1
|
Zhuang Q, Qiao L, Xu L, Yao S, Chen S, Zheng X, Li J, Fu M, Li K, Vatansever D, Ferraro S, Kendrick KM, Becker B. The right inferior frontal gyrus as pivotal node and effective regulator of the basal ganglia-thalamocortical response inhibition circuit. PSYCHORADIOLOGY 2023; 3:kkad016. [PMID: 38666118 PMCID: PMC10917375 DOI: 10.1093/psyrad/kkad016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 09/12/2023] [Indexed: 04/28/2024]
Abstract
Background The involvement of specific basal ganglia-thalamocortical circuits in response inhibition has been extensively mapped in animal models. However, the pivotal nodes and directed causal regulation within this inhibitory circuit in humans remains controversial. Objective The main aim of the present study was to determine the causal information flow and critical nodes in the basal ganglia-thalamocortical inhibitory circuits and also to examine whether these are modulated by biological factors (i.e. sex) and behavioral performance. Methods Here, we capitalize on the recent progress in robust and biologically plausible directed causal modeling (DCM-PEB) and a large response inhibition dataset (n = 250) acquired with concomitant functional magnetic resonance imaging to determine key nodes, their causal regulation and modulation via biological variables (sex) and inhibitory performance in the inhibitory circuit encompassing the right inferior frontal gyrus (rIFG), caudate nucleus (rCau), globus pallidum (rGP), and thalamus (rThal). Results The entire neural circuit exhibited high intrinsic connectivity and response inhibition critically increased causal projections from the rIFG to both rCau and rThal. Direct comparison further demonstrated that response inhibition induced an increasing rIFG inflow and increased the causal regulation of this region over the rCau and rThal. In addition, sex and performance influenced the functional architecture of the regulatory circuits such that women displayed increased rThal self-inhibition and decreased rThal to GP modulation, while better inhibitory performance was associated with stronger rThal to rIFG communication. Furthermore, control analyses did not reveal a similar key communication in a left lateralized model. Conclusions Together, these findings indicate a pivotal role of the rIFG as input and causal regulator of subcortical response inhibition nodes.
Collapse
Affiliation(s)
- Qian Zhuang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Lei Qiao
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Lei Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610068, China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Xiaoxiao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jialin Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Meina Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Keshuang Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Stefania Ferraro
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Department of Psychology, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
2
|
Jin J, Zeidman P, Friston KJ, Kotov R. Inferring Trajectories of Psychotic Disorders Using Dynamic Causal Modeling. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2023; 7:60-75. [PMID: 38774642 PMCID: PMC11104383 DOI: 10.5334/cpsy.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/27/2023] [Indexed: 05/24/2024]
Abstract
Introduction Illness course plays a crucial role in delineating psychiatric disorders. However, existing nosologies consider only its most basic features (e.g., symptom sequence, duration). We developed a Dynamic Causal Model (DCM) that characterizes course patterns more fully using dense timeseries data. This foundational study introduces the new modeling approach and evaluates its validity using empirical and simulated data. Methods A three-level DCM was constructed to model how latent dynamics produce symptoms of depression, mania, and psychosis. This model was fit to symptom scores of nine patients collected prospectively over four years, following first hospitalization. Simulated subjects based on these empirical data were used to evaluate model parameters at the subject-level. At the group-level, we tested the accuracy with which the DCM can estimate the latent course patterns using Parametric Empirical Bayes (PEB) and leave-one-out cross-validation. Results Analyses of empirical data showed that DCM accurately captured symptom trajectories for all nine subjects. Simulation results showed that parameters could be estimated accurately (correlations between generative and estimated parameters >= 0.76). Moreover, the model could distinguish different latent course patterns, with PEB correctly assigning simulated patients for eight of nine course patterns. When testing any pair of two specific course patterns using leave-one-out cross-validation, 30 out of 36 pairs showed a moderate or high out-of-samples correlation between the true group-membership and the estimated group-membership values. Conclusion DCM has been widely used in neuroscience to infer latent neuronal processes from neuroimaging data. Our findings highlight the potential of adopting this methodology for modeling symptom trajectories to explicate nosologic entities, temporal patterns that define them, and facilitate personalized treatment.
