1
|
Bearer EL, Medina CS, Uselman TW, Jacobs RE. Harnessing axonal transport to map reward circuitry: Differing brain-wide projections from medial prefrontal cortical domains. Front Cell Dev Biol 2023; 11:1278831. [PMID: 38099294 PMCID: PMC10720719 DOI: 10.3389/fcell.2023.1278831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Neurons project long axons that contact other distant neurons. Neurons in the medial prefrontal cortex project into the limbic system to regulate responses to reward or threat. Diminished neural activity in prefrontal cortex is associated with loss of executive function leading to drug use, yet the specific circuitry that mediate these effects is unknown. Different regions within the medial prefrontal cortex may project to differing limbic system nuclei. Here, we exploited the cell biology of intracellular membrane trafficking, fast axonal transport, to map projections from two adjacent medial prefrontal cortical regions. We used Mn(II), a calcium analog, to trace medial prefrontal cortical projections in the living animal by magnetic resonance imaging (MRI). Mn(II), a contrast agent for MRI, enters neurons through voltage-activated calcium channels and relies on kinesin-1 and amyloid-precursor protein to transport out axons to distal destinations. Aqueous MnCl2 together with fluorescent dextran (3--5 nL) was stereotactically injected precisely into two adjacent regions of the medial prefrontal cortex: anterior cingulate area (ACA) or infralimbic/prelimbic (IL/PL) region. Projections were traced, first live by manganese-enhanced MRI (MEMRI) at four time points in 3D, and then after fixation by microscopy. Data-driven unbiased voxel-wise statistical maps of aligned normalized MR images after either ACA or IL/PL injections revealed statistically significant progression of Mn(II) over time into deeper brain regions: dorsal striatum, globus pallidus, amygdala, hypothalamus, substantia nigra, dorsal raphe and locus coeruleus. Quantitative comparisons of these distal accumulations at 24 h revealed dramatic differences between ACA and IL/PL injection groups throughout the limbic system, and most particularly in subdomains of the hypothalamus. ACA projections targeted dorsomedial nucleus of the hypothalamus, posterior part of the periventricular region and mammillary body nuclei as well as periaqueductal gray, while IL/PL projections accumulated in anterior hypothalamic areas and lateral hypothalamic nuclei as well as amygdala. As hypothalamic subsegments relay CNS activity to the body, our results suggest new concepts about mind-body relationships and specific roles of distinct yet adjacent medial prefrontal cortical segments. Our MR imaging strategy, when applied to follow other cell biological processes in the living organism, will undoubtedly lead to an expanded perspective on how minute details of cellular processes influence whole body health and wellbeing.
Collapse
Affiliation(s)
- Elaine L. Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Christopher S. Medina
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Taylor W. Uselman
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
2
|
Li S, Xu X, Li C, Xu Z, Wu K, Ye Q, Zhang Y, Jiang X, Cang C, Tian C, Wen J. In vivo labeling and quantitative imaging of neuronal populations using MRI. Neuroimage 2023; 281:120374. [PMID: 37729795 DOI: 10.1016/j.neuroimage.2023.120374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The study of neural circuits, which underlies perception, cognition, emotion, and behavior, is essential for understanding the mammalian brain, a complex organ consisting of billions of neurons. To study the structure and function of the brain, in vivo neuronal labeling and imaging techniques are crucial as they provide true physiological information that ex vivo methods cannot offer. In this paper, we present a new strategy for in vivo neuronal labeling and quantification using MRI. We demonstrate the efficacy of this method by delivering the oatp1a1 gene to the target neurons using rAAV2-retro virus. OATP1A1 protein expression on the neuronal membrane increased the uptake of a specific MRI contrast agent (Gd-EOB-DTPA), leading to hyperintense signals on T1W images of labeled neuronal populations. We also used dynamic contrast enhancement-based methods to obtain quantitative information on labeled neuronal populations in vivo.
