially permuting diffusion parameters within the thalami and repeating the parcellation. Moreover, we show that, in a winner-takes-all paradigm, most voxels receive the same label before and after this shuffling process-a finding that is stable across image acquisitions and tractography algorithms. We therefore suggest that such parcellations should be interpreted with caution.
Collapse
Affiliation(s)
- Jonathan D Clayden
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
| | - David L Thomas
- Neuroradiological Academic Unit, UCL Institute of Neurology, University College London, London, United Kingdom; Leonard Wolfson Experimental Neurology Centre, UCL Institute of Neurology, Queen Square, London, United Kingdom.
| | - Alexander Kraskov
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
24
|
Cacciola A, Milardi D, Bertino S, Basile GA, Calamuneri A, Chillemi G, Rizzo G, Anastasi G, Quartarone A. Structural connectivity-based topography of the human globus pallidus: Implications for therapeutic targeting in movement disorders. Mov Disord 2019; 34:987-996. [PMID: 31077436 DOI: 10.1002/mds.27712] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/31/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Understanding the topographical organization of the cortico-basal ganglia circuitry is of pivotal importance because of the spreading of techniques such as DBS and, more recently, MR-guided focused ultrasound for the treatment of movement disorders. A growing body of evidence has described both direct cortico- and dento-pallidal connections, although the topographical organization in vivo of these pathways in the human brain has never been reported. OBJECTIVE To investigate the topographical organization of cortico- and dento-pallidal pathways by means of diffusion MRI tractography and connectivity based parcellation. METHODS High-quality data from 100 healthy subjects from the Human Connectome Project repository were utilized. Constrained spherical deconvolution-based tractography was used to reconstruct structural cortico- and dento-pallidal connectivity. Connectivity-based parcellation was performed with a hypothesis-driven approach at three different levels: functional regions (limbic, associative, sensorimotor, and other), lobes, and gyral subareas. RESULTS External globus pallidus segregated into a ventral associative cluster, a dorsal sensorimotor cluster, and a caudal "other" cluster on the base of its cortical connectivity. Dento-pallidal connections clustered only in the internal globus pallidus, where also associative and sensorimotor clusters were identified. Lobar parcellation revealed the presence in the external globus pallidus of dissociable clusters for each cortical lobe (frontal, parietal, temporal, and occipital), whereas in internal globus pallidus only frontal and parietal clusters were found out. CONCLUSION We mapped the topographical organization of both internal and external globus pallidus according to cortical and cerebellar connections. These anatomical data could be useful in DBS, radiosurgery and MR-guided focused ultrasound targeting for treating motor and nonmotor symptoms in movement disorders. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Salvatore Bertino
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | - Giuseppina Rizzo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Horn A, Li N, Dembek TA, Kappel A, Boulay C, Ewert S, Tietze A, Husch A, Perera T, Neumann WJ, Reisert M, Si H, Oostenveld R, Rorden C, Yeh FC, Fang Q, Herrington TM, Vorwerk J, Kühn AA. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 2019; 184:293-316. [PMID: 30179717 PMCID: PMC6286150 DOI: 10.1016/j.neuroimage.2018.08.068] [Citation(s) in RCA: 503] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
Deep brain stimulation (DBS) is a highly efficacious treatment option for movement disorders and a growing number of other indications are investigated in clinical trials. To ensure optimal treatment outcome, exact electrode placement is required. Moreover, to analyze the relationship between electrode location and clinical results, a precise reconstruction of electrode placement is required, posing specific challenges to the field of neuroimaging. Since 2014 the open source toolbox Lead-DBS is available, which aims at facilitating this process. The tool has since become a popular platform for DBS imaging. With support of a broad community of researchers worldwide, methods have been continuously updated and complemented by new tools for tasks such as multispectral nonlinear registration, structural/functional connectivity analyses, brain shift correction, reconstruction of microelectrode recordings and orientation detection of segmented DBS leads. The rapid development and emergence of these methods in DBS data analysis require us to revisit and revise the pipelines introduced in the original methods publication. Here we demonstrate the updated DBS and connectome pipelines of Lead-DBS using a single patient example with state-of-the-art high-field imaging as well as a retrospective cohort of patients scanned in a typical clinical setting at 1.5T. Imaging data of the 3T example patient is co-registered using five algorithms and nonlinearly warped into template space using ten approaches for comparative purposes. After reconstruction of DBS electrodes (which is possible using three methods and a specific refinement tool), the volume of tissue activated is calculated for two DBS settings using four distinct models and various parameters. Finally, four whole-brain tractography algorithms are applied to the patient's preoperative diffusion MRI data and structural as well as functional connectivity between the stimulation volume and other brain areas are estimated using a total of eight approaches and datasets. In addition, we demonstrate impact of selected preprocessing strategies on the retrospective sample of 51 PD patients. We compare the amount of variance in clinical improvement that can be explained by the computer model depending on the preprocessing method of choice. This work represents a multi-institutional collaborative effort to develop a comprehensive, open source pipeline for DBS imaging and connectomics, which has already empowered several studies, and may facilitate a variety of future studies in the field.