Collapse
Affiliation(s)
- Jingwen Jin
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Karl J. Friston
- Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Roman Kotov
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, USA
| |
Collapse
|
3
|
Xiang W, Karfoul A, Yang C, Shu H, Le Bouquin Jeannès R. Investigation of two neural mass models for DCM-based effective connectivity inference in temporal epilepsy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106840. [PMID: 35550455 DOI: 10.1016/j.cmpb.2022.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Recently, spectral Dynamic Causal Modelling (DCM) has been used increasingly to infer effective connectivity from epileptic intracranial electroencephalographic (iEEG) signals. In this context, the Physiology-Based Model (PBM), a neural mass model, is used as a generative model. However, previous studies have highlighted out the inability of PBM to properly describe iEEG signals with specific power spectral densities (PSDs). More precisely, PSDs that have multiple peaks around β and γ rhythms (i.e. spectral characteristics at seizure onset) are concerned. METHODS To cope with this limitation, an alternative neural mass model, called the complete PBM (cPBM), is investigated. The spectral DCM and two recent variants are used to evaluate the relevance of cPBM over PBM. RESULTS The study is conducted on both simulated signals and real epileptic iEEG recordings. Our results confirm that, compared to PBM, cPBM shows (i) more ability to model the desired PSDs and (ii) lower numerical complexity whatever the method. CONCLUSIONS Thanks to its intrinsic and extrinsic connectivity parameters as well as the input coming into the fast inhibitory subpopulation, the cPBM provides a more expressive model of PSDs, leading to a better understanding of epileptic patterns and DCM-based effective connectivity inference.
Collapse
Affiliation(s)
- Wentao Xiang
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China; Univ Rennes, Inserm, LTSI, UMR 1099, Rennes F-35000, France; Univ Rennes, Inserm, SEU, LIA - Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Rennes F-35000, France
| | - Ahmad Karfoul
- Univ Rennes, Inserm, LTSI, UMR 1099, Rennes F-35000, France; Univ Rennes, Inserm, SEU, LIA - Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Rennes F-35000, France
| | - Chunfeng Yang
- Univ Rennes, Inserm, SEU, LIA - Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Rennes F-35000, France; Laboratory of Image Science and Technology (LIST), School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
| | - Huazhong Shu
- Univ Rennes, Inserm, SEU, LIA - Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Rennes F-35000, France; Laboratory of Image Science and Technology (LIST), School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
| | - Régine Le Bouquin Jeannès
- Univ Rennes, Inserm, LTSI, UMR 1099, Rennes F-35000, France; Univ Rennes, Inserm, SEU, LIA - Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Rennes F-35000, France.
| |
Collapse
|
4
|
Frässle S, Stephan KE. Test-retest reliability of regression dynamic causal modeling. Netw Neurosci 2022; 6:135-160. [PMID: 35356192 PMCID: PMC8959103 DOI: 10.1162/netn_a_00215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/08/2021] [Indexed: 11/04/2022] Open
Abstract
Abstract
Regression dynamic causal modeling (rDCM) is a novel and computationally highly efficient method for inferring effective connectivity at the whole-brain level. While face and construct validity of rDCM have already been demonstrated, here we assessed its test-retest reliability—a test-theoretical property of particular importance for clinical applications—together with group-level consistency of connection-specific estimates and consistency of whole-brain connectivity patterns over sessions. Using the Human Connectome Project dataset for eight different paradigms (tasks and rest) and two different parcellation schemes, we found that rDCM provided highly consistent connectivity estimates at the group level across sessions. Second, while test-retest reliability was limited when averaging over all connections (range of mean intraclass correlation coefficient 0.24–0.42 over tasks), reliability increased with connection strength, with stronger connections showing good to excellent test-retest reliability. Third, whole-brain connectivity patterns by rDCM allowed for identifying individual participants with high (and in some cases perfect) accuracy. Comparing the test-retest reliability of rDCM connectivity estimates with measures of functional connectivity, rDCM performed favorably—particularly when focusing on strong connections. Generally, for all methods and metrics, task-based connectivity estimates showed greater reliability than those from the resting state. Our results underscore the potential of rDCM for human connectomics and clinical applications.
Collapse
Affiliation(s)
- Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Klaas E. Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Max Planck Institute for Metabolism Research, Cologne, Germany
| |
Collapse
|
5
|
Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis. Commun Biol 2021; 4:1106. [PMID: 34545200 PMCID: PMC8452639 DOI: 10.1038/s42003-021-02635-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Seizures are a prominent feature in N-Methyl-D-Aspartate receptor antibody (NMDAR antibody) encephalitis, a distinct neuro-immunological disorder in which specific human autoantibodies bind and crosslink the surface of NMDAR proteins thereby causing internalization and a state of NMDAR hypofunction. To further understand ictogenesis in this disorder, and to test a potential treatment compound, we developed an NMDAR antibody mediated rat seizure model that displays spontaneous epileptiform activity in vivo and in vitro. Using a combination of electrophysiological and dynamic causal modelling techniques we show that, contrary to expectation, reduction of synaptic excitatory, but not inhibitory, neurotransmission underlies the ictal events through alterations in the dynamical behaviour of microcircuits in brain tissue. Moreover, in vitro application of a neurosteroid, pregnenolone sulphate, that upregulates NMDARs, reduced established ictal activity. This proof-of-concept study highlights the complexity of circuit disturbances that may lead to seizures and the potential use of receptor-specific treatments in antibody-mediated seizures and epilepsy.