Collapse
Affiliation(s)
- Shana Li
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xiang Xu
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Canjun Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Ziyan Xu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Ke Wu
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Qiong Ye
- Key Laboratory of High Field Magnetic Resonance Image of Anhui Province, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Yan Zhang
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xiaohua Jiang
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Chunlei Cang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Changlin Tian
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China; Key Laboratory of High Field Magnetic Resonance Image of Anhui Province, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Jie Wen
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
3
|
Bearer EL, Medina CS, Uselman TW, Jacobs RE. Harnessing axonal transport to map reward circuitry: Differing brain-wide projections from medial forebrain domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.557059. [PMID: 38328063 PMCID: PMC10849663 DOI: 10.1101/2023.09.10.557059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Neurons project long axons that contact other distant neurons. Projections can be mapped by hijacking endogenous membrane trafficking machinery by introducing tracers. To witness functional connections in living animals, we developed a tracer detectible by magnetic resonance imaging (MRI), Mn(II). Mn(II) relies on kinesin-1 and amyloid-precursor protein to travel out axons. Within 24h, projection fields of cortical neurons can be mapped brain-wide with this technology. MnCl2 was stereotactically injected either into anterior cingulate area (ACA) or into infralimbic/prelimbic (IL/PL) of medial forebrain (n=10-12). Projections were imaged, first by manganese-enhanced MRI (MEMRI) live, and then after fixation by microscopy. MR images were collected at 100μm isotropic resolution (~5 neurons) in 3D at four time points: before and at successive time points after injections. Images were preprocessed by masking non-brain tissue, followed by intensity scaling and spatial alignment. Actual injection locations, measured from post-injection MR images, were found to be 0.06, 0.49 and 0.84mm apart between cohorts, in R-L, A-P, and D-V directions respectively. Mn(II) enhancements arrived in hindbrains by 24h in both cohorts, while co-injected rhodamine dextran was not detectible beyond immediate subcortical projections. Data-driven unbiased voxel-wise statistical maps after ACA injections revealed significant progression of Mn(II) distally into deeper brain regions: globus pallidus, dorsal striatum, amygdala, hypothalamus, substantia nigra, dorsal raphe and locus coeruleus. Accumulation was quantified as a fraction of total volume of each segment containing significantly enhanced voxels (fractional accumulation volumes), and results visualized in column graphs. Unpaired t-tests between groups of brain-wide voxel-wise intensity profiling by either region of interest (ROI) measurements or statistical parametric mapping highlighted distinct differences in distal accumulation between injection sites, with ACA projecting to periaqueductal gray and IL/PL to basolateral amygdala (p<0.001 FDR). Mn(II) distal accumulations differed dramatically between injection groups in subdomains of the hypothalamus, with ACA targeting dorsal medial, periventricular region and mammillary body nuclei, while IL/PL went to anterior hypothalamic areas and lateral hypothalamic nuclei. Given that these hypothalamic subsegments communicate activity in the central nervous system to the body, these observations describing distinct forebrain projection fields will undoubtedly lead to newer insights in mind-body relationships.