Collapse
Affiliation(s)
- Andreas Horn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany.
| | - Ningfei Li
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Till A Dembek
- Department of Neurology, University Hospital of Cologne, Germany
| | - Ari Kappel
- Wayne State University, Department of Neurosurgery, Detroit, Michigan, USA
| | | | - Siobhan Ewert
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité - University Medicine Berlin, Germany
| | - Andreas Husch
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Interventional Neuroscience Group, Belvaux, Luxembourg
| | - Thushara Perera
- Bionics Institute, East Melbourne, Victoria, Australia; Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| | - Wolf-Julian Neumann
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany; Institute of Neuroradiology, Charité - University Medicine Berlin, Germany
| | - Marco Reisert
- Medical Physics, Department of Radiology, Faculty of Medicine, University Freiburg, Germany
| | - Hang Si
- Numerical Mathematics and Scientific Computing, Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Germany
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, NL, Netherlands; NatMEG, Karolinska Institutet, Stockholm, SE, Sweden
| | - Christopher Rorden
- McCausland Center for Brain Imaging, University of South Carolina, Columbia, SC, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh PA, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Vorwerk
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, USA
| | - Andrea A Kühn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| |
Collapse
|
26
|
Patriat R, Cooper SE, Duchin Y, Niederer J, Lenglet C, Aman J, Park MC, Vitek JL, Harel N. Individualized tractography-based parcellation of the globus pallidus pars interna using 7T MRI in movement disorder patients prior to DBS surgery. Neuroimage 2018; 178:198-209. [PMID: 29787868 PMCID: PMC6046264 DOI: 10.1016/j.neuroimage.2018.05.048] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/26/2018] [Accepted: 05/19/2018] [Indexed: 11/19/2022] Open
Abstract
The success of deep brain stimulation (DBS) surgeries for the treatment of movement disorders relies on the accurate placement of an electrode within the motor portion of subcortical brain targets. However, the high number of electrodes requiring relocation indicates that today's methods do not ensure sufficient accuracy for all patients. Here, with the goal of aiding DBS targeting, we use 7 Tesla (T) MRI data to identify the functional territories and parcellate the globus pallidus pars interna (GPi) into motor, associative and limbic regions in individual subjects. 7 T MRI scans were performed in seventeen patients (prior to DBS surgery) and one healthy control. Tractography-based parcellation of each patient's GPi was performed. The cortex was divided into four masks representing motor, limbic, associative and "other" regions. Given that no direct connections between the GPi and the cortex have been shown to exist, the parcellation was carried out in two steps: 1) The thalamus was parcellated based on the cortical targets, 2) The GPi was parcellated using the thalamus parcels derived from step 1. Reproducibility, via repeated scans of a healthy subject, and validity of the findings, using different anatomical pathways for parcellation, were assessed. Lastly, post-operative imaging data was used to validate and determine the clinical relevance of the parcellation. The organization of the functional territories of the GPi observed in our individual patient population agrees with that previously reported in the literature: the motor territory was located posterolaterally, followed anteriorly by the associative region, and further antero-ventrally by the limbic territory. While this organizational pattern was observed across patients, there was considerable variability among patients. The organization of the functional territories of the GPi was remarkably reproducible in intra-subject scans. Furthermore, the organizational pattern was observed consistently by performing the parcellation of the GPi via the thalamus and via a different pathway, going through the striatum. Finally, the active therapeutic contact of the DBS electrode, identified with a combination of post-operative imaging and post-surgery DBS programming, overlapped with the high-probability "motor" region of the GPi as defined by imaging-based methods. The consistency, validity, and clinical relevance of our findings have the potential for improving DBS targeting, by increasing patient-specific knowledge of subregions of the GPi to be targeted or avoided, at the stage of surgical planning, and later, at the stage when stimulation is adjusted.