Collapse
|
6
|
Jafarian A, Zeidman P, Wykes RC, Walker M, Friston KJ. Adiabatic dynamic causal modelling. Neuroimage 2021; 238:118243. [PMID: 34116151 PMCID: PMC8350149 DOI: 10.1016/j.neuroimage.2021.118243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/07/2023] Open
Abstract
This technical note introduces adiabatic dynamic causal modelling, a method for inferring slow changes in biophysical parameters that control fluctuations of fast neuronal states. The application domain we have in mind is inferring slow changes in variables (e.g., extracellular ion concentrations or synaptic efficacy) that underlie phase transitions in brain activity (e.g., paroxysmal seizure activity). The scheme is efficient and yet retains a biophysical interpretation, in virtue of being based on established neural mass models that are equipped with a slow dynamic on the parameters (such as synaptic rate constants or effective connectivity). In brief, we use an adiabatic approximation to summarise fast fluctuations in hidden neuronal states (and their expression in sensors) in terms of their second order statistics; namely, their complex cross spectra. This allows one to specify and compare models of slowly changing parameters (using Bayesian model reduction) that generate a sequence of empirical cross spectra of electrophysiological recordings. Crucially, we use the slow fluctuations in the spectral power of neuronal activity as empirical priors on changes in synaptic parameters. This introduces a circular causality, in which synaptic parameters underwrite fast neuronal activity that, in turn, induces activity-dependent plasticity in synaptic parameters. In this foundational paper, we describe the underlying model, establish its face validity using simulations and provide an illustrative application to a chemoconvulsant animal model of seizure activity.
Collapse
Affiliation(s)
- Amirhossein Jafarian
- Cambridge Centre for Frontotemporal Dementia and Related Disorders, Department of Clinical Neurosciences, University of Cambridge, UK; The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, UK.
| | - Peter Zeidman
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, UK
| | - Rob C Wykes
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, UK; Nanomedicine Lab, University of Manchester, UK
| | - Matthew Walker
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, UK
| | - Karl J Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, UK
| |
Collapse
|
7
|
Sip V, Hashemi M, Vattikonda AN, Woodman MM, Wang H, Scholly J, Medina Villalon S, Guye M, Bartolomei F, Jirsa VK. Data-driven method to infer the seizure propagation patterns in an epileptic brain from intracranial electroencephalography. PLoS Comput Biol 2021; 17:e1008689. [PMID: 33596194 PMCID: PMC7920393 DOI: 10.1371/journal.pcbi.1008689] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/01/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Surgical interventions in epileptic patients aimed at the removal of the epileptogenic zone have success rates at only 60-70%. This failure can be partly attributed to the insufficient spatial sampling by the implanted intracranial electrodes during the clinical evaluation, leading to an incomplete picture of spatio-temporal seizure organization in the regions that are not directly observed. Utilizing the partial observations of the seizure spreading through the brain network, complemented by the assumption that the epileptic seizures spread along the structural connections, we infer if and when are the unobserved regions recruited in the seizure. To this end we introduce a data-driven model of seizure recruitment and propagation across a weighted network, which we invert using the Bayesian inference framework. Using a leave-one-out cross-validation scheme on a cohort of 45 patients we demonstrate that the method can improve the predictions of the states of the unobserved regions compared to an empirical estimate that does not use the structural information, yet it is on the same level as the estimate that takes the structure into account. Furthermore, a comparison with the performed surgical resection and the surgery outcome indicates a link between the inferred excitable regions and the actual epileptogenic zone. The results emphasize the importance of the structural connectome in the large-scale spatio-temporal organization of epileptic seizures and introduce a novel way to integrate the patient-specific connectome and intracranial seizure recordings in a whole-brain computational model of seizure spread.