Collapse
Affiliation(s)
- E. L. Bearer
- Department of Pathology, Univ. of New Mexico Health Sciences Center, Albuquerque, NM
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - C. S. Medina
- Department of Pathology, Univ. of New Mexico Health Sciences Center, Albuquerque, NM
| | - T. W. Uselman
- Department of Pathology, Univ. of New Mexico Health Sciences Center, Albuquerque, NM
| | - R. E. Jacobs
- Zilkha Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA
| |
Collapse
|
4
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
5
|
Bearer EL, Zhang X, Jacobs RE. Studying Axonal Transport in the Brain by Manganese-Enhanced Magnetic Resonance Imaging (MEMRI). METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2431:111-142. [PMID: 35412274 DOI: 10.1007/978-1-0716-1990-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
From the earliest notions of dynamic movements within the cell by Leeuwenhoek, intracellular transport in eukaryotes has been primarily explored by optical imaging. The giant axon of the squid became a prime experimental model for imaging transport due to its size, optical transparency, and physiological robustness. Even the biochemical basis of transport was identified using optical assays based on video microscopy of fractionated squid axoplasm. Discoveries about the dynamics and molecular components of the intracellular transport system continued in many model organisms that afforded experimental systems for optical imaging. Yet whether these experimental systems reflected a valid picture of axonal transport in the opaque mammalian brain was unknown.Magnetic resonance imaging (MRI) provides a non-destructive approach to peer into opaque tissues like the brain . The paramagnetic ion, manganese (MnII), gives a hyperintense signal in T1 weighted MRI that can serve as a marker for axonal transport. Mn(II) enters active neurons via voltage-gated calcium channels and is transported via microtubule motors down their axons by fast axonal transport. Clearance of Mn(II) is slow. Scanning live animals at successive time points reveals the dynamics of Mn(II) transport by detecting Mn(II)-induced intensity increases or accumulations along a known fiber tract, such as the optic nerve or hippocampal-forebrain projections. Mn(II)-based tract tracing also reveals projections even when not in fiber bundles, such as projections in the olfactory system or from medial prefrontal cortex into midbrain and brain stem. The rate of Mn(II) accumulation, detected as increased signal intensity by MR, serves as a proxy for transport rates. Here we describe the method for measuring transport rates and projections by mangeses-enhanced magnetic resonance imaging, MEMRI.
Collapse
Affiliation(s)
- Elaine L Bearer
- Department Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Biology and Biological Engineering and the Beckman Institute, California Institute of Technology, Pasadena, CA, USA.
| | - Xiaowei Zhang
- Department of Radiology, UC San Diego School of Medicine, San Diego, CA, USA
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Uselman TW, Barto DR, Jacobs RE, Bearer EL. Evolution of brain-wide activity in the awake behaving mouse after acute fear by longitudinal manganese-enhanced MRI. Neuroimage 2020; 222:116975. [PMID: 32474079 PMCID: PMC7805483 DOI: 10.1016/j.neuroimage.2020.116975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
Life threatening fear after a single exposure evolves in a subset of vulnerable individuals to anxiety, which may persist for their lifetime. Yet neither the whole brain's response to innate acute fear nor how brain activity evolves over time is known. Sustained neuronal activity may be a factor in the development of a persistent fear response. We couple two experimental protocols to provoke acute fear leading to prolonged fear: Predator stress (PS), a naturalistic approach to induce fear in rodents; and Serotonin transporter knockout mouse (SERT-KO) that responds to PS with sustained defensive behavior. Behavior was monitored before, during and at short and long times after PS in wild type (WT) and SERT-KO mice. Both genotypes responded to PS with defensive behavior. SERT-KO retained defensive behavior for 23 days, while WT mice returned to baseline exploratory behavior by 9 days. Thus, differences in neural activity between WT and SERT-KO 9 days after PS identifies neural correlates of persistent defensive behavior, in mice. We used longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) to identify brain-wide neural activity associated with different behaviors. Mn2+ accumulation in active neurons occurs in awake, behaving mice and is retrospectively imaged. Following the same two cohorts of mice, WT and SERT-KO, longitudinally allowed unbiased quantitative comparisons of brain-wide activity by statistical parametric mapping (SPM). During natural behavior in WT, only low levels of activity-induced Mn2+-accumulation were detected, while much more accumulation appeared immediately after PS in both WT and SERT-KO, and evolved at 9 days to a new activity pattern (p < 0.0001, uncorr., T = 5.4). Patterns of accumulation differed between genotypes, with more regions of the brain and larger volumes within regions involved in SERT-KO than WT. A new computational segmentation analysis, using our InVivo Atlas based on a manganese-enhanced MR image of a living mouse, revealed dynamic changes in the volume of significantly enhanced voxels within each segment that differed between genotypes across 45 of 87 segmented regions. At Day 9 after PS, the striatum and ventral pallidum were active in both genotypes but more so in the SERT-KO. SERT-KO also displayed sustained or increased volume of Mn2+ accumulations between Post-Fear and Day 9 in eight segments where activity was decreased or silenced in WT. C-fos staining, an alternative neural activity marker, of brains from the same mice fixed at conclusion of imaging sessions confirmed that MEMRI detected active neurons. Intensity measurements in 12 regions of interest (ROIs) supported the SPM results. Between group comparisons by SPM and of ROI measurements identified specific regions differing between time points and genotypes. We report brain-wide activity in response to a single exposure of acute fear, and, for the first time, its evolution to new activity patterns over time in individuals vulnerable to persistent fear. Our results show multiple regions with dynamic changes in neural activity and that the balance of activity between segments is disordered in the SERT-KO. Thus, longitudinal MEMRI represents a powerful approach to discover how brain-wide activity evolves from the natural state either after an experience or during a disease process.