Collapse
Affiliation(s)
- Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States.
| | - Scott E Cooper
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Yuval Duchin
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Jacob Niederer
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Aman
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Michael C Park
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States; Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
27
|
Muthuraman M, Koirala N, Ciolac D, Pintea B, Glaser M, Groppa S, Tamás G, Groppa S. Deep Brain Stimulation and L-DOPA Therapy: Concepts of Action and Clinical Applications in Parkinson's Disease. Front Neurol 2018; 9:711. [PMID: 30210436 PMCID: PMC6119713 DOI: 10.3389/fneur.2018.00711] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
L-DOPA is still the most effective pharmacological therapy for the treatment of motor symptoms in Parkinson's disease (PD) almost four decades after it was first used. Deep brain stimulation (DBS) is a safe and highly effective treatment option in patients with PD. Even though a clear understanding of the mechanisms of both treatment methods is yet to be obtained, the combination of both treatments is the most effective standard evidenced-based therapy to date. Recent studies have demonstrated that DBS is a therapy option even in the early course of the disease, when first complications arise despite a rigorous adjustment of the pharmacological treatment. The unique feature of this therapeutic approach is the ability to preferentially modulate specific brain networks through the choice of stimulation site. The clinical effects have been unequivocally confirmed in recent studies; however, the impact of DBS and the supplementary effect of L-DOPA on the neuronal network are not yet fully understood. In this review, we present emerging data on the presumable mechanisms of DBS in patients with PD and discuss the pathophysiological similarities and differences in the effects of DBS in comparison to dopaminergic medication. Targeted, selective modulation of brain networks by DBS and pharmacodynamic effects of L-DOPA therapy on the central nervous system are presented. Moreover, we outline the perioperative algorithms for PD patients before and directly after the implantation of DBS electrodes and strategies for the reduction of side effects and optimization of motor and non-motor symptoms.