Collapse
Affiliation(s)
- Viktor Sip
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Meysam Hashemi
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | | | - Huifang Wang
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Julia Scholly
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, CEMEREM, Pôle d’Imagerie Médicale, CHU, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, CHU, Marseille, France
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, CHU, Marseille, France
| | - Maxime Guye
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, CEMEREM, Pôle d’Imagerie Médicale, CHU, Marseille, France
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, CHU, Marseille, France
| | - Viktor K. Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
8
|
Burrows DRW, Samarut É, Liu J, Baraban SC, Richardson MP, Meyer MP, Rosch RE. Imaging epilepsy in larval zebrafish. Eur J Paediatr Neurol 2020; 24:70-80. [PMID: 31982307 PMCID: PMC7035958 DOI: 10.1016/j.ejpn.2020.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
Our understanding of the genetic aetiology of paediatric epilepsies has grown substantially over the last decade. However, in order to translate improved diagnostics to personalised treatments, there is an urgent need to link molecular pathophysiology in epilepsy to whole-brain dynamics in seizures. Zebrafish have emerged as a promising new animal model for epileptic seizure disorders, with particular relevance for genetic and developmental epilepsies. As a novel model organism for epilepsy research they combine key advantages: the small size of larval zebrafish allows high throughput in vivo experiments; the availability of advanced genetic tools allows targeted modification to model specific human genetic disorders (including genetic epilepsies) in a vertebrate system; and optical access to the entire central nervous system has provided the basis for advanced microscopy technologies to image structure and function in the intact larval zebrafish brain. There is a growing body of literature describing and characterising features of epileptic seizures and epilepsy in larval zebrafish. Recently genetically encoded calcium indicators have been used to investigate the neurobiological basis of these seizures with light microscopy. This approach offers a unique window into the multiscale dynamics of epileptic seizures, capturing both whole-brain dynamics and single-cell behaviour concurrently. At the same time, linking observations made using calcium imaging in the larval zebrafish brain back to an understanding of epileptic seizures largely derived from cortical electrophysiological recordings in human patients and mammalian animal models is non-trivial. In this review we briefly illustrate the state of the art of epilepsy research in zebrafish with particular focus on calcium imaging of epileptic seizures in the larval zebrafish. We illustrate the utility of a dynamic systems perspective on the epileptic brain for providing a principled approach to linking observations across species and identifying those features of brain dynamics that are most relevant to epilepsy. In the following section we survey the literature for imaging features associated with epilepsy and epileptic seizures and link these to observations made from humans and other more traditional animal models. We conclude by identifying the key challenges still facing epilepsy research in the larval zebrafish and indicate strategies for future research to address these and integrate more directly with the themes and questions that emerge from investigating epilepsy in other model systems and human patients.
Collapse
Affiliation(s)
- D R W Burrows
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - É Samarut
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - J Liu
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - S C Baraban
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - M P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M P Meyer
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R E Rosch
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
9
|
Jafarian A, Zeidman P, Litvak V, Friston K. Structure learning in coupled dynamical systems and dynamic causal modelling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190048. [PMID: 31656140 PMCID: PMC6833995 DOI: 10.1098/rsta.2019.0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 05/03/2023]
Abstract
Identifying a coupled dynamical system out of many plausible candidates, each of which could serve as the underlying generator of some observed measurements, is a profoundly ill-posed problem that commonly arises when modelling real-world phenomena. In this review, we detail a set of statistical procedures for inferring the structure of nonlinear coupled dynamical systems (structure learning), which has proved useful in neuroscience research. A key focus here is the comparison of competing models of network architectures-and implicit coupling functions-in terms of their Bayesian model evidence. These methods are collectively referred to as dynamic causal modelling. We focus on a relatively new approach that is proving remarkably useful, namely Bayesian model reduction, which enables rapid evaluation and comparison of models that differ in their network architecture. We illustrate the usefulness of these techniques through modelling neurovascular coupling (cellular pathways linking neuronal and vascular systems), whose function is an active focus of research in neurobiology and the imaging of coupled neuronal systems. This article is part of the theme issue 'Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences'.