Collapse
Affiliation(s)
- Taylor W Uselman
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Daniel R Barto
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Russell E Jacobs
- Zilkha Neurogenetics Institute, University of Southern California, Los Angeles, CA, USA; California Institute of Technology, Pasadena, CA, USA
| | - Elaine L Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Yang J, Li Q. Manganese-Enhanced Magnetic Resonance Imaging: Application in Central Nervous System Diseases. Front Neurol 2020; 11:143. [PMID: 32161572 PMCID: PMC7052353 DOI: 10.3389/fneur.2020.00143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on the strong paramagnetism of Mn2+. Mn2+ is a calcium ion analog and can enter excitable cells through voltage-gated calcium channels. Mn2+ can be transported along the axons of neurons via microtubule-based fast axonal transport. Based on these properties, MEMRI is used to describe neuroanatomical structures, monitor neural activity, and evaluate axonal transport rates. The application of MEMRI in preclinical animal models of central nervous system (CNS) diseases can provide more information for the study of disease mechanisms. In this article, we provide a brief review of MEMRI use in CNS diseases ranging from neurodegenerative diseases to brain injury and spinal cord injury.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| |
Collapse
|
8
|
Medina CS, Uselman TW, Barto DR, Cháves F, Jacobs RE, Bearer EL. Decoupling the Effects of the Amyloid Precursor Protein From Amyloid-β Plaques on Axonal Transport Dynamics in the Living Brain. Front Cell Neurosci 2019; 13:501. [PMID: 31849608 PMCID: PMC6901799 DOI: 10.3389/fncel.2019.00501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Amyloid precursor protein (APP) is the precursor to Aβ plaques. The cytoplasmic domain of APP mediates attachment of vesicles to molecular motors for axonal transport. In APP-KO mice, transport of Mn2+ is decreased. In old transgenic mice expressing mutated human (APPSwInd) linked to Familial Alzheimer's Disease, with both expression of APPSwInd and plaques, the rate and destination of Mn2+ axonal transport is altered, as detected by time-lapse manganese-enhanced magnetic resonance imaging (MEMRI) of the brain in living mice. To determine the relative contribution of expression of APPSwInd versus plaque on transport dynamics, we developed a Tet-off system to decouple expression of APPSwInd from plaque, and then studied hippocampal to forebrain transport by MEMRI. Three groups of mice were compared to wild-type (WT): Mice with plaque and APPSwInd expression; mice with plaque but suppression of APPSwInd expression; and mice with APPSwInd suppressed from mating until 2 weeks before imaging with no plaque. MR images were captured before at successive time points after stereotactic injection of Mn2+ (3-5 nL) into CA3 of the hippocampus. Mice were returned to their home cage between imaging sessions so that transport would occur in the awake freely moving animal. Images of multiple mice from the three groups (suppressed or expressed) together with C57/B6J WT were aligned and processed with our automated computational pipeline, and voxel-wise statistical parametric mapping (SPM) performed. At the conclusion of MR imaging, brains were harvested for biochemistry or histopathology. Paired T-tests within-group between time points (p = 0.01 FDR corrected) support the impression that both plaque alone and APPSwInd expression alone alter transport rates and destination of Mn2+ accumulation. Expression of APPSwInd in the absence of plaque or detectable Aβ also resulted in transport defects as well as pathology of hippocampus and medial septum, suggesting two sources of pathology occur in familial Alzheimer's disease, from toxic mutant protein as well as plaque. Alternatively mice with plaque without APPSwInd expression resemble the human condition of sporadic Alzheimer's, and had better transport. Thus, these mice with APPSwInd expression suppressed after plaque formation will be most useful in preclinical trials.