Collapse
Affiliation(s)
- Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Nabin Koirala
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Dumitru Ciolac
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemiţanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Bogdan Pintea
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stanislav Groppa
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemiţanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
28
|
Middlebrooks EH, Tuna IS, Grewal SS, Almeida L, Heckman MG, Lesser ER, Foote KD, Okun MS, Holanda VM. Segmentation of the Globus Pallidus Internus Using Probabilistic Diffusion Tractography for Deep Brain Stimulation Targeting in Parkinson Disease. AJNR Am J Neuroradiol 2018; 39:1127-1134. [PMID: 29700048 DOI: 10.3174/ajnr.a5641] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/24/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Although globus pallidus internus deep brain stimulation is a widely accepted treatment for Parkinson disease, there is persistent variability in outcomes that is not yet fully understood. In this pilot study, we aimed to investigate the potential role of globus pallidus internus segmentation using probabilistic tractography as a supplement to traditional targeting methods. MATERIALS AND METHODS Eleven patients undergoing globus pallidus internus deep brain stimulation were included in this retrospective analysis. Using multidirection diffusion-weighted MR imaging, we performed probabilistic tractography at all individual globus pallidus internus voxels. Each globus pallidus internus voxel was then assigned to the 1 ROI with the greatest number of propagated paths. On the basis of deep brain stimulation programming settings, the volume of tissue activated was generated for each patient using a finite element method solution. For each patient, the volume of tissue activated within each of the 10 segmented globus pallidus internus regions was calculated and examined for association with a change in the Unified Parkinson Disease Rating Scale, Part III score before and after treatment. RESULTS Increasing volume of tissue activated was most strongly correlated with a change in the Unified Parkinson Disease Rating Scale, Part III score for the primary motor region (Spearman r = 0.74, P = .010), followed by the supplementary motor area/premotor cortex (Spearman r = 0.47, P = .15). CONCLUSIONS In this pilot study, we assessed a novel method of segmentation of the globus pallidus internus based on probabilistic tractography as a supplement to traditional targeting methods. Our results suggest that our method may be an independent predictor of deep brain stimulation outcome, and evaluation of a larger cohort or prospective study is warranted to validate these findings.
Collapse
Affiliation(s)
| | - I S Tuna
- Departments of Radiology (I.S.T.)
| | | | | | - M G Heckman
- Division of Biomedical Statistics and Informatics (M.G.H., E.R.L.), Mayo Clinic, Jacksonville, Florida
| | - E R Lesser
- Division of Biomedical Statistics and Informatics (M.G.H., E.R.L.), Mayo Clinic, Jacksonville, Florida
| | - K D Foote
- Neurosurgery (K.D.F.), University of Florida, Gainesville, Florida
| | | | - V M Holanda
- Center of Neurology and Neurosurgery Associates (V.M.H.), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Edwards CA, Kouzani A, Lee KH, Ross EK. Neurostimulation Devices for the Treatment of Neurologic Disorders. Mayo Clin Proc 2017; 92:1427-1444. [PMID: 28870357 DOI: 10.1016/j.mayocp.2017.05.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/16/2017] [Accepted: 05/01/2017] [Indexed: 12/01/2022]
Abstract
Rapid advancements in neurostimulation technologies are providing relief to an unprecedented number of patients affected by debilitating neurologic and psychiatric disorders. Neurostimulation therapies include invasive and noninvasive approaches that involve the application of electrical stimulation to drive neural function within a circuit. This review focuses on established invasive electrical stimulation systems used clinically to induce therapeutic neuromodulation of dysfunctional neural circuitry. These implantable neurostimulation systems target specific deep subcortical, cortical, spinal, cranial, and peripheral nerve structures to modulate neuronal activity, providing therapeutic effects for a myriad of neuropsychiatric disorders. Recent advances in neurotechnologies and neuroimaging, along with an increased understanding of neurocircuitry, are factors contributing to the rapid rise in the use of neurostimulation therapies to treat an increasingly wide range of neurologic and psychiatric disorders. Electrical stimulation technologies are evolving after remaining fairly stagnant for the past 30 years, moving toward potential closed-loop therapeutic control systems with the ability to deliver stimulation with higher spatial resolution to provide continuous customized neuromodulation for optimal clinical outcomes. Even so, there is still much to be learned about disease pathogenesis of these neurodegenerative and psychiatric disorders and the latent mechanisms of neurostimulation that provide therapeutic relief. This review provides an overview of the increasingly common stimulation systems, their clinical indications, and enabling technologies.
Collapse
Affiliation(s)
- Christine A Edwards
- School of Engineering, Deakin University, Geelong, Victoria, Australia; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Abbas Kouzani
- School of Engineering, Deakin University, Geelong, Victoria, Australia
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Surgery, Mayo Clinic, Rochester, MN.
| |
Collapse
|