Collapse
Affiliation(s)
- Amirhossein Jafarian
- The Wellcome Centre for Human Neuroimaging, Institute of Neurology, 12 Queen Square, London WC1N 3AR, UK
| | | | | | | |
Collapse
|
10
|
Zarghami TS, Friston KJ. Dynamic effective connectivity. Neuroimage 2019; 207:116453. [PMID: 31821868 DOI: 10.1016/j.neuroimage.2019.116453] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/29/2019] [Accepted: 12/06/2019] [Indexed: 01/17/2023] Open
Abstract
Metastability is a key source of itinerant dynamics in the brain; namely, spontaneous spatiotemporal reorganization of neuronal activity. This itinerancy has been the focus of numerous dynamic functional connectivity (DFC) analyses - developed to characterize the formation and dissolution of distributed functional patterns over time, using resting state fMRI. However, aside from technical and practical controversies, these approaches cannot recover the neuronal mechanisms that underwrite itinerant (e.g., metastable) dynamics-due to their descriptive, model-free nature. We argue that effective connectivity (EC) analyses are more apt for investigating the neuronal basis of metastability. To this end, we appeal to biologically-grounded models (i.e., dynamic causal modelling, DCM) and dynamical systems theory (i.e., heteroclinic sequential dynamics) to create a probabilistic, generative model of haemodynamic fluctuations. This model generates trajectories in the parametric space of EC modes (i.e., states of connectivity) that characterize functional brain architectures. In brief, it extends an established spectral DCM, to generate functional connectivity data features that change over time. This foundational paper tries to establish the model's face validity by simulating non-stationary fMRI time series and recovering key model parameters (i.e., transition probabilities among connectivity states and the parametric nature of these states) using variational Bayes. These data are further characterized using Bayesian model comparison (within and between subjects). Finally, we consider practical issues that attend applications and extensions of this scheme. Importantly, the scheme operates within a generic Bayesian framework - that can be adapted to study metastability and itinerant dynamics in any non-stationary time series.
Collapse
Affiliation(s)
- Tahereh S Zarghami
- Bio-Electric Department, School of Electrical and Computer Engineering, University of Tehran, Amirabad, Tehran, Iran.
| | - Karl J Friston
- The Wellcome Centre for Human Neuroimaging, University College London, Queen Square, London, WC1N 3AR, UK.
| |
Collapse
|
11
|
Zeidman P, Jafarian A, Corbin N, Seghier ML, Razi A, Price CJ, Friston KJ. A guide to group effective connectivity analysis, part 1: First level analysis with DCM for fMRI. Neuroimage 2019; 200:174-190. [PMID: 31226497 PMCID: PMC6711459 DOI: 10.1016/j.neuroimage.2019.06.031] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/13/2019] [Accepted: 06/16/2019] [Indexed: 12/05/2022] Open
Abstract
Dynamic Causal Modelling (DCM) is the predominant method for inferring effective connectivity from neuroimaging data. In the 15 years since its introduction, the neural models and statistical routines in DCM have developed in parallel, driven by the needs of researchers in cognitive and clinical neuroscience. In this guide, we step through an exemplar fMRI analysis in detail, reviewing the current implementation of DCM and demonstrating recent developments in group-level connectivity analysis. In the appendices, we detail the theory underlying DCM and the assumptions (i.e., priors) in the models. In the first part of the guide (current paper), we focus on issues specific to DCM for fMRI. This is accompanied by all the necessary data and instructions to reproduce the analyses using the SPM software. In the second part (in a companion paper), we move from subject-level to group-level modelling using the Parametric Empirical Bayes framework, and illustrate how to test for commonalities and differences in effective connectivity across subjects, based on imaging data from any modality. This guide walks through a group effective connectivity study using DCM and PEB. Part 1, presented here, covers first level analysis using DCM for fMRI. It clarifies the specific neural and haemodynamic models in DCM and their priors. An accompanying dataset is provided with step-by-step analysis instructions.
Collapse
Affiliation(s)
- Peter Zeidman
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London, WC1N 3AR, UK.
| | | | - Nadège Corbin
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London, WC1N 3AR, UK
| | | | - Adeel Razi
- Monash Institute of Cognitive & Clinical Neuroscience, Monash Biomedical Imaging, 18 Innovation Walk, Monash University, Clayton, VIC, 3800, Australia; Wellcome Centre for Human Neuroimaging, 12 Queen Square, London, WC1N 3AR, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London, WC1N 3AR, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London, WC1N 3AR, UK
| |
Collapse
|
12
|
Zeidman P, Jafarian A, Seghier ML, Litvak V, Cagnan H, Price CJ, Friston KJ. A guide to group effective connectivity analysis, part 2: Second level analysis with PEB. Neuroimage 2019; 200:12-25. [PMID: 31226492 PMCID: PMC6711451 DOI: 10.1016/j.neuroimage.2019.06.032] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/13/2019] [Accepted: 06/16/2019] [Indexed: 11/19/2022] Open
Abstract
This paper provides a worked example of using Dynamic Causal Modelling (DCM) and Parametric Empirical Bayes (PEB) to characterise inter-subject variability in neural circuitry (effective connectivity). It steps through an analysis in detail and provides a tutorial style explanation of the underlying theory and assumptions (i.e, priors). The analysis procedure involves specifying a hierarchical model with two or more levels. At the first level, state space models (DCMs) are used to infer the effective connectivity that best explains a subject's neuroimaging timeseries (e.g. fMRI, MEG, EEG). Subject-specific connectivity parameters are then taken to the group level, where they are modelled using a General Linear Model (GLM) that partitions between-subject variability into designed effects and additive random effects. The ensuing (Bayesian) hierarchical model conveys both the estimated connection strengths and their uncertainty (i.e., posterior covariance) from the subject to the group level; enabling hypotheses to be tested about the commonalities and differences across subjects. This approach can also finesse parameter estimation at the subject level, by using the group-level parameters as empirical priors. The preliminary first level (subject specific) DCM for fMRI analysis is covered in a companion paper. Here, we detail group-level analysis procedures that are suitable for use with data from any neuroimaging modality. This paper is accompanied by an example dataset, together with step-by-step instructions demonstrating how to reproduce the analyses. This guide walks through a group effective connectivity study using DCM and PEB. It explains recently developed tools for hierarchical Bayesian modelling. The appendices clarify the technical detail of the PEB framework and its priors. An accompanying dataset is provided with step-by-step analysis instructions.