Collapse
Affiliation(s)
- Christopher S. Medina
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Taylor W. Uselman
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Daniel R. Barto
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Frances Cháves
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- California Institute of Technology, Pasadena, CA, United States
| | - Elaine L. Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
- California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
9
|
Surana S, Villarroel‐Campos D, Lazo OM, Moretto E, Tosolini AP, Rhymes ER, Richter S, Sleigh JN, Schiavo G. The evolution of the axonal transport toolkit. Traffic 2019; 21:13-33. [DOI: 10.1111/tra.12710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Surana
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - David Villarroel‐Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Oscar M. Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
| | - Edoardo Moretto
- UK Dementia Research InstituteUniversity College London London UK
| | - Andrew P. Tosolini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Sandy Richter
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
- Discoveries Centre for Regenerative and Precision MedicineUniversity College London London UK
| |
Collapse
|
10
|
Bearer EL, Wu C. Herpes Simplex Virus, Alzheimer's Disease and a Possible Role for Rab GTPases. Front Cell Dev Biol 2019; 7:134. [PMID: 31448273 PMCID: PMC6692634 DOI: 10.3389/fcell.2019.00134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus (HSV) is a common pathogen, infecting 85% of adults in the United States. After reaching the nucleus of the long-lived neuron, HSV may enter latency to persist throughout the life span. Re-activation of latent herpesviruses is associated with progressive cognitive impairment and Alzheimer's disease (AD). As an enveloped DNA virus, HSV exploits cellular membrane systems for its life cycle, and thereby comes in contact with the Rab family of GTPases, master regulators of intracellular membrane dynamics. Knock-down and overexpression of specific Rabs reduce HSV production. Disheveled membrane compartments could lead to AD because membrane sorting and trafficking are crucial for synaptic vesicle formation, neuronal survival signaling and Abeta production. Amyloid precursor protein (APP), a transmembrane glycoprotein, is the parent of Abeta, the major component of senile plaques in AD. Up-regulation of APP expression due to HSV is significant since excess APP interferes with Rab5 endocytic trafficking in neurons. Here, we show that purified PC12-cell endosomes transport both anterograde and retrograde when injected into the squid giant axon at rates similar to isolated HSV. Intracellular HSV co-fractionates with these endosomes, contains APP, Rab5 and TrkA, and displays a second membrane. HSV infected PC12 cells up-regulate APP expression. Whether interference with Rabs has a specific effect on HSV or indirectly affects membrane compartment dynamics co-opted by virus needs further study. Ultimately Rabs, their effectors or their membrane-binding partners may serve as handles to reduce the impact of viral re-activation on cognitive function, or even as more general-purpose anti-microbial therapies.
Collapse
Affiliation(s)
- Elaine L. Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Bearer EL, Manifold-Wheeler BC, Medina CS, Gonzales AG, Chaves FL, Jacobs RE. Alterations of functional circuitry in aging brain and the impact of mutated APP expression. Neurobiol Aging 2018; 70:276-290. [PMID: 30055413 DOI: 10.1016/j.neurobiolaging.2018.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a disease of aging that results in cognitive impairment, dementia, and death. Pathognomonic features of AD are amyloid plaques composed of proteolytic fragments of the amyloid precursor protein (APP) and neurofibrillary tangles composed of hyperphosphorylated tau protein. One type of familial AD occurs when mutant forms of APP are inherited. Both APP and tau are components of the microtubule-based axonal transport system, which prompts the hypothesis that axonal transport is disrupted in AD, and that such disruption impacts cognitive function. Transgenic mice expressing mutated forms of APP provide preclinical experimental systems to study AD. Here, we perform manganese-enhanced magnetic resonance imaging to study transport from hippocampus to forebrain in four cohorts of living mice: young and old wild-type and transgenic mice expressing a mutant APP with both Swedish and Indiana mutations (APPSwInd). We find that transport is decreased in normal aging and further altered in aged APPSwInd plaque-bearing mice. These findings support the hypothesis that transport deficits are a component of AD pathology and thus may contribute to cognitive deficits.