Collapse
Affiliation(s)
- Peter Zeidman
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London, WC1N 3AR, UK.
| | | | | | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London, WC1N 3AR, UK
| | - Hayriye Cagnan
- Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London, WC1N 3AR, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London, WC1N 3AR, UK
| |
Collapse
|
13
|
Van de Steen F, Almgren H, Razi A, Friston K, Marinazzo D. Dynamic causal modelling of fluctuating connectivity in resting-state EEG. Neuroimage 2019; 189:476-484. [PMID: 30690158 PMCID: PMC6435216 DOI: 10.1016/j.neuroimage.2019.01.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 11/22/2022] Open
Abstract
Functional and effective connectivity are known to change systematically over time. These changes might be explained by several factors, including intrinsic fluctuations in activity-dependent neuronal coupling and contextual factors, like experimental condition and time. Furthermore, contextual effects may be subject-specific or conserved over subjects. To characterize fluctuations in effective connectivity, we used dynamic causal modelling (DCM) of cross spectral responses over 1- min of electroencephalogram (EEG) recordings during rest, divided into 1-sec windows. We focused on two intrinsic networks: the default mode and the saliency network. DCM was applied to estimate connectivity in each time-window for both networks. Fluctuations in DCM connectivity parameters were assessed using hierarchical parametric empirical Bayes (PEB). Within-subject, between-window effects were modelled with a second-level linear model with temporal basis functions as regressors. This procedure was conducted for every subject separately. Bayesian model reduction was then used to assess which (combination of) temporal basis functions best explain dynamic connectivity over windows. A third (between-subject) level model was used to infer which dynamic connectivity parameters are conserved over subjects. Our results indicate that connectivity fluctuations in the default mode network and to a lesser extent the saliency network comprised both subject-specific components and a common component. For both networks, connections to higher order regions appear to monotonically increase during the 1- min period. These results not only establish the predictive validity of dynamic connectivity estimates - in virtue of detecting systematic changes over subjects - they also suggest a network-specific dissociation in the relative contribution of fluctuations in connectivity that depend upon experimental context. We envisage these procedures could be useful for characterizing brain state transitions that may be explained by their cognitive or neuropathological underpinnings.
Collapse
Affiliation(s)
| | | | - Adeel Razi
- Monash Institute of Cognitive and Clinical Neurosciences and Monash Biomedical Imaging, Monash University, Clayton, Australia; The Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | | |
Collapse
|
14
|
Abstract
Recently, autoantibodies against NMDA receptors (NMDARs) were identified as a major cause of autoimmune encephalitis. They cause abnormalities in brain function often associated with significant changes in patients’ brain dynamics. Here we use computational modeling to identify how NMDAR dysfunction causes abnormalities in brain dynamics using patient EEGs and local field potential recordings in a mouse model of NMDAR-Ab encephalitis. NMDAR autoantibodies cause a specific shift in excitatory coupling within cortical circuits that places the circuits closer to pathological transitions between dynamic brain states. Because of the proximity to these phase transitions, otherwise benign fluctuations in neuronal coupling cause abnormal EEG responses in the presence of the antibodies. Our modeling results thus explain fluctuating abnormalities in brain dynamics observed in patients. NMDA-receptor antibodies (NMDAR-Abs) cause an autoimmune encephalitis with a diverse range of EEG abnormalities. NMDAR-Abs are believed to disrupt receptor function, but how blocking this excitatory synaptic receptor can lead to paroxysmal EEG abnormalities—or even seizures—is poorly understood. Here we show that NMDAR-Abs change intrinsic cortical connections and neuronal population dynamics to alter the spectral composition of spontaneous EEG activity and predispose brain dynamics to paroxysmal abnormalities. Based on local field potential recordings in a mouse model, we first validate a dynamic causal model of NMDAR-Ab effects on cortical microcircuitry. Using this model, we then identify the key synaptic parameters that best explain EEG paroxysms in pediatric patients with NMDAR-Ab encephalitis. Finally, we use the mouse model to show that NMDAR-Ab–related changes render microcircuitry critically susceptible to overt EEG paroxysms when these key parameters are changed, even though the same parameter fluctuations are tolerated in the in silico model of the control condition. These findings offer mechanistic insights into circuit-level dysfunction induced by NMDAR-Ab.