Collapse
Affiliation(s)
- Elaine L Bearer
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Division of Biology, California Institute of Technology, Pasadena, CA, USA.
| | | | | | - Aaron G Gonzales
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Frances L Chaves
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Russell E Jacobs
- Division of Biology, California Institute of Technology, Pasadena, CA, USA; Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
12
|
Jin H, Fujita T, Jin M, Kurotani R, Hidaka Y, Cai W, Suita K, Prajapati R, Liang C, Ohnuki Y, Mototani Y, Umemura M, Yokoyama U, Sato M, Okumura S, Ishikawa Y. Epac activation inhibits IL-6-induced cardiac myocyte dysfunction. J Physiol Sci 2018; 68:77-87. [PMID: 27995459 PMCID: PMC6353818 DOI: 10.1007/s12576-016-0509-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/25/2016] [Indexed: 11/30/2022]
Abstract
Pro-inflammatory cytokines are released in septic shock and impair cardiac function via the Jak-STAT pathway. It is well known that sympathetic and thus catecholamine signaling is activated thereafter to compensate for cardiac dysfunction. The mechanism of such compensation by catecholamine signaling has been traditionally understood to be cyclic AMP-dependent protein kinase (PKA)-mediated enforcement of cardiac contractility. We hypothesized that the exchange protein activated by cAMP (Epac), a newly identified target of cAMP signaling that functions independently of PKA, also plays a key role in this mechanism. In cultured cardiac myocytes, activation of Epac attenuated the inhibitory effect of interleukin-6 on the increase of intracellular Ca2+ concentration and contractility in response to isoproterenol, most likely through inhibition of the Jak-STAT pathway via SOCS3, with subsequent changes in inducible nitric oxide synthase expression. These findings suggest a new role of catecholamine signaling in compensating for cardiac dysfunction in heart failure. Epac and its downstream pathway may be a novel target for treating cardiac dysfunction in endotoxemia.
Collapse
Affiliation(s)
- Huiling Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Meihua Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita-shi, Osaka, 565-8565, Japan
| | - Reiko Kurotani
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Biochemical Engineering, Faculty of Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yuko Hidaka
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Wenqian Cai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kenji Suita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Rajesh Prajapati
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Chen Liang
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Motohiko Sato
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Satoshi Okumura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
13
|
Medina CS, Manifold-Wheeler B, Gonzales A, Bearer EL. Automated Computational Processing of 3-D MR Images of Mouse Brain for Phenotyping of Living Animals. ACTA ACUST UNITED AC 2017; 119:29A.5.1-29A.5.38. [PMID: 28678440 DOI: 10.1002/cpmb.40] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance (MR) imaging provides a method to obtain anatomical information from the brain in vivo that is not typically available by optical imaging because of this organ's opacity. MR is nondestructive and obtains deep tissue contrast with 100-µm3 voxel resolution or better. Manganese-enhanced MRI (MEMRI) may be used to observe axonal transport and localized neural activity in the living rodent and avian brain. Such enhancement enables researchers to investigate differences in functional circuitry or neuronal activity in images of brains of different animals. Moreover, once MR images of a number of animals are aligned into a single matrix, statistical analysis can be done comparing MR intensities between different multi-animal cohorts comprising individuals from different mouse strains or different transgenic animals, or at different time points after an experimental manipulation. Although preprocessing steps for such comparisons (including skull stripping and alignment) are automated for human imaging, no such automated processing has previously been readily available for mouse or other widely used experimental animals, and most investigators use in-house custom processing. This protocol describes a stepwise method to perform such preprocessing for mouse. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | | | - Aaron Gonzales
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Elaine L Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico.,Division of Biology, California Institute of Technology, Pasadena, California
| |
Collapse
|