Collapse
|
15
|
Generic dynamic causal modelling: An illustrative application to Parkinson's disease. Neuroimage 2018; 181:818-830. [PMID: 30130648 PMCID: PMC7343527 DOI: 10.1016/j.neuroimage.2018.08.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/26/2022] Open
Abstract
We present a technical development in the dynamic causal modelling of
electrophysiological responses that combines qualitatively different neural mass
models within a single network. This affords the option to couple various
cortical and subcortical nodes that differ in their form and dynamics. Moreover,
it enables users to implement new neural mass models in a straightforward and
standardized way. This generic framework hence supports flexibility and
facilitates the exploration of increasingly plausible models. We illustrate this
by coupling a basal ganglia-thalamus model to a (previously validated) cortical
model developed specifically for motor cortex. The ensuing DCM is used to infer
pathways that contribute to the suppression of beta oscillations induced by
dopaminergic medication in patients with Parkinson's disease.
Experimental recordings were obtained from deep brain stimulation electrodes
(implanted in the subthalamic nucleus) and simultaneous magnetoencephalography.
In line with previous studies, our results indicate a reduction of synaptic
efficacy within the circuit between the subthalamic nucleus and external
pallidum, as well as reduced efficacy in connections of the hyperdirect and
indirect pathway leading to this circuit. This work forms the foundation for a
range of modelling studies of the synaptic mechanisms (and pathophysiology)
underlying event-related potentials and cross-spectral densities.
Collapse
|
16
|
Rosch RE, Hunter PR, Baldeweg T, Friston KJ, Meyer MP. Calcium imaging and dynamic causal modelling reveal brain-wide changes in effective connectivity and synaptic dynamics during epileptic seizures. PLoS Comput Biol 2018; 14:e1006375. [PMID: 30138336 PMCID: PMC6124808 DOI: 10.1371/journal.pcbi.1006375] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/05/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Pathophysiological explanations of epilepsy typically focus on either the micro/mesoscale (e.g. excitation-inhibition imbalance), or on the macroscale (e.g. network architecture). Linking abnormalities across spatial scales remains difficult, partly because of technical limitations in measuring neuronal signatures concurrently at the scales involved. Here we use light sheet imaging of the larval zebrafish brain during acute epileptic seizure induced with pentylenetetrazole. Spectral changes of spontaneous neuronal activity during the seizure are then modelled using neural mass models, allowing Bayesian inference on changes in effective network connectivity and their underlying synaptic dynamics. This dynamic causal modelling of seizures in the zebrafish brain reveals concurrent changes in synaptic coupling at macro- and mesoscale. Fluctuations of both synaptic connection strength and their temporal dynamics are required to explain observed seizure patterns. These findings highlight distinct changes in local (intrinsic) and long-range (extrinsic) synaptic transmission dynamics as a possible seizure pathomechanism and illustrate how our Bayesian model inversion approach can be used to link existing neural mass models of seizure activity and novel experimental methods.
Collapse
Affiliation(s)
- Richard E. Rosch
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
- Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Paul R. Hunter
- Department of Developmental Neurobiology & MRC Center for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Torsten Baldeweg
- Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Karl J. Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Martin P. Meyer
- Department of Developmental Neurobiology & MRC Center for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
17
|
Frässle S, Yao Y, Schöbi D, Aponte EA, Heinzle J, Stephan KE. Generative models for clinical applications in computational psychiatry. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 9:e1460. [PMID: 29369526 DOI: 10.1002/wcs.1460] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
Despite the success of modern neuroimaging techniques in furthering our understanding of cognitive and pathophysiological processes, translation of these advances into clinically relevant tools has been virtually absent until now. Neuromodeling represents a powerful framework for overcoming this translational deadlock, and the development of computational models to solve clinical problems has become a major scientific goal over the last decade, as reflected by the emergence of clinically oriented neuromodeling fields like Computational Psychiatry, Computational Neurology, and Computational Psychosomatics. Generative models of brain physiology and connectivity in the human brain play a key role in this endeavor, striving for computational assays that can be applied to neuroimaging data from individual patients for differential diagnosis and treatment prediction. In this review, we focus on dynamic causal modeling (DCM) and its use for Computational Psychiatry. DCM is a widely used generative modeling framework for functional magnetic resonance imaging (fMRI) and magneto-/electroencephalography (M/EEG) data. This article reviews the basic concepts of DCM, revisits examples where it has proven valuable for addressing clinically relevant questions, and critically discusses methodological challenges and recent methodological advances. We conclude this review with a more general discussion of the promises and pitfalls of generative models in Computational Psychiatry and highlight the path that lies ahead of us. This article is categorized under: Neuroscience > Computation Neuroscience > Clinical Neuroscience.
Collapse
Affiliation(s)
- Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Yu Yao
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Dario Schöbi
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Eduardo A Aponte
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Jakob Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.,Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| |
Collapse
|
18
|
Adebimpe A, Bourel-Ponchel E, Wallois F. Identifying neural drivers of benign childhood epilepsy with centrotemporal spikes. NEUROIMAGE-CLINICAL 2017; 17:739-750. [PMID: 29270358 PMCID: PMC5730126 DOI: 10.1016/j.nicl.2017.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/23/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Epilepsy is a neurological disorder characterized by abnormal electrical discharges in a group of brain cells. Benign childhood epilepsy, which affect children under the age of 12 years, has been reported to contribute to the cognitive impairment of these children, even in the absence of structural abnormalities. Functional connectivity models have been applied to provide a deeper understanding of the processes that control and regulate interictal activity of benign childhood epilepsy. These studies have shown regions of increased connectivity and activity, particularly at the epileptic zone, which is usually the central region around the sensorimotor cortex, and in the immediate regions surrounding the zone and reduced activity in distant regions, such as the frontal lobe and temporal regions. The present study was designed to identify the neural drivers involved in the initiation and propagation of epileptic activity and the causal relationships between brain regions with increased and decreased connectivity and functional activity. We used three different models to identify neural drivers and casual connectivity with dynamic causal modelling (DCM) of EEG data. All models showed that the central region, the source of the epileptic activity, is the major driver of the brain network during interictal discharges. Other regions include the temporoparietal junction and temporal pole. The central region also had influence on the frontal and contralateral hemisphere, which might explain the cognitive deficits observed in these patients. The epileptic source is the major driver of the brain network Other drivers include the temporoparietal junction and temporal pole Epileptic source had influence on the frontal region which might explain the cognitive deficits The right epileptic region drives the left hemisphere during interictal epileptic discharges
Collapse
Affiliation(s)
- Azeez Adebimpe
- INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardy Jules Verne, 80036 Amiens Cedex, France.
| | - Emilie Bourel-Ponchel
- INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardy Jules Verne, 80036 Amiens Cedex, France; INSERM UMR 1105, EFSN pediatric, Amiens University Hospital, Avenue Laennec, 80054 Amiens Cedex, France
| | - Fabrice Wallois
- INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardy Jules Verne, 80036 Amiens Cedex, France; INSERM UMR 1105, EFSN pediatric, Amiens University Hospital, Avenue Laennec, 80054 Amiens Cedex, France
| |
Collapse
|
19
|
Park HJ, Friston KJ, Pae C, Park B, Razi A. Dynamic effective connectivity in resting state fMRI. Neuroimage 2017; 180:594-608. [PMID: 29158202 PMCID: PMC6138953 DOI: 10.1016/j.neuroimage.2017.11.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/06/2017] [Accepted: 11/16/2017] [Indexed: 01/21/2023] Open
Abstract
Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity – and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions – and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity. We describe efficient estimation of dynamics in resting state effective connectivity. Spectral DCM and PEB are used to model fluctuations in neuronal coupling over time. Dynamics in responses are explained in terms of its causes (effective connectivity). Baseline and dynamic components of the default mode connectivity are identified.
Collapse
Affiliation(s)
- Hae-Jeong Park
- Department of Nuclear Medicine, Radiology and Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea; BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Chongwon Pae
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bumhee Park
- Department of Statistics, Hankuk University of Foreign Studies, Yong-In, Republic of Korea
| | - Adeel Razi
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK; Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan; Monash Biomedical Imaging and Monash Institute of Cognitive & Clinical Neurosciences, Monash University, Clayton, Australia
| |
Collapse
|